[go: up one dir, main page]

JP4461407B2 - Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting - Google Patents

Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP4461407B2
JP4461407B2 JP2000145836A JP2000145836A JP4461407B2 JP 4461407 B2 JP4461407 B2 JP 4461407B2 JP 2000145836 A JP2000145836 A JP 2000145836A JP 2000145836 A JP2000145836 A JP 2000145836A JP 4461407 B2 JP4461407 B2 JP 4461407B2
Authority
JP
Japan
Prior art keywords
layer
surface portion
titanium
cutting
layer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000145836A
Other languages
Japanese (ja)
Other versions
JP2001322008A (en
Inventor
善朗 平川
哲彦 本間
斉 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000145836A priority Critical patent/JP4461407B2/en
Publication of JP2001322008A publication Critical patent/JP2001322008A/en
Application granted granted Critical
Publication of JP4461407B2 publication Critical patent/JP4461407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層を構成する縦長成長結晶組織の炭窒化チタン層(以下、l−TiCNで示す)が一段とすぐれた耐チッピング性を有し、特に鋼や鋳鉄などの断続切削を高速で行った場合にも、切刃にチッピング(微小欠け)などの発生なく、すぐれた切削性能を長期に亘って発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン基超硬合金基体(以下、超硬基体という)の表面に、
(a) いずれも0.1〜5μmの平均層厚および粒状結晶組織を有する、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、酸化チタン(以下、Ti2 3 で示す)層、炭酸化チタン(以下、TiCOで示す)層、窒酸化チタン(以下、TiNOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1種または2種以上からなるTi化合物層と、
(b) 2〜15μmの平均層厚のl−TiCN層と、
(c) 0.5〜8μmの平均層厚および粒状結晶組織を有する酸化アルミニウム(以下、Al23 で示す)層と、
で構成された硬質被覆層を3〜25μmの全体平均層厚で化学蒸着してなる被覆超硬工具が知られており、またこの被覆超硬工具が鋼や鋳鉄などの連続切削や断続切削に用いられることも知られている。
また、一般に上記の被覆超硬工具の硬質被覆層を構成するAl23 層として、α型結晶構造をもつものやκ型結晶構造をもつものなどが広く実用に供されることも良く知られており、さらに上記l−TiCN層は、例えば特開平6−8010号公報や特開平7−328808号公報などにより公知であり、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成されるものである。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これの硬質被覆層を構成するl−TiCN層が相対的に良好な靭性を具備することから、これによって硬質被覆層も良好な靭性をもつようになり、通常の条件での連続切削や断続切削では切刃にチッピングなどの発生なく、すぐれた切削性能を発揮するものであるが、切削条件が一段と苛酷になる、断続切削を高速で行った場合には、未だ十分な靭性を具備するものでないために、切刃にチッピングが発生するのが避けられず、比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具の硬質被覆層を構成するl−TiCN層に着目し、これの靭性向上を図るべく研究を行った結果、
l−TiCN層の蒸着形成に際して、上面部形成にTiCl ,N ,CH CN,およびH の構成成分からなる反応ガス、下面部形成にTiCl ,N ,CH ,CH CN,およびH の構成成分からなる反応ガスを用い、上面部形成では反応ガス中のN およびCH CN、下面部形成では反応ガス中のN ,CH およびCH CNの含有割合を経時的に無段階あるいは段階的に変化させることにより、l−TiCN層に、これの下面部から上面部に向かって層厚にそってC成分が低く、N成分が高くなる濃度勾配を付与し、この濃度勾配を、上記上面部および下面部を組成式:TiC1-xx で現した場合、原子比で、
上記上面部は、x:0.45〜0.60、
上記下面部は、x:0.05〜0.30
を満足(この場合CおよびNの下面部から上面部への濃度変化は無段階変化あるいは段階的変化となる)するようにすると、この結果のl−TiCN層(以下、濃度勾配l−TiCN層と云う)は、下面部から上面部までCおよびNに濃度変化のない一様な従来l−TiCN層に比して、すぐれた靭性を具備するようになり、したがって前記濃度勾配l−TiCN層が硬質被覆層を構成する被覆超硬工具は、前記濃度勾配l−TiCN層によって前記硬質被覆層自体の靭性がさらに向上するようになることから、断続切削を高速で行うという、苛酷な切削条件でも切刃にチッピングの発生なく、すぐれた切削性能を発揮するようになるという研究結果を得たのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a) いずれも0.1〜5μmの平均層厚および粒状結晶組織を有する、TiC層、TiN層、TiCN層、Ti2 3 層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層と、
(b) 2〜15μmの平均層厚のl−TiCN層と、
(c) 0.5〜8μmの平均層厚および粒状結晶組織を有するAl23 層と、
で構成された硬質被覆層を3〜25μmの全体平均層厚で化学蒸着してなる被覆超硬工具において、
上記硬質被覆層を構成するl−TiCN層を、
下面部形成にはTiCl ,N ,CH ,CH CN,およびH の構成成分からなる反応ガス、上面部形成にはTiCl ,N ,CH CN,およびH の構成成分からなる反応ガスを用い、かつ、前記下面部形成には前記反応ガス中のN ,CH ,およびCH CNの含有割合を、また前記上面部形成には前記反応ガス中のN およびCH CNの含有割合を経時的に無段階あるいは段階的に変化させて、下面部から上面部に向かって層厚にそってC成分が低く、N成分が高くなり、かつ、前記CおよびNの濃度が無段階変化または段階変化する濃度勾配を具備せしめると共に、前記これの上面部および下面部を組成式:TiC1-xx で現した場合、原子比で、
上記上面部は、x:0.45〜0.60、
上記下面部は、x:0.05〜0.30
を満足するl−TiCN層で構成してなる、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0006】
なお、この発明の被覆超硬工具の硬質被覆層を構成する濃度勾配l−TiCN層の組成式:TiC1-xx において、上記上面部のx値を0.45〜0.60、望ましくは0.50〜0.55、下面部のx値を0.05〜0.30としたのは、上面部のx値が0.45未満になったり、下面部のx値が0.30を越えたりすると、層厚方向のCおよびNの濃度勾配が小さくなって、硬質被覆層が高速断続切削で所望の耐チッピング性を発揮するのに十分な靭性向上効果が得られず、一方上面部のx値が0.60を越えても、高速断続切削での耐チッピング性により一段の向上効果が現われず、また下面部のx値が0.05未満になると、均質な縦長成長結晶組織の安定的形成が損なわれるようになるという理由に基くものである。
【0007】
同じく硬質被覆層を構成するTi化合物層のそれぞれには、構成層相互間の層間密着性を向上させる作用があり、したがってその平均層厚が0.1μm未満では、所望のすぐれた層間密着性を確保することができず、一方その平均層厚が5μmを越えると硬質被覆層の摩耗進行が促進されるようになることから、その平均層厚を0.1〜5μmと定めた。
同じくAl23 層には、硬質被覆層の耐摩耗性を向上させる作用があるが、その平均層厚が0.5μm未満では、所望のすぐれた耐摩耗性を確保することができず、一方その平均層厚が8μmを越えると切刃にチッピングが発生し易くなることから、その平均層厚を0.5〜8μmと定めた。
さらに同じく濃度勾配l−TiCN層には、上記の通り高速断続切削で硬質被覆層の耐チッピング性を向上させる作用があるが、その平均層厚が2μm未満では、耐チッピング性に所望の向上効果が得られず、一方その平均層厚が15μmを越えると耐摩耗性が急激に低下するようになることから、その平均層厚を2〜15μmと定めた。
また、硬質被覆層の全体平均層厚を3〜25μmとしたのは、その平均層厚が3μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が25μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由からである。
【0008】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、平均粒径:1.5μm有する細粒WC粉末、3.0μmの中粒WC粉末同1.2μmの(Ti,W)CN(重量比で、以下同じ、TiC/TiN/WC=24/20/56)粉末、同1.3μmの(Ta,Nb)C(TaC/NbC=90/10)粉末、同1μmのCr3 2 粉末、同1.2μmのVC粉末、および同1.2μmのCo粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、この混合粉末をISO規格CNMG120408に則した形状の圧粉体にプレス成形し、この圧粉体を10-3torrの真空雰囲気中、1400〜1460℃の範囲内の所定の温度に1時間保持の条件で真空焼結することにより超硬基体A〜Fをそれぞれ製造した。
【0009】
ついで、これらの超硬基体A〜Fの表面に、ホーニング加工を施した状態で、通常の化学蒸着装置を用い、表2、3(表2に示される硬質被覆層の構成層は、いずれも層の下面部から上面部まで構成成分に濃度変化のない一様な組成をもつものであり、またl−TiCN層以外はいずれも粒状結晶組織を有するものである)に示される条件にて、表4、5に示される組成および目標層厚(切刃の逃げ面)の硬質被覆層を形成することにより本発明被覆超硬工具1〜および従来被覆超硬工具1〜をそれぞれ製造した。
なお、表4における、例えば本発明被覆超硬工具3の「l−TiCN−カ[2段階]l−TiCN−3(4.0)」は、表3の「下面部・l−TiCN−カ(目標x値:0.30)」の反応ガス組成から「上面部・l−TiCN−3(目標x値:0.55)」の反応ガス組成まで反応ガス中のCH3 CN、またはCH3 CNとCH4 の含有割合を経時的に2段階変化させて4.0μmの目標層厚で濃度勾配l−TiCN層を形成した場合を示すものであり、同じく本発明被覆超硬工具の「l−TiCN−オ[連続]l−TiCN−4(6.6)」は、「下面部・l−TiCN−オ(目標x値:0.25)」の反応ガス組成から「上面部・l−TiCN−4(目標x値:0.60)」の反応ガス組成まで反応ガス中のCH3 CN、またはCH3 CNとCH4 の含有割合を経時的に無段階で変化させて6.6μmの目標層厚で濃度勾配l−TiCN層を形成した場合を示すものである。
この結果得られた本発明被覆超硬工具1〜の硬質被覆層を構成す濃度勾配l−TiCN層の上面部および下面部のx値について、それぞれの表面から0.2μm内側をオージェ分光分析器を用いて測定したところ、表3に示される目標x値と実質的に同じx値を示した。また、硬質被覆層を構成する構成層もそれぞれ目標層厚と実質的に同じ平均層厚を示した。
【0010】
つぎに、上記本発明被覆超硬工具1〜および従来被覆超硬工具1〜について、
被削材:SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:10分、
の条件での合金鋼の乾式高速断続切削試験、並びに、
被削材:FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.32mm/rev、
切削時間:10分、
の条件での球状黒鉛鋳鉄の乾式高速断続切削試験行い、いずれの切削試験でも切刃の最大逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0011】
【表1】

Figure 0004461407
【0012】
【表2】
Figure 0004461407
【0013】
【表3】
Figure 0004461407
【0014】
【表4】
Figure 0004461407
【0015】
【表5】
Figure 0004461407
【0016】
【表6】
Figure 0004461407
【0017】
【発明の効果】
表4〜6に示される結果から、硬質被覆層中に濃度勾配l−TiCN層が存在する本発明被覆超硬工具1〜は、いずれも前記濃度勾配l−TiCN層によって硬質被覆層がすぐれた靭性を具備するようになることから、鋼や鋳鉄の断続切削を高速で行なっても切刃にチッピングの発生なく、すぐれた切削性能を発揮するのに対して、硬質被覆層を構成するl−TiCN層のCおよびNに濃度勾配のない従来被覆超硬工具1〜においては、上記の高速断続切削では硬質被覆層の靭性不足が原因で切刃にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、これを構成する硬質被覆層がすぐれた耐チッピング性を有するので、例えば鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に断続切削を高速で行なった場合にも、長期に亘ってすぐれた切削性能を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。[0001]
BACKGROUND OF THE INVENTION
In the present invention, a titanium carbonitride layer (hereinafter referred to as l-TiCN) having a vertically grown crystal structure constituting a hard coating layer has excellent chipping resistance, and in particular, intermittent cutting such as steel and cast iron can be performed at high speed. Even when performed, it relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent cutting performance over a long period of time without occurrence of chipping (small chipping) on the cutting edge. is there.
[0002]
[Prior art]
Conventionally, in general, on the surface of a tungsten carbide base cemented carbide substrate (hereinafter referred to as a cemented carbide substrate),
(A) Titanium carbide (hereinafter referred to as TiC) layer, titanium nitride (hereinafter also referred to as TiN) layer, titanium carbonitride (hereinafter referred to as TiN) layer each having an average layer thickness and granular crystal structure of 0.1 to 5 μm. ) layer shown by TiCN, titanium oxide (hereinafter, Ti 2 O indicated by 3) layer, carbonation titanium (hereinafter, indicated by TiCO) layer, oxynitride of titanium (hereinafter, indicated by TiNO) layer, and titanium oxycarbonitride ( Hereinafter, a Ti compound layer composed of one or more of the layers (shown as TiCNO),
(B) an l-TiCN layer having an average layer thickness of 2 to 15 μm;
(C) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 0.5 to 8 μm and a granular crystal structure;
Coated carbide tools made by chemical vapor deposition of a hard coating layer composed of 3 to 25 μm in total average layer thickness are known, and this coated carbide tool is used for continuous cutting and intermittent cutting of steel and cast iron. It is also known to be used.
It is also well known that generally Al 2 O 3 layers constituting the hard coating layer of the above-mentioned coated carbide tool are widely used in practical use, such as those having an α-type crystal structure and those having a κ-type crystal structure. Further, the l-TiCN layer is known, for example, from JP-A-6-8010 and JP-A-7-328808, and an organic carbonitride is used as a reaction gas in a normal chemical vapor deposition apparatus. It is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas.
[0003]
[Problems to be solved by the invention]
On the other hand, in recent years, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be performed at high speed. Since the 1-TiCN layer constituting the coating layer has relatively good toughness, the hard coating layer also has good toughness, and in continuous cutting and intermittent cutting under normal conditions, the cutting edge However, when cutting intermittently at high speed, the cutting conditions become even more severe, and it does not have sufficient toughness. It is inevitable that chipping occurs on the cutting edge, and the service life is reached in a relatively short time.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors focused on the l-TiCN layer constituting the hard coating layer of the above conventional coated carbide tool from the above viewpoint, and as a result of conducting research to improve the toughness of this,
At the time of vapor deposition formation of the 1-TiCN layer, a reaction gas composed of components of TiCl 4 , N 2 , CH 3 CN and H 2 is formed on the upper surface portion, and TiCl 4 , N 2 , CH 4 , CH 3 CN is formed on the lower surface portion. , And H 2 , and N 2 and CH 3 CN in the reaction gas are formed in the upper surface portion, and N 2 , CH 4 and CH 3 CN in the reaction gas are formed in the lower surface portion. By changing stepwise over time or stepwise, the l-TiCN layer is given a concentration gradient in which the C component decreases and the N component increases along the layer thickness from the lower surface to the upper surface. In this concentration gradient, when the upper surface portion and the lower surface portion are expressed by a composition formula: TiC 1-x N x ,
The upper surface portion has x: 0.45 to 0.60,
The lower surface portion has x: 0.05 to 0.30 ,
(In this case, the change in the concentration of C and N from the lower surface portion to the upper surface portion is a stepless change or a step change), the resulting l-TiCN layer (hereinafter referred to as a concentration gradient l-TiCN layer). Is superior in toughness as compared with a uniform conventional l-TiCN layer having no concentration change in C and N from the lower surface portion to the upper surface portion, and thus the concentration gradient l-TiCN layer. The coated carbide tool that constitutes the hard coating layer has the toughness of the interrupted cutting performed at high speed because the toughness of the hard coating layer itself is further improved by the concentration gradient l-TiCN layer. However, we have obtained research results that the cutting edge will show excellent cutting performance without chipping.
[0005]
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) One of a TiC layer, a TiN layer, a TiCN layer, a Ti 2 O 3 layer, a TiCO layer, a TiNO layer, and a TiCNO layer, all having an average layer thickness of 0.1 to 5 μm and a granular crystal structure Or a Ti compound layer comprising two or more types,
(B) an l-TiCN layer having an average layer thickness of 2 to 15 μm;
(C) an Al 2 O 3 layer having an average layer thickness of 0.5 to 8 μm and a granular crystal structure;
In in coated cemented carbide formed by chemical vapor deposition of a hard coating layer composed of a total average layer thickness of 3~25Myuemu,
L-TiCN layer constituting the hard coating layer,
TiCl on the lower surface portion forming 4, N 2, CH 4, CH 3 CN, and the reaction gas consisting of components of H 2, TiCl 4 on the upper surface portion forming, N 2, CH 3 CN, and components of the H 2 using a reaction gas composed of, and the the lower surface portion forming the reaction of N 2 gas, CH 4, and CH 3 the content of CN, also above the upper surface portion forming N 2 and in the reaction gas By changing the content ratio of CH 3 CN steplessly or stepwise over time, the C component decreases along the layer thickness from the lower surface portion toward the upper surface portion, the N component increases, and the C and N When the upper surface portion and the lower surface portion thereof are expressed by the composition formula: TiC 1-x N x , the atomic ratio is expressed in a stepless or stepwise concentration gradient.
The upper surface portion has x: 0.45 to 0.60,
The lower surface portion has x: 0.05 to 0.30 ,
It is characterized by a coated cemented carbide tool that is composed of an l-TiCN layer that satisfies the above requirements and exhibits excellent chipping resistance in a high-speed intermittent cutting process.
[0006]
In the composition formula of the concentration gradient l-TiCN layer constituting the hard coating layer of the coated carbide tool of the present invention: TiC 1-x N x , the x value of the upper surface portion is preferably 0.45 to 0.60, preferably Is set to 0.50 to 0.55, and the x value of the lower surface portion is set to 0.05 to 0.30 because the x value of the upper surface portion is less than 0.45 or the x value of the lower surface portion is 0.30. Over the thickness range, the concentration gradient of C and N in the layer thickness direction becomes small, and the hard coating layer does not have a sufficient toughness improving effect to exhibit the desired chipping resistance in high-speed intermittent cutting. Even if the x value of the portion exceeds 0.60, a further improvement effect does not appear due to chipping resistance in high-speed intermittent cutting, and when the x value of the lower surface portion is less than 0.05, a homogeneous vertically grown crystal structure This is based on the reason that the stable formation of is impaired.
[0007]
Similarly, each of the Ti compound layers constituting the hard coating layer has an effect of improving the interlayer adhesion between the constituent layers. Therefore, when the average layer thickness is less than 0.1 μm, the desired excellent interlayer adhesion is achieved. On the other hand, if the average layer thickness exceeds 5 μm, the progress of wear of the hard coating layer is promoted, so the average layer thickness was set to 0.1 to 5 μm.
Similarly, the Al 2 O 3 layer has an effect of improving the wear resistance of the hard coating layer, but if the average layer thickness is less than 0.5 μm, the desired excellent wear resistance cannot be ensured, On the other hand, if the average layer thickness exceeds 8 μm, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 0.5 to 8 μm.
Furthermore, the concentration gradient l-TiCN layer has the effect of improving the chipping resistance of the hard coating layer by high-speed intermittent cutting as described above, but if the average layer thickness is less than 2 μm, the desired improvement effect on the chipping resistance is achieved. On the other hand, when the average layer thickness exceeds 15 μm, the wear resistance rapidly decreases, so the average layer thickness was set to 2 to 15 μm.
Also, the reason that the overall average layer thickness of the hard coating layer is 3 to 25 μm is that if the average layer thickness is less than 3 μm, the desired wear resistance cannot be ensured, while the average layer thickness exceeds 25 μm. This is because chipping and chipping are likely to occur in the cutting edge.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, fine WC powder having an average particle diameter of 1.5 μm, medium WC powder of 3.0 μm and 1.2 μm of (Ti, W) CN (in weight ratio, the same shall apply hereinafter, TiC / TiN / WC = 24/20/56) powder, 1.3 μm (Ta, Nb) C (TaC / NbC = 90/10) powder, 1 μm Cr 3 C 2 powder, 1.2 μm VC powder, and 1 Prepare 2 .mu.m Co powder, blend these raw material powders into the composition shown in Table 1, wet mix with a ball mill for 72 hours, and dry. Then, this mixed powder is compacted into a shape conforming to ISO standard CNMG120408. body by press molding, carbide substrate A~F by this green compact in a vacuum atmosphere of 10 -3 torr, vacuum sintering under conditions of 1 hour hold time at a predetermined temperature in the range of from 1,400 to 1,460 ° C. Were manufactured respectively.
[0009]
Then, with the surface of these carbide substrates A to F being subjected to honing processing, a normal chemical vapor deposition apparatus was used, and Tables 2 and 3 (all constituent layers of the hard coating layer shown in Table 2) Under the conditions shown in (1) the composition has a uniform composition with no change in concentration from the lower surface to the upper surface of the layer, and all except the 1-TiCN layer have a granular crystal structure) The coated carbide tools 1-8 of the present invention and the conventional coated carbide tools 1-8 were produced by forming a hard coating layer having the composition and target layer thickness (flank of the cutting edge) shown in Tables 4 and 5, respectively. .
In Table 4, for example, “l-TiCN-car [2 stages] l-TiCN-3 (4.0)” of the coated carbide tool 3 of the present invention is “lower surface part / l-TiCN-carriage” in Table 3. (target x value: 0.30) "top surface · l-TiCN-3 (a target value x 0.55) from the reaction gas composition" of CH 3 CN in the reaction gas to the reaction gas composition "or CH 3, the content of the CN and CH 4 and over time by a two-step change is indicative of the case of forming a concentration gradient l-TiCN layer at the target layer thickness of 4.0 .mu.m, likewise of the present invention coated carbide tools 7 '"l-TiCN-o [continuous] l-TiCN-4 (6.6)" is derived from the reaction gas composition of "lower surface part l-TiCN-o (target x value: 0.25)". -TiCN-4 (target x value: 0.60) "CH 3 CN in the reaction gas up to the reaction gas composition, or CH 3 This shows a case where a concentration gradient l-TiCN layer is formed with a target layer thickness of 6.6 μm by changing the content ratio of CN and CH 4 steplessly over time.
As a result, Auger spectroscopic analysis of 0.2 μm inner side from each surface is carried out about x value of the upper surface part of a concentration gradient l-TiCN layer which comprises the hard coating layer of this invention coated carbide tools 1-8 , and a lower surface part. As a result of measurement using a vessel, the x value was substantially the same as the target x value shown in Table 3. In addition, the constituent layers constituting the hard coating layer also showed an average layer thickness substantially the same as the target layer thickness.
[0010]
Next, about the said invention coated carbide tools 1-8 and the conventional coated carbide tools 1-8 ,
Work material: SCM440 lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of alloy steel under the conditions of
Work material: Round bars with four longitudinal grooves at equal intervals in the length direction of FCD450,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.32mm / rev,
Cutting time: 10 minutes,
A dry high-speed intermittent cutting test was performed on spheroidal graphite cast iron under the conditions described above, and the maximum flank wear width of the cutting edge was measured in all cutting tests. The measurement results are shown in Table 6.
[0011]
[Table 1]
Figure 0004461407
[0012]
[Table 2]
Figure 0004461407
[0013]
[Table 3]
Figure 0004461407
[0014]
[Table 4]
Figure 0004461407
[0015]
[Table 5]
Figure 0004461407
[0016]
[Table 6]
Figure 0004461407
[0017]
【The invention's effect】
From the results shown in Tables 4 to 6, the coated carbide tools 1 to 8 of the present invention in which the concentration gradient l-TiCN layer is present in the hard coating layer are all excellent in the hard coating layer by the concentration gradient l-TiCN layer. Since it has excellent toughness, it exhibits excellent cutting performance without chipping on the cutting edge even when intermittent cutting of steel or cast iron is performed at high speed. -In the conventional coated carbide tools 1 to 8 having no concentration gradient in C and N of the TiCN layer, the above-mentioned high-speed intermittent cutting causes chipping on the cutting edge due to insufficient toughness of the hard coating layer, and it takes a relatively short time. It is clear that the service life is reached.
As described above, the coated cemented carbide tool of the present invention has excellent chipping resistance due to the hard coating layer that constitutes the coated hard tool, so that of course continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, for example. In particular, even when intermittent cutting is performed at high speed, it exhibits excellent cutting performance over a long period of time, so it can fully satisfy the labor saving and energy saving of cutting work, and further cost reduction It is.

Claims (1)

炭化タングステン基超硬合金基体の表面に、
(a)いずれも0.1〜5μmの平均層厚および粒状結晶組織を有する、炭化チタン層、窒化チタン層、炭窒化チタン層、酸化チタン層、炭酸化チタン層、窒酸化チタン層、および炭窒酸化チタン層のうちの1種または2種以上からなるTi化合物層、
(b)2〜15μmの平均層厚および縦長成長結晶組織を有する炭窒化チタン層、
(c)0.5〜8μmの平均層厚および粒状結晶組織を有する酸化アルミニウム層、
以上(a)〜(c)で構成された硬質被覆層を3〜25μmの全体平均層厚で化学蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層を構成する縦長成長結晶組織の炭窒化チタン層を、
下面部形成にはTiCl ,N ,CH ,CH CN,およびH の構成成分からなる反応ガス、上面部形成にはTiCl ,N ,CH CN,およびH の構成成分からなる反応ガスを用い、かつ、前記下面部形成には前記反応ガス中のN ,CH ,およびCH CNの含有割合を、また前記上面部形成には前記反応ガス中のN およびCH CNの含有割合を経時的に無段階あるいは段階的に変化させて、下面部から上面部に向かって層厚にそってC成分が低く、N成分が高くなり、かつ、前記CおよびNの濃度が無段階変化または段階変化する濃度勾配を具備せしめると共に、前記上面部および下面部を組成式:TiC1−Xで現した場合、原子比で、
上記上面部は、X:0.45〜0.60、
上記下面部は、X:0.05〜0.30
を満足する縦長成長結晶組織の炭窒化チタン層で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the tungsten carbide base cemented carbide substrate,
(A) Titanium carbide layer, titanium nitride layer, titanium carbonitride layer, titanium oxide layer, titanium carbonate layer, titanium oxynitride layer, and charcoal, all having an average layer thickness and granular crystal structure of 0.1 to 5 μm A Ti compound layer comprising one or more of the titanium nitride oxide layers,
(B) a titanium carbonitride layer having an average layer thickness of 2 to 15 μm and a vertically grown crystal structure,
(C) an aluminum oxide layer having an average layer thickness of 0.5 to 8 μm and a granular crystal structure,
In the surface-coated cemented carbide cutting tool formed by chemical vapor deposition of the hard coating layer composed of the above (a) to (c) with an overall average layer thickness of 3 to 25 μm,
A vertically-grown titanium carbonitride layer constituting the hard coating layer,
TiCl on the lower surface portion forming 4, N 2, CH 4, CH 3 CN, and the reaction gas consisting of components of H 2, TiCl 4 on the upper surface portion forming, N 2, CH 3 CN, and components of the H 2 using a reaction gas composed of, and the the lower surface portion forming the reaction of N 2 gas, CH 4, and CH 3 the content of CN, also above the upper surface portion forming N 2 and in the reaction gas By changing the content ratio of CH 3 CN steplessly or stepwise over time, the C component decreases along the layer thickness from the lower surface portion toward the upper surface portion, the N component increases, and the C and N In the case where the upper surface portion and the lower surface portion are expressed by the composition formula: TiC 1-X N X , the atomic ratio is expressed in a stepless or stepwise concentration gradient.
The upper surface portion has X: 0.45 to 0.60,
The lower surface portion has X: 0.05 to 0.30 ,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting, characterized by comprising a vertically grown crystallographic titanium carbonitride layer that satisfies the above requirements.
JP2000145836A 2000-05-18 2000-05-18 Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting Expired - Fee Related JP4461407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000145836A JP4461407B2 (en) 2000-05-18 2000-05-18 Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000145836A JP4461407B2 (en) 2000-05-18 2000-05-18 Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2001322008A JP2001322008A (en) 2001-11-20
JP4461407B2 true JP4461407B2 (en) 2010-05-12

Family

ID=18652286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000145836A Expired - Fee Related JP4461407B2 (en) 2000-05-18 2000-05-18 Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4461407B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518260B2 (en) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5061392B2 (en) * 2008-07-30 2012-10-31 住友電工ハードメタル株式会社 Surface coated cutting tool
US9228258B2 (en) 2011-03-31 2016-01-05 Hitachi Tool Engineering, Ltd. Hard-coated member and its production method, and indexable rotary tool comprising it
EP2604720A1 (en) * 2011-12-14 2013-06-19 Sandvik Intellectual Property Ab Coated cutting tool and method of manufacturing the same
KR101906650B1 (en) * 2012-04-19 2018-10-10 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool
KR102056206B1 (en) * 2012-10-01 2019-12-16 미츠비시 히타치 쓰루 가부시키가이샤 Hard film coating tool and method for manufacturing said tool
JP6614447B2 (en) * 2016-03-28 2019-12-04 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
JP6677876B2 (en) * 2016-08-09 2020-04-08 三菱マテリアル株式会社 Surface coated cutting tool with excellent welding chipping and peeling resistance
JP6916472B2 (en) * 2019-08-30 2021-08-11 株式会社タンガロイ Cover cutting tool

Also Published As

Publication number Publication date
JP2001322008A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP2867803B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JPH09262705A (en) Surface coated tungsten carbide group super hard alloy cutting tool having excellent toughness in hard coating layer thereof
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP2000158204A (en) Surface-covering cemented carbide alloy cutting tool having hard covering layer exhibiting excellent chipping resistance
JP3433686B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2734311B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3922330B2 (en) Cutting tool made of surface-coated cemented carbide with excellent thermal barrier and interlayer adhesion
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP3994591B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees