JP4469164B2 - Method for producing exhaust gas purification catalyst - Google Patents
Method for producing exhaust gas purification catalyst Download PDFInfo
- Publication number
- JP4469164B2 JP4469164B2 JP2003394505A JP2003394505A JP4469164B2 JP 4469164 B2 JP4469164 B2 JP 4469164B2 JP 2003394505 A JP2003394505 A JP 2003394505A JP 2003394505 A JP2003394505 A JP 2003394505A JP 4469164 B2 JP4469164 B2 JP 4469164B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- coating
- reference example
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 121
- 238000000746 purification Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000007788 liquid Substances 0.000 claims description 37
- 238000000576 coating method Methods 0.000 claims description 34
- 238000001035 drying Methods 0.000 claims description 33
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 239000010953 base metal Substances 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 230000005670 electromagnetic radiation Effects 0.000 claims description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 7
- 238000005204 segregation Methods 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000007603 infrared drying Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、内燃機関の排ガス浄化用触媒の製造方法及び排ガス浄化用触媒に関する。 The present invention relates to a method for producing an exhaust gas purification catalyst for an internal combustion engine and an exhaust gas purification catalyst.
従来より、自動車などの内燃機関の排ガス浄化用触媒として、一酸化炭素(CO)や炭化水素(HC)の酸化と窒素酸化物(NOX)の還元とを同時に行って排ガスを浄化する三元触媒が用いられている。このような触媒としては、例えばコージェライトなどからなる耐熱性無機セラミックスからなるハニカム状のモノリス担体のセル壁上にγ−アルミナなどの多孔質材料からなる多孔質層を形成し、その多孔質層内にPt,Pd,Rhなどの貴金属触媒を担持させたものが知られている。 Conventionally, as an exhaust gas purifying catalyst for internal combustion engines such as automobiles, three-way purification is performed by simultaneously oxidizing carbon monoxide (CO) and hydrocarbons (HC) and reducing nitrogen oxides (NO x ). A catalyst is used. As such a catalyst, for example, a porous layer made of a porous material such as γ-alumina is formed on the cell wall of a honeycomb monolith support made of heat-resistant inorganic ceramics made of cordierite, and the porous layer. A catalyst in which a noble metal catalyst such as Pt, Pd, or Rh is supported is known.
ここで、モノリス担体上に多孔質層を形成したり、多孔質層に触媒成分を担持させる方法としては、モノリス担体や多孔質層などの触媒担体を触媒成分などを含むコーティング液に浸漬した後に乾燥する方法が知られている。 Here, as a method for forming a porous layer on the monolith support or for supporting a catalyst component on the porous layer, a catalyst support such as a monolith support or a porous layer is immersed in a coating solution containing the catalyst component. A method of drying is known.
貴金属及びNOX吸収材からなる触媒成分を多孔質層に担持させる場合、均一に分散していることが好ましいことが特許文献1に記載されている。NOX吸収材を貴金属の近傍に配置させることでNOX浄化率が向上する。
しかしながら、従来の排ガス浄化用触媒の製造方法について本願発明者らが検討を行った結果、触媒担体に対する触媒成分の担持を更に均一にできる余地があることを見出した。つまり、従来の製造方法では、コーティングする触媒成分などを均一に調製しても触媒担体上で触媒成分が偏析し、均一に分散させることは困難であった。 However, as a result of studies by the inventors of the present invention on a conventional method for producing an exhaust gas purification catalyst, it has been found that there is room for further uniform loading of the catalyst component on the catalyst carrier. That is, in the conventional manufacturing method, even if the catalyst component to be coated is prepared uniformly, the catalyst component is segregated on the catalyst carrier and it is difficult to uniformly disperse it.
上記実情に鑑み、本発明では従来より高い水準で触媒成分が触媒担体に分散され、より高い触媒能力を発揮できる排ガス浄化用触媒及びそのような排ガス浄化用触媒を製造する方法を提供することを解決すべき課題とする。 In view of the above circumstances, the present invention provides a catalyst for exhaust gas purification in which catalyst components are dispersed in a catalyst carrier at a higher level than before, and can provide a higher catalytic ability, and a method for producing such an exhaust gas purification catalyst. It is a problem to be solved.
上記課題を解決するために本願発明者らが鋭意検討を行った結果、触媒成分の偏析の原因の一つとして乾燥工程が挙げられることを見出した。従来の触媒成分乾燥時には乾燥炉を用い熱風や赤外線による乾燥が行われていたが、マイクロ波などの赤外線よりも波長の長い電磁波を用いて乾燥することで偏析が解消できることを発見した。 As a result of intensive studies conducted by the inventors of the present invention in order to solve the above-mentioned problems, it has been found that a drying step can be cited as one of the causes of segregation of catalyst components. Conventional catalyst components were dried with hot air or infrared rays using a drying oven. However, it was discovered that segregation can be eliminated by drying using electromagnetic waves having longer wavelengths than infrared rays such as microwaves.
熱風乾燥や赤外線乾燥では、エネルギーの授受が表面で進行するので水分の加熱及び蒸発は表面から進行する。従って、水分の蒸発に伴い水分が表面側に拡散移動する流れが生じ、この流れによりコーティングされた触媒成分も移動することで偏析が発生すると考えられる。一方、マイクロ波などの波長の長い電磁波は水などの液体中にも均一に侵入できるので、水分の加熱を均一に行える。従って、水分の蒸発に伴う流れも生じず、触媒成分などの偏析は生じないものと考えられる。本発明はこの発見に基づき完成した。 In hot air drying and infrared drying, energy transfer proceeds on the surface, so that heating and evaporation of moisture proceeds from the surface. Therefore, it is considered that segregation occurs due to the movement of moisture that diffuses and moves to the surface side as the moisture evaporates, and the catalyst component coated by this flow also moves. On the other hand, electromagnetic waves having a long wavelength such as microwaves can uniformly penetrate into liquids such as water, so that moisture can be heated uniformly. Therefore, it is considered that the flow accompanying the evaporation of moisture does not occur, and segregation of catalyst components does not occur. The present invention was completed based on this discovery.
すなわち、本発明の排ガス浄化用触媒の製造方法は、触媒成分を含有するコーティング液を触媒担体にコーティングするコーティング工程と、
該コーティング液が含有する液体媒質を波長が104μm〜108μmである電磁波照射により乾燥除去する乾燥工程と、を有し、
触媒担体に担持させる前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の第1元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の第2元素とからなり、
前記コーティング液は前記第1元素を塩として含み、前記コーティング工程後、加熱しながら波長が104μm〜108μmである電磁波照射を行い、
前記第1元素の塩は、電磁波照射しながら熱分解されることを特徴とする。
That is, the method for producing an exhaust gas purifying catalyst of the present invention comprises a coating step of coating a catalyst carrier with a coating liquid containing a catalyst component,
A drying step of drying and removing the liquid medium contained in the coating liquid by electromagnetic wave irradiation having a wavelength of 10 4 μm to 10 8 μm,
The catalyst component supported on the catalyst carrier is selected from the group consisting of at least one first element selected from the group consisting of Pt, Pd, Rh, and Ir, and an alkali metal, alkaline earth metal, rare earth, and base metal. Consisting of at least one second element,
The coating liquid includes the first element as a salt, after the coating process, it has rows electromagnetic radiation having a wavelength of 10 4 μm~10 8 μm with heating,
The salt of the first element is thermally decomposed while being irradiated with electromagnetic waves .
なお、本発明における「触媒成分を含有するコーティング液」には、ジニトロアミノ白金酸水溶液のように液体媒質としての水に溶液として可溶化されているもののほか、酸化セリウムなどを含むスラリーなどのような粒状材料の懸濁液も含む。この場合の「触媒成分」とは前者の場合はジニトロアミノ白金酸又は白金であり、後者の場合は酸化セリウム又はセリウムのことである。つまり、本発明はスラリーをコーティング(担持)する場合でも、溶液をコーティングする場合でも適用可能である。本発明は、触媒体体への液状物質(コーティング液:溶液やスラリーを含む)の担持に適用することで、触媒担体にコーティングする触媒成分の分散の均一性を向上できるという効果を発揮する。 The “coating solution containing a catalyst component” in the present invention includes a solution that is solubilized as a solution in water as a liquid medium, such as a dinitroaminoplatinic acid aqueous solution, and a slurry containing cerium oxide or the like. Also includes suspensions of particulate materials. The “catalyst component” in this case is dinitroaminoplatinic acid or platinum in the former case, and cerium oxide or cerium in the latter case. That is, the present invention can be applied both when the slurry is coated (supported) and when the solution is coated. The present invention exerts an effect of improving the uniformity of dispersion of the catalyst component coated on the catalyst carrier by being applied to support of a liquid substance (including a coating liquid: including a solution and a slurry) on the catalyst body.
ここで、前記電磁波はマイクロ波であることがより好ましい。 Here, it is more preferably pre-Symbol electromagnetic wave is a microwave.
担持される前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の元素とからなることが好ましい。両者を均一に混合した状態のまま担持することができるので、両者の相乗作用が期待できる。 The catalyst component to be supported is at least one element selected from the group consisting of Pt, Pd, Rh and Ir, and at least one type selected from the group consisting of alkali metals, alkaline earth metals, rare earths and base metals. It is preferable to consist of an element. Since both can be supported in a uniformly mixed state, a synergistic effect of both can be expected.
前記液体媒質が水及び/又はアルコールを含むことで、前述の電磁波により効率的に加熱することができる。また、前記多孔質材料はアルミナ,シリカ,ジルコニア,チタニア及びゼオライトからなる群から選択される1種以上の耐熱性無機酸化物からなることが好ましい。 When the liquid medium contains water and / or alcohol, the liquid medium can be efficiently heated by the electromagnetic wave. The porous material is preferably composed of one or more heat-resistant inorganic oxides selected from the group consisting of alumina, silica, zirconia, titania and zeolite.
本実施形態の排ガス浄化用触媒の製造方法はコーティング工程と乾燥工程とを有する。特徴的な乾燥工程をもつことが本実施形態の製造方法の要点である。本実施形態の製造方法は一般的な排ガス浄化用触媒、例えば、三元触媒、ディーゼルエンジン用パティキュレートフィルター(DPF)、NOX吸収体をもつ三元触媒、に適用することができる。本製造方法により製造された排ガス浄化用触媒は従来の排ガス浄化用触媒と比較しても触媒成分の分散の均一性が高い。 The manufacturing method of the exhaust gas purifying catalyst of the present embodiment includes a coating process and a drying process. Having the characteristic drying process is the main point of the manufacturing method of this embodiment. The production method of the present embodiment can be applied to general exhaust gas purifying catalysts such as a three-way catalyst, a diesel engine particulate filter (DPF), and a three-way catalyst having an NO x absorber. The catalyst for exhaust gas purification produced by this production method has high uniformity of dispersion of the catalyst components even compared with the conventional exhaust gas purification catalyst.
(コーティング工程)
コーティング工程は、コーティング液を触媒担体にコーティングする工程である。コーティングの方法は特に限定せず、コーティング液中に触媒担体を浸漬する方法、コーティング液を触媒担体に噴霧する方法などの一般的な方法が採用できる。
(Coating process)
The coating step is a step of coating the catalyst support with a coating liquid. The method of coating is not particularly limited, and general methods such as a method of immersing the catalyst support in the coating liquid and a method of spraying the coating liquid onto the catalyst support can be employed.
コーティング液は触媒成分を含有する。コーティング液としては溶液とスラリーとがある。溶液は触媒成分が液体媒質に溶解したものである。スラリーは触媒成分が液体媒質に懸濁したものである。液体媒質は水やアルコールなどの極性が高く電磁波照射により誘電加熱されやすい液体が好ましい。 The coating liquid contains a catalyst component. Coating liquids include solutions and slurries. The solution is a solution in which a catalyst component is dissolved in a liquid medium. The slurry is a slurry in which a catalyst component is suspended in a liquid medium. The liquid medium is preferably a liquid having a high polarity, such as water or alcohol, which is easily heated by dielectric irradiation.
溶液として用いる触媒成分としてはPt,Rh,Pd,Ir,Ruなどの貴金属や、Li,K,Naなどのアルカリ金属,Ba,Sr,Caなどのアルカリ土類金属,La,Y,Ceなどの希土類からなるNOX吸収材、卑金属などが挙げられる。特にPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の元素とを含むことが好ましい。これら触媒成分に含まれる元素は、硝酸塩、酢酸塩、硫酸塩、塩化物或いは錯塩などの、塩にすることで、水、アルコールなどの液体媒質に溶解させてコーティング液とする。 Catalyst components used as a solution include noble metals such as Pt, Rh, Pd, Ir, and Ru, alkali metals such as Li, K, and Na, alkaline earth metals such as Ba, Sr, and Ca, La, Y, and Ce. NO X absorbent composed of a rare earth, such as base metals and the like. In particular, it contains at least one element selected from the group consisting of Pt, Pd, Rh and Ir, and at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earths and base metals. preferable. The elements contained in these catalyst components are made into salts, such as nitrates, acetates, sulfates, chlorides or complex salts, and dissolved in a liquid medium such as water or alcohol to form a coating solution.
スラリーとして用いる触媒成分としてはアルミナ,シリカ,チタニア,ゼオライト,シリカアルミナ,ジルコニアなどの無機セラミックスが採用できる。更に前述の溶液として用いる触媒成分に挙げた元素であっても酸化物など液体媒質に溶解しない化合物も含まれる。例えば、酸化Ceなどである。 As the catalyst component used as the slurry, inorganic ceramics such as alumina, silica, titania, zeolite, silica alumina, and zirconia can be employed. Furthermore, compounds that do not dissolve in the liquid medium, such as oxides, are included even if they are the elements listed as the catalyst component used as the above solution. For example, Ce oxide.
貴金属からなる触媒成分を担持する量は0.1g/L〜10.0g/L程度が好ましい。2種以上を併用する場合では合計が0.1g/L〜10.0g/L程度が好ましい。特に0.5g/L〜3.0g/L程度が好ましい。NOX吸収材からなる触媒成分を担持する量は0.1mol/L〜1.0mol/L程度とすることが好ましい。2種以上を併用する場合でも0.1mol/L〜1.0mol/L程度とすることが好ましい。 The amount of the catalyst component made of a noble metal is preferably about 0.1 g / L to 10.0 g / L. When using 2 or more types together, the total is preferably about 0.1 g / L to 10.0 g / L. In particular, about 0.5 g / L to 3.0 g / L is preferable. The amount of the catalyst component composed of the NO x absorbent is preferably about 0.1 mol / L to 1.0 mol / L. Even when using 2 or more types together, it is preferable to set it as about 0.1 mol / L-1.0 mol / L.
触媒担体はコージェライトなどの耐熱性のセラミックスからなるモノリス担体や、メタル担体などを用いることができる。触媒担体の形状は特に限定されないが、ハニカム状(ストレートフロータイプ、DPF用などのウォールフロータイプ)、ペレット状などが採用できる。触媒担体の表面には表面積の向上などを目的として形成された多孔質層をもつことができる。多孔質層はアルミナ,シリカ,チタニア,ゼオライト,シリカアルミナ,ジルコニアなどの無機セラミックスから構成することができる。触媒表面に多孔質層を形成する方法は特に限定されず、前述の無機セラミックス等を含むスラリーをコーティングした後に乾燥・焼成を行うことで形成できる。この多孔質層の形成においても本発明の製造方法を適用することができる。つまり、スラリーのコーティング後、乾燥する際(乾燥工程)に後述する条件の電磁波を照射することが好ましい。 As the catalyst carrier, a monolithic carrier made of heat-resistant ceramics such as cordierite, a metal carrier, or the like can be used. The shape of the catalyst carrier is not particularly limited, but a honeycomb shape (straight flow type, wall flow type for DPF, etc.), a pellet shape, and the like can be employed. The surface of the catalyst support can have a porous layer formed for the purpose of improving the surface area. The porous layer can be composed of inorganic ceramics such as alumina, silica, titania, zeolite, silica alumina, zirconia. The method for forming the porous layer on the catalyst surface is not particularly limited, and the porous layer can be formed by coating the slurry containing the inorganic ceramics and the like, followed by drying and firing. The production method of the present invention can also be applied to the formation of this porous layer. That is, it is preferable to irradiate the electromagnetic wave of the conditions mentioned later when drying (drying process) after slurry coating.
(乾燥工程)
乾燥工程は波長が100μm以上の電磁波を照射することで液体媒質を乾燥・除去する工程である。電磁波の照射はコーティングされたコーティング液に対して均一に行われるようにする。コーティング液に均一に電磁波を照射することでコーティング液に含まれる液体媒質を均一に加熱・蒸発させることができるので、液体媒質の不均一な蒸発に伴う触媒成分の偏析を抑制できる。
(Drying process)
The drying process is a process of drying and removing the liquid medium by irradiating an electromagnetic wave having a wavelength of 100 μm or more. Irradiation of electromagnetic waves is performed uniformly on the coated coating solution. Since the liquid medium contained in the coating liquid can be uniformly heated and evaporated by irradiating the coating liquid with electromagnetic waves uniformly, segregation of the catalyst component due to non-uniform evaporation of the liquid medium can be suppressed.
照射する電磁波の波長は104μm〜108μmであることが好ましい。特に、波長が105μm〜107μmであることがより好ましい。 The wavelength of the electromagnetic wave to be irradiated is preferably 10 4 μm to 10 8 μm. In particular, the wavelength is more preferably 10 5 μm to 10 7 μm.
乾燥工程に付随させて熱風等を吹き付けることができる。電磁波の照射により蒸発した液体媒質を速やかに除去することで乾燥の均一化が達成できる。その結果、触媒成分の偏析が抑制できる。 Hot air or the like can be blown along with the drying process. Uniform drying can be achieved by quickly removing the liquid medium evaporated by the irradiation of electromagnetic waves. As a result, segregation of the catalyst component can be suppressed.
(その他の工程)
乾燥工程後は特に限定しない。例えば、触媒成分として含まれる塩の熱分解、無機セラミックスの焼成などを行うために加熱することができる。但し、乾燥工程によって液体媒質が除去されているので、その後の加熱によっては触媒成分の偏析が生じるおそれが少ない。従って、加熱する方法は一般的な加熱炉などが採用できる。
(Other processes)
There is no particular limitation after the drying step. For example, heating can be performed to perform pyrolysis of a salt contained as a catalyst component, firing of inorganic ceramics, and the like. However, since the liquid medium is removed by the drying process, there is little possibility of segregation of the catalyst component by subsequent heating. Accordingly, a general heating furnace or the like can be adopted as a heating method.
(参考例1)
多孔質材料としてのγ−アルミナ120質量部、酸化セリウム10質量部及び酸性アルミナゾル10質量部と、液体媒質としてのイオン交換水150質量部とを混合しボールミルにて6時間粉砕してコーティング液としてのスラリーを調製した。
( Reference Example 1)
120 parts by mass of γ-alumina as a porous material, 10 parts by mass of cerium oxide and 10 parts by mass of acidic alumina sol and 150 parts by mass of ion-exchanged water as a liquid medium are mixed and pulverized for 6 hours as a coating liquid. A slurry was prepared.
触媒担体としてのDPF(NGK製;コージェライト、φ129mm×長さ150mm、セル数46.5セル・cm-2(300セル・in-2)、気孔率60%、細孔径25μm、容積2L)をスラリーに浸漬した後、余分なスラリーをエアーブローで吹き払った。250℃で1時間加熱して余分な水分を乾燥した後、500℃で1時間焼成することで、触媒担体としてのセル表面に多孔質層が形成された多孔質触媒担体を得た。これらの乾燥及び焼成は加熱炉にて行った。 DPF as a catalyst carrier (manufactured by NGK; cordierite, φ129 mm × length 150 mm, number of cells 46.5 cells · cm −2 (300 cells · in −2 ), porosity 60%, pore diameter 25 μm, volume 2 L) After dipping in the slurry, excess slurry was blown off by air blow. Excess water was dried by heating at 250 ° C. for 1 hour, and then calcined at 500 ° C. for 1 hour to obtain a porous catalyst carrier having a porous layer formed on the cell surface as the catalyst carrier. These drying and baking were performed in a heating furnace.
触媒成分としてのPtを含むコーティング液としてのジニトロアミノ白金酸水溶液中に、多孔質触媒担体を浸漬し、Ptを2g/Lとなるように担持した後、250℃で1時間加熱することでPt塩を分解してPt金属を担持した。 A porous catalyst carrier is immersed in a dinitroaminoplatinic acid aqueous solution as a coating liquid containing Pt as a catalyst component, and Pt is supported at 2 g / L, and then heated at 250 ° C. for 1 hour to obtain Pt. The salt was decomposed to carry Pt metal.
更にPt金属を担持した多孔質触媒担体を触媒成分としてのBa及びKを酢酸Ba及び硝酸Kとして含むコーティング液としての水溶液中に浸漬した。余分な液はエアーブローにより吹き払った(コーティング工程)。 Further, a porous catalyst carrier supporting Pt metal was immersed in an aqueous solution as a coating solution containing Ba and K as catalyst components as Ba acetate and K nitrate. Excess liquid was blown away by air blow (coating process).
出力1200kW、波長105μmのマイクロ波乾燥装置にて10分間処理して水分を乾燥させた(乾燥工程)。Ba及びKの担持量はそれぞれ0.1mol/L及び0.05mol/Lであった。更に加熱炉にて350℃の熱処理を行い酢酸Ba及び硝酸Kを分解して参考例1の触媒を調製した。 Water was dried by treatment for 10 minutes in a microwave drying apparatus with an output of 1200 kW and a wavelength of 10 5 μm (drying step). The supported amounts of Ba and K were 0.1 mol / L and 0.05 mol / L, respectively. Further, a catalyst of Reference Example 1 was prepared by performing heat treatment at 350 ° C. in a heating furnace to decompose Ba acetate and K nitrate.
(参考例2)
DPFの代わりに、ストレートフロー型の触媒担体(φ129mm×長さ150mm、セル数93セル・cm-2(600セル・in-2))を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 2)
The same procedure as in Reference Example 1 was used except that a straight flow type catalyst support (φ129 mm × length 150 mm, cell number 93 cells · cm −2 (600 cells · in −2 )) was used instead of DPF. The catalyst of the reference example was prepared.
(参考例3)
硝酸Kに代えてシュウ酸Vを用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 3)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that oxalic acid V was used instead of nitric acid K.
(参考例4)
硝酸Kに変えて硝酸第二鉄を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 4)
A catalyst of this reference example was prepared in the same manner as in Reference example 1 except that ferric nitrate was used instead of nitric acid K.
(参考例5)
硝酸Kに変えて硝酸Ceを用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 5)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that Ce nitrate was used instead of nitric acid K.
(参考例6)
ジニトロアミノ白金酸水溶液に代えてジニトロアミノ白金酸及び硝酸ロジウムの混合水溶液を用いた以外は参考例1と同様の方法にて本参考例の触媒を調製した。白金とロジウムとは質量比で3:1、総量2g/Lで、触媒担体上に担持された。
( Reference Example 6)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that a mixed aqueous solution of dinitroaminoplatinic acid and rhodium nitrate was used instead of the dinitroaminoplatinic acid aqueous solution. Platinum and rhodium were supported on the catalyst support in a mass ratio of 3: 1 and a total amount of 2 g / L.
(参考例7)
マイクロ波乾燥装置に代えて、出力2000kW、波長107μmの高周波乾燥装置を用いて10分間処理した以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 7)
A catalyst of this reference example was prepared in the same manner as in Reference Example 1 except that the treatment was performed for 10 minutes using a high-frequency drying apparatus having an output of 2000 kW and a wavelength of 10 7 μm instead of the microwave drying apparatus.
(参考例8)
マイクロ波乾燥装置にてマイクロ波を照射しながら下方より約80℃の温風を送って20分間乾燥した以外は参考例1と同様の方法にて本参考例の触媒を調製した。
( Reference Example 8)
A catalyst of this reference example was prepared in the same manner as in Reference example 1 except that warm air of about 80 ° C. was sent from below while drying with microwaves in a microwave drying apparatus and dried for 20 minutes.
(実施例1)
ジニトロアミノ白金酸水溶液にてPtを担持した後の250℃でPt塩を分解する間にマイクロ波乾燥装置にて20分間処理した以外は参考例1と同様の方法にて本実施例の触媒を調製した。
(Example 1 )
The catalyst of this example was prepared in the same manner as in Reference Example 1 except that the Pt salt was decomposed at 250 ° C. after supporting Pt with an aqueous dinitroaminoplatinic acid solution and treated for 20 minutes in a microwave dryer. Prepared.
(比較例1)
マイクロ波乾燥装置に代えて、出力2000kW、波長10μmの赤外線乾燥装置にて20分間、乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 1)
A catalyst of this comparative example was prepared in the same manner as in Reference Example 1 except that it was dried for 20 minutes by an infrared drying apparatus having an output of 2000 kW and a wavelength of 10 μm instead of the microwave drying apparatus.
(比較例2)
マイクロ波乾燥装置に代えて、熱風式のガス炉を用いて、メッシュベルトの上に触媒を載せ、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 2)
Reference Example 1 except that the catalyst was placed on a mesh belt using a hot air type gas furnace instead of the microwave dryer and dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min. A catalyst of this comparative example was prepared in the same manner.
(比較例3)
マイクロ波乾燥装置に代えて、箱型電気炉を用いて、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例1と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 3)
The catalyst of this comparative example was prepared in the same manner as in Reference Example 1 except that it was dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min using a box type electric furnace instead of the microwave drying apparatus. Was prepared.
(比較例4)
マイクロ波乾燥装置に代えて、箱型電気炉を用いて、室温から250℃まで約30℃/分の昇温速度で乾燥させた以外は参考例2と同様の方法にて本比較例の触媒を調製した。
(Comparative Example 4)
The catalyst of this comparative example was prepared in the same manner as in Reference Example 2 except that it was dried from room temperature to 250 ° C. at a heating rate of about 30 ° C./min using a box-type electric furnace instead of the microwave drying apparatus. Was prepared.
(耐久試験)
各参考例、実施例1及び各比較例の触媒をコンバータに入れ、マニホールドから1m下流に取りけた。2.0Lリーンバーンエンジンで触媒温度550℃とし、A/Fをリーン時25で56秒間、リッチ時10で4秒間を交互に切り替え50時間耐久を行った。燃料中のSの量は300ppmであった。次いで入りガス温度を600℃に設定しA/Fをストイキ(14.6)にて50時間運転した。そのときの燃料中のSの量は20ppmであった。
(An endurance test)
The catalysts of each reference example, Example 1 and each comparative example were placed in a converter and 1 m downstream from the manifold. The catalyst temperature was set at 550 ° C. with a 2.0 L lean burn engine, and the A / F was alternately switched between 25 seconds for lean for 56 seconds and rich for 10 seconds for 4 seconds for durability. The amount of S in the fuel was 300 ppm. Next, the input gas temperature was set to 600 ° C., and the A / F was operated with stoichiometry (14.6) for 50 hours. The amount of S in the fuel at that time was 20 ppm.
(性能評価試験)
NOX性能:リーンバーンエンジンを用いて排ガス温度を400℃に設定後、A/Fをリーン時25で30秒間、リッチ時10で0.5秒間を交互に繰り返し、NOX浄化性能を評価した。NOX浄化性能は下式により評価した。
(Performance evaluation test)
NO X performance: After setting the exhaust gas temperature to 400 ° C using a lean burn engine, the A / F was alternately repeated for 30 seconds at 25 for lean and 0.5 seconds for 10 at rich to evaluate the NO X purification performance. . The NO x purification performance was evaluated by the following formula.
NOX浄化性能(%)={(エンジン出口のNOX量(g/テスト))−(触媒出口のNOX量(g/テスト))}÷(エンジン出口のNOX量(g/テスト))×100(%)
酸化性能:2.2Lの直噴型コモンレールディーゼルエンジンに触媒を取り付け排ガス温度をアイドル(100℃)〜400℃まで50℃/分で昇温し、HC及びCOのそれぞれについて50%浄化する温度(着火温度)を測定した。
NO x purification performance (%) = {(NO x amount at engine outlet (g / test)) − (NO x amount at catalyst outlet (g / test))} ÷ (NO x amount at engine outlet (g / test)) ) X 100 (%)
Oxidation performance: A catalyst is attached to a 2.2 L direct injection common rail diesel engine, and the exhaust gas temperature is raised from idle (100 ° C.) to 400 ° C. at 50 ° C./min. Ignition temperature) was measured.
(結果)
結果を表1に示す。
(result)
The results are shown in Table 1.
表1から明らかなように、各参考例及び実施例1の触媒は各比較例の触媒と比較して、高いNOX浄化率を示した。HC浄化温度及びCO浄化温度も各参考例及び実施例1の触媒が各比較例の触媒よりも低い値を示していることから、各参考例及び実施例1の触媒がより高い触媒能力を有することが明らかとなった。参考例1〜6のいずれについても高いNOX浄化率を示すことから担持する多孔質担体や触媒成分の種類にかかわらず本発明の製造方法の効果が発揮できることが分かった。 As is clear from Table 1, the catalysts of each reference example and Example 1 exhibited a higher NO x purification rate than the catalysts of the respective comparative examples. Since the HC purification temperature and the CO purification temperature of the catalysts of each reference example and example 1 are lower than those of the catalysts of each comparative example, the catalysts of each reference example and example 1 have a higher catalytic capacity. It became clear. Since all of Reference Examples 1 to 6 showed a high NO x purification rate, it was found that the effects of the production method of the present invention can be exhibited regardless of the type of the porous carrier and catalyst component to be supported.
また、参考例1及び7の結果から、マイクロ波及び高周波のいずれで(少なくともこの波長の範囲(104μm〜108μm)にて)乾燥しても高い活性をもつ触媒が得られることが分かった。更に、参考例1及び8の結果から、温風を送りながら乾燥を行うことで、発明の効果を損なわずに乾燥時間を短縮できることが分かった。そして、実施例1の触媒の触媒能力が参考例1の触媒よりも高い(NOX浄化率が高く、HC及びCOの浄化温度が低い)ことから、貴金属触媒を担持した後にもマイクロ波などで乾燥を行うことで、更に高い触媒能力を発揮できることが明らかとなった。 Further, from the results of Reference Examples 1 and 7, it is possible to obtain a catalyst having high activity even if it is dried by either microwave or high frequency (at least in this wavelength range (10 4 μm to 10 8 μm)). I understood. Furthermore, from the results of Reference Examples 1 and 8, it was found that drying time can be shortened without impairing the effects of the invention by performing drying while sending warm air. Then, Example 1 of the catalyst of the catalyst capacity is higher than the catalyst of Example 1 from (NO X purification rate is high, HC and purification temperature CO is low) that, after a noble metal catalyst in a micro wave It has been clarified that a higher catalytic ability can be exhibited by drying.
ここで、参考例1の触媒の外観及び触媒表面のSEM写真を図1及び図2に示し、比較例3の触媒の外観及び触媒表面のSEM写真を図3及び図4に示した。各参考例及び本実施例1の触媒では、図1及び図2に示すように、触媒成分や多孔質担体が均一に担持されていることが分かるのに対し、本比較例の触媒では触媒成分や多孔質担体が偏析していることが分かる。これら多孔質担体及び触媒成分の担持の様子の相違が触媒能力に影響を与えていることが推察できる。 Here, the appearance of the catalyst of Reference Example 1 and the SEM photograph of the catalyst surface are shown in FIGS. 1 and 2, and the appearance of the catalyst of Comparative Example 3 and the SEM photograph of the catalyst surface are shown in FIGS. As shown in FIGS. 1 and 2, the catalyst of each reference example and Example 1 shows that the catalyst component and the porous carrier are uniformly supported, whereas the catalyst of this comparative example has a catalyst component. It can be seen that the porous carrier is segregated. It can be inferred that the difference in the loading of the porous carrier and the catalyst component affects the catalyst performance.
Claims (4)
該コーティング液が含有する液体媒質を波長が104μm〜108μmである電磁波照射により乾燥除去する乾燥工程と、を有し、
触媒担体に担持させる前記触媒成分がPt,Pd,Rh及びIrからなる群から選択される少なくとも1種の第1元素と、アルカリ金属,アルカリ土類金属,希土類,卑金属からなる群から選択される少なくとも1種の第2元素とからなり、
前記コーティング液は前記第1元素を塩として含み、前記コーティング工程後、加熱しながら波長が104μm〜108μmである電磁波照射を行い、
前記第1元素の塩は、電磁波照射しながら熱分解されることを特徴とする排ガス浄化用触媒の製造方法。 A coating step of coating a catalyst carrier with a coating liquid containing a catalyst component;
A drying step of drying and removing the liquid medium contained in the coating liquid by electromagnetic wave irradiation having a wavelength of 10 4 μm to 10 8 μm,
The catalyst component supported on the catalyst carrier is selected from the group consisting of at least one first element selected from the group consisting of Pt, Pd, Rh, and Ir, and an alkali metal, alkaline earth metal, rare earth, and base metal. Consisting of at least one second element,
The coating liquid includes the first element as a salt, after the coating process, it has rows electromagnetic radiation having a wavelength of 10 4 μm~10 8 μm with heating,
The method for producing an exhaust gas purifying catalyst, wherein the salt of the first element is thermally decomposed while being irradiated with electromagnetic waves .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003394505A JP4469164B2 (en) | 2003-11-25 | 2003-11-25 | Method for producing exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003394505A JP4469164B2 (en) | 2003-11-25 | 2003-11-25 | Method for producing exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005152775A JP2005152775A (en) | 2005-06-16 |
JP4469164B2 true JP4469164B2 (en) | 2010-05-26 |
Family
ID=34720553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003394505A Expired - Fee Related JP4469164B2 (en) | 2003-11-25 | 2003-11-25 | Method for producing exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4469164B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7700163B2 (en) * | 2005-10-27 | 2010-04-20 | Corning Incorporated | Microwave process for porous ceramic filters with passivation and catalyst coatings |
JP4786442B2 (en) * | 2006-07-10 | 2011-10-05 | トヨタ自動車株式会社 | Method for supporting NOx storage material |
JP5412104B2 (en) * | 2008-12-19 | 2014-02-12 | 株式会社キャタラー | Exhaust gas purification catalyst |
EP2476486A4 (en) * | 2009-09-10 | 2014-03-19 | Cataler Corp | CATALYST FOR THE PURIFICATION OF EXHAUST GASES |
WO2017089220A1 (en) * | 2015-11-27 | 2017-06-01 | Haldor Topsøe A/S | Method of preparation of a monolithic catalyst for selective catalytic reduction of nitrogen oxides |
-
2003
- 2003-11-25 JP JP2003394505A patent/JP4469164B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005152775A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101273228B1 (en) | Catalytically coated particle filter and method for producing the same and its use | |
US7871452B2 (en) | Particulate filter | |
RU2468862C1 (en) | Purifying from disperse particles material, filter-catalyst for purification from disperse particles with application of purifying from disperse particles material and method of regenerating filter-catalyst for purification from disperse particles | |
JP2003334457A (en) | Catalyst body and method for producing catalyst body | |
JP3736242B2 (en) | Exhaust gas purification material and method for producing the same | |
CN109310991B (en) | Diesel Engine Oxidation Catalytic Converter | |
JP2006175386A (en) | Filter catalyst for exhaust gas cleaning of diesel engine and its production method | |
KR20220138408A (en) | diesel oxidation catalyst | |
RU2515727C2 (en) | Method of obtaining nanostructured catalytic coatings on ceramic carriers for neutralisation of waste gasses of internal combustion engines | |
JP4469164B2 (en) | Method for producing exhaust gas purification catalyst | |
JP2004057949A (en) | Particulate purification catalyst | |
JPH10225642A (en) | Exhaust gas purification catalyst for internal combustion engine | |
JP7682799B2 (en) | Tunable NOx Adsorbent | |
JP2001252565A (en) | Exhaust gas cleaning catalyst | |
JPH06248935A (en) | High frequency heating element with catalytic function | |
JP3596107B2 (en) | Heat-resistant exhaust gas purifying catalyst, method for producing the same, and exhaust gas purifying apparatus using the same | |
JP2019048268A (en) | Exhaust gas purification system for vehicles | |
JP4390928B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPS6351947A (en) | Catalyst filter for combustion of particulate | |
JP2006068722A (en) | Exhaust gas purification catalyst, production method thereof, exhaust gas purification material, and exhaust gas purification system | |
JPS61146314A (en) | Purifying filter for collecting fine particle | |
JP2007229643A (en) | Catalytic body and catalyst device using the same | |
JPH10151357A (en) | Catalyst production method | |
JP2004174366A (en) | Method for manufacturing catalyst for cleaning exhaust gas and catalyst for cleaning exhaust gas | |
JP2001286764A (en) | Exhaust gas cleaning catalyst and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090730 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100114 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100218 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4469164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |