[go: up one dir, main page]

JP4469164B2 - Method for producing exhaust gas purification catalyst - Google Patents

Method for producing exhaust gas purification catalyst Download PDF

Info

Publication number
JP4469164B2
JP4469164B2 JP2003394505A JP2003394505A JP4469164B2 JP 4469164 B2 JP4469164 B2 JP 4469164B2 JP 2003394505 A JP2003394505 A JP 2003394505A JP 2003394505 A JP2003394505 A JP 2003394505A JP 4469164 B2 JP4469164 B2 JP 4469164B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
coating
reference example
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003394505A
Other languages
Japanese (ja)
Other versions
JP2005152775A (en
Inventor
紀彦 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2003394505A priority Critical patent/JP4469164B2/en
Publication of JP2005152775A publication Critical patent/JP2005152775A/en
Application granted granted Critical
Publication of JP4469164B2 publication Critical patent/JP4469164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、内燃機関の排ガス浄化用触媒の製造方法及び排ガス浄化用触媒に関する。   The present invention relates to a method for producing an exhaust gas purification catalyst for an internal combustion engine and an exhaust gas purification catalyst.

従来より、自動車などの内燃機関の排ガス浄化用触媒として、一酸化炭素(CO)や炭化水素(HC)の酸化と窒素酸化物(NOX)の還元とを同時に行って排ガスを浄化する三元触媒が用いられている。このような触媒としては、例えばコージェライトなどからなる耐熱性無機セラミックスからなるハニカム状のモノリス担体のセル壁上にγ−アルミナなどの多孔質材料からなる多孔質層を形成し、その多孔質層内にPt,Pd,Rhなどの貴金属触媒を担持させたものが知られている。 Conventionally, as an exhaust gas purifying catalyst for internal combustion engines such as automobiles, three-way purification is performed by simultaneously oxidizing carbon monoxide (CO) and hydrocarbons (HC) and reducing nitrogen oxides (NO x ). A catalyst is used. As such a catalyst, for example, a porous layer made of a porous material such as γ-alumina is formed on the cell wall of a honeycomb monolith support made of heat-resistant inorganic ceramics made of cordierite, and the porous layer. A catalyst in which a noble metal catalyst such as Pt, Pd, or Rh is supported is known.

ここで、モノリス担体上に多孔質層を形成したり、多孔質層に触媒成分を担持させる方法としては、モノリス担体や多孔質層などの触媒担体を触媒成分などを含むコーティング液に浸漬した後に乾燥する方法が知られている。   Here, as a method for forming a porous layer on the monolith support or for supporting a catalyst component on the porous layer, a catalyst support such as a monolith support or a porous layer is immersed in a coating solution containing the catalyst component. A method of drying is known.

貴金属及びNOX吸収材からなる触媒成分を多孔質層に担持させる場合、均一に分散していることが好ましいことが特許文献1に記載されている。NOX吸収材を貴金属の近傍に配置させることでNOX浄化率が向上する。
特開平7−232064号公報
Patent Document 1 describes that when a catalyst component composed of a noble metal and an NO x absorbent is supported on a porous layer, it is preferably dispersed uniformly. The NO X absorbent is improved NO X purification rate by causing disposed in the vicinity of the precious metal.
Japanese Patent Laid-Open No. 7-233204

しかしながら、従来の排ガス浄化用触媒の製造方法について本願発明者らが検討を行った結果、触媒担体に対する触媒成分の担持を更に均一にできる余地があることを見出した。つまり、従来の製造方法では、コーティングする触媒成分などを均一に調製しても触媒担体上で触媒成分が偏析し、均一に分散させることは困難であった。   However, as a result of studies by the inventors of the present invention on a conventional method for producing an exhaust gas purification catalyst, it has been found that there is room for further uniform loading of the catalyst component on the catalyst carrier. That is, in the conventional manufacturing method, even if the catalyst component to be coated is prepared uniformly, the catalyst component is segregated on the catalyst carrier and it is difficult to uniformly disperse it.

上記実情に鑑み、本発明では従来より高い水準で触媒成分が触媒担体に分散され、より高い触媒能力を発揮できる排ガス浄化用触媒及びそのような排ガス浄化用触媒を製造する方法を提供することを解決すべき課題とする。   In view of the above circumstances, the present invention provides a catalyst for exhaust gas purification in which catalyst components are dispersed in a catalyst carrier at a higher level than before, and can provide a higher catalytic ability, and a method for producing such an exhaust gas purification catalyst. It is a problem to be solved.

上記課題を解決するために本願発明者らが鋭意検討を行った結果、触媒成分の偏析の原因の一つとして乾燥工程が挙げられることを見出した。従来の触媒成分乾燥時には乾燥炉を用い熱風や赤外線による乾燥が行われていたが、マイクロ波などの赤外線よりも波長の長い電磁波を用いて乾燥することで偏析が解消できることを発見した。   As a result of intensive studies conducted by the inventors of the present invention in order to solve the above-mentioned problems, it has been found that a drying step can be cited as one of the causes of segregation of catalyst components. Conventional catalyst components were dried with hot air or infrared rays using a drying oven. However, it was discovered that segregation can be eliminated by drying using electromagnetic waves having longer wavelengths than infrared rays such as microwaves.

熱風乾燥や赤外線乾燥では、エネルギーの授受が表面で進行するので水分の加熱及び蒸発は表面から進行する。従って、水分の蒸発に伴い水分が表面側に拡散移動する流れが生じ、この流れによりコーティングされた触媒成分も移動することで偏析が発生すると考えられる。一方、マイクロ波などの波長の長い電磁波は水などの液体中にも均一に侵入できるので、水分の加熱を均一に行える。従って、水分の蒸発に伴う流れも生じず、触媒成分などの偏析は生じないものと考えられる。本発明はこの発見に基づき完成した。   In hot air drying and infrared drying, energy transfer proceeds on the surface, so that heating and evaporation of moisture proceeds from the surface. Therefore, it is considered that segregation occurs due to the movement of moisture that diffuses and moves to the surface side as the moisture evaporates, and the catalyst component coated by this flow also moves. On the other hand, electromagnetic waves having a long wavelength such as microwaves can uniformly penetrate into liquids such as water, so that moisture can be heated uniformly. Therefore, it is considered that the flow accompanying the evaporation of moisture does not occur, and segregation of catalyst components does not occur. The present invention was completed based on this discovery.

すなわち、本発明の排ガス浄化用触媒の製造方法は、触媒成分を含有するコーティング液を触媒担体にコーティングするコーティング工程と、
該コーティング液が含有する液体媒質を波長が10μm〜10μmである電磁波照射により乾燥除去する乾燥工程と、を有し、
触媒担体に担持させる前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の第1元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の第2元素とからなり、
前記コーティング液は前記第1元素を塩として含み、前記コーティング工程後、加熱しながら波長が10μm〜10μmである電磁波照射を行い、
前記第1元素の塩は、電磁波照射しながら熱分解されることを特徴とする。
That is, the method for producing an exhaust gas purifying catalyst of the present invention comprises a coating step of coating a catalyst carrier with a coating liquid containing a catalyst component,
A drying step of drying and removing the liquid medium contained in the coating liquid by electromagnetic wave irradiation having a wavelength of 10 4 μm to 10 8 μm,
The catalyst component supported on the catalyst carrier is selected from the group consisting of at least one first element selected from the group consisting of Pt, Pd, Rh, and Ir, and an alkali metal, alkaline earth metal, rare earth, and base metal. Consisting of at least one second element,
The coating liquid includes the first element as a salt, after the coating process, it has rows electromagnetic radiation having a wavelength of 10 4 μm~10 8 μm with heating,
The salt of the first element is thermally decomposed while being irradiated with electromagnetic waves .

なお、本発明における「触媒成分を含有するコーティング液」には、ジニトロアミノ白金酸水溶液のように液体媒質としての水に溶液として可溶化されているもののほか、酸化セリウムなどを含むスラリーなどのような粒状材料の懸濁液も含む。この場合の「触媒成分」とは前者の場合はジニトロアミノ白金酸又は白金であり、後者の場合は酸化セリウム又はセリウムのことである。つまり、本発明はスラリーをコーティング(担持)する場合でも、溶液をコーティングする場合でも適用可能である。本発明は、触媒体体への液状物質(コーティング液:溶液やスラリーを含む)の担持に適用することで、触媒担体にコーティングする触媒成分の分散の均一性を向上できるという効果を発揮する。   The “coating solution containing a catalyst component” in the present invention includes a solution that is solubilized as a solution in water as a liquid medium, such as a dinitroaminoplatinic acid aqueous solution, and a slurry containing cerium oxide or the like. Also includes suspensions of particulate materials. The “catalyst component” in this case is dinitroaminoplatinic acid or platinum in the former case, and cerium oxide or cerium in the latter case. That is, the present invention can be applied both when the slurry is coated (supported) and when the solution is coated. The present invention exerts an effect of improving the uniformity of dispersion of the catalyst component coated on the catalyst carrier by being applied to support of a liquid substance (including a coating liquid: including a solution and a slurry) on the catalyst body.

ここで、前記電磁波はマイクロ波であることがより好ましい。 Here, it is more preferably pre-Symbol electromagnetic wave is a microwave.

担持される前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の元素とからなることが好ましい。両者を均一に混合した状態のまま担持することができるので、両者の相乗作用が期待できる。   The catalyst component to be supported is at least one element selected from the group consisting of Pt, Pd, Rh and Ir, and at least one type selected from the group consisting of alkali metals, alkaline earth metals, rare earths and base metals. It is preferable to consist of an element. Since both can be supported in a uniformly mixed state, a synergistic effect of both can be expected.

前記液体媒質が水及び/又はアルコールを含むことで、前述の電磁波により効率的に加熱することができる。また、前記多孔質材料はアルミナ,シリカ,ジルコニア,チタニア及びゼオライトからなる群から選択される1種以上の耐熱性無機酸化物からなることが好ましい。   When the liquid medium contains water and / or alcohol, the liquid medium can be efficiently heated by the electromagnetic wave. The porous material is preferably composed of one or more heat-resistant inorganic oxides selected from the group consisting of alumina, silica, zirconia, titania and zeolite.

本実施形態の排ガス浄化用触媒の製造方法はコーティング工程と乾燥工程とを有する。特徴的な乾燥工程をもつことが本実施形態の製造方法の要点である。本実施形態の製造方法は一般的な排ガス浄化用触媒、例えば、三元触媒、ディーゼルエンジン用パティキュレートフィルター(DPF)、NOX吸収体をもつ三元触媒、に適用することができる。本製造方法により製造された排ガス浄化用触媒は従来の排ガス浄化用触媒と比較しても触媒成分の分散の均一性が高い。 The manufacturing method of the exhaust gas purifying catalyst of the present embodiment includes a coating process and a drying process. Having the characteristic drying process is the main point of the manufacturing method of this embodiment. The production method of the present embodiment can be applied to general exhaust gas purifying catalysts such as a three-way catalyst, a diesel engine particulate filter (DPF), and a three-way catalyst having an NO x absorber. The catalyst for exhaust gas purification produced by this production method has high uniformity of dispersion of the catalyst components even compared with the conventional exhaust gas purification catalyst.

(コーティング工程)
コーティング工程は、コーティング液を触媒担体にコーティングする工程である。コーティングの方法は特に限定せず、コーティング液中に触媒担体を浸漬する方法、コーティング液を触媒担体に噴霧する方法などの一般的な方法が採用できる。
(Coating process)
The coating step is a step of coating the catalyst support with a coating liquid. The method of coating is not particularly limited, and general methods such as a method of immersing the catalyst support in the coating liquid and a method of spraying the coating liquid onto the catalyst support can be employed.

コーティング液は触媒成分を含有する。コーティング液としては溶液とスラリーとがある。溶液は触媒成分が液体媒質に溶解したものである。スラリーは触媒成分が液体媒質に懸濁したものである。液体媒質は水やアルコールなどの極性が高く電磁波照射により誘電加熱されやすい液体が好ましい。   The coating liquid contains a catalyst component. Coating liquids include solutions and slurries. The solution is a solution in which a catalyst component is dissolved in a liquid medium. The slurry is a slurry in which a catalyst component is suspended in a liquid medium. The liquid medium is preferably a liquid having a high polarity, such as water or alcohol, which is easily heated by dielectric irradiation.

溶液として用いる触媒成分としてはPt,Rh,Pd,Ir,Ruなどの貴金属や、Li,K,Naなどのアルカリ金属,Ba,Sr,Caなどのアルカリ土類金属,La,Y,Ceなどの希土類からなるNOX吸収材、卑金属などが挙げられる。特にPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の元素とを含むことが好ましい。これら触媒成分に含まれる元素は、硝酸塩、酢酸塩、硫酸塩、塩化物或いは錯塩などの、塩にすることで、水、アルコールなどの液体媒質に溶解させてコーティング液とする。 Catalyst components used as a solution include noble metals such as Pt, Rh, Pd, Ir, and Ru, alkali metals such as Li, K, and Na, alkaline earth metals such as Ba, Sr, and Ca, La, Y, and Ce. NO X absorbent composed of a rare earth, such as base metals and the like. In particular, it contains at least one element selected from the group consisting of Pt, Pd, Rh and Ir, and at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earths and base metals. preferable. The elements contained in these catalyst components are made into salts, such as nitrates, acetates, sulfates, chlorides or complex salts, and dissolved in a liquid medium such as water or alcohol to form a coating solution.

スラリーとして用いる触媒成分としてはアルミナ,シリカ,チタニア,ゼオライト,シリカアルミナ,ジルコニアなどの無機セラミックスが採用できる。更に前述の溶液として用いる触媒成分に挙げた元素であっても酸化物など液体媒質に溶解しない化合物も含まれる。例えば、酸化Ceなどである。   As the catalyst component used as the slurry, inorganic ceramics such as alumina, silica, titania, zeolite, silica alumina, and zirconia can be employed. Furthermore, compounds that do not dissolve in the liquid medium, such as oxides, are included even if they are the elements listed as the catalyst component used as the above solution. For example, Ce oxide.

貴金属からなる触媒成分を担持する量は0.1g/L〜10.0g/L程度が好ましい。2種以上を併用する場合では合計が0.1g/L〜10.0g/L程度が好ましい。特に0.5g/L〜3.0g/L程度が好ましい。NOX吸収材からなる触媒成分を担持する量は0.1mol/L〜1.0mol/L程度とすることが好ましい。2種以上を併用する場合でも0.1mol/L〜1.0mol/L程度とすることが好ましい。 The amount of the catalyst component made of a noble metal is preferably about 0.1 g / L to 10.0 g / L. When using 2 or more types together, the total is preferably about 0.1 g / L to 10.0 g / L. In particular, about 0.5 g / L to 3.0 g / L is preferable. The amount of the catalyst component composed of the NO x absorbent is preferably about 0.1 mol / L to 1.0 mol / L. Even when using 2 or more types together, it is preferable to set it as about 0.1 mol / L-1.0 mol / L.

触媒担体はコージェライトなどの耐熱性のセラミックスからなるモノリス担体や、メタル担体などを用いることができる。触媒担体の形状は特に限定されないが、ハニカム状(ストレートフロータイプ、DPF用などのウォールフロータイプ)、ペレット状などが採用できる。触媒担体の表面には表面積の向上などを目的として形成された多孔質層をもつことができる。多孔質層はアルミナ,シリカ,チタニア,ゼオライト,シリカアルミナ,ジルコニアなどの無機セラミックスから構成することができる。触媒表面に多孔質層を形成する方法は特に限定されず、前述の無機セラミックス等を含むスラリーをコーティングした後に乾燥・焼成を行うことで形成できる。この多孔質層の形成においても本発明の製造方法を適用することができる。つまり、スラリーのコーティング後、乾燥する際(乾燥工程)に後述する条件の電磁波を照射することが好ましい。   As the catalyst carrier, a monolithic carrier made of heat-resistant ceramics such as cordierite, a metal carrier, or the like can be used. The shape of the catalyst carrier is not particularly limited, but a honeycomb shape (straight flow type, wall flow type for DPF, etc.), a pellet shape, and the like can be employed. The surface of the catalyst support can have a porous layer formed for the purpose of improving the surface area. The porous layer can be composed of inorganic ceramics such as alumina, silica, titania, zeolite, silica alumina, zirconia. The method for forming the porous layer on the catalyst surface is not particularly limited, and the porous layer can be formed by coating the slurry containing the inorganic ceramics and the like, followed by drying and firing. The production method of the present invention can also be applied to the formation of this porous layer. That is, it is preferable to irradiate the electromagnetic wave of the conditions mentioned later when drying (drying process) after slurry coating.

(乾燥工程)
乾燥工程は波長が100μm以上の電磁波を照射することで液体媒質を乾燥・除去する工程である。電磁波の照射はコーティングされたコーティング液に対して均一に行われるようにする。コーティング液に均一に電磁波を照射することでコーティング液に含まれる液体媒質を均一に加熱・蒸発させることができるので、液体媒質の不均一な蒸発に伴う触媒成分の偏析を抑制できる。
(Drying process)
The drying process is a process of drying and removing the liquid medium by irradiating an electromagnetic wave having a wavelength of 100 μm or more. Irradiation of electromagnetic waves is performed uniformly on the coated coating solution. Since the liquid medium contained in the coating liquid can be uniformly heated and evaporated by irradiating the coating liquid with electromagnetic waves uniformly, segregation of the catalyst component due to non-uniform evaporation of the liquid medium can be suppressed.

照射する電磁波の波長は104μm〜108μmであることが好ましい。特に、波長が105μm〜107μmであることがより好ましい。 The wavelength of the electromagnetic wave to be irradiated is preferably 10 4 μm to 10 8 μm. In particular, the wavelength is more preferably 10 5 μm to 10 7 μm.

乾燥工程に付随させて熱風等を吹き付けることができる。電磁波の照射により蒸発した液体媒質を速やかに除去することで乾燥の均一化が達成できる。その結果、触媒成分の偏析が抑制できる。   Hot air or the like can be blown along with the drying process. Uniform drying can be achieved by quickly removing the liquid medium evaporated by the irradiation of electromagnetic waves. As a result, segregation of the catalyst component can be suppressed.

(その他の工程)
乾燥工程後は特に限定しない。例えば、触媒成分として含まれる塩の熱分解、無機セラミックスの焼成などを行うために加熱することができる。但し、乾燥工程によって液体媒質が除去されているので、その後の加熱によっては触媒成分の偏析が生じるおそれが少ない。従って、加熱する方法は一般的な加熱炉などが採用できる。
(Other processes)
There is no particular limitation after the drying step. For example, heating can be performed to perform pyrolysis of a salt contained as a catalyst component, firing of inorganic ceramics, and the like. However, since the liquid medium is removed by the drying process, there is little possibility of segregation of the catalyst component by subsequent heating. Accordingly, a general heating furnace or the like can be adopted as a heating method.

参考例1)
多孔質材料としてのγ−アルミナ120質量部、酸化セリウム10質量部及び酸性アルミナゾル10質量部と、液体媒質としてのイオン交換水150質量部とを混合しボールミルにて6時間粉砕してコーティング液としてのスラリーを調製した。
( Reference Example 1)
120 parts by mass of γ-alumina as a porous material, 10 parts by mass of cerium oxide and 10 parts by mass of acidic alumina sol and 150 parts by mass of ion-exchanged water as a liquid medium are mixed and pulverized for 6 hours as a coating liquid. A slurry was prepared.

触媒担体としてのDPF(NGK製;コージェライト、φ129mm×長さ150mm、セル数46.5セル・cm-2(300セル・in-2)、気孔率60%、細孔径25μm、容積2L)をスラリーに浸漬した後、余分なスラリーをエアーブローで吹き払った。250℃で1時間加熱して余分な水分を乾燥した後、500℃で1時間焼成することで、触媒担体としてのセル表面に多孔質層が形成された多孔質触媒担体を得た。これらの乾燥及び焼成は加熱炉にて行った。 DPF as a catalyst carrier (manufactured by NGK; cordierite, φ129 mm × length 150 mm, number of cells 46.5 cells · cm −2 (300 cells · in −2 ), porosity 60%, pore diameter 25 μm, volume 2 L) After dipping in the slurry, excess slurry was blown off by air blow. Excess water was dried by heating at 250 ° C. for 1 hour, and then calcined at 500 ° C. for 1 hour to obtain a porous catalyst carrier having a porous layer formed on the cell surface as the catalyst carrier. These drying and baking were performed in a heating furnace.

触媒成分としてのPtを含むコーティング液としてのジニトロアミノ白金酸水溶液中に、多孔質触媒担体を浸漬し、Ptを2g/Lとなるように担持した後、250℃で1時間加熱することでPt塩を分解してPt金属を担持した。   A porous catalyst carrier is immersed in a dinitroaminoplatinic acid aqueous solution as a coating liquid containing Pt as a catalyst component, and Pt is supported at 2 g / L, and then heated at 250 ° C. for 1 hour to obtain Pt. The salt was decomposed to carry Pt metal.

更にPt金属を担持した多孔質触媒担体を触媒成分としてのBa及びKを酢酸Ba及び硝酸Kとして含むコーティング液としての水溶液中に浸漬した。余分な液はエアーブローにより吹き払った(コーティング工程)。   Further, a porous catalyst carrier supporting Pt metal was immersed in an aqueous solution as a coating solution containing Ba and K as catalyst components as Ba acetate and K nitrate. Excess liquid was blown away by air blow (coating process).

出力1200kW、波長105μmのマイクロ波乾燥装置にて10分間処理して水分を乾燥させた(乾燥工程)。Ba及びKの担持量はそれぞれ0.1mol/L及び0.05mol/Lであった。更に加熱炉にて350℃の熱処理を行い酢酸Ba及び硝酸Kを分解して参考例1の触媒を調製した。 Water was dried by treatment for 10 minutes in a microwave drying apparatus with an output of 1200 kW and a wavelength of 10 5 μm (drying step). The supported amounts of Ba and K were 0.1 mol / L and 0.05 mol / L, respectively. Further, a catalyst of Reference Example 1 was prepared by performing heat treatment at 350 ° C. in a heating furnace to decompose Ba acetate and K nitrate.

参考例2)
DPFの代わりに、ストレートフロー型の触媒担体(φ129mm×長さ150mm、セル数93セル・cm-2(600セル・in-2))を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 2)
The same procedure as in Reference Example 1 was used except that a straight flow type catalyst support (φ129 mm × length 150 mm, cell number 93 cells · cm −2 (600 cells · in −2 )) was used instead of DPF. The catalyst of the reference example was prepared.

参考例3)
硝酸Kに代えてシュウ酸Vを用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 3)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that oxalic acid V was used instead of nitric acid K.

参考例4)
硝酸Kに変えて硝酸第二鉄を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 4)
A catalyst of this reference example was prepared in the same manner as in Reference example 1 except that ferric nitrate was used instead of nitric acid K.

参考例5)
硝酸Kに変えて硝酸Ceを用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 5)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that Ce nitrate was used instead of nitric acid K.

参考例6)
ジニトロアミノ白金酸水溶液に代えてジニトロアミノ白金酸及び硝酸ロジウムの混合水溶液を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。白金とロジウムとは質量比で3:1、総量2g/Lで、触媒担体上に担持された。
( Reference Example 6)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that a mixed aqueous solution of dinitroaminoplatinic acid and rhodium nitrate was used instead of the dinitroaminoplatinic acid aqueous solution. Platinum and rhodium were supported on the catalyst support in a mass ratio of 3: 1 and a total amount of 2 g / L.

参考例7)
マイクロ波乾燥装置に代えて、出力2000kW、波長107μmの高周波乾燥装置を用いて10分間処理した以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 7)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that the treatment was performed for 10 minutes using a high-frequency drying apparatus having an output of 2000 kW and a wavelength of 10 7 μm instead of the microwave drying apparatus.

参考例8)
マイクロ波乾燥装置にてマイクロ波を照射しながら下方より約80℃の温風を送って20分間乾燥した以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 8)
A catalyst of this reference example was prepared in the same manner as in Reference example 1 except that warm air of about 80 ° C. was sent from below while drying with microwaves in a microwave drying apparatus and dried for 20 minutes.

(実施例
ジニトロアミノ白金酸水溶液にてPtを担持した後の250℃でPt塩を分解する間にマイクロ波乾燥装置にて20分間処理した以外は参考例1と同様の方法にて本実施例の触媒を調製した。
(Example 1 )
The catalyst of this example was prepared in the same manner as in Reference Example 1 except that the Pt salt was decomposed at 250 ° C. after supporting Pt with an aqueous dinitroaminoplatinic acid solution and treated for 20 minutes in a microwave dryer. Prepared.

(比較例1)
マイクロ波乾燥装置に代えて、出力2000kW、波長10μmの赤外線乾燥装置にて20分間、乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 1)
A catalyst of this comparative example was prepared in the same manner as in Reference Example 1 except that it was dried for 20 minutes by an infrared drying apparatus having an output of 2000 kW and a wavelength of 10 μm instead of the microwave drying apparatus.

(比較例2)
マイクロ波乾燥装置に代えて、熱風式のガス炉を用いて、メッシュベルトの上に触媒を載せ、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 2)
Reference Example 1 except that the catalyst was placed on a mesh belt using a hot air type gas furnace instead of the microwave dryer and dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min. A catalyst of this comparative example was prepared in the same manner.

(比較例3)
マイクロ波乾燥装置に代えて、箱型電気炉を用いて、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 3)
The catalyst of this comparative example was prepared in the same manner as in Reference Example 1 except that it was dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min using a box type electric furnace instead of the microwave drying apparatus. Was prepared.

(比較例4)
マイクロ波乾燥装置に代えて、箱型電気炉を用いて、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例2と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 4)
The catalyst of this comparative example was prepared in the same manner as in Reference Example 2 except that it was dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min using a box-type electric furnace instead of the microwave drying apparatus. Was prepared.

(耐久試験)
参考例、実施例及び各比較例の触媒をコンバータに入れ、マニホールドから1m下流に取りけた。2.0Lリーンバーンエンジンで触媒温度550℃とし、A/Fをリーン時25で56秒間、リッチ時10で4秒間を交互に切り替え50時間耐久を行った。燃料中のSの量は300ppmであった。次いで入りガス温度を600℃に設定しA/Fをストイキ(14.6)にて50時間運転した。そのときの燃料中のSの量は20ppmであった。
(An endurance test)
The catalysts of each reference example, Example 1 and each comparative example were placed in a converter and 1 m downstream from the manifold. The catalyst temperature was set at 550 ° C. with a 2.0 L lean burn engine, and the A / F was alternately switched between 25 seconds for lean for 56 seconds and rich for 10 seconds for 4 seconds for durability. The amount of S in the fuel was 300 ppm. Next, the input gas temperature was set to 600 ° C., and the A / F was operated with stoichiometry (14.6) for 50 hours. The amount of S in the fuel at that time was 20 ppm.

(性能評価試験)
NOX性能:リーンバーンエンジンを用いて排ガス温度を400℃に設定後、A/Fをリーン時25で30秒間、リッチ時10で0.5秒間を交互に繰り返し、NOX浄化性能を評価した。NOX浄化性能は下式により評価した。
(Performance evaluation test)
NO X performance: After setting the exhaust gas temperature to 400 ° C using a lean burn engine, the A / F was alternately repeated for 30 seconds at 25 for lean and 0.5 seconds for 10 at rich to evaluate the NO X purification performance. . The NO x purification performance was evaluated by the following formula.

NOX浄化性能(%)={(エンジン出口のNOX量(g/テスト))−(触媒出口のNOX量(g/テスト))}÷(エンジン出口のNOX量(g/テスト))×100(%)
酸化性能:2.2Lの直噴型コモンレールディーゼルエンジンに触媒を取り付け排ガス温度をアイドル(100℃)〜400℃まで50℃/分で昇温し、HC及びCOのそれぞれについて50%浄化する温度(着火温度)を測定した。
NO x purification performance (%) = {(NO x amount at engine outlet (g / test)) − (NO x amount at catalyst outlet (g / test))} ÷ (NO x amount at engine outlet (g / test)) ) X 100 (%)
Oxidation performance: A catalyst is attached to a 2.2 L direct injection common rail diesel engine, and the exhaust gas temperature is raised from idle (100 ° C.) to 400 ° C. at 50 ° C./min. Ignition temperature) was measured.

(結果)
結果を表1に示す。
(result)
The results are shown in Table 1.

表1から明らかなように、各参考及び実施例1の触媒は各比較例の触媒と比較して、高いNOX浄化率を示した。HC浄化温度及びCO浄化温度も各参考及び実施例1の触媒が各比較例の触媒よりも低い値を示していることから、各参考及び実施例1の触媒がより高い触媒能力を有することが明らかとなった。参考例1〜6のいずれについても高いNOX浄化率を示すことから担持する多孔質担体や触媒成分の種類にかかわらず本発明の製造方法の効果が発揮できることが分かった。 As is clear from Table 1, the catalysts of each reference example and Example 1 exhibited a higher NO x purification rate than the catalysts of the respective comparative examples. Since the HC purification temperature and the CO purification temperature of the catalysts of each reference example and example 1 are lower than those of the catalysts of each comparative example, the catalysts of each reference example and example 1 have a higher catalytic capacity. It became clear. Since all of Reference Examples 1 to 6 showed a high NO x purification rate, it was found that the effects of the production method of the present invention can be exhibited regardless of the type of the porous carrier and catalyst component to be supported.

また、参考例1及び7の結果から、マイクロ波及び高周波のいずれで(少なくともこの波長の範囲(10μm〜10μm)にて)乾燥しても高い活性をもつ触媒が得られることが分かった。更に、参考例1及び8の結果から、温風を送りながら乾燥を行うことで、発明の効果を損なわずに乾燥時間を短縮できることが分かった。そして、実施例の触媒の触媒能力が参考例1の触媒よりも高い(NOX浄化率が高く、HC及びCOの浄化温度が低い)ことから、貴金属触媒を担持した後にもマイクロ波などで乾燥を行うことで、更に高い触媒能力を発揮できることが明らかとなった。 Further, from the results of Reference Examples 1 and 7, it is possible to obtain a catalyst having high activity even if it is dried by either microwave or high frequency (at least in this wavelength range (10 4 μm to 10 8 μm)). I understood. Furthermore, from the results of Reference Examples 1 and 8, it was found that drying time can be shortened without impairing the effects of the invention by performing drying while sending warm air. Then, Example 1 of the catalyst of the catalyst capacity is higher than the catalyst of Example 1 from (NO X purification rate is high, HC and purification temperature CO is low) that, after a noble metal catalyst in a micro wave It has been clarified that a higher catalytic ability can be exhibited by drying.

ここで、参考例1の触媒の外観及び触媒表面のSEM写真を図1及び図2に示し、比較例3の触媒の外観及び触媒表面のSEM写真を図3及び図4に示した。各参考例及び本実施例の触媒では、図1及び図2に示すように、触媒成分や多孔質担体が均一に担持されていることが分かるのに対し、本比較例の触媒では触媒成分や多孔質担体が偏析していることが分かる。これら多孔質担体及び触媒成分の担持の様子の相違が触媒能力に影響を与えていることが推察できる。 Here, the appearance of the catalyst of Reference Example 1 and the SEM photograph of the catalyst surface are shown in FIGS. 1 and 2, and the appearance of the catalyst of Comparative Example 3 and the SEM photograph of the catalyst surface are shown in FIGS. As shown in FIGS. 1 and 2, the catalyst of each reference example and Example 1 shows that the catalyst component and the porous carrier are uniformly supported, whereas the catalyst of this comparative example has a catalyst component. It can be seen that the porous carrier is segregated. It can be inferred that the difference in the loading of the porous carrier and the catalyst component affects the catalyst performance.

参考例1の外観を示した図である。It is the figure which showed the external appearance of the reference example 1. FIG. 参考例1の表面のSEM写真である。 4 is a SEM photograph of the surface of Reference Example 1. 比較例3の外観を示した図である。FIG. 10 is a diagram illustrating an appearance of Comparative Example 3. 比較例3の表面のSEM写真である。10 is a SEM photograph of the surface of Comparative Example 3.

Claims (4)

触媒成分を含有するコーティング液を触媒担体にコーティングするコーティング工程と、
該コーティング液が含有する液体媒質を波長が10μm〜10μmである電磁波照射により乾燥除去する乾燥工程と、を有し、
触媒担体に担持させる前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の第1元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の第2元素とからなり、
前記コーティング液は前記第1元素を塩として含み、前記コーティング工程後、加熱しながら波長が10μm〜10μmである電磁波照射を行い、
前記第1元素の塩は、電磁波照射しながら熱分解されることを特徴とする排ガス浄化用触媒の製造方法。
A coating step of coating a catalyst carrier with a coating liquid containing a catalyst component;
A drying step of drying and removing the liquid medium contained in the coating liquid by electromagnetic wave irradiation having a wavelength of 10 4 μm to 10 8 μm,
The catalyst component supported on the catalyst carrier is selected from the group consisting of at least one first element selected from the group consisting of Pt, Pd, Rh, and Ir, and an alkali metal, alkaline earth metal, rare earth, and base metal. Consisting of at least one second element,
The coating liquid includes the first element as a salt, after the coating process, it has rows electromagnetic radiation having a wavelength of 10 4 μm~10 8 μm with heating,
The method for producing an exhaust gas purifying catalyst, wherein the salt of the first element is thermally decomposed while being irradiated with electromagnetic waves .
前記電磁波はマイクロ波である請求項1に記載の排ガス浄化用触媒の製造方法。The method for producing a catalyst for exhaust gas purification according to claim 1, wherein the electromagnetic wave is a microwave. 前記液体媒質が水及び/又はアルコールを含む請求項1又は2に記載の排ガス浄化用触媒の製造方法。The method for producing a catalyst for exhaust gas purification according to claim 1 or 2, wherein the liquid medium contains water and / or alcohol. スラリーとして用いられる前記触媒成分はアルミナ,シリカ,ジルコニア,チタニア及びゼオライトからなる群から選択される1種以上の耐熱性無機酸化物からなる請求項1〜3のいずれかに記載の排ガス浄化用触媒の製造方法。The exhaust gas-purifying catalyst according to any one of claims 1 to 3, wherein the catalyst component used as the slurry comprises one or more heat-resistant inorganic oxides selected from the group consisting of alumina, silica, zirconia, titania and zeolite. Manufacturing method.
JP2003394505A 2003-11-25 2003-11-25 Method for producing exhaust gas purification catalyst Expired - Fee Related JP4469164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394505A JP4469164B2 (en) 2003-11-25 2003-11-25 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394505A JP4469164B2 (en) 2003-11-25 2003-11-25 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2005152775A JP2005152775A (en) 2005-06-16
JP4469164B2 true JP4469164B2 (en) 2010-05-26

Family

ID=34720553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394505A Expired - Fee Related JP4469164B2 (en) 2003-11-25 2003-11-25 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4469164B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700163B2 (en) * 2005-10-27 2010-04-20 Corning Incorporated Microwave process for porous ceramic filters with passivation and catalyst coatings
JP4786442B2 (en) * 2006-07-10 2011-10-05 トヨタ自動車株式会社 Method for supporting NOx storage material
JP5412104B2 (en) * 2008-12-19 2014-02-12 株式会社キャタラー Exhaust gas purification catalyst
EP2476486A4 (en) * 2009-09-10 2014-03-19 Cataler Corp CATALYST FOR THE PURIFICATION OF EXHAUST GASES
WO2017089220A1 (en) * 2015-11-27 2017-06-01 Haldor Topsøe A/S Method of preparation of a monolithic catalyst for selective catalytic reduction of nitrogen oxides

Also Published As

Publication number Publication date
JP2005152775A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
KR101273228B1 (en) Catalytically coated particle filter and method for producing the same and its use
US7871452B2 (en) Particulate filter
RU2468862C1 (en) Purifying from disperse particles material, filter-catalyst for purification from disperse particles with application of purifying from disperse particles material and method of regenerating filter-catalyst for purification from disperse particles
JP2003334457A (en) Catalyst body and method for producing catalyst body
JP3736242B2 (en) Exhaust gas purification material and method for producing the same
CN109310991B (en) Diesel Engine Oxidation Catalytic Converter
JP2006175386A (en) Filter catalyst for exhaust gas cleaning of diesel engine and its production method
KR20220138408A (en) diesel oxidation catalyst
RU2515727C2 (en) Method of obtaining nanostructured catalytic coatings on ceramic carriers for neutralisation of waste gasses of internal combustion engines
JP4469164B2 (en) Method for producing exhaust gas purification catalyst
JP2004057949A (en) Particulate purification catalyst
JPH10225642A (en) Exhaust gas purification catalyst for internal combustion engine
JP7682799B2 (en) Tunable NOx Adsorbent
JP2001252565A (en) Exhaust gas cleaning catalyst
JPH06248935A (en) High frequency heating element with catalytic function
JP3596107B2 (en) Heat-resistant exhaust gas purifying catalyst, method for producing the same, and exhaust gas purifying apparatus using the same
JP2019048268A (en) Exhaust gas purification system for vehicles
JP4390928B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS6351947A (en) Catalyst filter for combustion of particulate
JP2006068722A (en) Exhaust gas purification catalyst, production method thereof, exhaust gas purification material, and exhaust gas purification system
JPS61146314A (en) Purifying filter for collecting fine particle
JP2007229643A (en) Catalytic body and catalyst device using the same
JPH10151357A (en) Catalyst production method
JP2004174366A (en) Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas
JP2001286764A (en) Exhaust gas cleaning catalyst and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R150 Certificate of patent or registration of utility model

Ref document number: 4469164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees