[go: up one dir, main page]

JP4466039B2 - Polyolefin resin porous membrane - Google Patents

Polyolefin resin porous membrane Download PDF

Info

Publication number
JP4466039B2
JP4466039B2 JP2003365717A JP2003365717A JP4466039B2 JP 4466039 B2 JP4466039 B2 JP 4466039B2 JP 2003365717 A JP2003365717 A JP 2003365717A JP 2003365717 A JP2003365717 A JP 2003365717A JP 4466039 B2 JP4466039 B2 JP 4466039B2
Authority
JP
Japan
Prior art keywords
film
polyolefin resin
porous membrane
propylene
crystalline polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003365717A
Other languages
Japanese (ja)
Other versions
JP2005126625A (en
Inventor
隆志 新福
淳一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2003365717A priority Critical patent/JP4466039B2/en
Publication of JP2005126625A publication Critical patent/JP2005126625A/en
Application granted granted Critical
Publication of JP4466039B2 publication Critical patent/JP4466039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は、ポリオレフィン樹脂多孔膜に関する。詳しくは、分離膜や電池セパレータ等に好適なポリオレフィン樹脂多孔膜に関する。 The present invention relates to a polyolefin resin porous membrane. Specifically, the present invention relates to a polyolefin resin porous membrane suitable for a separation membrane, a battery separator and the like.

連通した細孔を有するプラスチック多孔膜は様々な用途に用いられており、医療用、工業用の濾過、分離等に用いられる分離膜や、電池セパレータ、電解コンデンサー用セパレータ等のセパレータ、更に紙おむつ用バックシート等の衛生材料、ハウスラップや屋根下地材等の建材等に広く使用されている。特に、ポリオレフィン樹脂多孔膜は有機溶剤やアルカリ性または酸性の溶液に対する耐性を有するため、これら用途に広く好適に使用されている。 Plastic porous membranes with continuous pores are used in a variety of applications. Separation membranes used for medical and industrial filtration and separation, separators for battery separators, electrolytic capacitor separators, and paper diapers Widely used in sanitary materials such as backsheets, building materials such as house wraps and roof base materials. In particular, since the polyolefin resin porous membrane has resistance to an organic solvent or an alkaline or acidic solution, it is widely used for these applications.

ポリオレフィン樹脂多孔膜の製造方法としては次のものが知られている。
(a)ポリオレフィン樹脂にシリカ、タルク等の無機質充填剤や、ポリオレフィン樹脂と非相溶性のナイロン、ポリエチレンテレフタレート等の有機質充填剤を混合して成形したシートを、少なくとも一方向に延伸し、ポリオレフィン樹脂と充填剤の界面に空隙(細孔)を生じさせる方法(以下「多成分延伸法」という)が開示されている。
(b)高ドラフト比で製膜した結晶性ポリプロピレンのシートを、必要に応じて加熱処理し、少なくとも一方向に延伸し、結晶ラメラ間をフィブリル化させ多孔膜を得る方法(以下「単成分延伸法」という)が開示されている。
(c)ポリオレフィン樹脂に有機液状体や無機質充填剤等を混合して成形したシートから、該有機液状体や無機質充填剤を抽出し、必要に応じ該抽出の前後に延伸を行う方法(以下「混合抽出法」という)が開示されている。
The following is known as a method for producing a polyolefin resin porous membrane.
(a) A sheet formed by mixing a polyolefin resin with an inorganic filler such as silica or talc, or an organic filler such as nylon or polyethylene terephthalate, which is incompatible with the polyolefin resin, is stretched in at least one direction, and the polyolefin resin And a method of generating voids (pores) at the interface between the filler and the filler (hereinafter referred to as “multi-component stretching method”).
(b) A method of obtaining a porous film by heating a crystalline polypropylene sheet formed at a high draft ratio as needed and stretching it in at least one direction to fibrillate between crystal lamellae (hereinafter referred to as “single component stretching”). Law ") is disclosed.
(c) A method in which the organic liquid or inorganic filler is extracted from a sheet formed by mixing an organic liquid or inorganic filler in a polyolefin resin, and stretched before and after the extraction as necessary (hereinafter referred to as “ "Mixed extraction method").

上記(a)の多成分延伸法には、無機質充填剤混合系と有機質充填剤混合系が知られているが、前者の場合、無機質充填剤の添加量を多くする必要があり、ポリオレフィン樹脂本来の物性や風合いが低下したり、酸・アルカリに弱い等の課題があった。また、後者の有機質充填剤混合系では、ポリオレフィン本来の物性や風合いが低下するだけでなく、ポリオレフィン樹脂への有機質充填剤の微分散が難しく、細孔径が小さい多孔膜や空隙率の大きい多孔膜が得られ難い等の課題がある。 In the multi-component stretching method (a) above, an inorganic filler mixed system and an organic filler mixed system are known, but in the former case, it is necessary to increase the amount of the inorganic filler added. There were problems such as deterioration in physical properties and texture, and weakness to acids and alkalis. Further, in the latter organic filler mixed system, not only the physical properties and texture of polyolefin are deteriorated, but also fine dispersion of the organic filler in the polyolefin resin is difficult, and a porous film having a small pore diameter or a large porosity. There are problems such as difficult to obtain.

上記(b)の単成分延伸法は、高ドラフト比で製膜した膜状成形物を別工程で長時間に渡り熱処理した後、特殊な条件下で多段延伸を行うものであり、方法が特殊なだけでなく、製造に長時間を要し、生産性が低いという課題があった。また、結晶ラメラ間をフィブリル化させるため、空隙率の大きい多孔膜が得られ難く、更に、高配向でかつ高結晶化されたシートを延伸するため、得られた多孔膜が裂け易いという課題を有している。 The single component stretching method (b) above is a method in which a film-shaped molded product formed at a high draft ratio is heat-treated in a separate process for a long time and then subjected to multistage stretching under special conditions. In addition to this, there is a problem that the production takes a long time and the productivity is low. In addition, it is difficult to obtain a porous film having a large porosity because of fibrillation between the crystal lamellae, and further, the stretched sheet is highly oriented and highly crystallized. Have.

上記(c)の混合抽出法は、シート中の有機液状体を有機溶媒にて、また、無機質充填剤をアルカリ性溶媒にて抽出する工程、抽出後のシートを洗浄及び乾燥する工程からなり、製造工程が複雑であった。また、有機液状体を用いる場合は、シート中の有機液状体の含有率が40〜60重量%にも達するため、高速製膜性や延伸性に課題がある他に、各工程でロール等への有機液状物の付着等が発生し、生産性に課題がある。 The mixed extraction method of (c) above comprises a step of extracting an organic liquid in a sheet with an organic solvent and an inorganic filler with an alkaline solvent, and a step of washing and drying the extracted sheet. The process was complicated. Moreover, when using an organic liquid, since the content rate of the organic liquid in the sheet reaches 40 to 60% by weight, in addition to the problems in high-speed film-forming properties and stretchability, rolls and the like in each step As a result, there is a problem in productivity.

容易に多孔膜を得る方法として、エチレン−プロピレンブロックコポリマーからなる成分Aとプロピレンホモポリマーまたはランダムコポリマーからなる成分B及び低分子量ポリプロピレンからなる成分Cに、必要に応じ炭酸カルシウムからなる成分Dやβ球晶成核剤からなる成分Eを添加した高分子性組成物からなる多孔膜及びその製造方法が開示されている(例えば、特許文献1参照)。また、エチレン−プロピレンブロックコポリマー単独または必要に応じポリプロピレン樹脂やポリエチレン樹脂を併用した結晶性ポリオレフィン樹脂に融点が100℃以下の鉱物油やエステル化合物を含有させた多孔性シートが開示されている(例えば、特許文献2参照)。 As a method for easily obtaining a porous film, component A composed of an ethylene-propylene block copolymer, component B composed of a propylene homopolymer or random copolymer, and component C composed of low molecular weight polypropylene, and optionally component D or β composed of calcium carbonate. A porous film made of a polymeric composition to which component E made of a spherulitic nucleating agent is added and a method for producing the same are disclosed (for example, see Patent Document 1). In addition, a porous sheet is disclosed in which an ethylene-propylene block copolymer alone or, if necessary, a crystalline polyolefin resin in which a polypropylene resin or a polyethylene resin is used in combination contains a mineral oil or an ester compound having a melting point of 100 ° C. or less (for example, , See Patent Document 2).

これらの技術では、エチレン−プロピレンブロックコポリマーだけでは十分な多孔性及び通気性を示さないため、多成分系によりその改良を図っているが、多成分であるためにそれらの各成分を均一分散させないと均一な多孔膜が得られにくく、また、多孔膜中に形成された細孔の孔径が大きいため、多孔膜厚みの薄肉化に難があったり、高空隙率化が難しく通気度や透湿度の向上が図りにくい等の課題を有しており、小さな細孔径を必要とする電池セパレータや高い空隙率と通気度を必要とする精密濾過用フィルタに使用することは難しい。 In these technologies, the ethylene-propylene block copolymer alone does not exhibit sufficient porosity and air permeability, and thus is improved by a multi-component system. However, since these components are multi-component, they are not uniformly dispersed. It is difficult to obtain a uniform porous film, and because the pores formed in the porous film have a large pore diameter, it is difficult to reduce the thickness of the porous film, or it is difficult to increase the porosity, and the air permeability and moisture permeability Therefore, it is difficult to use it for a battery separator that requires a small pore size and a microfiltration filter that requires a high porosity and air permeability.

また、ポリプロピレンに造核剤を配合して、多孔膜を製造する方法も知られている(例えば、特許文献3、特許文献4参照)。これらは、ベンジリデンソルビトール系化合物等のα晶造核剤を用いた膜状物、或いはα晶が成長するような製膜条件で製造した膜状物を延伸して多孔性膜を得る方法である。かかる方法によれば、膜の多孔化がある程度向上するが、更に高度に多孔化することが望まれている。一方、ポリプロピレン固有の結晶形態β晶を利用して、多孔膜を製造する方法も知られているが、現実的な条件下では充分な量のβ晶を生成させることが困難であり、満足できる空孔率を有する多孔膜が得られないのが現状である。 In addition, a method for producing a porous film by blending a nucleating agent with polypropylene is also known (see, for example, Patent Document 3 and Patent Document 4). These are methods for obtaining a porous film by stretching a film-like material using an α-crystal nucleating agent such as a benzylidene sorbitol compound or a film-like material produced under film-forming conditions such that α-crystals grow. . According to such a method, the porosity of the membrane is improved to some extent, but it is desired that the membrane be made more highly porous. On the other hand, a method for producing a porous film using β-crystals peculiar to polypropylene is also known, but it is difficult to produce a sufficient amount of β-crystals under realistic conditions, which is satisfactory. At present, a porous film having a porosity cannot be obtained.

ポリプロピレンにβ晶を生成させる方法としては、溶融ポリプロピレンを温度勾配下に結晶化させる方法や微量のβ晶造核剤(γ−キナクリドン)を添加混合する方法等が提案されている。しかし、前者は長時間を要し、しかも微量の試料しか得られない欠点を有している。また、後者のβ変態(β晶)を示すβ晶造核剤をポリプロピレンに添加する方法は、熱的安定性が低く溶融段階で既にα変態へ転換してしまい易い。β晶造核剤をポリプロピレンに添加することにより多孔膜を得ようとするときには、使用するβ晶造核剤や原反シートの成形条件やその延伸条件が問題となるため、原反シートを延伸する際に、一軸または二軸延伸を行なうことが開示されているが、同一温度の下で、一軸または二軸延伸するもので実用性に欠け、更には製品が赤く着色するという問題点もある。 As a method for producing β crystals in polypropylene, a method of crystallizing molten polypropylene under a temperature gradient, a method of adding and mixing a small amount of β crystal nucleating agent (γ-quinacridone), and the like have been proposed. However, the former requires a long time and has a drawback that only a small amount of sample can be obtained. Further, the latter method of adding a β-crystal nucleating agent exhibiting β-transformation (β-crystal) to polypropylene has low thermal stability and is likely to be already converted to α-transformation at the melting stage. When trying to obtain a porous film by adding a β crystal nucleating agent to polypropylene, the β crystal nucleating agent to be used, the molding conditions of the raw fabric sheet, and the stretching conditions are problematic. However, it is disclosed that uniaxial or biaxial stretching is performed at the same temperature, and it is not practical because it is uniaxial or biaxially stretched at the same temperature. Further, there is a problem that the product is colored red. .

特開平4−309546号公報JP-A-4-309546 特開平8−208862号公報JP-A-8-208862 特開昭63−199742号公報JP-A 63-199742 特開昭64−54042号公報JP-A 64-54042

本発明は、従来のポリオレフィン樹脂多孔膜に関する前記課題を解決すべくなされたものであり、生産工程における均一分散の実現を容易にし、単純な樹脂組成にも関わらず、細孔径が小さく空隙率が高いポリオレフィン樹脂多孔膜を提供することを課題とする。 The present invention has been made to solve the above-mentioned problems related to conventional polyolefin resin porous membranes, facilitates the realization of uniform dispersion in the production process, and has a small pore diameter and a low porosity in spite of a simple resin composition. It is an object to provide a high polyolefin resin porous membrane.

本発明者らは、鋭意検討した結果、結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなる特定のポリオレフィン樹脂(C)に対し、α晶造核剤(D)を樹脂組成物(E)の重量基準で0.01〜5重量%配合した樹脂組成物(E)を溶融し混練して膜状溶融物とし、該膜状溶融物を特定の条件で膜状成形物に成形した後、膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、共重合体(B)領域に、連通した細孔を有するポリオレフィン樹脂多孔膜によって本課題が解決されることを見出しこの知見に基づいて本発明を完成した。尚、本発明において連通した細孔とは、共重合体(B)領域に連続的に形成され、結果的に多孔膜の両面をつなぐ経路となる細孔をいう。 As a result of intensive studies, the present inventors have determined that a specific polyolefin resin (C) comprising crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). On the other hand, the resin composition (E) containing 0.01 to 5% by weight of the α crystal nucleating agent (D) based on the weight of the resin composition (E) is melted and kneaded to form a film-like melt, A porous film formed by forming a film-form melt into a film-form product under specific conditions and then stretching the film-form product in at least one direction, and communicates with the copolymer (B) region. The present invention has been completed based on the finding that this problem can be solved by the polyolefin resin porous membrane having pores. In the present invention, the continuous pores refer to pores that are continuously formed in the copolymer (B) region and consequently become a path connecting both surfaces of the porous membrane.

本発明は、以下によって構成される。
1.結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)に対し、α晶造核剤(D)を樹脂組成物(E)の重量基準で0.01〜5重量%配合した樹脂組成物(E)を溶融し混練して膜状溶融物とし、該膜状溶融物をリップクリアランスを0.2〜1.2mmに調整したTダイより膜状に押出し膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜90重量%とプロピレン−α−オレフィン共重合体(B)10〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートMFRPPとプロピレン−α−オレフィン共重合体(B)のメルトフローレートMFRRCのメルトフローレート比MFRPP/MFRRCが0.1〜10であり、共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂多孔膜。
The present invention is constituted by the following.
1. An α crystal nucleating agent (D) is added to a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). The resin composition (E) blended in an amount of 0.01 to 5% by weight based on the weight of the composition (E) is melted and kneaded to form a film-like melt, and the film-like melt has a lip clearance of 0.2 to 1. A porous film formed by extruding into a film shape from a T die adjusted to 2 mm and then forming the film shape in at least one direction, and the polyolefin resin (C) is It consists crystalline polypropylene (a) 30 to 90 wt% of propylene-.alpha.-olefin copolymer (B) and 10 to 70 wt%, propylene with a melt flow rate MFR PP of the crystalline polypropylene (a)-.alpha.- Olefin copolymer (B) is a melt flow rate MFR RC melt flow rate ratio MFR PP / MFR RC is 0.1 to 10 of a polyolefin resin porous membrane having pores communicating with the copolymer (B) region .

2.メルトフローレート比MFRPP/MFRRCが0.2〜5であることを特徴とする前記1項記載のポリオレフィン樹脂多孔膜。 2. 2. The polyolefin resin porous membrane according to 1 above, wherein the melt flow rate ratio MFR PP / MFR RC is 0.2 to 5.

3.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜10の範囲であることを特徴とする前記1項または2項記載のポリオレフィン樹脂多孔膜。 3. 3. The polyolefin resin porous membrane according to the above item 1 or 2, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 10.

4.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜3の範囲であることを特徴とする前記1項または2項記載のポリオレフィン樹脂多孔膜。 4). 3. The polyolefin resin porous membrane according to the above item 1 or 2, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 3.

5.ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)40〜70重量%とポリプロピレン−α−オレフィン共重合体(B)30〜60重量%とからなることを特徴とする前記1〜4項のいずれか1項記載のポリオレフィン樹脂多孔膜。 5. Any one of said 1-4 characterized by polyolefin resin (C) consisting of crystalline polypropylene (A) 40 to 70 weight% and polypropylene-alpha-olefin copolymer (B) 30 to 60 weight%. 2. A polyolefin resin porous membrane according to item 1.

6.プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である前記1〜5項のいずれか1項記載のポリオレフィン樹脂多孔膜。 6). 6. The polyolefin resin porous membrane according to any one of 1 to 5 above, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight.

7.プロピレン−α−オレフィン共重合体(B)のプロピレン含量が40〜70重量%である前記1〜5項のいずれか1項記載のポリオレフィン樹脂多孔膜。 7). 6. The polyolefin resin porous membrane according to any one of 1 to 5 above, wherein the propylene content of the propylene-α-olefin copolymer (B) is 40 to 70% by weight.

8.ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする前記1〜7項のいずれか1項記載のポリオレフィン樹脂多孔膜。 8). The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. 8. The polyolefin resin porous membrane according to any one of 1 to 7 above, wherein the porous membrane is a polyolefin resin porous membrane.

9.多孔膜の透気抵抗度(ガーレー)が1〜1,000秒/100ml、透湿度が2,000〜20,000g/m・24hである前記1〜8項のいずれか1項記載のポリオレフィン樹脂多孔膜。 9. 9. The polyolefin according to any one of 1 to 8 above, wherein the porous membrane has a gas permeability resistance (Gurley) of 1 to 1,000 seconds / 100 ml and a moisture permeability of 2,000 to 20,000 g / m 2 · 24 h. Resin porous membrane.

10.結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)に対し、α晶造核剤(D)を樹脂組成物(E)の重量基準で0.01〜5重量%配合した樹脂組成物(E)を溶融し混練して膜状溶融物とし、該膜状溶融物をリップクリアランスを0.2〜1.2mmに調整したTダイより膜状に押出して膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜70重量%とプロピレン−α−オレフィン共重合体(B)30〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートMFRPPとプロピレン−α−オレフィン共重合体(B)のメルトフローレートMFRRCのメルトフローレート比MFRPP/MFRRCが10より大きく1,000以下であり、共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂多孔膜。 10. An α crystal nucleating agent (D) is added to a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). The resin composition (E) blended in an amount of 0.01 to 5% by weight based on the weight of the composition (E) is melted and kneaded to form a film-like melt, and the film-like melt has a lip clearance of 0.2 to 1. A porous film formed by extruding a T-die adjusted to 2 mm into a film shape and forming it into a film-shaped molded product, and then stretching the film-shaped molded product in at least one direction, which is a polyolefin resin (C) There melt flow rate MFR PP and propylene -α crystalline polypropylene (a) 30 to 70 wt% propylene -α- olefin copolymer (B) consists of a 30 to 70% by weight, crystalline polypropylene (a) Olefin copolymer melt flow rate MFR RC melt flow rate ratio MFR PP / MFR RC of (B) is at greater than 10 1,000, the polyolefin resin having pores communicating with the copolymer (B) region Porous membrane.

11.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜10の範囲であることを特徴とする前記10項記載のポリオレフィン樹脂多孔膜。 11. 11. The polyolefin resin porous membrane according to the above item 10, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 10.

12.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜5の範囲であることを特徴とする前記10項記載のポリオレフィン樹脂多孔膜。 12 11. The polyolefin resin porous membrane according to the above item 10, wherein the draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 5.

13.プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である前記10〜12項のいずれか1項記載のポリオレフィン樹脂多孔膜。 13. 13. The polyolefin resin porous membrane according to any one of 10 to 12, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight.

14.プロピレン−α−オレフィン共重合体(B)のプロピレン含量が40〜70重量%である前記10〜12項のいずれか1項記載のポリオレフィン樹脂多孔膜。 14 13. The polyolefin resin porous membrane according to any one of 10 to 12 above, wherein the propylene content of the propylene-α-olefin copolymer (B) is 40 to 70% by weight.

15.ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする前記10〜14項のいずれか1項記載のポリオレフィン樹脂多孔膜。 15. The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. 15. The polyolefin resin porous membrane according to any one of items 10 to 14, wherein the porous membrane is a polyolefin resin porous membrane.

16.多孔膜の透気抵抗度(ガーレー)が10〜10,000秒/100ml、透湿度が1,000〜15,000g/m・24hである請求項10〜15項のいずれか1項記載のポリオレフィン樹脂多孔膜。 16. The air permeability resistance (Gurley) of the porous membrane is 10 to 10,000 seconds / 100 ml, and the moisture permeability is 1,000 to 15,000 g / m 2 · 24 h. Polyolefin resin porous membrane.

本発明のポリオレフィン樹脂多孔膜は、特定の加工方法のもと、結晶性ポリプロピレン(A)中にプロピレン−α−オレフィン共重合体(B)が微分散した特定のポリオレフィン樹脂(C)に、α晶造核剤(D)を配合することにより低温時の延伸性を向上させ、共重合体(B)領域に共重合体(B)の開裂による細孔を形成させて得られた多孔膜であり、α晶造核剤(D)を含有しない多孔膜より一段と細孔が微細となり空隙率や通気度が向上した多孔膜特性に優れた多孔膜である。また、本発明のポリオレフィン樹脂多孔膜は、従来のような複雑な製造工程を用いずに得られる経済的な多孔膜であり、連通した微細孔を必要とする分離膜、電池セパレータ、通気防水材等の用途に好適に使用することができる。 The polyolefin resin porous membrane of the present invention is obtained by using a specific polyolefin resin (C) in which a propylene-α-olefin copolymer (B) is finely dispersed in crystalline polypropylene (A) under a specific processing method. A porous film obtained by adding a crystal nucleating agent (D) to improve stretchability at low temperatures and forming pores by cleavage of the copolymer (B) in the copolymer (B) region. Yes, it is a porous membrane excellent in porous membrane properties in which the pores become finer than the porous membrane containing no α crystal nucleating agent (D) and the porosity and air permeability are improved. The polyolefin resin porous membrane of the present invention is an economical porous membrane that can be obtained without using a complicated manufacturing process as in the prior art, and requires a separation membrane, a battery separator, and a breathable waterproof material that require continuous micropores. It can use suitably for uses, such as.

以下に、本発明の実施形態を説明する。
(1)ポリオレフィン樹脂
本発明のポリオレフィン樹脂多孔膜には、結晶性ポリプロピレン(A)と、プロピレン−α−オレフィン共重合体(B)(以下、単に「共重合体(B)」ということがある)とからなり、結晶性ポリプロピレン(A)のマトリックス中に共重合体(B)が領域として微分散しているポリオレフィン樹脂(C)が使用される。
Hereinafter, embodiments of the present invention will be described.
(1) Polyolefin resin In the polyolefin resin porous membrane of the present invention, crystalline polypropylene (A) and propylene-α-olefin copolymer (B) (hereinafter, simply referred to as “copolymer (B)” may be used. And a polyolefin resin (C) in which the copolymer (B) is finely dispersed as a region in the matrix of the crystalline polypropylene (A).

(i)結晶性ポリプロピレン(A)
結晶性ポリプロピレン(A)は、主としてプロピレン重合単位からなる結晶性の重合体であり、好ましくはプロピレン重合単位が全体の90重量%以上であるポリプロピレンである。具体的には、プロピレンの単独重合体であってもよく、また、プロピレン重合単位90重量%以上とα−オレフィン10重量%以下とのランダムまたはブロック共重合体であってもよい。結晶性ポリプロピレン(A)が共重合体の場合に使用されるα−オレフィンとしては、エチレン(本発明においてはα−オレフィンに含める)、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等を挙げることができる。このうち、プロピレン単独重合体またはプロピレン重合単位の含量が90重量%以上のプロピレン−エチレン共重合体を用いるのが、製造コストの点から好ましい。
(I) Crystalline polypropylene (A)
The crystalline polypropylene (A) is a crystalline polymer mainly composed of propylene polymerized units, preferably polypropylene having 90% by weight or more of propylene polymerized units. Specifically, it may be a propylene homopolymer, or may be a random or block copolymer of 90% by weight or more of propylene polymer units and 10% by weight or less of α-olefin. Examples of the α-olefin used when the crystalline polypropylene (A) is a copolymer include ethylene (included in the α-olefin in the present invention), 1-butene, 1-pentene, 1-hexene and 1-octene. 1-decene, 1-dodecene, 4-methyl-1-pentene, 3-methyl-1-pentene and the like. Among these, it is preferable from the viewpoint of production cost to use a propylene homopolymer or a propylene-ethylene copolymer having a propylene polymer unit content of 90% by weight or more.

また、結晶性ポリプロピレン(A)のメルトフロ−レ−トMFRPPは製膜の安定性から0.1〜50g/10分の範囲のものが好ましい。 Further, the melt flow rate MFR PP of the crystalline polypropylene (A) is preferably in the range of 0.1 to 50 g / 10 min from the stability of film formation.

(ii)プロピレン−α−オレフィン共重合体(B)
共重合体(B)は、プロピレンとプロピレン以外のα−オレフィンとのランダム共重合体である。プロピレン重合単位の含量は、共重合体(B)全体に対し重量基準で30〜80重量%の範囲にあることが好ましく、より好ましくは35〜75重量%、更に好ましくは40〜70重量%である。プロピレン重合単位の含量が前記範囲より多過ぎる場合には、結晶性ポリプロピレン(A)のマトリックス中に存在する共重合体(B)領域に細孔が形成されにくく、また、プロピレン重合単位の含量が前記範囲より少なすぎる場合には、結晶性ポリプロピレン(A)と共重合体(B)の界面剥離が生じ易くなるため低温延伸性が低下し、細孔径も大きくなり易い。
(ii) Propylene-α-olefin copolymer (B)
The copolymer (B) is a random copolymer of propylene and an α-olefin other than propylene. The content of propylene polymerized units is preferably in the range of 30 to 80% by weight, more preferably 35 to 75% by weight, still more preferably 40 to 70% by weight, based on the weight of the entire copolymer (B). is there. When the content of the propylene polymerized unit is more than the above range, pores are hardly formed in the copolymer (B) region present in the matrix of the crystalline polypropylene (A), and the content of the propylene polymerized unit is When the amount is less than the above range, interfacial peeling between the crystalline polypropylene (A) and the copolymer (B) is likely to occur, so that the low-temperature stretchability is lowered and the pore diameter is likely to be increased.

共重合体(B)に使用されるプロピレン以外のα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等が挙げられる。このうちα−オレフィンとしてエチレンを用いたプロピレン−エチレン共重合体が、製造コストの点から好ましく用いられる。 Examples of the α-olefin other than propylene used in the copolymer (B) include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, and 4-methyl-1. -Pentene, 3-methyl-1-pentene, etc. are mentioned. Among these, a propylene-ethylene copolymer using ethylene as an α-olefin is preferably used from the viewpoint of production cost.

共重合体(B)のメルトフロ−レ−トMFRRCは特に限定されないが、0.1〜20g/10分の範囲が成形加工性に優れるため好適である。 The melt flow rate MFR RC of the copolymer (B) is not particularly limited, but a range of 0.1 to 20 g / 10 min is preferable because of excellent molding processability.

(iii)ポリオレフィン樹脂(C)
ポリオレフィン樹脂(C)は、結晶性ポリプロピレン(A)と共重合体(B)とからなる。結晶性ポリプロピレン(A)のメルトフローレートMFRPPと共重合体(B)のメルトフローレートMFRRCとのメルトフローレート比MFRPP/MFRRC(以下、「MFR比」という)は、特に限定されないが、成形加工性の観点から0.1〜1,000が好ましい。
(iii) Polyolefin resin (C)
The polyolefin resin (C) is composed of crystalline polypropylene (A) and a copolymer (B). The melt flow rate ratio MFR PP / MFR RC (hereinafter referred to as “MFR ratio”) between the melt flow rate MFR PP of the crystalline polypropylene (A) and the melt flow rate MFR RC of the copolymer (B) is not particularly limited. However, 0.1 to 1,000 is preferable from the viewpoint of moldability.

中でも、MFR比が、0.1〜10、特に0.2〜5の場合には、共重合体(B)が結晶性ポリプロピレン(A)中に微分散するために微細で連通した細孔が得られ易く、微細な細孔同士の接触点が増加し、JIS P8117に規定される透気抵抗度(ガーレー)が小さく、通気性の大きな多孔膜が得られ易い。また、延伸性に優れるために空隙率の高い多孔膜が得られ易く、通気性も一層大きくなる。 In particular, when the MFR ratio is 0.1 to 10, particularly 0.2 to 5, the copolymer (B) is finely dispersed in the crystalline polypropylene (A), so fine and continuous pores are present. It is easy to obtain, the contact point between fine pores increases, the air permeability resistance (Gurley) specified in JIS P8117 is small, and a porous membrane with high air permeability is easily obtained. Moreover, since it is excellent in stretchability, it is easy to obtain a porous film having a high porosity, and air permeability is further increased.

MFR比が10より大きく1,000以下の場合は、延伸により形成される細孔の孔径は、MFR比が、0.1〜10の場合に比べて大きく、連通した細孔の割合が低下する傾向があるが、樹脂組成物が製膜条件や延伸条件の変動の影響を受け難いため、特性の安定した多孔膜が得られ易い。 When the MFR ratio is greater than 10 and less than or equal to 1,000, the pore diameter of the pores formed by stretching is larger than that when the MFR ratio is 0.1 to 10, and the proportion of connected pores decreases. Although there is a tendency, since the resin composition is not easily affected by fluctuations in film forming conditions and stretching conditions, a porous film having stable characteristics is easily obtained.

本発明においては、MFR比が0.1〜10の場合には、透気抵抗度(ガーレー)が1〜1,000秒/100ml、透湿度が2,000〜20,000g/m・24hの多孔膜を得ることができる。該多孔膜では、走査型電子顕微鏡(SEM)による断面観察によれば、1〜2μmの微細な細孔が多数連なっており、細孔径の長軸の最大値が5μm以下の微細な細孔が認められる。このような多孔膜は、高いろ過精度が求められる分離膜や電池セパレータ等に好適に使用可能である。 In the present invention, when the MFR ratio is 0.1 to 10, the air permeability resistance (Gurley) is 1 to 1,000 seconds / 100 ml, and the moisture permeability is 2,000 to 20,000 g / m 2 · 24 h. Can be obtained. According to the cross-sectional observation with a scanning electron microscope (SEM), the porous film has a large number of fine pores of 1 to 2 μm, and fine pores having a maximum major axis of the pore diameter of 5 μm or less. Is recognized. Such a porous membrane can be suitably used for separation membranes, battery separators, and the like that require high filtration accuracy.

MFR比が10より大きく1,000以下の場合には、透気抵抗度(ガーレー)が10〜10,000秒/100ml、透湿度が1,000〜15,000g/m・24hの多孔膜を得ることができる。該多孔膜では、SEMによる断面観察によれば、5μm前後の細孔が多数連なっており、細孔径の長軸の最大値が10μm以下の細孔が認められる。このような多孔膜は、製造条件による品質特性の変動が少なく比較的低コストであり、通気防水材等の建築資材分野、使い捨ておむつ用通気性シート等の衛材分野等に好適に使用可能である。 When the MFR ratio is greater than 10 and less than or equal to 1,000, the porous film has an air permeability resistance (Gurley) of 10 to 10,000 seconds / 100 ml and a moisture permeability of 1,000 to 15,000 g / m 2 · 24 h. Can be obtained. In the porous film, according to cross-sectional observation by SEM, a large number of pores of about 5 μm are connected, and pores having a maximum major axis of pore diameter of 10 μm or less are recognized. Such porous membranes are relatively low cost with little variation in quality characteristics due to manufacturing conditions, and can be suitably used in the field of building materials such as breathable waterproofing materials, the field of hygiene materials such as breathable sheets for disposable diapers, etc. is there.

ポリオレフィン樹脂(C)における、結晶性ポリプロピレン(A)の含量は、MFR比が0.1〜10の場合は、30〜90重量%、好ましくは40〜70重量%であり、共重合体(B)の含量は10〜70重量%、好ましくは30〜60重量%である。共重合体(B)の含量が10重量%未満の場合には、共重合体(B)領域に形成された細孔の連なりが少なくなることから本発明の連通した細孔が得られにくく、70重量%を超える場合には、結晶性ポリプロピレン(A)中に存在する共重合体(B)の微分散構造が得られ難くなる。 The content of the crystalline polypropylene (A) in the polyolefin resin (C) is 30 to 90% by weight, preferably 40 to 70% by weight when the MFR ratio is 0.1 to 10, and the copolymer (B ) Is 10 to 70% by weight, preferably 30 to 60% by weight. When the content of the copolymer (B) is less than 10% by weight, it is difficult to obtain the continuous pores of the present invention because the continuous pores formed in the copolymer (B) region is reduced. When it exceeds 70% by weight, it becomes difficult to obtain a finely dispersed structure of the copolymer (B) present in the crystalline polypropylene (A).

尚、MFR比が10より大きく1,000以下の場合は、ポリオレフィン樹脂(C)における、結晶性ポリプロピレン(A)の含量は30〜70重量%、好ましくは40〜60重量%であり、共重合体(B)の含量は70〜30重量%、好ましくは60〜40重量%である。結晶性ポリプロピレン(A)と共重合体(B)の含量が上記の範囲であれば連通した細孔が得られ共重合体(B)の分散性も良い。 When the MFR ratio is greater than 10 and 1,000 or less, the content of the crystalline polypropylene (A) in the polyolefin resin (C) is 30 to 70% by weight, preferably 40 to 60% by weight. The content of the union (B) is 70 to 30% by weight, preferably 60 to 40% by weight. If the content of the crystalline polypropylene (A) and the copolymer (B) is in the above range, continuous pores are obtained and the dispersibility of the copolymer (B) is good.

前記ポリオレフィン樹脂(C)の製造方法は特に限定されず、上記の条件を満足すれば、いかなる製造方法を用いてもよい。例えば、各々別個に重合して得られた結晶性ポリプロピレン(A)と共重合体(B)とを溶融混練等によって混合することによりポリオレフィン樹脂(C)を製造してもよい。具体的には、チタン担持触媒等のチーグラーナッタ触媒を用いて重合した共重合体(B)や共重合体(B)に該当する市販のエチレン−プロピレンゴムと結晶性ポリプロピレン(A)とを溶融混合する方法が例示できる。 The production method of the polyolefin resin (C) is not particularly limited, and any production method may be used as long as the above conditions are satisfied. For example, the polyolefin resin (C) may be produced by mixing the crystalline polypropylene (A) and the copolymer (B) obtained by separately polymerizing by melt kneading or the like. Specifically, a copolymer (B) polymerized using a Ziegler-Natta catalyst such as a titanium-supported catalyst or a commercially available ethylene-propylene rubber corresponding to the copolymer (B) and crystalline polypropylene (A) are melted. The method of mixing can be illustrated.

また、結晶性ポリプロピレン(A)と共重合体(B)とを多段重合により連続的に重合することによってポリオレフィン樹脂(C)を製造してもよい。例えば、複数の重合器を使用し、1段目で結晶性ポリプロピレン(A)を製造し、引続き2段目で結晶性ポリプロピレン(A)の存在下に共重合体(B)を製造し、ポリオレフィン樹脂(C)を連続的に製造する方法が例示できる。この連続重合法は、上記した溶融混合法に比べて製造コストが低く、また、結晶性ポリプロピレン(A)中に共重合体(B)が均一に分散したポリオレフィン樹脂(C)が安定して得られるため好ましい。 Alternatively, the polyolefin resin (C) may be produced by continuously polymerizing the crystalline polypropylene (A) and the copolymer (B) by multistage polymerization. For example, by using a plurality of polymerization vessels, a crystalline polypropylene (A) is produced in the first stage, and then a copolymer (B) is produced in the presence of the crystalline polypropylene (A) in the second stage. A method for continuously producing the resin (C) can be exemplified. This continuous polymerization method is lower in production cost than the melt mixing method described above, and a polyolefin resin (C) in which the copolymer (B) is uniformly dispersed in the crystalline polypropylene (A) can be stably obtained. Therefore, it is preferable.

本発明において、特に好ましいポリオレフィン樹脂(C)は、上記連続重合法により製造し、前記MFR比を10以下、更に好ましくは0.2〜5の範囲となるように調整したものである。MFR比をこの範囲とすることにより、結晶性ポリプロピレン(A)中に共重合体(B)が均一にかつ微細に分散するため、ポリオレフィン樹脂(C)の延伸処理を行う際に、結晶性ポリプロピレン(A)中に分散した共重合体(B)領域に均一かつ微細な細孔が生じ、その結果、細孔径が小さく空隙率の大きい多孔膜が得られる。 In the present invention, a particularly preferred polyolefin resin (C) is produced by the above continuous polymerization method and adjusted so that the MFR ratio is 10 or less, more preferably in the range of 0.2 to 5. By setting the MFR ratio within this range, the copolymer (B) is uniformly and finely dispersed in the crystalline polypropylene (A). Therefore, when the polyolefin resin (C) is stretched, the crystalline polypropylene is used. Uniform and fine pores are generated in the copolymer (B) region dispersed in (A), and as a result, a porous membrane having a small pore diameter and a high porosity is obtained.

本発明のポリオレフィン樹脂多孔膜には、結晶性ポリプロピレン(A)中に微分散した共重合体(B)領域に微細な開裂が多数認められる。共重合体(B)が一定以上のプロピレン成分を含有するために結晶性ポリプロピレンと相溶性を有しており、この結晶性ポリプロピレン(A)と相溶性を有する共重合体(B)が、結晶性ポリプロピレン(A)より低強度であるため、延伸応力により共重合体(B)領域で開裂が発生したと推察される。このメカニズムは従来の無機質フィラーや異種ポリマーを混合及び延伸した多成分延伸法と根本的に異なるところであり、その結果、得られた多孔膜は、細孔径が小さく、空隙率や通気度が大きいものとなっている。 In the polyolefin resin porous membrane of the present invention, many fine cleavages are observed in the copolymer (B) region finely dispersed in the crystalline polypropylene (A). Since the copolymer (B) contains a certain amount or more of a propylene component, the copolymer (B) is compatible with crystalline polypropylene, and the copolymer (B) having compatibility with the crystalline polypropylene (A) is crystallized. Since the strength is lower than that of the conductive polypropylene (A), it is presumed that cleavage occurred in the copolymer (B) region due to the stretching stress. This mechanism is fundamentally different from the conventional multi-component stretching method in which inorganic fillers and different polymers are mixed and stretched. It has become.

尚、本発明において共重合体(B)領域とは、共重合体(B)自体が占める領域、及び共重合体(B)とそれに隣接する物質との境界領域をいう。従って、共重合体(B)領域に生じる細孔には、共重合体(B)自体が占める領域の中で生じる開裂による細孔、及び結晶性ポリプロピレン(A)等と共重合体(B)との境界領域で生じる界面剥離による細孔が含まれる。 In the present invention, the copolymer (B) region means a region occupied by the copolymer (B) itself and a boundary region between the copolymer (B) and a substance adjacent thereto. Therefore, the pores generated in the copolymer (B) region include pores due to cleavage generated in the region occupied by the copolymer (B) itself, and the crystalline polypropylene (A) and the copolymer (B). And pores due to interfacial delamination that occur in the boundary region.

前記のようなMFR比を有するポリオレフィン樹脂(C)は、具体的には国際公開第97/19135号パンフレット、特開平8−27238号公報等に記載されている方法により製造することができる。
尚、ポリオレフィン樹脂(C)は前記の方法で製造することができる他に、市販品の中から所望の仕様のものを選択して用いてもよい。
Specifically, the polyolefin resin (C) having the MFR ratio as described above can be produced by a method described in International Publication No. 97/19135, JP-A-8-27238, and the like.
In addition, the polyolefin resin (C) can be produced by the above-described method, and one having a desired specification may be selected from commercially available products.

尚、前記MFR比は、通常は結晶性ポリプロピレン(A)のMFRPP及び共重合体(B)のMFRRCを各々測定することにより求められる。しかし、ポリプロピレン樹脂を多段重合により連続的に製造した場合(最初に結晶性ポリプロピレン(A)を重合し、次いで共重合体(B)を重合する場合)は、共重合体(B)のMFRRCを直接測定できないため、直接測定可能な結晶性ポリプロピレン(A)のMFRPP、得られるポリオレフィン樹脂(C)のメルトフローレートMFRWHOLE及びポリオレフィン樹脂(C)中の共重合体(B)の含有量WRC(重量%)から、下記式によりMFRRCを算出して、MFR比を求めることができる。
log(MFRRC)={log(MFRWHOLE)−(1−WRC/100)log(MFRPP)}/(WRC/100)
The MFR ratio is usually determined by measuring MFR PP of the crystalline polypropylene (A) and MFR RC of the copolymer (B). However, when the polypropylene resin is continuously produced by multistage polymerization (when the crystalline polypropylene (A) is first polymerized and then the copolymer (B) is polymerized), the MFR RC of the copolymer (B) is used. Of MFR PP of crystalline polypropylene (A) that can be directly measured, melt flow rate MFR WHOLE of the resulting polyolefin resin (C), and content of copolymer (B) in polyolefin resin (C) The MFR ratio can be obtained by calculating MFR RC from W RC (weight%) by the following formula.
log (MFR RC ) = {log (MFR WHOLE ) − (1−W RC / 100) log (MFR PP )} / (W RC / 100)

(iv)α晶造核剤(D)
本発明では、ポリオレフィン樹脂(C)に対してα晶造核剤(D)が配合される。α晶造核剤(D)を含有した多孔膜は、α晶造核剤(D)を含有しない多孔膜より一段と細孔径が微細となり空隙率や通気度が向上した優れた多孔膜特性を発現できる。α晶造核剤(D)としては、公知のものが特に制限なく使用できるが、好適にはタルク、アルミニウムヒドロキシ−ビス(4−t−ブチルベンゾエート)、1・3,2・4−ジベンジリデンソルビトール、1・3,2・4−ビス(p−メチルベンジリデン)ソルビトール、1・3,2・4−ビス(p−エチルベンジリデン)ソルビトール、1・3,2・4−ビス(2',4'−ジメチルベンジリデン)ソルビトール、1・3,2・4−ビス(3',4'−ジメチルベンジリデン)ソルビトール、1・3−p−クロルベンジリデン−2・4−p−メチルベンジリデンソルビトール、1・3,2・4−ビス(p−クロルベンジリデン)ソルビトール、ナトリウム−ビス(4−t−ブチルフェニル)フォスフェート、ナトリウム−2,2'−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、カルシウム−2,2'−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、アルミニウムジヒドロキシ−2,2'−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート等が挙げられる。これらは単独使用でも、2種以上の併用でも良い。
(Iv) α crystal nucleating agent (D)
In the present invention, the α crystal nucleating agent (D) is blended with the polyolefin resin (C). Porous membranes containing the α crystal nucleating agent (D) exhibit superior porous membrane properties with finer pore diameters and improved porosity and air permeability than porous membranes not containing the α crystal nucleating agent (D). it can. As the α crystal nucleating agent (D), known ones can be used without particular limitation, but preferably talc, aluminum hydroxy-bis (4-t-butylbenzoate), 1,3,2,4-dibenzylidene. Sorbitol, 1,3,2,4-bis (p-methylbenzylidene) sorbitol, 1,3,2,4-bis (p-ethylbenzylidene) sorbitol, 1,3,2,4-bis (2 ′, 4 '-Dimethylbenzylidene) sorbitol, 1,3,2,4-bis (3', 4'-dimethylbenzylidene) sorbitol, 1,3-p-chlorobenzylidene-2,4-p-methylbenzylidenesorbitol, 1.3 , 2,4-bis (p-chlorobenzylidene) sorbitol, sodium-bis (4-tert-butylphenyl) phosphate, sodium-2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate, calcium-2,2'-methylene-bis (4,6-di-t-butylphenyl) phosphate, aluminum dihydroxy-2,2'-methylene- And bis (4,6-di-t-butylphenyl) phosphate. These may be used alone or in combination of two or more.

本発明において、α晶造核剤(D)の配合量は、ポリオレフィン樹脂多孔膜形成用樹脂組成物(E)の重量基準で0.01〜5重量%、好適には0.03〜3重量%である。ここで、α晶造核剤(D)の配合量が0.01重量部より小さいときは、α晶造核剤(D)添加による特性の効果が得られ難い。配合量が5重量部より大きい場合は、α晶造核剤(D)のポリオレフィン樹脂(C)中での分散不良を招き易くなり、効果が低下し、経済的にも不利である。また、ポリオレフィン樹脂(C)にα晶造核剤(D)を配合する方法は特に限定されず、例えばヘンシェルミキサー(商品名)等の高速撹拌機付混合機及びリボンブレンダー並びにタンブラーミキサー等の通常の配合装置により配合する方法(ドライブレンド)が例示でき、更に通常の単軸押出機または二軸押出機等を用いてペレット化する方法が例示できる。 In the present invention, the blending amount of the α crystal nucleating agent (D) is 0.01 to 5% by weight, preferably 0.03 to 3% by weight, based on the weight of the polyolefin resin porous membrane forming resin composition (E). %. Here, when the blending amount of the α crystal nucleating agent (D) is smaller than 0.01 parts by weight, it is difficult to obtain the effect of the characteristics due to the addition of the α crystal nucleating agent (D). When the blending amount is larger than 5 parts by weight, the α crystal nucleating agent (D) tends to cause poor dispersion in the polyolefin resin (C), the effect is lowered, and it is economically disadvantageous. The method of blending the α crystal nucleating agent (D) with the polyolefin resin (C) is not particularly limited. For example, a usual mixer such as a Henschel mixer (trade name) with a high-speed stirrer, a ribbon blender, a tumbler mixer, etc. The method (dry blend) which mix | blends by the compounding apparatus of this can be illustrated, and also the method of pelletizing using a normal single screw extruder or a twin screw extruder etc. can be illustrated.

(2)ポリオレフィン樹脂多孔膜形成用樹脂組成物
本発明のポリオレフィン樹脂多孔膜を形成するための膜状成形物の成形材料である樹脂組成物(E)は、ポリオレフィン樹脂(C)及びα晶造核剤(D)の他に、通常のポリオレフィンに使用される酸化防止剤、中和剤、β晶造核剤、ヒンダードアミン系耐候剤、紫外線吸収剤、防曇剤や帯電防止剤等の界面活性剤、無機充填剤、滑剤、アンチブロッキング剤、抗菌剤、防黴剤、顔料等を必要に応じて配合することができる。
(2) Resin composition for forming a polyolefin resin porous film The resin composition (E), which is a molding material of a film-shaped molded product for forming the polyolefin resin porous film of the present invention, comprises a polyolefin resin (C) and an α crystal structure. In addition to the nucleating agent (D), surfactants such as antioxidants, neutralizing agents, β crystal nucleating agents, hindered amine weathering agents, ultraviolet absorbers, antifogging agents and antistatic agents used in ordinary polyolefins. Agents, inorganic fillers, lubricants, antiblocking agents, antibacterial agents, antifungal agents, pigments and the like can be blended as necessary.

酸化防止剤としては、テトラキス[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等のフェノール系酸化防止剤、またはトリス(2,4−ジ−t−ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、ジステアリルペンタエリスリトールジフォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4'−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤等が例示できる。 Antioxidants include tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-4-methylphenol, Phenolic compounds such as n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate and tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate Antioxidant, or tris (2,4-di-t-butylphenyl) phosphite, tris (nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) Examples thereof include phosphorus-based antioxidants such as -4,4'-biphenylene-diphosphonite.

中和剤としてはステアリン酸カルシウム等の高級脂肪酸塩類が例示でき、無機充填剤及びブロッキング防止剤としては炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウム等が例示でき、滑剤としてはステアリン酸アマイド等の高級脂肪酸アマイド類が例示でき、帯電防止剤としてはグリセリンモノステアレート等の脂肪酸エステル類が例示できる。 Examples of neutralizing agents include higher fatty acid salts such as calcium stearate. Examples of inorganic fillers and anti-blocking agents include calcium carbonate, silica, hydrotalcite, zeolite, aluminum silicate, magnesium silicate, and the like. Can be exemplified by higher fatty acid amides such as stearic acid amide, and the antistatic agent can be exemplified by fatty acid esters such as glycerol monostearate.

これらの添加剤の配合量は、ポリオレフィン樹脂多孔膜の使用目的等により適宜選択することができるが、通常樹脂組成物(E)全量に対し0.001〜5重量%程度とするのが好ましい。 Although the compounding quantity of these additives can be suitably selected according to the purpose of use of the polyolefin resin porous membrane, it is usually preferably about 0.001 to 5% by weight with respect to the total amount of the resin composition (E).

また、本発明のポリオレフィン樹脂多孔膜を形成するための樹脂組成物(E)には、本発明の効果を損なわない範囲で、プロピレンの単独重合体、プロピレンを主成分とするプロピレン以外の単量体との二元以上のランダム重合体やポリエチレン樹脂、ポリブテン樹脂、ポリメチルペンテン樹脂等の他のオレフィン樹脂の1種以上を併用しても構わない。 In addition, the resin composition (E) for forming the polyolefin resin porous membrane of the present invention has a propylene homopolymer and a single amount other than propylene containing propylene as a main component, as long as the effects of the present invention are not impaired. Two or more random polymers with the body and other olefin resins such as polyethylene resin, polybutene resin, and polymethylpentene resin may be used in combination.

更に、樹脂組成物(E)の軟化温度を低下させたり柔軟性を向上させるためにシングルサイト触媒や公知のマルチサイト触媒で重合されたエチレン−ジエン弾性共重合体、エチレンープロピレン弾性共重合体、スチレン−ブタジエン弾性共重合体等の弾性共重合体を添加しても構わない。 Further, an ethylene-diene elastic copolymer or ethylene-propylene elastic copolymer polymerized with a single site catalyst or a known multi-site catalyst in order to lower the softening temperature of the resin composition (E) or improve the flexibility. Further, an elastic copolymer such as a styrene-butadiene elastic copolymer may be added.

樹脂組成物(E)に上記添加剤を配合する方法は特に限定されず、例えばヘンシェルミキサー(商品名)等の高速撹拌機付混合機及びリボンブレンダー並びにタンブラーミキサー等の通常の配合装置により配合する方法(ドライブレンド)が例示でき、更に通常の単軸押出機または二軸押出機等を用いてペレット化する方法が例示できる。 The method of blending the above-mentioned additives into the resin composition (E) is not particularly limited. For example, the blending is performed by a usual blending apparatus such as a mixer with a high-speed stirrer such as a Henschel mixer (trade name), a ribbon blender, and a tumbler mixer. A method (dry blending) can be exemplified, and further a pelletizing method using a normal single screw extruder or twin screw extruder can be exemplified.

(3)ポリオレフィン樹脂多孔膜の形成
本発明のポリオレフィン樹脂多孔膜は、ポリオレフィン樹脂(C)を主成分とした樹脂組成物(E)を溶融し混練し膜状溶融物とし、該膜状溶融物をドラフト比1〜10の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより形成することができる。その工程は、製膜工程と延伸工程からなる。尚、主成分とは一番多い成分をいう。
(3) Formation of polyolefin resin porous film The polyolefin resin porous film of the present invention is obtained by melting and kneading a resin composition (E) containing a polyolefin resin (C) as a main component to form a film-like melt. Can be formed by stretching the film-shaped molded product in at least one direction at a temperature of 100 ° C. or lower. The process consists of a film forming process and a stretching process. The main component is the most abundant component.

(i)製膜工程
樹脂組成物(E)から膜状成形物を得るための製膜工程には、公知のインフレーションフィルム成形法、Tダイフィルム成形法、カレンダー成形法等の方法が用いられるが、膜厚さの精度が高く多層化が容易なTダイフィルム成形法が好適に用いられる。
(i) Film-forming process In the film-forming process for obtaining a film-shaped molded product from the resin composition (E), methods such as a known inflation film molding method, T-die film molding method, and calendar molding method are used. A T-die film forming method with high film thickness accuracy and easy multilayering is preferably used.

樹脂組成物(E)は、180℃以上の押出成形温度で製膜することができるが、ダイス内圧力を低減させ後述のドラフト比を低減させる目的と、マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散した共重合体(B)領域に均一かつ微細な細孔が生じさせ易くするため、220〜300℃の押出成形温度が好適に用いられる。 The resin composition (E) can be formed at an extrusion molding temperature of 180 ° C. or higher. The purpose is to reduce the pressure inside the die and the draft ratio described later, and the crystalline polypropylene (A) which is a matrix polymer. In order to improve the rigidity of the copolymer and facilitate the formation of uniform and fine pores in the copolymer (B) region dispersed in the crystalline polypropylene (A), an extrusion temperature of 220 to 300 ° C. is preferably used. .

溶融し混練された樹脂組成物(E)は、ダイリップより押し出されるが、この際、ダイリップを通過する樹脂組成物(E)の流れ方向(MD)の線速度VCLと膜状成形物の流れ方向(MD)の線速度Vの比で定義されるドラフト比(VCL/V)が本願発明を達成するための重要な要因である。一般に熱可塑性樹脂フィルムの成形時にはドラフト比は10〜50程度である。本発明においては、樹脂組成物(E)を製膜する際のドラフト比は1〜10であり、これによって得られる膜状成形物は延伸性に優れ、延伸によって微細な連通した細孔が形成され易くなる。 The melted and kneaded resin composition (E) is extruded from the die lip. At this time, the linear velocity V CL in the flow direction (MD) of the resin composition (E) passing through the die lip and the flow of the film-like molded product The draft ratio (V CL / V f ) defined by the ratio of the linear velocity V f in the direction (MD) is an important factor for achieving the present invention. Generally, the draft ratio is about 10 to 50 when a thermoplastic resin film is formed. In the present invention, the draft ratio at the time of forming the resin composition (E) is 1 to 10, and the resulting film-like molded product is excellent in stretchability, and fine communicating pores are formed by stretching. It becomes easy to be done.

MFR比が0.1〜10の場合、前記ドラフト比は、1〜5が好ましく、1〜3がより好ましい。また、MFR比が10より大きく1,000以下の場合には、該ドラフト比1〜5がより好ましい。
上記の方法によって、一般的なドラフト比においては連通した細孔が得られ難いMFR比が10より大きく1,000以下のポリオレフィン樹脂(C)においても、連通した細孔の形成が可能である。得られる多孔膜は衛材や建築資材の用途には十分な通気性を有する。
When the MFR ratio is 0.1 to 10, the draft ratio is preferably 1 to 5, and more preferably 1 to 3. When the MFR ratio is greater than 10 and 1,000 or less, the draft ratio of 1 to 5 is more preferable.
According to the above method, it is possible to form continuous pores even in the polyolefin resin (C) having an MFR ratio of more than 10 and 1,000 or less, which makes it difficult to obtain continuous pores at a general draft ratio. The resulting porous membrane has sufficient air permeability for use in sanitary materials and building materials.

また、マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散した共重合体(B)領域に均一かつ微細な細孔を生じさせ易くするため、ダイリップより押出される膜状成形物の冷却は、徐冷とすることが望ましく、冷却ロールの温度を60〜120℃、更に好ましくは70〜110℃の範囲で冷却することが望ましい。60℃未満のロール温度では所期の多孔化が得られ難く、120℃を超えると溶融樹脂がロールへ密着し易く生産性に劣る等の課題がある。 In addition, in order to improve the rigidity of the crystalline polypropylene (A) which is a matrix polymer and to easily generate uniform and fine pores in the copolymer (B) region dispersed in the crystalline polypropylene (A), The cooling of the film-like molded product to be extruded is desirably slow cooling, and the cooling roll temperature is desirably 60 to 120 ° C, more preferably 70 to 110 ° C. When the roll temperature is less than 60 ° C., it is difficult to obtain the desired porosity, and when it exceeds 120 ° C., the molten resin tends to adhere to the roll, resulting in poor productivity.

製膜工程で得られた膜状成形物の厚さは特に限定されるものではないが、次の延伸工程における延伸及び熱処理条件と多孔膜の用途の要求特性によって決定され、20μm〜2mm、好ましくは50μm〜500μm程度であって、製膜速度は1〜100m/分の範囲が好適に用いられる。これらの厚さの膜状成形物は、インフレーション成形装置をはじめとして、前記冷却ロールとエアー吹き出し口を有するエアーナイフ、前記冷却ロールと一対の金属ロール、前記冷却ロールとステンレスベルト等の組み合わせからなるTダイフィルム成形装置やカレンダー成形装置等の各種製膜装置により得られる。 The thickness of the film-like molded product obtained in the film forming process is not particularly limited, but is determined by the stretching and heat treatment conditions in the next stretching process and the required characteristics of the use of the porous film, and is preferably 20 μm to 2 mm. Is about 50 μm to 500 μm, and the film forming speed is preferably in the range of 1 to 100 m / min. The film-shaped moldings having these thicknesses include a combination of an inflation molding apparatus, an air knife having the cooling roll and an air outlet, the cooling roll and a pair of metal rolls, the cooling roll and a stainless steel belt, and the like. It can be obtained by various film forming apparatuses such as a T-die film forming apparatus and a calendar forming apparatus.

更に、本発明のポリオレフィン樹脂多孔膜は、公知の無機質充填剤、有機質充填剤等を含有した樹脂組成物を本発明のポリオレフィン樹脂多孔膜形成用樹脂組成物と共押出しして膜状成形物としても構わない。この場合、充填剤等を含有した樹脂組成物を構成するポリマーは、ポリプロピレン樹脂やポリエチレン樹脂等のポリオレフィン樹脂が相溶性の観点から望ましい。 Furthermore, the polyolefin resin porous film of the present invention is obtained by coextruding a resin composition containing a known inorganic filler, organic filler, etc. with the resin composition for forming a polyolefin resin porous film of the present invention as a film-shaped molded product. It doesn't matter. In this case, the polymer constituting the resin composition containing a filler or the like is preferably a polyolefin resin such as a polypropylene resin or a polyethylene resin from the viewpoint of compatibility.

尚、得られた膜状成形物には、次の延伸工程に供する前に、結晶化度を更に向上させるために熱処理を施しても構わない。熱処理は、例えば、加熱空気循環オーブンまたは加熱ロールにより、80〜150℃程度の温度で1〜30分間程度加熱することにより実施される。 In addition, you may heat-process in order to further improve a crystallinity degree before using for the obtained film-form molding to the next extending process. The heat treatment is performed, for example, by heating at a temperature of about 80 to 150 ° C. for about 1 to 30 minutes with a heated air circulation oven or a heating roll.

(ii)延伸工程
前記製膜工程で製膜された膜状成形物は、次いで少なくとも縦(MD)方向もしくは横(TD)方向のいずれか一方向に延伸され、結晶性ポリプロピレン(A)中に微分散した共重合体(B)領域に連通した細孔が形成される。この点が、本発明の製造方法が、従来技術である単成分延伸法、多成分延伸法及び混合抽出法等と根本的に異なるところである。これにより本発明の製造方法は、混合抽出法のような複雑な抽出及び乾燥工程等の製造工程や、結晶性ポリオレフィン(A)のラメラ結晶間のフィブリル化により細孔を発現させる単成分延伸法に見られる製膜後の熱処理による結晶化工程等を不要とするだけでなく、マトリックスポリマーと充填剤の界面に空隙を生じさせる多成分延伸法の場合の延伸性不良や平均細孔径が大きくなり易く空隙率が低い等の課題を大幅に改善し、任意の平均細孔径や空隙率を有する多孔膜を優れた生産性を以って提供することを可能にする。
(ii) Stretching process The film-shaped molded product formed in the film-forming process is then stretched in at least one of the machine direction (MD) direction or the transverse (TD) direction, and into the crystalline polypropylene (A). Fine pores communicating with the finely dispersed copolymer (B) region are formed. In this respect, the production method of the present invention is fundamentally different from the conventional single-component stretching method, multi-component stretching method, mixed extraction method and the like. Thus, the production method of the present invention is a single component stretching method in which pores are expressed by fibrillation between lamellar crystals of a crystalline polyolefin (A), such as complicated extraction and drying steps such as a mixed extraction method. In addition to eliminating the need for a crystallization step by heat treatment after film formation as seen in Fig. 1, the stretchability is poor and the average pore size is large in the case of the multicomponent stretching method that creates voids at the interface between the matrix polymer and the filler. The problems such as easy and low porosity are greatly improved, and a porous film having an arbitrary average pore diameter or porosity can be provided with excellent productivity.

延伸の方法は、一方向に延伸する一軸延伸法の他に、一方向に延伸した後、もう一方の方向に延伸する逐次二軸延伸法、縦横方向に同時に延伸する同時二軸延伸法、一軸方向に多段延伸を行う方法、逐次二軸延伸や同時二軸延伸の後に更に延伸を行う方法等が挙げられ、何れの方法を用いても良い。尚、膜状成形物は前記製膜工程においてドラフトされるため、例え低ドラフト比で製膜された膜状成形物であっても、結晶性ポリプロピレン(A)中に微分散する共重合体(B)は樹脂の流れ方向つまり縦(MD)方向に沿って配向しており、一段目の延伸は横方向への一軸延伸法もしくは縦横方向への同時二軸延伸法により行うことが望ましいが、一段目に縦方向への延伸を行い二段目に横方向へ延伸を行う逐次二軸延伸法でも構わない。 In addition to the uniaxial stretching method for stretching in one direction, the stretching method includes a sequential biaxial stretching method for stretching in one direction and then stretching in the other direction, a simultaneous biaxial stretching method for simultaneously stretching in the longitudinal and transverse directions, and uniaxial There are a method of performing multistage stretching in the direction, a method of further stretching after sequential biaxial stretching and simultaneous biaxial stretching, and any method may be used. Incidentally, since the film-shaped molded product is drafted in the film-forming process, even a film-shaped molded product formed at a low draft ratio is a finely dispersed copolymer (in the crystalline polypropylene (A)). B) is oriented along the resin flow direction, that is, the longitudinal (MD) direction, and the first stage of stretching is preferably performed by a uniaxial stretching method in the transverse direction or a simultaneous biaxial stretching method in the longitudinal and transverse directions. A sequential biaxial stretching method in which stretching in the longitudinal direction in the first stage and stretching in the lateral direction in the second stage may be performed.

この一段目の延伸温度は、プロピレン−α−オレフィン共重合体(B)の融点Tmαより低いことが好ましく、10〜100℃の温度範囲が好適に用いられるが、更に本発明では、ポリオレフィン樹脂(C)を特定の組成とすることによりこれらの低温領域における延伸性に優れることを見出した。また、延伸倍率は、特に限定はなく必要に応じ行われる二段目の延伸条件や多孔膜の用途の要求特性から決定されるが、MFR比が1〜10の場合は、MFR比が10より大きく1,000以下の場合に比べて、延伸性が優れるため、通常1.5倍〜7倍の範囲である。また、MFR比が10より大きく1,000以下の場合は、延伸倍率は通常1.5〜4倍の範囲である。延伸倍率が上記の範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。また、同時二軸延伸の場合には、面積倍率(=縦延伸倍率×横延伸倍率)は2〜50倍が好ましく、更に好ましくは4〜40倍である。面積倍率がこの範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。 The first stage stretching temperature is preferably lower than the melting point T of the propylene-α-olefin copolymer (B), and a temperature range of 10 to 100 ° C. is preferably used. It has been found that by making (C) a specific composition, the stretchability in these low temperature regions is excellent. In addition, the draw ratio is not particularly limited and is determined based on the second-stage drawing conditions performed as necessary and the required characteristics of the use of the porous membrane. When the MFR ratio is 1 to 10, the MFR ratio is 10 or more. Since the stretchability is excellent as compared with the case of 1,000 or less, it is usually in the range of 1.5 to 7 times. When the MFR ratio is greater than 10 and 1,000 or less, the draw ratio is usually in the range of 1.5 to 4 times. If the draw ratio is in the above range, a porous film having excellent characteristics can be obtained, and there is no fear of a decrease in productivity due to frequent draw breaks. In the case of simultaneous biaxial stretching, the area ratio (= longitudinal stretching ratio × lateral stretching ratio) is preferably 2 to 50 times, and more preferably 4 to 40 times. If the area magnification is within this range, a porous film having excellent characteristics can be obtained, and there is no risk of a decrease in productivity due to frequent stretching.

本発明の多孔膜は、必要に応じ二段目の延伸を行うが、二段目の延伸温度は、結晶性ポリプロピレン(A)の融点Tmcより10℃以上低いことが好ましい。また、該延伸温度がプロピレン−α−オレフィン共重合体(B)の融点Tmαより高い場合には、空隙率がそれほど増加せず、得られる多孔膜の厚さが低減する傾向がある。更に、該延伸温度がTmαより低い場合には、空隙率が増加するが、厚さがあまり低減しない傾向がある。 The porous film of the present invention is subjected to a second-stage stretching as necessary. The second-stage stretching temperature is preferably lower by 10 ° C. or more than the melting point Tmc of the crystalline polypropylene (A). Moreover, when this extending | stretching temperature is higher than melting | fusing point Tm (alpha) of a propylene-alpha-olefin copolymer (B), there exists a tendency for the porosity not to increase so much and to reduce the thickness of the porous film obtained. Furthermore, when the stretching temperature is lower than T , the porosity increases, but the thickness tends not to decrease much.

二段目の延伸倍率は、多孔膜の用途の要求特性により決定されるが、MFR比が1〜10の場合は、MFR比が10より大きく1,000以下の場合に比べて、延伸性が優れるため、通常1.5倍〜7倍の範囲である。また、MFR比が10より大きく1,000以下の場合は、延伸倍率は通常1.5〜4倍の範囲である。
延伸倍率が上記の範囲内であれば、延伸効果が十分となり、延伸切れにより生産性が低下する恐れがない。
The draw ratio of the second stage is determined by the required characteristics of the use of the porous membrane. When the MFR ratio is 1 to 10, the drawability is higher than when the MFR ratio is greater than 10 and 1,000 or less. Since it is excellent, it is usually in the range of 1.5 to 7 times. When the MFR ratio is greater than 10 and 1,000 or less, the draw ratio is usually in the range of 1.5 to 4 times.
When the draw ratio is within the above range, the drawing effect is sufficient, and there is no possibility that productivity is lowered due to the drawing being cut.

上記の延伸工程で細孔が形成され多孔質となった膜状成形物は、次いで熱処理されることが好ましい。この熱処理は、形成された細孔を保持するための熱固定を主なる目的とするものであり、通常、加熱ロール上、加熱ロール間または熱風循環炉を通すことによって行なわれる。 It is preferable that the membrane-shaped molded product that has been formed into pores by the above stretching step and then becomes porous is then heat-treated. This heat treatment is mainly intended for heat fixation for maintaining the formed pores, and is usually carried out on heating rolls, between heating rolls or through a hot air circulating furnace.

この熱処理(熱固定)は、延伸状態を保持したまま多孔質となった膜状成形物を結晶性ポリプロピレン(A)の融点Tmcより5〜60℃低い温度に加熱し、緩和率を0〜50%とすることにより実施される。加熱温度が上記の上限温度より高いと、形成された細孔が閉塞することもあり、また、温度が上記の下限温度より低いと熱固定が不十分となり易く、後に細孔が閉鎖したり、またポリオレフィン樹脂多孔膜として使用する際に温度変化により熱収縮を起こし易くなる。 In this heat treatment (heat setting), the film-like molded product that has become porous while maintaining the stretched state is heated to a temperature 5 to 60 ° C. lower than the melting point T mc of the crystalline polypropylene (A). It is carried out by setting it to 50%. When the heating temperature is higher than the above upper limit temperature, the formed pores may be clogged, and when the temperature is lower than the lower limit temperature, heat fixation tends to be insufficient, and the pores are closed later, In addition, when used as a polyolefin resin porous membrane, thermal shrinkage easily occurs due to temperature change.

本発明のポリオレフィン樹脂多孔膜の空隙率は、特に限定されるものではないが、20〜90%が好ましく、30〜80%がより好ましく、50〜80%がより好ましい。空隙率が上記の範囲内であれば、多孔膜としての機能が得られ、強度が低下する恐れがない。 The porosity of the polyolefin resin porous membrane of the present invention is not particularly limited, but is preferably 20 to 90%, more preferably 30 to 80%, and more preferably 50 to 80%. If the porosity is in the above range, a function as a porous film can be obtained, and there is no fear that the strength is lowered.

本発明のポリオレフィン樹脂多孔膜の厚さは、特に限定されるものではないが、生産性の観点から10〜200μm程度が好ましい。 The thickness of the polyolefin resin porous membrane of the present invention is not particularly limited, but is preferably about 10 to 200 μm from the viewpoint of productivity.

本発明のオレフィン樹脂多孔膜には、必要に応じ、界面活性剤処理、コロナ放電処理、低温プラズマ処理、スルホン化処理、紫外線処理、放射線グラフト処理等の親水化処理を施すことができ、また各種塗膜を形成することができる。 The olefin resin porous membrane of the present invention can be subjected to hydrophilic treatment such as surfactant treatment, corona discharge treatment, low temperature plasma treatment, sulfonation treatment, ultraviolet treatment, radiation graft treatment, etc., if necessary. A coating film can be formed.

上記の方法で得られるポリオレフィン樹脂多孔膜は、従来の多孔膜と同様に、空気清浄化や水処理用の濾過膜または分離膜、電池や電気分解用のセパレータ、建材や衣料等の透湿防水用途等、各種の分野に用いることができる。 The polyolefin resin porous membrane obtained by the above method is a moisture permeable waterproof material such as a filtration membrane or separation membrane for air purification or water treatment, a separator for batteries or electrolysis, a building material or clothing, as in the case of conventional porous membranes. It can be used in various fields such as applications.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。
また、実施例及び比較例で用いたポリオレフィン樹脂(C)は、連続重合法により1段目で結晶性ポリプロピレン(A)を重合し、2段目でプロピレン−α−オレフィン共重合体(B)(プロピレン−エチレン共重合体)を重合して得られた。
尚、実施例及び比較例で用いた測定方法及び評価方法は下記の通りである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these.
The polyolefin resin (C) used in Examples and Comparative Examples polymerizes crystalline polypropylene (A) at the first stage by a continuous polymerization method, and propylene-α-olefin copolymer (B) at the second stage. It was obtained by polymerizing (propylene-ethylene copolymer).
In addition, the measuring method and evaluation method used by the Example and the comparative example are as follows.

(1)空隙率:延伸後の多孔膜サンプル100×100mmから嵩比重を求め、また、延伸前の多孔化されていないサンプル100×100mmから(株)東洋精機製作所製の自動比重計DENSIMETER,D−Sにて真比重を求め、下記式より空隙率を求めた。
空隙率(%)=(1−嵩比重/真比重)×100
(1) Porosity: The bulk specific gravity is obtained from a stretched porous membrane sample 100 × 100 mm, and from the non-porous sample 100 × 100 mm before stretching, an automatic hydrometer DENSIMTER, D manufactured by Toyo Seiki Seisakusho Co., Ltd. The true specific gravity was determined at -S, and the porosity was determined from the following formula.
Porosity (%) = (1-bulk specific gravity / true specific gravity) × 100

(2)最大細孔径:縦(MD)及び横(TD)の断面の走査型電子顕微鏡(SEM)観察により、細孔の長軸方向の長さの最大値をもって最大細孔径とした。 (2) Maximum pore size: The maximum value of the length in the major axis direction of the pore was determined as the maximum pore size by observation with a scanning electron microscope (SEM) of the longitudinal (MD) and lateral (TD) cross sections.

(3)透湿度:JIS L 1099に準じて測定した。 (3) Moisture permeability: Measured according to JIS L 1099.

(4)メルトフローレート(MFR):JIS K 7210に準拠し、温度230℃、荷重21.18Nの条件にて測定した。 (4) Melt flow rate (MFR): Measured in accordance with JIS K 7210 under conditions of a temperature of 230 ° C. and a load of 21.18N.

(5)透気抵抗度(ガーレー):JIS P8117に準じて、B型ガーレーデンソメーター(テスター産業(株)製)により空気100mlが通過する時間を測定した。 (5) Air permeability resistance (Gurley): According to JIS P8117, the time required for 100 ml of air to pass was measured with a B-type Gurley densometer (manufactured by Tester Sangyo Co., Ltd.).

(6)延伸性:寸法が幅40mm、長さ100mmの、長さ方向を縦方向(MD)または横方向(TD)とする試験片を膜状成形物から調製した。試験片を、延伸温度23℃、変形速度200%/秒の条件で、長さ方向に0.5倍毎に一軸延伸を行い、延伸破断しない延伸倍率を可延伸倍率とし、延伸性を評価した。可延伸倍率が高いほど延伸性が優れ、多孔化し易い膜状成形物ほど、高空隙率化が容易である。 (6) Stretchability: A test piece having a dimension of 40 mm in width and 100 mm in length and having the length direction as the longitudinal direction (MD) or the transverse direction (TD) was prepared from a film-shaped molded article. The test piece was stretched uniaxially every 0.5 times in the length direction under the conditions of a stretching temperature of 23 ° C. and a deformation rate of 200% / second, and the stretch ratio not to stretch and break was defined as the stretchable ratio, and the stretchability was evaluated. . The higher the stretchable ratio, the better the stretchability, and the easier it is to form a film-like molded product, the higher the porosity is.

1)多孔膜形成用樹脂組成物(E)の作成
表1の実施例1に示すポリオレフィン樹脂(C)を用い、樹脂組成物(E)の重量基準で、α晶造核剤(D)としてナトリウム−2,2'−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェートを0.3重量%、フェノール系酸化防止剤としてテトラキス[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタンを0.1重量%、リン系酸化防止剤としてトリス(2,4−ジ−t−ブチルフェニル)フォスファイトを0.1重量%、中和剤としてステアリン酸カルシウムを0.1重量%配合し、ヘンシェルミキサー(商品名)で混合後、2軸押出機(口径50mm)を用いて溶融し混練してペレット化し、樹脂組成物(E)を得た。
1) Preparation of porous film-forming resin composition (E) Using polyolefin resin (C) shown in Example 1 of Table 1 as the α-crystal nucleating agent (D) based on the weight of resin composition (E) Sodium-2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate is 0.3% by weight, tetrakis [methylene-3- (3 ′, 5′-) as a phenolic antioxidant. Di-t-butyl-4′-hydroxyphenyl) propionate] 0.1% by weight of methane, 0.1% by weight of tris (2,4-di-t-butylphenyl) phosphite as a phosphorus antioxidant, 0.1% by weight of calcium stearate as a neutralizing agent is mixed, mixed with a Henschel mixer (trade name), melted and kneaded using a twin screw extruder (caliber 50 mm), pelletized, and resin composition (E) Got.

2)多孔膜の作成[製膜工程/未延伸膜状成形物の作成]
リップ幅120mmのTダイを装備した20mm押出機を用い、前記のペレット状の樹脂組成物を、押出温度280℃、吐出量4kg/hで溶融し、リップクリアランスを0.20mmに調整したTダイより膜状に押出し、80℃の冷却ロール上で冷却固化し、幅100mm、厚さ200μmの膜状成形物を作成した。尚、溶融状態にある膜状成形物を冷却固化する際に冷却ロールとの非接触面はエアーナイフにより空冷を実施した。
得られた膜状成形物の延伸性の評価結果を表1に示した。
2) Creation of porous film [Film forming step / Creation of unstretched film-like molded product]
Using a 20 mm extruder equipped with a T die with a lip width of 120 mm, the pellet-shaped resin composition was melted at an extrusion temperature of 280 ° C. and a discharge rate of 4 kg / h, and the lip clearance was adjusted to 0.20 mm. The film was further extruded into a film shape and cooled and solidified on a cooling roll at 80 ° C. to prepare a film-shaped molded product having a width of 100 mm and a thickness of 200 μm. When the film-like molded product in a molten state was cooled and solidified, the non-contact surface with the cooling roll was air-cooled with an air knife.
Table 1 shows the evaluation results of the stretchability of the obtained film-like molded product.

3)[延伸工程/多孔膜の作成]
前記膜状成形物を、縦方向(MD方向)を拘束しながら、延伸温度23℃、変形速度200%/秒、延伸倍率3倍の条件で横方向(TD方向)に延伸したのち、更に、延伸温度100℃、変形速度1,000%/秒、延伸倍率3倍の条件で縦方向(MD方向)に延伸しポリオレフィン樹脂多孔膜を得た。得られた多孔膜の特性を表1に示した。
3) [Stretching process / Creation of porous film]
The film-shaped molded product is stretched in the transverse direction (TD direction) under the conditions of a stretching temperature of 23 ° C., a deformation rate of 200% / second, and a stretching ratio of 3 times while constraining the machine direction (MD direction). The polyolefin resin porous membrane was obtained by stretching in the machine direction (MD direction) under the conditions of a stretching temperature of 100 ° C., a deformation rate of 1,000% / second, and a stretching ratio of 3 times. The properties of the obtained porous membrane are shown in Table 1.

表1の実施例2に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表1に示した。 A polyolefin resin porous membrane was obtained according to Example 1 except that the polyolefin resin (C) shown in Example 2 of Table 1 was used. Table 1 shows the stretchability of the film-like molded product and the characteristics of the porous film.

表1の実施例3に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表1に示した。 A polyolefin resin porous membrane was obtained in the same manner as in Example 1 except that the polyolefin resin (C) shown in Example 3 of Table 1 was used. Table 1 shows the stretchability of the film-like molded product and the characteristics of the porous film.

表1の実施例4に示すポリオレフィン樹脂(C)を用いた以外は、実施例1に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表1に示した。 A polyolefin resin porous membrane was obtained according to Example 1 except that the polyolefin resin (C) shown in Example 4 of Table 1 was used. Table 1 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例1
表1の比較例1に示すポリオレフィン樹脂(C)を用い、実施例1に準じてポリオレフィン樹脂多孔膜を得た。尚、比較例1では、横方向への延伸時に、延伸倍率3倍の条件で延伸切れが多発したため延伸倍率2.5倍にて延伸しポリオレフィン樹脂多孔膜とした。
膜状成形物の延伸性と多孔膜の特性を表1に示した。
( Comparative Example 1 )
A polyolefin resin porous membrane was obtained according to Example 1 using the polyolefin resin (C) shown in Comparative Example 1 of Table 1. In Comparative Example 1 , when the film was stretched in the transverse direction, there were many breaks in the stretching under the condition of a stretching ratio of 3 times, so that the polyolefin resin porous film was stretched at a stretching ratio of 2.5 times.
Table 1 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例2
ポリオレフィン樹脂(C)に代えて、表1の比較例2に示すポリオレフィン樹脂を用い
、実施例1に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表1に示した。
( Comparative Example 2 )
Instead of the polyolefin resin (C), the polyolefin resin shown in Comparative Example 2 in Table 1 was used to obtain a polyolefin resin porous membrane according to Example 1. Table 1 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例3
表1の比較例3に示すポリオレフィン樹脂(C)を用い、実施例1に準じてポリオレフ
ィン樹脂多孔膜を作成した。比較例3では、横方向への延伸時に、延伸倍率1.5倍未満
で延伸切れが発生して延伸性に劣り、横延伸倍率1.2倍程度の僅かな延伸では多孔膜と
しての特性は得られなかった。
( Comparative Example 3 )
A polyolefin resin porous membrane was prepared in accordance with Example 1 using the polyolefin resin (C) shown in Comparative Example 3 of Table 1. In Comparative Example 3 , when stretched in the transverse direction, stretching breakage occurred at a stretch ratio of less than 1.5 times, resulting in poor stretchability. It was not obtained.

比較例4
ポリオレフィン樹脂(C)に代えて、プロピレン単独重合体(MFRが2.5g/10
minの結晶性ポリプロピレン)50重量%とエチレン単独重合体(MFRが0.75g
/min(温度190℃、荷重21.18N)のHDPE)50重量%を用いた以外は、
実施例1に準じてポリオレフィン樹脂多孔膜を作成したが、横方向への延伸時に、延伸倍
率1.5倍未満で延伸切れが発生し延伸性に劣っていた横延伸倍率1.2倍程度の僅かな延伸では多孔膜としての特性は得られなかった
( Comparative Example 4 )
Instead of the polyolefin resin (C), a propylene homopolymer (MFR of 2.5 g / 10)
50% by weight of crystalline polypropylene of min) and ethylene homopolymer (MFR of 0.75 g)
/ Min (HDPE at a temperature of 190 ° C. and a load of 21.18 N)) of 50% by weight,
A polyolefin resin porous membrane was prepared according to Example 1. However, when the film was stretched in the transverse direction, the film was inferior in stretchability due to breakage of stretching at a stretch ratio of less than 1.5 times . The characteristics as a porous film could not be obtained by slight stretching at a transverse stretching ratio of about 1.2 times.

製膜工程において、ダイのリップクリアランスが0.6mmとなるように調整した以外
は実施例4と同様に実施した。膜状成形物の延伸性と多孔膜の特性を表2に示した。
The same process as in Example 4 was performed except that the lip clearance of the die was adjusted to 0.6 mm in the film forming process. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

製膜工程において、ダイのリップクリアランスが1.2mmとな
るように調整した以外は実施例4と同様に実施した。膜状成形物の延伸性と多孔膜の特性
を表2に示した。
The same process as in Example 4 was performed except that the lip clearance of the die was adjusted to 1.2 mm in the film forming process. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例5
製膜工程において、ダイのリップクリアランスが2.0mmとなるように調整した以外
は実施例4と同様に実施した。膜状成形物の延伸性と多孔膜の特性を表2に示した。
( Comparative Example 5 )
The same process as in Example 4 was performed except that the lip clearance of the die was adjusted to 2.0 mm in the film forming process. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

横延伸倍率を5倍、縦延伸倍率を6倍とした以外は、実施例4と
同様に実施した。膜状成形物の延伸性と多孔膜の特性を表2に示した。
The same operation as in Example 4 was carried out except that the transverse stretching ratio was 5 times and the longitudinal stretching ratio was 6 times. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

横延伸温度を80℃とした以外は、実施例4と同様に実施した。膜状成形物の延伸性と
多孔膜の特性を表2に示した。
The same operation as in Example 4 was performed except that the transverse stretching temperature was 80 ° C. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例6
横延伸温度を120℃とした以外は、実施例4と同様に実施した。膜状成形物の延伸性
と多孔膜の特性を表2に示した。
( Comparative Example 6 )
The same operation as in Example 4 was performed except that the transverse stretching temperature was 120 ° C. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

縦方向への延伸は実施せず、横方向への延伸だけを行った他は、
実施例4と同様に実施した。膜状成形物の延伸性と多孔膜の特性を表2に示した。
Except that we did not stretch in the machine direction, only in the transverse direction,
The same operation as in Example 4 was performed. Table 2 shows the stretchability of the film-like molded product and the characteristics of the porous film.

α晶造核剤(D)の添加量を0.05重量%とした以外は、実施
例4と同様に実施した。膜状成形物の延伸性と多孔膜の特性を表3に示した。
The same operation as in Example 4 was carried out except that the addition amount of the α crystal nucleating agent (D) was 0.05% by weight. Table 3 shows the stretchability of the film-shaped molded product and the characteristics of the porous film.

α晶造核剤(D)の添加量を2重量%とした以外は、実施例4と同様に実施した。膜状
成形物の延伸性と多孔膜の特性を表3に示した。
The same operation as in Example 4 was carried out except that the addition amount of the α crystal nucleating agent (D) was 2 wt%. Table 3 shows the stretchability of the film-shaped molded product and the characteristics of the porous film.

比較例7
α晶造核剤(D)を添加しなかった以外は、実施例4と同様に実施した。膜状成形物の
延伸性と多孔膜の特性を表3に示した。
( Comparative Example 7 )
The same operation as in Example 4 was carried out except that the α crystal nucleating agent (D) was not added. Table 3 shows the stretchability of the film-shaped molded product and the characteristics of the porous film.

比較例8
α晶造核剤(D)の添加量を0.001重量%とした以外は、実施例4と同様に実施し
た。膜状成形物の延伸性と多孔膜の特性を表3に示した。α晶造核剤(D)の添加による
効果は見られなかった。
( Comparative Example 8 )
The same operation as in Example 4 was carried out except that the addition amount of the α crystal nucleating agent (D) was 0.001% by weight. Table 3 shows the stretchability of the film-shaped molded product and the characteristics of the porous film. The effect of adding the α crystal nucleating agent (D) was not observed.

比較例9
α晶造核剤(D)の添加量を8重量%とした以外は、実施例4と同様に実施した。膜状
成形物の延伸性と多孔膜の特性を表3に示した。α晶造核剤(D)の添加による効果は頭
打ちで優位性が認められず、経済的に不利である。
( Comparative Example 9 )
The same operation as in Example 4 was carried out except that the addition amount of the α crystal nucleating agent (D) was 8 wt%. Table 3 shows the stretchability of the film-shaped molded product and the characteristics of the porous film. The effect due to the addition of the α crystal nucleating agent (D) reaches its peak and no advantage is recognized, which is economically disadvantageous.

表4の実施例12に示すポリオレフィン樹脂(C)を用いTダイ
のリップクリアランスが0.4mmとなるように調整し、横方向の延伸温度を80℃とし
た以外は実施例1と同様に実施した。尚、実施例12では、横方向への延伸時に、延伸倍
率3倍の条件で延伸切れが多発したため延伸倍率2.5倍にて延伸しポリオレフィン樹脂
多孔膜とした。膜状成形物の延伸性と多孔膜の特性を表4に示した。
The same procedure as in Example 1 was performed except that the polyolefin resin (C) shown in Example 12 of Table 4 was used and the lip clearance of the T die was adjusted to 0.4 mm and the transverse stretching temperature was set to 80 ° C. did. In Example 12 , when the film was stretched in the transverse direction, there were many breaks in the stretching under the condition of a stretching ratio of 3 times, so that the polyolefin resin porous film was stretched at a stretching ratio of 2.5 times. Table 4 shows the stretchability of the film-like molded product and the characteristics of the porous film.

表4の実施例13に示すポリオレフィン樹脂(C)を用いた他は、実施例12に準じて
ポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表4に示した。
A polyolefin resin porous membrane was obtained according to Example 12 except that the polyolefin resin (C) shown in Example 13 of Table 4 was used. Table 4 shows the stretchability of the film-like molded product and the characteristics of the porous film.

表4の実施例14に示すポリオレフィン樹脂(C)を用いた他は、実施例12に準じて
ポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表4に示した。
A polyolefin resin porous membrane was obtained according to Example 12 except that the polyolefin resin (C) shown in Example 14 of Table 4 was used. Table 4 shows the stretchability of the film-like molded product and the characteristics of the porous film.

表4の実施例15に示すポリオレフィン樹脂(C)を用いた他は、実施例12に準じて
ポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表4に示した。
A polyolefin resin porous membrane was obtained according to Example 12 except that the polyolefin resin (C) shown in Example 15 of Table 4 was used. Table 4 shows the stretchability of the film-like molded product and the characteristics of the porous film.

製膜工程において、Tダイのリップクリアランスを0.2mmとした他は、実施例13
に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に
示した。
Example 13 except that the lip clearance of the T die was 0.2 mm in the film forming process.
According to the above, a polyolefin resin porous membrane was obtained. Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

製膜工程において、Tダイのリップクリアランスを1.2mmとした他は、実施例13
に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に
示した。
Example 13 except that the lip clearance of the T die was set to 1.2 mm in the film forming process.
According to the above, a polyolefin resin porous membrane was obtained. Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

縦方向への延伸は実施せず、横方向への延伸だけを行った他は、実施例13に準じてポ
リオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に示した。
A polyolefin resin porous membrane was obtained in the same manner as in Example 13 except that the stretching in the longitudinal direction was not carried out and only the stretching in the transverse direction was carried out . Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

延伸工程において、一段目の延伸を延伸温度23℃にて縦方向に3倍延伸し、二段目の
延伸を延伸温度80℃にて横方向に3倍延伸した以外は、実施例13に準じてポリオレフ
ィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に示した。
According to Example 13 , except that in the stretching step, the first stage stretching was stretched 3 times in the longitudinal direction at a stretching temperature of 23 ° C., and the second stage stretching was stretched 3 times in the transverse direction at a stretching temperature of 80 ° C. Thus, a polyolefin resin porous membrane was obtained. Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例10
製膜工程において、Tダイのリップクリアランスを2.0mmとした他は、実施例13
に準じてポリオレフィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に
示した。
( Comparative Example 10 )
Example 13 except that the lip clearance of the T die was set to 2.0 mm in the film forming process.
According to the above, a polyolefin resin porous membrane was obtained. Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例11
製膜工程において、冷却ロールの温度を30℃とした他は実施例13に準じてポリオレ
フィン樹脂多孔膜を得た。膜状成形物の延伸性と多孔膜の特性を表5に示した。
( Comparative Example 11 )
A polyolefin resin porous membrane was obtained in the same manner as in Example 13 except that the temperature of the cooling roll was set to 30 ° C. in the film forming step. Table 5 shows the stretchability of the film-like molded product and the characteristics of the porous film.

α晶造核剤(D)の添加量を0.05重量%とした以外は、実施例13と同様に実施し
た。膜状成形物の延伸性と多孔膜の特性を表6に示した。
The same operation as in Example 13 was carried out except that the addition amount of the α crystal nucleating agent (D) was 0.05% by weight. Table 6 shows the stretchability of the film-like molded product and the characteristics of the porous film.

α晶造核剤(D)の添加量を2重量%とした以外は、実施例13と同様に実施した。膜
状成形物の延伸性と多孔膜の特性を表6に示した。
The same operation as in Example 13 was carried out except that the addition amount of the α crystal nucleating agent (D) was 2 wt%. Table 6 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例12
α晶造核剤(D)を添加しなかった以外は、実施例13と同様に実施した。膜状成形物
の延伸性と多孔膜の特性を表6に示した。
( Comparative Example 12 )
The same operation as in Example 13 was carried out except that the α crystal nucleating agent (D) was not added. Table 6 shows the stretchability of the film-like molded product and the characteristics of the porous film.

比較例13
α晶造核剤(D)の添加量を0.001重量%とした以外は、実施例13と同様に実施
した。膜状成形物の特性を表6に示した。α晶造核剤(D)の添加による効果は見られな
かった。
( Comparative Example 13 )
The same operation as in Example 13 was carried out except that the addition amount of the α crystal nucleating agent (D) was 0.001% by weight. The properties of the film-like molded product are shown in Table 6. The effect of adding the α crystal nucleating agent (D) was not observed.

比較例14
α晶造核剤(D)の添加量を8重量%とした以外は、実施例13と同様に実施した。膜
状成形物の特性を表6に示した。α晶造核剤(D)の添加による効果は頭打ちで優位性が
認められず、経済的に不利である。
( Comparative Example 14 )
The same operation as in Example 13 was carried out except that the addition amount of the α crystal nucleating agent (D) was 8 wt%. The properties of the film-like molded product are shown in Table 6. The effect due to the addition of the α crystal nucleating agent (D) reaches its peak and no advantage is recognized, which is economically disadvantageous.

(表1)

Figure 0004466039
(Table 1)
Figure 0004466039

(表2)

Figure 0004466039
(Table 2)
Figure 0004466039

(表3)

Figure 0004466039
(Table 3)
Figure 0004466039

(表4)

Figure 0004466039
(Table 4)
Figure 0004466039

(表5)

Figure 0004466039
(Table 5)
Figure 0004466039

(表6)

Figure 0004466039
(Table 6)
Figure 0004466039

本発明のポリオレフィン樹脂多孔膜は、電池セパレータや分離膜、通気防水材等の建築
資材分野、使い捨ておむつ用通気性シート等の衛材分野に好適に使用される。
The polyolefin resin porous membrane of the present invention is suitably used in the field of building materials such as battery separators, separation membranes and breathable waterproof materials, and the field of hygiene materials such as breathable sheets for disposable diapers.

Claims (14)

結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)に対し、α晶造核剤(D)を樹脂組成物(E)の重量基準で0.01〜5重量%配合した樹脂組成物(E)を溶融し混練して膜状溶融物とし、該膜状溶融物をリップクリアランスを0.2〜1.2mmに調整したTダイより膜状に押出し膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜90重量%とプロピレン−α−オレフィン共重合体(B)10〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートMFRPPとプロピレン−α−オレフィン共重合体(B)のメルトフローレートMFRRCのメルトフローレート比MFRPP/MFRRCが0.1〜10であり、膜状溶融物を膜状成形物に成形する際のドラフト比が1〜10の範囲であり、少なくとも一方向に延伸する時の一段目の延伸温度が10〜100℃の温度範囲であり、共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂多孔膜。 An α crystal nucleating agent (D) is added to a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). The resin composition (E) blended in an amount of 0.01 to 5% by weight based on the weight of the composition (E) is melted and kneaded to form a film-like melt, and the film-like melt has a lip clearance of 0.2 to 1. A porous film formed by extruding into a film shape from a T die adjusted to 2 mm and then forming the film shape in at least one direction, and the polyolefin resin (C) is It consists crystalline polypropylene (a) 30 to 90 wt% of propylene-.alpha.-olefin copolymer (B) and 10 to 70 wt%, propylene with a melt flow rate MFR PP of the crystalline polypropylene (a)-.alpha.- The melt flow rate MFR RC melt flow rate ratio MFR PP / MFR RC of olefin copolymer (B) is 0.1 to 10, the draft ratio at the time of forming the film-like melt film-shaped molded product is 1 A polyolefin resin porous membrane having a pore that communicates with the copolymer (B) region, having a temperature range of 10 to 100 ° C in a first-stage stretching temperature when stretching in at least one direction. メルトフローレート比MFRPP/MFRRCが0.2〜5であることを特徴とする請求項1記載のポリオレフィン樹脂多孔膜。 The polyolefin resin porous membrane according to claim 1, wherein the melt flow rate ratio MFR PP / MFR RC is 0.2 to 5. 膜状溶融物を膜状成形物に成形する際のドラフト比が1〜3の範囲であることを特徴とする請求項1または2記載のポリオレフィン樹脂多孔膜。 The polyolefin resin porous membrane according to claim 1 or 2, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in a range of 1 to 3 . ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)40〜70重量%とポリプロピレン−α−オレフィン共重合体(B)30〜60重量%とからなることを特徴とする請求項1〜3のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin (C) is composed of 40 to 70% by weight of a crystalline polypropylene (A) and 30 to 60% by weight of a polypropylene-α-olefin copolymer (B). 2. A polyolefin resin porous membrane according to item 1. プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である請求項1〜4のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to any one of claims 1 to 4, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight. プロピレン−α−オレフィン共重合体(B)のプロピレン含量が40〜70重量%である請求項1〜5のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to any one of claims 1 to 5, wherein the propylene content of the propylene-α-olefin copolymer (B) is 40 to 70% by weight. ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする請求項1〜6のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. The polyolefin resin porous membrane according to any one of claims 1 to 6, wherein the porous membrane is a polyolefin resin porous membrane. 多孔膜の透気抵抗度(ガーレー)が1〜1,000秒/100ml、透湿度が2,000〜20,000g/mThe air permeability resistance (Gurley) of the porous membrane is 1 to 1,000 seconds / 100 ml, and the moisture permeability is 2,000 to 20,000 g / m. 2 ・24hである請求項1〜7のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to any one of claims 1 to 7, which is 24h. 結晶性ポリプロピレン(A)と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)に対し、α晶造核剤(D)を樹脂組成物(E)の重量基準で0.01〜5重量%配合した樹脂組成物(E)を溶融し混練して膜状溶融物とし、該膜状溶融物を膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)が結晶性ポリプロピレン(A)30〜70重量%とプロピレン−α−オレフィン共重合体(B)30〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートMFRPPとプロピレン−α−オレフィン共重合体(B)のメルトフローレートMFRRCのメルトフローレート比MFRPP/MFRRCが10より大きく1,000以下であり、膜状溶融物をリップクリアランスを0.2〜1.2mmに調整したTダイより膜状に押出して膜状成形物に成形する際のドラフト比が1〜10の範囲であり、少なくとも一方向に延伸する時の一段目の延伸温度が10〜100℃の温度範囲であり、共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂多孔膜。 An α crystal nucleating agent (D) is added to a polyolefin resin (C) composed of crystalline polypropylene (A) and a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). After melting and kneading the resin composition (E) blended in an amount of 0.01 to 5% by weight based on the weight of the composition (E) to form a film-like melt, and forming the film-like melt into a film-like molded product , A porous film formed by stretching the film-shaped product in at least one direction, wherein the polyolefin resin (C) is 30 to 70% by weight of crystalline polypropylene (A) and a propylene-α-olefin copolymer. (B) Melt flow rate of 30 to 70% by weight of melt flow rate MFR PP of crystalline polypropylene (A) and melt flow rate MFR RC of propylene-α-olefin copolymer (B) The film ratio MFR PP / MFR RC is greater than 10 and 1,000 or less, and the film-like melt is extruded into a film shape from a T-die having a lip clearance adjusted to 0.2 to 1.2 mm to form a film-like molded article. The draft ratio at the time of molding is in the range of 1 to 10, the stretching temperature at the first stage when stretching in at least one direction is in the temperature range of 10 to 100 ° C., and the fine ratio communicated with the copolymer (B) region. Polyolefin resin porous membrane having pores. 膜状溶融物を膜状成形物に成形する際のドラフト比が1〜5の範囲であることを特徴とする請求項9記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to claim 9, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 5. プロピレン−α−オレフィン共重合体(B)のプロピレン含量が30〜80重量%である請求項9または10記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to claim 9 or 10, wherein the propylene content of the propylene-α-olefin copolymer (B) is 30 to 80% by weight. プロピレン−α−オレフィン共重合体(B)のプロピレン含量が40〜70重量%である請求項9〜11のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to any one of claims 9 to 11, wherein the propylene content of the propylene-α-olefin copolymer (B) is 40 to 70 wt%. ポリオレフィン樹脂(C)が、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたことを特徴とする請求項9〜12のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin (C) is obtained by a multistage polymerization method including the steps of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. The polyolefin resin porous membrane according to any one of claims 9 to 12, wherein the porous membrane is a polyolefin resin porous membrane. 多孔膜の透気抵抗度(ガーレー)が10〜10,000秒/100ml、透湿度が1,000〜15,000g/mThe air permeability resistance (Gurley) of the porous membrane is 10 to 10,000 seconds / 100 ml, and the moisture permeability is 1,000 to 15,000 g / m. 2 ・24hである請求項9〜13のいずれか1項記載のポリオレフィン樹脂多孔膜。The polyolefin resin porous membrane according to any one of claims 9 to 13, which is 24h.
JP2003365717A 2003-10-27 2003-10-27 Polyolefin resin porous membrane Expired - Fee Related JP4466039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365717A JP4466039B2 (en) 2003-10-27 2003-10-27 Polyolefin resin porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365717A JP4466039B2 (en) 2003-10-27 2003-10-27 Polyolefin resin porous membrane

Publications (2)

Publication Number Publication Date
JP2005126625A JP2005126625A (en) 2005-05-19
JP4466039B2 true JP4466039B2 (en) 2010-05-26

Family

ID=34644299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365717A Expired - Fee Related JP4466039B2 (en) 2003-10-27 2003-10-27 Polyolefin resin porous membrane

Country Status (1)

Country Link
JP (1) JP4466039B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742214B2 (en) * 2003-11-11 2011-08-10 Jnc株式会社 Polyolefin resin porous membrane
JP5087906B2 (en) * 2006-11-14 2012-12-05 東レ株式会社 Microporous polypropylene film and method for producing the same
KR101236014B1 (en) 2008-08-01 2013-02-21 미쓰이 가가쿠 가부시키가이샤 Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery
US20160226045A1 (en) * 2012-11-14 2016-08-04 Samsung Sdi Co., Ltd. Method for producing separator, and said separator and battery using the same
TWI787398B (en) * 2017-11-21 2022-12-21 日商旭化成股份有限公司 Separator for electric storage device
CN113611982A (en) * 2021-08-02 2021-11-05 东莞市卓高电子科技有限公司 High-cohesiveness ceramic coating slurry and preparation method thereof
CN114497896B (en) * 2022-04-14 2022-06-28 宁波长阳科技股份有限公司 A kind of high-strength three-layer co-extruded lithium ion battery separator and preparation method thereof

Also Published As

Publication number Publication date
JP2005126625A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US7141168B2 (en) Porous polyolefin membrane
KR101249180B1 (en) Porous polypropylene film
JP5861832B2 (en) Microporous membrane
EP3263636A1 (en) Method for manufacturing microporous film and microporous film
JP2005145998A (en) Thermoplastic resin porous membrane
JP3965954B2 (en) Porous film
JP4797813B2 (en) Polyolefin resin porous membrane
JP5262556B2 (en) Polyolefin resin porous membrane and battery separator using the same
JP4894794B2 (en) Polyolefin resin porous membrane
JP4466039B2 (en) Polyolefin resin porous membrane
JP5064409B2 (en) Semi-crystalline polymer microporous membrane and method for producing the same
JP7214978B2 (en) Stretched porous film
JP2003327731A (en) Polyolefin resin porous membrane
JP2006114746A (en) Polyolefin resin electric double layer capacitor separator
JP4742214B2 (en) Polyolefin resin porous membrane
JP2005145999A (en) Polyolefin resin porous membrane
JP4186798B2 (en) Multilayer porous membrane made of polyolefin resin
JP2005129435A (en) Polyolefin resin battery separator
JP4742213B2 (en) Polyolefin resin degreasing film
JP6787025B2 (en) Perforated film
JP4305133B2 (en) Base sheet for adhesive sheet
JP6922161B2 (en) Method for manufacturing stretched porous film
JP6787165B2 (en) Laminated porous film and its manufacturing method
JP2005139228A (en) Polyolefin resin porous membrane
JP2018001450A (en) Laminated porous film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees