JP4457870B2 - Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials - Google Patents
Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials Download PDFInfo
- Publication number
- JP4457870B2 JP4457870B2 JP2004341527A JP2004341527A JP4457870B2 JP 4457870 B2 JP4457870 B2 JP 4457870B2 JP 2004341527 A JP2004341527 A JP 2004341527A JP 2004341527 A JP2004341527 A JP 2004341527A JP 4457870 B2 JP4457870 B2 JP 4457870B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- cutting tip
- boron nitride
- high pressure
- sintered material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 25
- 229910052582 BN Inorganic materials 0.000 title claims description 8
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims description 8
- 239000010936 titanium Substances 0.000 claims description 38
- 229910052719 titanium Inorganic materials 0.000 claims description 31
- 239000010410 layer Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 23
- 239000002345 surface coating layer Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 229910000765 intermetallic Inorganic materials 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 14
- 239000010935 stainless steel Substances 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 229910004349 Ti-Al Inorganic materials 0.000 description 8
- 229910004692 Ti—Al Inorganic materials 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 229910004339 Ti-Si Inorganic materials 0.000 description 5
- 229910010978 Ti—Si Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 238000007733 ion plating Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- -1 and in particular Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 102200082907 rs33918131 Human genes 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
この発明は、特に軟鋼やステンレス鋼などの相対的に軟質にして粘性の高い難削材の高速切削に用いた場合にすぐれた耐摩耗性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削チップ(以下、被覆c−BN基焼結切削チップという)に関するものである。 This invention is a surface-coated cubic boron nitride-based ultrahigh-pressure fired ceramic that exhibits excellent wear resistance when used for high-speed cutting of difficult-to-cut materials that are relatively soft and highly viscous, such as mild steel and stainless steel. The present invention relates to a cutting tip made of a binder (hereinafter referred to as a coated c-BN-based sintered cutting tip).
従来、一般に、被覆c−BN基焼結切削チップとして、各種の立方晶窒化ほう素基超高圧焼結材料(以下、c−BN基焼結材料という)で構成された切削チップ本体の表面に、窒化チタン(以下、TiNで示す)層や、TiとSiの複合ほう窒化物[以下、(Ti,Si)BNで示す]層、さらにTiとAl複合窒化物[以下、(Ti,Al)Nで示す]層などの表面被覆層を1〜8μmの平均層厚で蒸着形成してなる、被覆c−BN基焼結切削チップが知られており、これが例えば各種の鋼や鋳鉄などの切削に用いられていることも知られている。
いる。
Conventionally, as a coated c-BN-based sintered cutting tip, generally, the surface of a cutting tip body made of various cubic boron nitride-based ultrahigh pressure sintered materials (hereinafter referred to as c-BN-based sintered material) is used. , Titanium nitride (hereinafter referred to as TiN) layer, Ti and Si composite boron nitride [hereinafter referred to as (Ti, Si) BN] layer, and Ti and Al composite nitride [hereinafter referred to as (Ti, Al) A coated c-BN-based sintered cutting tip is known, which is formed by vapor-depositing a surface coating layer such as a layer indicated by N with an average layer thickness of 1 to 8 μm. It is also known that it is used in
Yes.
また、上記の被覆c−BN基焼結切削チップが、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に、上記切削チップ本体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、金属Tiや、それぞれ所定の組成を有するTi−Al合金やTi−Si合金などからなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガス、またはほう窒化ガスを導入して、例えば2Paの反応雰囲気とし、一方前記切削チップ本体には、たとえば−100Vのバイアス電圧を印加した条件で、前記切削チップ本体の表面に、TiN層や、(Ti,Al)N層、あるいは(Ti,Si)BN層などを蒸着形成することにより製造されることも知られている。
一方、近年の切削装置の高性能化および高出力化はめざましく、また切削加工の省力化および省エネ化、さらに低コスト化に対する要求も強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆c−BN基焼結切削チップにおいては、これを、通常の炭素鋼や低合金鋼の焼入材、さらに鋳鉄などの被削材の高速切削に用いた場合には問題はないが、これを、例えば軟鋼やステンレス鋼などの難削材の高速切削に用いた場合には、表面被覆層と切削チップ本体では、切削時に発生する高熱による熱膨張や硬さ変化などが異なるばかりでなく、これが原因で軟鋼やステンレス鋼などの軟質にして高粘性の難削材の高速切削では、切刃部に大きな内部応力の発生も避けられず、このため切刃部にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 On the other hand, in recent years, the performance and output of cutting devices have been remarkable, and there is a strong demand for labor saving and energy saving and further cost reduction of cutting work. In the above-mentioned conventional coated c-BN-based sintered cutting tip, there is a problem when it is used for high-speed cutting of a work material such as ordinary carbon steel or low alloy steel, and cast iron. However, when this is used for high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel, the surface coating layer and the cutting tip body have different thermal expansion and hardness changes due to high heat generated during cutting. Not only that, but due to this, high-speed cutting of soft and highly viscous difficult-to-cut materials such as mild steel and stainless steel inevitably generates large internal stresses on the cutting edge. Chipping) Ri, the processing leads to the result relatively short time service life at present.
そこで、本発明者等は、上述のような観点から、特に軟鋼やステンレス鋼などの難削材の高速切削に用いた場合にすぐれた耐摩耗性を発揮する被覆c−BN基焼結切削チップを開発すべく、研究を行った結果、
被覆c−BN基焼結切削チップの切削チップ本体を、質量%で(以下、%は質量%を示す)、
窒化チタン(以下、TiNで示す):31〜36%、
炭窒化チタン(以下、TiCNで示す):10〜15%、
TiとAlの金属間化合物(以下、Ti−Al化合物で示す):1〜5%、
TiとAlの複合窒化物[以下、(Ti,Al)Nで示す]:2〜6%、
炭化タングステン(以下、WCで示す):1.5〜6.5%、
立方晶窒化ほう素(以下、c−BNで示す):残り(ただし、41〜47%含有)、
からなる配合組成を有する圧粉体の超高圧焼結材料にして、走査型電子顕微鏡による組織観察で、分散相を形成するc−BN相と連続相を形成するTiCN相との界面に、ほう化チタン(TiB2)やほう化タングステン(WB)などの超高圧焼結反応生成物が介在した組織を有するc−BN基焼結材料に特定すると共に、これの表面に、蒸着形成される表面被覆層を
組成式:(Ti1−XSiX)N、(ただし、Xは、原子比で0.01〜0.05)、
を満足するTiとSiの複合窒化物[以下、(Ti,Si)Nで示す]層に特定すると、この結果の被覆c−BN基焼結切削チップは、特に軟質にして高粘性であるために、切削に際しては一段と高い熱発生および応力発生を伴う軟鋼やステンレス鋼などの難削材の高速切削に用いた場合にも、表面被覆層と切削チップ本体とが切削時に発生する高熱による高温加熱環境に相互に適合し合い、内部応力の発生も著しく抑制されることから、切刃部におけるチッピング発生が皆無となり、長期に亘ってすぐれた切削性能を発揮するようになる、という研究結果を得たのである。
Therefore, the present inventors, from the above viewpoint, have a coated c-BN-based sintered cutting tip that exhibits excellent wear resistance particularly when used for high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel. As a result of conducting research to develop
The cutting tip body of the coated c-BN-based sintered cutting tip is expressed in mass% (hereinafter,% indicates mass%).
Titanium nitride (hereinafter referred to as TiN): 31 to 36%,
Titanium carbonitride (hereinafter referred to as TiCN): 10 to 15%,
Ti and Al intermetallic compound (hereinafter referred to as Ti-Al compound): 1 to 5%,
Ti and Al composite nitride [hereinafter referred to as (Ti, Al) N]: 2 to 6%,
Tungsten carbide (hereinafter referred to as WC): 1.5 to 6.5%,
Cubic boron nitride (hereinafter referred to as c-BN): remaining (however, containing 41 to 47%),
An ultra-high-pressure sintered material of a green compact having a composition composed of the following composition is observed at the interface between the c-BN phase that forms the dispersed phase and the TiCN phase that forms the continuous phase, as observed by a scanning electron microscope. Specified as a c-BN-based sintered material having a structure in which an ultrahigh-pressure sintered reaction product such as titanium boride (TiB 2 ) or tungsten boride (WB) is interposed, and a surface formed by vapor deposition on the surface thereof The coating layer has a composition formula: (Ti 1-X Si X ) N, where X is an atomic ratio of 0.01 to 0.05.
When the composite nitride of Ti and Si [hereinafter referred to as (Ti, Si) N] layer is satisfied, the resulting coated c-BN-based sintered cutting tip is particularly soft and highly viscous. In addition, even when used for high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel that generate much higher heat and stress during cutting, the surface coating layer and the cutting tip body are heated at a high temperature due to the high heat generated during cutting. Since it is compatible with the environment and the generation of internal stress is remarkably suppressed, there is no chipping at the cutting edge, resulting in excellent cutting performance over a long period of time. It was.
この発明は、上記の研究結果に基づいてなされたものであって、
TiN:31〜36%、
TiCN:10〜15%、
Ti−Al化合物:1〜5%、
(Ti,Al)N:2〜6%、
WC:1.5〜6.5%、
c−BN:残り(ただし、41〜47%含有)、
からなる配合組成を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成するc−BN相と連続相を形成するTiCN相との界面に超高圧焼結反応生成物が介在した組織を有する切削チップ本体の表面に、
組成式:(Ti1−XSiX)N、(ただし、Xは、原子比で0.01〜0.05)、
を満足する(Ti,Si)N層からなる表面被覆層を1〜8μmの平均層厚で蒸着形成してなる、難削材の高速切削ですぐれた耐摩耗性を発揮する被覆c−BN基焼結切削チップに特徴を有するものである。
This invention was made based on the above research results,
TiN: 31-36%,
TiCN: 10-15%,
Ti-Al compound: 1 to 5%,
(Ti, Al) N: 2 to 6%,
WC: 1.5-6.5%,
c-BN: remaining (however, containing 41 to 47%),
An interface between a c-BN phase forming a disperse phase and a TiCN phase forming a continuous phase by a structure observation by a scanning electron microscope. On the surface of the cutting tip body having a structure in which the ultra-high pressure sintering reaction product is interposed,
Formula: (Ti 1-X Si X ) N, ( provided that, X is 0.01 to 0.05 in atomic ratio),
Coated c-BN group that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials, formed by vapor-depositing a surface coating layer consisting of a (Ti, Si) N layer satisfying It is characterized by a sintered cutting tip.
つぎに、この発明の被覆c−BN基焼結切削チップにおいて、これを構成する切削チップ本体のc−BN基焼結材料の配合組成および表面被覆層の組成を上記の通りに限定した理由を説明する。
(A)切削チップ本体のc−BN基焼結材料の配合組成
(a)TiNおよびTiCN
これらの成分には、焼結性を向上させると共に、焼結時に相互に固溶し、炭素(C)成分に対して相対的に窒素(N)成分の含有割合の高いTiCN相からなる連続相を形成してチップ強度を向上させる作用があるが、その配合割合がTiNおよびTiCNのいずれかでも、TiN:31%未満、TiCN:10%未満になると、所望の高強度を確保することができず、一方その配合割合がTiNおよびTiCNのいずれかでも、TiNにあっては36%、TiCNにあっては15%を越えると硬さが急激に低下し、摩耗促進の原因となることから、その配合割合をTiN:31〜36%、TiCN:10〜15%と定めた。
Next, in the coated c-BN-based sintered cutting tip of the present invention, the reason why the composition of the c-BN-based sintered material and the composition of the surface coating layer of the cutting tip main body constituting the same are limited as described above. explain.
(A) Compounding composition of c-BN based sintered material of cutting tip body (a) TiN and TiCN
These components include a continuous phase composed of a TiCN phase that improves the sinterability and is dissolved in each other at the time of sintering and has a relatively high content of nitrogen (N) component relative to the carbon (C) component. It has the effect of improving the chip strength by forming the same, but even if the blending ratio is either TiN or TiCN, if TiN: less than 31% and TiCN: less than 10%, the desired high strength can be secured. On the other hand, even if the blending ratio is either TiN or TiCN, if it exceeds 36% for TiN and 15% for TiCN, the hardness will be drastically reduced, which will cause accelerated wear. The blending ratio was determined to be TiN: 31-36% and TiCN: 10-15%.
(b)Ti−Al化合物、(Ti,Al)N、およびWC
これらの成分には、その主体が焼結時にc−BN粉末の表面と優先的に反応して、TiB2やWBなどの超高圧焼結反応生成物を形成し、分散相であるc−BN相と上記の連続相であるTiCN相の界面に介在して、前記c−BN相(分散相)とTiCN相(連続相)の密着接合性を著しく向上させ、もって耐摩耗性向上に寄与する作用があるが、これら成分のうちのいずれの成分の配合割合が上記の範囲から少ない方に外れても、前記分散相と連続相の間に強固な密着接合性を確保することができず、一方これら成分のうちのいずれの成分の配合割合でも上記の範囲から多い方に外れると、チップ自体の強度に低下傾向が現れるようになることから、Ti−Al化合物、(Ti,Al)N、およびWCの上記の配合割合を、それぞれTi−Al化合物:1〜5%、(Ti,Al)N:2〜6%、WC:1.5〜6.5%、と定めた。
(B) Ti-Al compound, (Ti, Al) N, and WC
The main component of these components reacts preferentially with the surface of the c-BN powder during sintering to form an ultra-high pressure sintered reaction product such as TiB 2 or WB, and c-BN which is a dispersed phase. It intervenes at the interface between the phase and the TiCN phase, which is the continuous phase, and remarkably improves the adhesive bondability between the c-BN phase (dispersed phase) and the TiCN phase (continuous phase), thereby contributing to improved wear resistance. Although there is an action, even if the blending ratio of any of these components falls outside the above range, it is not possible to ensure a strong adhesive bond between the dispersed phase and the continuous phase, On the other hand, if the blending ratio of any of these components deviates from the above range, a tendency to decrease in the strength of the chip itself will appear, so that a Ti—Al compound, (Ti, Al) N, And the above-mentioned blending ratio of WC and Ti- Al compound: 1 to 5%, (Ti, Al) N: 2 to 6%, WC: 1.5 to 6.5%.
(c)c−BN
分散相を構成するc−BNは、きわめて硬質で、これによって耐摩耗性の向上が図られるが、その配合割合が41%未満では所望のすぐれた耐摩耗性を確保することができず、一方その配合割合が47%を越えると、c−BN基焼結材料自体の焼結性が低下し、所定の強度を確保することができなくなることから、その配合割合を41〜47%と定めた。
(C) c-BN
The c-BN constituting the dispersed phase is extremely hard, thereby improving the wear resistance. However, if the blending ratio is less than 41%, the desired excellent wear resistance cannot be secured. If the blending ratio exceeds 47%, the sinterability of the c-BN-based sintered material itself is lowered, and a predetermined strength cannot be secured. Therefore, the blending ratio is set to 41 to 47%. .
(B)表面被覆層の(Ti,Si)N層の組成
表面被覆層は、これを構成する(Ti,Si)NにおけるTi成分が高温強度を向上させ、一方Si成分は高温硬さおよび耐熱性を向上させ、もって高速切削時に発生する高熱による高温加熱環境における表面被覆層の熱膨張や硬さ変化などを切削チップ本体のそれと相互に適合させて、切削チップにおける内部応力の発生を著しく抑制せしめる性質を有するが、Siの含有割合を示すX値がTiとの合量に占める割合(原子比)で0.01未満でも、また同0.05を越えても、表面被覆層と切削チップ本体との間の適合性がずれるようになり、チッピング発生の原因となることから、X値を0.01〜0.05と定めた。
(B) Composition of the (Ti, Si) N layer of the surface coating layer In the surface coating layer, the Ti component in (Ti, Si) N constituting this improves the high temperature strength, while the Si component has high temperature hardness and heat resistance. Therefore, the thermal expansion and hardness change of the surface coating layer in the high-temperature heating environment due to the high heat generated during high-speed cutting can be matched with those of the cutting tip body to significantly suppress the generation of internal stress in the cutting tip. The surface coating layer and the cutting tip can be used if the X value indicating the Si content is less than 0.01 or more than 0.05 in terms of the total amount with Ti (atomic ratio). The X value was determined to be 0.01 to 0.05, because the compatibility with the main body was shifted and this would cause chipping.
なお、上記のこの発明の被覆c−BN基焼結切削チップには、その表面に切削チップ使用前後識別層として、黄金色の色調を有する窒化チタン(以下、TiNで示す)層を蒸着形成してもよく、この場合の蒸着層厚は、平均層厚が0.5μm未満では識別に十分な黄金色の色調を付与することができず、一方識別は5μmまでの平均層厚で十分であることから、0.5〜5μmの平均層厚とすればよい。 The coated c-BN-based sintered cutting tip according to the present invention is formed by depositing a titanium nitride (hereinafter referred to as TiN) layer having a golden color tone on the surface as a discriminating layer before and after using the cutting tip. In this case, if the average layer thickness is less than 0.5 μm, it is not possible to impart a golden color tone sufficient for identification, while an average layer thickness of up to 5 μm is sufficient. Therefore, the average layer thickness may be 0.5 to 5 μm.
この発明の被覆c−BN基焼結切削チップは、軟質にして粘性が高く、それ故に切削では高熱発生を伴う軟鋼やステンレス鋼などの難削材の切削を高速で行っても、これを構成する表面被覆層と切削チップ本体とが切削時に発生する高熱による高温加熱環境で相互に適合し合い、内部応力の発生も著しく抑制されることから、切刃部におけるチッピング発生が皆無となり、長期に亘ってすぐれた耐摩耗性を発揮するのである。 The coated c-BN-based sintered cutting tip of the present invention is soft and highly viscous, so that even when cutting difficult-to-cut materials such as soft steel and stainless steel that generate high heat in cutting, it is configured at high speed. Since the surface coating layer and the cutting tip body are compatible with each other in the high-temperature heating environment due to the high heat generated during cutting, the generation of internal stress is remarkably suppressed, so there is no chipping at the cutting edge, and long-term It exhibits excellent wear resistance.
つぎに、この発明の被覆c−BN基焼結切削チップを実施例により具体的に説明する。 Next, the coated c-BN-based sintered cutting tip of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも0.5〜4μmの範囲内の所定の平均粒径を有する、連続相形成用としてのTiN粉末およびTiCN粉末、Ti−Al化合物としてTi−Al3粉末、(Ti,Al)NとしてTi2AlN粉末、WC粉末、および分散相形成用としてのc−BN粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、この成形体を1Paの真空中、900〜1300℃の範囲内の所定の温度に1時間保持の条件で予備焼結し、ついでこれを別途用意した直径:50mm×厚さ:2mmの寸法をもった超硬合金チップ(組成:WC−8%Co)と重ね合わせた状態で超高圧焼結装置に装入し、1200〜1400℃の範囲内の所定温度に5GPaの圧力下で40分保持の条件で焼結し、焼結後上下面をダイヤモンド砥石を用いて研削し、アーク放電によるワイヤカットにより一辺が3mmの正方形チップに分割することにより前記超硬合金で裏打されたc−BN基焼結材料からなる切削チップ本体A−1〜A−11をそれぞれ製造した。 TiN powder and TiCN powder for forming a continuous phase, Ti-Al 3 powder as a Ti-Al compound, both having a predetermined average particle diameter in the range of 0.5-4 μm as raw material powder, (Ti, Al ) Prepare Ti 2 AlN powder, WC powder, and c-BN powder for forming a dispersed phase as N, blend these raw material powders into the blending composition shown in Table 1, wet mix in a ball mill for 60 hours, and dry After that, it was press-molded into a green compact having a diameter of 50 mm × thickness: 1.5 mm at a pressure of 100 MPa, and this molded body was subjected to a predetermined temperature within a range of 900 to 1300 ° C. in a vacuum of 1 Pa. And pre-sintered for 1 hour, and then superposed on a cemented carbide chip (composition: WC-8% Co) having a diameter: 50 mm × thickness: 2 mm prepared separately. Very high pressure Insert into a sintering machine, sinter at a predetermined temperature in the range of 1200-1400 ° C. under a pressure of 5 GPa for 40 minutes, and after sintering, the upper and lower surfaces are ground using a diamond grindstone, and arc discharge Cutting chip bodies A-1 to A-11 made of a c-BN-based sintered material backed with the above-mentioned cemented carbide were respectively manufactured by dividing into square chips having a side of 3 mm by wire cutting.
ついで、これら切削チップ本体A−1〜A−11を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示される通常のアークイオンプレーティング装置内に装着し、カソード電極(蒸発源)として、表2に示される目標組成の本発明被覆c−BN基焼結切削チップの表面被覆層[(Ti,Si)N層]に対応した成分組成をもったTi−Si合金を装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記切削チップ本体に−1000Vの直流バイアス電圧を印加し、一方カソード電極の前記Ti−Si合金とアノード電極との間には100Aの電流を流してアーク放電を発生させ、もって前記切削チップ本体表面を前記Ti−Si合金でボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して5Paの反応雰囲気とすると共に、前記切削チップ本体に印加する直流バイアス電圧を−100Vに下げて、前記Ti−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記切削チップ本体のそれぞれの表面に、表2に示される目標組成および目標層厚の(Ti,Si)N層からなる表面被覆層を蒸着形成することにより本発明被覆c−BN基焼結切削チップ1〜11をそれぞれ製造した。 Next, these cutting tip bodies A-1 to A-11 were ultrasonically washed in acetone and dried, and each was mounted in a normal arc ion plating apparatus shown in FIG. As a source), a Ti—Si alloy having a component composition corresponding to the surface coating layer [(Ti, Si) N layer] of the coated c-BN-based sintered cutting tip of the present invention having the target composition shown in Table 2 is mounted. First, the inside of the apparatus is evacuated and the inside of the apparatus is heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less, and then a −1000 V DC bias voltage is applied to the cutting tip body, while the cathode electrode A current of 100 A was passed between the Ti-Si alloy and the anode electrode to generate arc discharge, and the cutting tip body surface was bombard washed with the Ti-Si alloy, Nitrogen gas was introduced into the chamber as a reaction gas to make a reaction atmosphere of 5 Pa, and the DC bias voltage applied to the cutting tip body was lowered to −100 V, and the Ti—Si alloy cathode electrode and anode electrode Arc discharge is generated in between, and a surface coating layer made of (Ti, Si) N layer having a target composition and target layer thickness shown in Table 2 is formed on each surface of the cutting tip body by vapor deposition. Invention coated c-BN based sintered cutting tips 1 to 11 were produced, respectively.
また、比較の目的で、同じく図1に示される通常のアークイオンプレーティング装置を用い、カソード電極(蒸発源)として、金属Ti、または表3に示される目標組成の比較被覆c−BN基焼結切削チップの表面被覆層に対応した成分組成をもったTi−Al合金を用いる以外は、同一の条件で、上記の切削チップ本体A−1〜A−11のそれぞれの表面に、表3に示される目標組成および目標層厚のTiN層または(Ti,Al)N層からなる表面被覆層を蒸着形成することにより比較被覆c−BN基焼結切削チップ1〜11をそれぞれ製造した。 For comparison purposes, the same arc ion plating apparatus as shown in FIG. 1 is used, and as a cathode electrode (evaporation source), metal Ti, or comparative coated c-BN based firing having a target composition shown in Table 3 is used. Table 3 shows the surface of each of the cutting tip bodies A-1 to A-11 under the same conditions except that a Ti-Al alloy having a component composition corresponding to the surface coating layer of the bonded cutting tip is used. Comparative coated c-BN-based sintered cutting chips 1 to 11 were produced by vapor-depositing a surface coating layer consisting of a TiN layer or (Ti, Al) N layer having a target composition and target layer thickness as shown.
この結果得られた各種の被覆c−BN基焼結切削チップの切削チップ本体を構成するc−BN基焼結材料について、その組織を走査型電子顕微鏡を用いて観察したところ、いずれの切削チップ本体も、実質的に分散相を形成するc−BN相と連続相を形成するTiCN相との界面に超高圧焼結反応生成物が介在した組織を示した。 Regarding the c-BN-based sintered material constituting the cutting tip body of the various coated c-BN-based sintered cutting tips obtained as a result, the structure was observed using a scanning electron microscope. The main body also showed a structure in which an ultrahigh-pressure sintered reaction product was interposed at the interface between the c-BN phase that substantially formed the dispersed phase and the TiCN phase that formed the continuous phase.
さらに、同表面被覆層について、その組成を透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、目標組成と実質的に同じ組成を示し、また、その平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いづれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Further, when the composition of the surface coating layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition, and the average layer thickness was transmitted. When the cross-section was measured using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
ついで、これらの被覆c−BN基焼結切削チップを、超硬合金本体(組成:WC−10%Co)の切刃先端部に形成した切り込み段部にろう付けすることによりJIS・TNMA160408に規定する形状をもったスローアウエイ型切削工具とし、
被削材:JIS・S10Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:800m/min、
切り込み:1.0mm、
送り:0.3mm/rev、
切削時間:5分、
の条件での軟鋼の乾式断続高速切削試験(通常の切削速度は500m/min)、および、
被削材:JIS・SUS304の丸棒、
切削速度:450m/min、
切り込み:0.4mm、
送り:0.2mm/rev、
切削時間:5分、
の条件でのステンレス鋼の乾式連続高速切削試験(通常の切削速度は300m/min)、を行い、切刃の逃げ面摩耗幅を測定した。この測定結果を表2,3に示した。
Subsequently, these coated c-BN-based sintered cutting tips are brazed to a cutting step formed on the tip of the cutting edge of the cemented carbide main body (composition: WC-10% Co) to be specified in JIS / TNMA160408. Slow away type cutting tool with a shape to
Work material: JIS / S10C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 800 m / min,
Cutting depth: 1.0 mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of mild steel under the conditions of (normal cutting speed is 500 m / min), and
Work material: JIS / SUS304 round bar,
Cutting speed: 450 m / min,
Cutting depth: 0.4mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
The dry continuous high-speed cutting test (normal cutting speed is 300 m / min) of stainless steel under the above conditions was performed, and the flank wear width of the cutting edge was measured. The measurement results are shown in Tables 2 and 3.
表1に示される結果から、本発明被覆c−BN基焼結切削チップ1〜11は、いずれも難削材である軟鋼やステンレス鋼の切削を高速で行っても切刃にチッピングの発生なく、すぐれた耐摩耗性を示し、すぐれた切削性能を長期に亘って発揮するのに対して、表面被覆層がTiN層や(Ti,Al)N層からなる比較被覆c−BN基焼結切削チップ1〜11においては、いずれも表面被覆層と切削チップ本体が切削時に発生する高熱による熱膨張や硬さ変化などに適合せず、この結果切刃にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 1, the coated c-BN-based sintered cutting tips 1 to 11 of the present invention do not generate chipping on the cutting edge even when cutting hard steel and stainless steel, which are difficult to cut materials, at high speed. Comparatively coated c-BN-based sintered cutting, in which the surface coating layer is composed of a TiN layer or a (Ti, Al) N layer, while exhibiting excellent wear resistance and exhibiting excellent cutting performance over a long period of time In each of the chips 1 to 11, the surface coating layer and the cutting chip body are not adapted to thermal expansion or change in hardness due to high heat generated during cutting, and as a result, chipping occurs in the cutting blade, and it takes a relatively short time. It is clear that the service life is reached.
上述のように、この発明の被覆c−BN基焼結切削チップは、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に切削時に高熱発生が避けられない軟鋼やステンレス鋼などの高速切削でも切刃部にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものであるから、切削加工の省力化および省エネ化にも十分満足に対応できるものである。 As described above, the coated c-BN-based sintered cutting tip according to the present invention is not limited to cutting under normal cutting conditions such as various types of steel and cast iron, and in particular, mild steel that cannot avoid high heat generation during cutting. Since high-speed cutting such as stainless steel does not cause chipping at the cutting edge and exhibits excellent wear resistance over a long period of time, it can fully satisfy the labor saving and energy saving of cutting work. is there.
Claims (1)
炭窒化チタン:10〜15%、
TiとAlの金属間化合物:1〜5%、
TiとAlの複合窒化物:2〜6%、
炭化タングステン:1.5〜6.5%、
立方晶窒化ほう素:残り(ただし、41〜47%含有)、
からなる配合組成(以上、%は質量%を示す)を有する圧粉体の超高圧焼結材料で構成され、かつ、走査型電子顕微鏡による組織観察で、分散相を形成する立方晶窒化ほう素相と連続相を形成する炭窒化チタン相との界面に超高圧焼結反応生成物が介在した組織を有する切削チップ本体の表面に、
組成式:(Ti1−XSiX)N、(ただし、Xは、原子比で0.01〜0.05)、
を満足するTiとSiの複合窒化物層からなる表面被覆層を1〜8μmの平均層厚で蒸着形成してなる、難削材の高速切削ですぐれた耐摩耗性を発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削チップ。 Titanium nitride: 31-36%,
Titanium carbonitride: 10-15%,
Ti and Al intermetallic compound: 1 to 5%,
Ti and Al composite nitride: 2-6%,
Tungsten carbide: 1.5-6.5%,
Cubic boron nitride: remaining (containing 41 to 47%),
Cubic boron nitride which is composed of an ultra-high pressure sintered material of a green compact having a blending composition (where% indicates mass%) and forms a dispersed phase by structural observation with a scanning electron microscope On the surface of the cutting tip body having a structure in which an ultra-high pressure sintering reaction product is interposed at the interface between the phase and the titanium carbonitride phase forming the continuous phase,
Formula: (Ti 1-X Si X ) N, ( provided that, X is 0.01 to 0.05 in atomic ratio),
Surface-coated cubic crystals with excellent wear resistance in high-speed cutting of difficult-to-cut materials, formed by vapor-depositing a surface coating layer composed of a composite nitride layer of Ti and Si that satisfies the requirements of 1 to 8 μm Cutting tips made of boron nitride-based ultra-high pressure sintered material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004341527A JP4457870B2 (en) | 2004-11-26 | 2004-11-26 | Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004341527A JP4457870B2 (en) | 2004-11-26 | 2004-11-26 | Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006150476A JP2006150476A (en) | 2006-06-15 |
JP4457870B2 true JP4457870B2 (en) | 2010-04-28 |
Family
ID=36629367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004341527A Expired - Fee Related JP4457870B2 (en) | 2004-11-26 | 2004-11-26 | Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4457870B2 (en) |
-
2004
- 2004-11-26 JP JP2004341527A patent/JP4457870B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006150476A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5614460B2 (en) | cBN sintered body tool and coated cBN sintered body tool | |
KR102326622B1 (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
EP1359130B1 (en) | Cubic boron nitride sintered body and cutting tool | |
JP5447844B2 (en) | High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool | |
US7112235B2 (en) | Cubic boron nitride base ultra-high pressure sintered material cutting tip | |
JP4883475B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP2008254159A (en) | Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material | |
JP4807575B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP2002263940A (en) | Face milling cutter tool with throwaway tip showing superior chipping resistance in high-speed cutting | |
JP5407487B2 (en) | Surface coated cutting tool | |
JP4457870B2 (en) | Cutting tip made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials | |
JP2003236710A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JP2010284759A (en) | Surface coated cutting tool | |
JP4883471B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel | |
JP4770284B2 (en) | Cutting tips made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent wear resistance in high-speed intermittent cutting of high-hardness steel | |
JP2003236707A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JP2020033597A (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP2001310212A (en) | Surface covered cemented carbide made end mill on which head end surface cutting surface and outer peripheral blade display excellent heat resistant plastic deformation property | |
JP4416960B2 (en) | Slow-away cutting tip made of surface-coated cemented carbide that provides excellent wear resistance in high-speed cutting | |
JP4510323B2 (en) | Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting | |
JP2003175407A (en) | Cutting tip made of cubic boron nitride-group extra-high sintered material having excellent chipping resistance | |
JP2024111448A (en) | Cubic boron nitride sintered body | |
JP2002187005A (en) | Throwaway tip made of surface-coated cemented carbide excellent in wear resistance in high speed cutting | |
JP4883474B2 (en) | Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel | |
JP2002200503A (en) | Surface coated cemented carbide throw away type cutting tip exerting excellent wear resistance by high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100201 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140219 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |