JP4454008B2 - Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method - Google Patents
Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method Download PDFInfo
- Publication number
- JP4454008B2 JP4454008B2 JP2003346777A JP2003346777A JP4454008B2 JP 4454008 B2 JP4454008 B2 JP 4454008B2 JP 2003346777 A JP2003346777 A JP 2003346777A JP 2003346777 A JP2003346777 A JP 2003346777A JP 4454008 B2 JP4454008 B2 JP 4454008B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- optical
- light source
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
本発明は、波長分割多重技術を基盤とする光ネットワークにおける光ノード等において用いられる波長変換器及び波長変換方法に関する。 The present invention relates to a wavelength converter and a wavelength conversion method used in an optical node or the like in an optical network based on wavelength division multiplexing technology.
波長変換法としては、(1)変換において光位相情報を保持でき、(2)信号変調速度に依存せず、(3)多波長入力信号光を一括して変換可能である、などの長所を有する光非線形媒質を利用したパラメトリック波長変換法が活発に研究されている(非特許文献1,2,3参照)。
The wavelength conversion method has the following advantages: (1) optical phase information can be retained in the conversion, (2) independent of the signal modulation speed, and (3) multi-wavelength input signal light can be converted in a batch. A parametric wavelength conversion method using an optical nonlinear medium is actively researched (see Non-Patent
パラメトリック波長変換法としては、光ファイバ、光半導体増幅器などにおける三次光非線形効果を利用する方法と、光非線形結晶などにおける二次光非線形効果を利用する方法がある。後者は、変換効率が高い、コンパクト、集積化の可能性、多波長入力信号光間のクロストークが小さいなどの長所を有しており、有望な方法である(非特許文献4,5参照)。
As the parametric wavelength conversion method, there are a method using a third-order optical nonlinear effect in an optical fiber, an optical semiconductor amplifier, and the like, and a method using a second-order optical nonlinear effect in an optical nonlinear crystal or the like. The latter has advantages such as high conversion efficiency, compactness, possibility of integration, and small crosstalk between multi-wavelength input signal lights, and is a promising method (see Non-Patent
二次光非線形効果を利用した波長変換においては、入力される信号光と励起光との和周波光発生/差周波光発生過程を利用する。通常、信号光や励起光の光周波数帯と比較して、それらによって発生する和周波光の光周波数帯は、光周波数が2倍程度異なるために、両帯域における光の位相速度の相違は大きい。このために、両帯域の光同士の有効な相互作用距離は通信波長帯域(1.5μm帯)においては数十μm程度と非常に短くなり、高効率な変換ができない。差周波光発生過程においても同様である。 In wavelength conversion using the secondary light nonlinear effect, a sum frequency light generation / difference frequency light generation process of input signal light and excitation light is used. Usually, compared with the optical frequency band of signal light and pumping light, the optical frequency band of the sum frequency light generated by them differs by about twice as much as the optical frequency, so the difference in the phase velocity of light in both bands is large. . For this reason, the effective interaction distance between the light beams in both bands becomes as short as several tens of μm in the communication wavelength band (1.5 μm band), and high-efficiency conversion cannot be performed. The same applies to the difference frequency light generation process.
そこで、一般に、二次光非線形効果を用いる場合には、有効な相互作用距離を拡大するために、周期的に二次光非線形結晶の光学軸を反転する擬似位相整合(QPM)技術が利用される。これによって、二次光非線形媒質における和周波光/差周波光発生の発生効率が向上し、高い変換効率が実現される。
擬似位相整合技術を用いた和周波光発生においては、二次光非線形結晶の光学軸の反転周期によって一意に決定される光周波数2ν0の和周波光が発生する場合にのみ、有効な相互作用距離が拡大し、高効率な和周波光発生が可能である。差周波光発生においても同様であり、光周波数2ν0の光と光周波数ν0付近の光との差周波光発生の場合においてのみ、高効率な差周波光発生が可能になる。 In sum frequency light generation using a quasi-phase matching technique, an effective interaction is effective only when sum frequency light having an optical frequency of 2ν 0 uniquely determined by the inversion period of the optical axis of the secondary optical nonlinear crystal is generated. The distance is increased, and high-efficiency sum frequency light generation is possible. The same applies to the generation of the difference frequency light. Only when the difference frequency light is generated between the light having the optical frequency 2ν 0 and the light in the vicinity of the optical frequency ν 0 , the highly efficient difference frequency light can be generated.
このような条件で、変換先波長を任意に制御可能な任意波長変換を実現する方法として、2つの励起光を用いる方法が提案されている。そこでは、光周波数νs=2ν0−νP1の信号光に対して、光周波数νP1の第1の励起光を用いることで、光周波数2ν0の和周波光を発生させ、さらに、その和周波光と光周波数νP2の第2の励起光との差周波光発生によって2ν0−νP2=νcに信号光を変換する。従って、高効率な和周波光発生/差周波光発生が可能であり、励起光の光周波数νP1及びνP2を制御することで、高い変換効率を維持したまま任意の光周波数の入力光を任意の光周波数の出力光に変換可能である。 Under such conditions, a method using two excitation lights has been proposed as a method for realizing arbitrary wavelength conversion in which the conversion destination wavelength can be arbitrarily controlled. In this case, the first pumping light having the optical frequency ν P1 is used for the signal light having the optical frequency ν s = 2ν 0 −ν P1 to generate the sum frequency light having the optical frequency 2ν 0. The signal light is converted into 2ν 0 −ν P2 = ν c by the generation of the difference frequency light between the sum frequency light and the second excitation light having the optical frequency ν P2 . Therefore, high-efficiency sum-frequency light generation / difference-frequency light generation is possible. By controlling the optical frequencies ν P1 and ν P2 of the pumping light, it is possible to input light of any optical frequency while maintaining high conversion efficiency. It can be converted into output light of any optical frequency.
この方法を入力信号光が多波長光である場合に適用しようとすると、複数の和周波光を発生させる必要がある。しかし、QPM二次光非線形媒質では1つの光周波数2ν0のみに対して高効率な和周波光発生が可能であるために、多波長入力信号光の一括任意波長変換が不可能であるという課題があった。 If this method is applied when the input signal light is multi-wavelength light, it is necessary to generate a plurality of sum frequency lights. However, since the QPM secondary optical nonlinear medium can generate high-efficiency sum frequency light for only one optical frequency 2ν 0, it is impossible to perform batch arbitrary wavelength conversion of multi-wavelength input signal light. was there.
本発明の目的は、任意の波長(光周波数)の多波長入力信号光を一括して任意の波長(光周波数)の多波長変換光に変換可能な多波長一括波長変換器を提供することにある。 An object of the present invention is to provide a multi-wavelength batch wavelength converter capable of collectively converting multi-wavelength input signal light having an arbitrary wavelength (optical frequency) into multi-wavelength converted light having an arbitrary wavelength (optical frequency). is there.
前記目的を達成するため、本発明では、次のような特徴的な構成を採用している。 In order to achieve the object, the present invention adopts the following characteristic configuration.
即ち、第1の発明では、図1に示すように、2以上の整数Nに対して、任意の光周波数2ν1−νP1,2ν2−νP1,……2νN−νP1の多波長入力信号光をそれぞれ任意の光周波数2ν1−νP2,2ν2−νP2,……2νN−νP2の多波長変換光に変換する多波長一括波長変換器であって、光周波数νP1の第1の励起光源11と、光周波数νP2の第2の励起光源12と、二次高調波光発生効率が極大となる光周波数(QPM光周波数)としてν1,ν2,……νNを含む二次光非線形媒質13と、多波長入力信号光と前記第1の励起光源からの出力光と前記第2の励起光源からの出力光とを合波し、前記二次光非線形媒質へ入力する合波手段14とを有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
That is, in the first invention , as shown in FIG. 1, for an integer N of 2 or more, multiple wavelengths of arbitrary optical frequencies 2ν 1 −ν P1 , 2ν 2 −ν P1 , ... 2ν N −ν P1 . A multi-wavelength batch wavelength converter that converts input signal light into multi-wavelength converted light of arbitrary optical frequencies 2ν 1 −ν P2 , 2ν 2 −ν P2 ,... 2ν N −ν P2 , and has an optical frequency ν P1. a first
第1の発明の構成では、和周波光発生過程と差周波光発生過程とを同一の二次光非線形媒質13で行う。即ち、二次光非線形媒質13に入力された光周波数2ν1−νP1,2ν2−νP1,……2νN−νP1の多波長入力信号光と光周波数νP1の第1の励起光との間で和周波光発生過程により光周波数2ν1,2ν2,……2νNの和周波光が発生し、該和周波光と同じく二次光非線形媒質13に入力された光周波数νP2の第2の励起光との間で差周波光発生過程により2ν1−νP2,2ν2−νP2,……2νN−νP2の多波長変換光を得る。
In the configuration of the first invention , the sum frequency light generation process and the difference frequency light generation process are performed by the same secondary light
また、第2の発明では、図2に示すように、2以上の整数Nに対して、任意の光周波数2ν1−νP1,2ν2−νP1,……2νN−νP1の多波長入力信号光をそれぞれ任意の光周波数2ν1−νP2,2ν2−νP2,……2νN−νP2の多波長変換光に変換する多波長一括波長変換器であって、光周波数νP1の第1の励起光源11と、光周波数νP2の第2の励起光源12と、二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質21及び22と、多波長入力信号光と前記第1の励起光源からの出力光とを合波し、前記第1の二次光非線形媒質へ入力する第1の合波手段23と、前記第1の二次光非線形媒質からの出力光と前記第2の励起光源からの出力光とを合波し、前記第2の二次光非線形媒質へ入力する第2の合波手段24とを有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
Further, in the second invention , as shown in FIG. 2, for an integer N of 2 or more, multiple wavelengths of arbitrary optical frequencies 2ν 1 −ν P1 , 2ν 2 −ν P1 ,... 2ν N −ν P1 A multi-wavelength batch wavelength converter that converts input signal light into multi-wavelength converted light of arbitrary optical frequencies 2ν 1 −ν P2 , 2ν 2 −ν P2 ,... 2ν N −ν P2 , and has an optical frequency ν P1. a first
第2の発明の構成では、和周波光発生過程と差周波光発生過程とを、同一のQPM光周波数を有する2つの別々の二次光非線形媒質21,22で行う。即ち、前段の二次光非線形媒質21には多波長入力信号光と第1の励起光が入力され、和周波光発生過程により和周波光が発生し、後段の二次光非線形媒質22には該和周波光と第2の励起光が入力され、差周波光発生過程により多波長変換光を得る。
In the configuration of the second invention , the sum frequency light generation process and the difference frequency light generation process are performed by two separate secondary optical
ところで、第1及び第2の発明の構成では、実際には、最終段から多波長変換光とともに多波長入力信号光、第1、第2の励起光及び和周波光が出力される。光ネットワークに用いる波長変換器では、出力光に励起光や入力信号光が混入しないようにすることが重要であるため、波長可変バンドパスフィルタ(BPF)などの波長可変フィルタを利用して変換光のみを出力するようにする必要がある。 By the way, in the configurations of the first and second aspects of the invention , the multi-wavelength input signal light, the first and second excitation lights, and the sum frequency light are actually output from the final stage together with the multi-wavelength converted light. In a wavelength converter used in an optical network, it is important to prevent excitation light and input signal light from being mixed into output light. Therefore, converted light using a wavelength variable filter such as a wavelength variable bandpass filter (BPF) is used. Only need to output.
この点を考慮し、第3の発明では、図3に示すように、第2の発明において、前記第1の二次光非線形媒質21と第2の合波手段24との間に、光周波数2ν1,2ν2,……2νNの光のみを透過する光フィルタ31を設けた多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
Considering this point, in the third invention , as shown in FIG. 3, in the second invention , an optical frequency is provided between the first secondary optical
第3の発明の構成では、前段の二次光非線形媒質21の後に、和周波光の波長帯域付近(例えば780nm付近)の光を透過させ、入力信号光や励起光の波長帯域(例えば1550nm帯域)の光を遮断する波長特性を有するダイクロイックミラーなどの光フィルタ31を用いることで、後段の二次光非線形媒質22には和周波光及び第2の励起光のみを入力することができる。入力信号光及び第1の励起光が光フィルタ31によって遮断され、変換光に混入しないことがメリットとして挙げられる。但し、第2の励起光及び和周波光は変換光に混入するため、第1及び第2の発明の構成と同様、後段の二次光非線形媒質22の後に波長可変フィルタを設けて遮断する必要がある。
In the configuration of the third invention , light in the vicinity of the wavelength band of the sum frequency light (for example, near 780 nm) is transmitted after the secondary optical
また、第4の発明(但し、特許請求の範囲には含まれない。)では、図4に示すように、2以上の整数Nに対して、任意の光周波数2ν1−νP1,2ν2−νP1,……2νN−νP1の多波長入力信号光をそれぞれ任意の光周波数2ν1−νP2,2ν2−νP2,……2νN−νP2の多波長変換光に変換する多波長一括波長変換器であって、光周波数νP1の第1の励起光源11と、光周波数νP2の第2の励起光源12と、二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む二次光非線形媒質13と、多波長入力信号光と前記第1の励起光源からの出力光とを合波し、前記二次光非線形媒質へ入力する第1の合波手段41と、前記二次光非線形媒質からの出力光を前記第2の励起光源からの出力光と合波し、前記二次光非線形媒質に再び入力する第2の合波手段42とを有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
In the fourth invention (but not included in the scope of claims) , as shown in FIG. 4, for an integer N of 2 or more, an arbitrary optical frequency 2ν 1 −ν P1 , 2ν 2. −ν P1 ............ 2ν N −ν P1 multi-wavelength input signal light is converted into multi-wavelength converted light of any optical frequency 2ν 1 −ν P2 , 2ν 2 −ν P2 ,… 2ν N −ν P2 A multi-wavelength batch wavelength converter, a first
第4の発明の構成では、第2の発明の構成において前段/後段の二次光非線形媒質での和周波/差周波光発生過程を、それぞれ、1つの二次光非線形媒質13の往路/復路を用いて行う。即ち、二次光非線形媒質13に多波長入力信号光と第1の励起光が入力され、和周波光発生過程により和周波光が発生し、二次光非線形媒質13から出力され、該和周波光と第2の励起光が二次光非線形媒質13に再び入力され、差周波光発生過程により多波長変換光を得る。
In the configuration of the fourth aspect of the invention , the sum frequency / difference frequency light generation process in the secondary optical nonlinear medium at the front stage / rear stage in the configuration of the second invention is changed to the forward / return path of one secondary optical
また、第4の発明の構成では、第1及び第2の発明の構成と同様、最終的に出力される多波長変換光には多波長入力信号光、第1、第2の励起光及び和周波光が混入しているため、第1の合波手段41の前段に、波長可変フィルタを設けて変換光のみを出力するようにする必要がある。 Further, in the configuration of the fourth aspect of the invention, similar to that of the first and second aspects of the invention, the multi-wavelength converted light to be finally output multi-wavelength input signal light, first, second excitation light and the sum Since the frequency light is mixed, it is necessary to provide a wavelength tunable filter before the first multiplexing means 41 so as to output only the converted light.
この点を考慮し、第5の発明(但し、特許請求の範囲には含まれない。)では、図4に示すように、第4の発明において、前記二次光非線形媒質からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを第2の励起光源からの出力光と合波し、前記二次光非線形媒質に再び入力する第2の合波手段42’を有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。 In consideration of this point, in the fifth invention (but not included in the scope of claims) , as shown in FIG. 4, in the fourth invention , the output light from the secondary optical nonlinear medium is Among them, second light combining means 42 'for combining only light of optical frequencies 2ν 1 , 2ν 2 ,... 2ν N with the output light from the second pumping light source and inputting it again to the second-order nonlinear optical medium. The multi-wavelength collective wavelength converter and the multi-wavelength collective wavelength conversion method are used as solving means.
第5の発明の構成では、第2の合波手段42’により二次光非線形媒質13から出力される和周波光、多波長入力信号光及び第1の励起光のうち、多波長入力信号光及び第1の励起光はそのまま外部へ放出し、和周波光のみを第2の励起光とともに二次光非線形媒質13に再び入力する。但し、第2の励起光及び和周波光は変換光に混入するため、前記同様、第1の合波手段41の前段に波長可変フィルタを設けて遮断する必要がある。
In the configuration of the fifth invention , the multi-wavelength input signal light out of the sum frequency light, the multi-wavelength input signal light, and the first pumping light output from the secondary optical
また、第6の発明では、図5に示すように、2以上の整数Nに対して、任意の光周波数2ν1−νP1,2ν2−νP1,……2νN−νP1の多波長入力信号光をそれぞれ任意の光周波数2ν1−νP2,2ν2−νP2,……2νN−νP2の多波長変換光に変換する多波長一括波長変換器であって、光周波数νP1の第1の励起光源11と、光周波数νP2の第2の励起光源12と、二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質21及び22と、多波長入力信号光を直交する2つの偏波に分離し、そのうちの一方を前記第1の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の一端へ入力し、他方を前記第1の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の一端へ入力する、もしくは多波長入力信号光と前記第1の励起光源からの出力光とを合波するとともに直交する2つの偏波に分離し、そのうちの一方を前記第1の二次光非線形媒質の一端へ入力し、他方を前記第2の二次光非線形媒質の一端へ入力する第1の合分波手段51と、前記第1の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第1の二次光非線形媒質の他端へ入力する第2の合分波手段52とを有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
In the sixth invention , as shown in FIG. 5, for an integer N of 2 or more, multiple wavelengths of arbitrary optical frequencies 2ν 1 −ν P1 , 2ν 2 −ν P1 ,... 2ν N −ν P1 . A multi-wavelength batch wavelength converter that converts input signal light into multi-wavelength converted light of arbitrary optical frequencies 2ν 1 −ν P2 , 2ν 2 −ν P2 ,... 2ν N −ν P2 , and has an optical frequency ν P1. a first
第6の発明の構成では、和周波光/差周波光発生過程を、入力信号光を直交する2つの偏波に分離した状態で、それぞれ第1及び第2の二次光非線形媒質21及び22の往路/復路を用いて行う。即ち、第1の二次光非線形媒質21に多波長入力信号光の一方の偏波成分と第1の励起光が入力され、また、第2の二次光非線形媒質22に多波長入力信号光の他方の偏波成分と第1の励起光が入力され、それぞれ和周波光発生過程により和周波光が発生し、第1の二次光非線形媒質21で発生した和周波光と第2の励起光が第2の二次光非線形媒質22に再び入力され、また、第2の二次光非線形媒質22で発生した和周波光と第2の励起光が第1の二次光非線形媒質21に再び入力され、それぞれ差周波光発生過程により多波長変換光を得て、これらが合波される。変換光の光パワーが入力信号光の偏波状態に依存せず、一定の変換効率が保持される。
In the configuration of the sixth aspect of the invention , the first and second secondary nonlinear
また、第6の発明の構成では、第1、第2及び第4の発明の構成と同様、最終的に出力される多波長変換光には多波長入力信号光、第1、第2の励起光及び和周波光が混入しているため、第1の合分波手段51の前段に、波長可変フィルタを設けて変換光のみを出力するようにする必要がある。 In the configuration of the sixth invention, as in the configurations of the first, second, and fourth inventions , the multi-wavelength converted light that is finally output includes the multi-wavelength input signal light, the first and second pumps. Since light and sum frequency light are mixed, it is necessary to provide a wavelength tunable filter before the first multiplexing / demultiplexing means 51 so as to output only the converted light.
この点を考慮し、第7の発明では、図5に示すように、第6の発明において、前記第1の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の他端へ入力する第2の合分波手段52’を有する多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。 Considering this point, in the seventh invention , as shown in FIG. 5, in the sixth invention , the optical frequencies 2ν 1 and 2ν 2 of the output light from the other end of the first second-order nonlinear optical medium in the sixth invention . ,..., Only 2ν N light is combined with a part of the output light from the second excitation light source and input to the other end of the second secondary light nonlinear medium, and the second secondary light is input. Of the output light from the other end of the nonlinear medium, only the light having the optical frequency 2ν 1 , 2ν 2 ,... 2ν N is combined with a part of the output light from the second pumping light source, and the first two. The multi-wavelength collective wavelength converter having the second multiplexing / demultiplexing means 52 'for inputting to the other end of the next-order nonlinear medium and the multi-wavelength collective wavelength conversion method are used as the solution means.
第7の発明の構成では、第2の合分波手段52’により第1及び第2の二次光非線形媒質21及び22から出力される和周波光、多波長入力信号光及び第1の励起光のうち、多波長入力信号光及び第1の励起光はそのまま外部へ放出し、和周波光のみを第2の励起光とともに第1及び第2の二次光非線形媒質21及び22に再び入力する。但し、第2の励起光及び和周波光は変換光に混入するため、前記同様、第1の合分波手段51の前段に波長可変フィルタを設けて遮断する必要がある。
In the configuration of the seventh invention , the sum frequency light, the multi-wavelength input signal light and the first pumping light output from the first and second secondary optical
なお、第4乃至第7の発明の構成では、多波長変換光が多波長入力信号光の入力光路上を逆方向に伝搬するため、そのままでは多波長変換光を使用できない。 In the configurations of the fourth to seventh inventions , since the multi-wavelength converted light propagates in the reverse direction on the input optical path of the multi-wavelength input signal light, the multi-wavelength converted light cannot be used as it is.
この点を考慮し、第8の発明では、図6に示すように、第4乃至第7の発明(図では第4又は第5の発明)において、多波長入力信号光と多波長変換光とが互いに逆方向に伝搬する部分に、伝搬方向に応じて光を2つの方路に分離する光非可逆回路61を挿入した多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
Considering this point, in the eighth invention , as shown in FIG. 6, in the fourth to seventh inventions ( the fourth or fifth invention in the figure), the multiwavelength input signal light and the multiwavelength converted light A multi-wavelength collective wavelength converter in which an optical
第8の発明の構成では、ポートAから入力された光はポートBのみへ出力し、ポートBから入力された光はポートCのみへ出力し、ポートCから入力された光はポートAのみへ出力する光サーキュレータなどの光非可逆回路61により、多波長変換光を多波長入力信号光から分離して取り出す。
In the configuration of the eighth invention, the light inputted from the port A is output to only the port B, the light input from the port B is output to only the port C, the light input from the port C to only the port A The multi-wavelength converted light is separated from the multi-wavelength input signal light by the optical
なお、図6では、第1の合波回路41と二次光非線形媒質13との間に光非可逆回路61を設けたが、第1の合波回路41の前段に設けても良い。
In FIG. 6, the optical
変換光の光周波数を変化させる際には、第2の励起光の光周波数を変化させると同時に、波長可変フィルタの透過波長も必要な変換光のみを出力するように制御する必要があるため、構成の複雑化、波長可変フィルタの動作速度による変換先波長切換速度の制限などの問題がある。 When changing the optical frequency of the converted light, it is necessary to control the transmission wavelength of the wavelength tunable filter to output only the necessary converted light at the same time as changing the optical frequency of the second excitation light. There are problems such as complication of the configuration and limitation of the conversion wavelength switching speed due to the operating speed of the wavelength tunable filter.
この点を考慮し、第9の発明では、図7に示すように、第1乃至第8の発明(図では第5の発明+第8の発明)において、多波長変換光の出力光路に、光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する長波長帯透過フィルタ71又は光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する短波長帯透過フィルタ71を挿入した多波長一括波長変換器及びその多波長一括波長変換方法をもって解決手段とする。
Considering this point, in the ninth invention , as shown in FIG. 7, in the first to eighth inventions ( fifth invention + eighth invention in the figure), in the output optical path of the multi-wavelength converted light, Optical wavelength ν 1 , ν 2 ,... Long wavelength
第9の発明の構成では、例えば図8に示すようなQPM光周波数(ν1,ν2,……νN)付近にそのカットオフ光周波数を有する長波長帯透過光フィルタ71を多波長変換光の出力光路に挿入する。図7に示す構成における基本動作は第5の発明+第8の発明の構成と同様であり、往路/復路でそれぞれ和周波光/差周波光発生を行う。多波長入力信号光及び第1の励起光は第2の合波手段により外部へ放出されるが、第2の励起光及び和周波光は光非可逆回路61から出力される変換光に混入する。これを図8に示す波長特性の光フィルタ71を用いて取り除くことができ、多波長変換光のみを出力することができる。但し、この例では、変換先波長は二次光非線形媒質のQPM波長より長波長側に制限される。
In the ninth aspect of the invention , a long wavelength band transmission
なお、変換先波長が二次光非線形媒質のQPM波長より短波長側の場合は、QPM光周波数(ν1,ν2,……νN)付近にそのカットオフ光周波数を有する短波長帯透過光フィルタを用いる。 When the conversion destination wavelength is shorter than the QPM wavelength of the secondary optical nonlinear medium, transmission in a short wavelength band having the cutoff optical frequency near the QPM optical frequency (ν 1 , ν 2 ,..., Ν N ). Use an optical filter.
以上に説明したように、本発明の多波長一括波長変換器を用いることで、任意の波長の多波長入力信号光を一括して任意の波長の多波長変換光へ変換することが可能となる。 As described above, by using the multi-wavelength collective wavelength converter of the present invention, it becomes possible to collectively convert multi-wavelength input signal light having an arbitrary wavelength into multi-wavelength converted light having an arbitrary wavelength. .
図9は本発明の多波長一括波長変換器の第1の実施の形態、ここでは第1の発明に対応する実施の形態を示すもので、波長変換器への入力信号光として、変調速度10Gbps、波長多重数が4波、多重光周波数間隔Δν=100GHz、各波長の信号光中心光周波数νS1,νS2,νS3,νS4の波長多重信号光を仮定し、この多波長入力信号光を一括でそれぞれ光周波数νC1,νC2,νC3,νC4に変換する場合を想定する。 FIG. 9 shows a first embodiment of a multi-wavelength batch wavelength converter according to the present invention, here an embodiment corresponding to the first invention . As an input signal light to the wavelength converter, a modulation rate of 10 Gbps is shown. Assuming wavelength multiplexed signal light having a wavelength multiplexing number of 4 waves, a multiplexed optical frequency interval Δν = 100 GHz, and signal light center optical frequencies ν S1 , ν S2 , ν S3 , ν S4 of each wavelength, this multi-wavelength input signal light Are collectively converted to optical frequencies ν C1 , ν C2 , ν C3 , and ν C4 , respectively.
図中、101は光周波数νP1の第1の励起光源、102は光周波数νP2の第2の励起光源、103は二次光非線形媒質、104,105はエルビウムドープ光ファイバアンプ(EDFA)、106,107は方向性結合器、108は波長可変バンドパスフィルタ(BPF)である。 In the figure, 101 is a first pumping light source having an optical frequency ν P1 , 102 is a second pumping light source having an optical frequency ν P2 , 103 is a secondary optical nonlinear medium, 104 and 105 are erbium-doped optical fiber amplifiers (EDFA), 106 and 107 are directional couplers, and 108 is a wavelength tunable bandpass filter (BPF).
前記構成において、第1の励起光源101及び第2の励起光源102からの励起光は、EDFA104及び105にて増幅された後、方向性結合器106及び107を介して多波長入力信号光と合波され、二次光非線形媒質103に入力される。二次光非線形媒質103における和周波光発生過程と差周波光発生過程により発生した多波長変換光は、波長可変BPF108を透過して出力される。
In the above configuration, the excitation light from the first
図10は多波長入力信号光及び二次光非線形媒質の光周波数の配置の一例を示すものである。 FIG. 10 shows an example of the arrangement of the optical frequencies of the multi-wavelength input signal light and the secondary optical nonlinear medium.
ここでは二次光非線形媒質103として、図10に示すように、二次高調波光発生効率が最大となる擬似位相整合光周波数を、光周波数間隔Δν/2=50GHzで光周波数ν1,ν2,ν3,ν4に4本有するマルチ擬似位相整合ニオブ酸リチウム導波路(マルチ擬似位相整合LNWG)を利用する。
Here, as the second-order nonlinear
通常、擬似位相整合光周波数は1つのみであるが、近年、複数本の位相整合光周波数を実現する手法が提案され、実際に作製されている(例えば、参考文献:M.Asobe, et.al., Optics Letters, Vol.558-561, 2003)。以下にその製法例を示す。 Usually, there is only one quasi-phase-matched optical frequency, but in recent years, a method for realizing a plurality of phase-matched optical frequencies has been proposed and actually manufactured (for example, reference: M. Asobe, et. al., Optics Letters, Vol. 558-561, 2003). An example of the production method is shown below.
マルチ擬似位相整合(QPM)素子は、電界印加によって分極反転構造を形成したニオブ酸リチウム基板に光導波路を形成することにより作製できる。マルチQPM素子を実現するための分極反転構造としては、前記参考文献に述べられているように周期分極反転構造に連続的な位相変調を施し、その構造を別の周期で繰り返すことにより実現できる。以下に素子の作製手順の例を示す。 A multi quasi phase matching (QPM) element can be produced by forming an optical waveguide on a lithium niobate substrate having a domain-inverted structure formed by applying an electric field. The polarization inversion structure for realizing the multi-QPM element can be realized by subjecting the periodic polarization inversion structure to continuous phase modulation as described in the above-mentioned reference, and repeating the structure with another period. An example of a manufacturing procedure of the element is shown below.
本実施の形態ではLiNbO3のZ板(Z軸に垂直な面となるように切り出された基板)を用い、分極反転部を電界印加法により基本周期15.5μmで分極反転した。分極反転した基板にSiO2をフォトリソグラフィ技術を用いてパターン化し、温度約180度で安息香酸中に浸漬したのちに、酸素雰囲気中で熱処理してプロトン交換導波路を形成した。本実施の形態では4つの励起波長に対応できるように装置を構成した。分極反転部の詳細を以下に述べる。 In this embodiment, a LiNbO 3 Z plate (a substrate cut out so as to be a plane perpendicular to the Z axis) was used, and the polarization inversion portion was subjected to polarization inversion at a basic period of 15.5 μm by an electric field application method. SiO 2 was patterned on the polarization-reversed substrate using a photolithography technique, immersed in benzoic acid at a temperature of about 180 ° C., and then heat-treated in an oxygen atmosphere to form a proton exchange waveguide. In the present embodiment, the apparatus is configured to support four excitation wavelengths. Details of the polarization inversion portion will be described below.
1.55μmで第二次高調波発生(SHG)を行った場合の位相整合ピークの周波数間隔が50GHzとなるように位相変調周期を28.52μmとし、分極反転部の全体の長さを57.04μmとして位相変調パターンが2周期分繰り返すようにした。位相変調パターン1周期当たりに配置される分極反転構造は1840周期となる。本実施の形態ではこの周期15.5μmの分極反転構造を4周期ごとを単位として、位相変調周期を460分割してそれぞれの分極反転構造単位ごとの位相を最適化して4つの励起波長において最大の変換効率が得られる構造とした。 When the second harmonic generation (SHG) is performed at 1.55 μm, the phase modulation period is set to 28.52 μm so that the frequency interval of the phase matching peak is 50 GHz, and the entire length of the polarization inversion unit is 57. The phase modulation pattern was repeated for two periods as 04 μm. The domain-inverted structure arranged per period of the phase modulation pattern is 1840 periods. In the present embodiment, the polarization inversion structure with a period of 15.5 μm is divided into units of every four periods, the phase modulation period is divided into 460, and the phase for each of the domain inversion structure units is optimized to obtain the maximum at the four excitation wavelengths. The conversion efficiency is obtained.
本実施の形態に用いた分極反転構造を有するLiNbO3基板の作成方法を簡単に説明する。LiNbO3基板の+Z面にレジストを塗布し、フォトリソグラフィ技術を用いてパターン化し、電極を蒸着し、基板の両側に電解液を接触させて、電界を印加してレジストのない電極が基板に直接触れている部分の分極を反転する。 A method for producing a LiNbO 3 substrate having a domain-inverted structure used in this embodiment will be briefly described. A resist is applied to the + Z surface of the LiNbO 3 substrate, patterned using photolithography technology, electrodes are deposited, an electrolyte is brought into contact with both sides of the substrate, an electric field is applied, and the resist-free electrode is directly applied to the substrate. Inverts the polarization of the touched part.
上記のような製法にて作製されたマルチQPM−LNWGを用いることで、多波長入力信号光に対しても任意波長変換が可能になる。原理の詳細を示す。 By using the multi-QPM-LNWG produced by the manufacturing method as described above, arbitrary wavelength conversion is possible even for multi-wavelength input signal light. Details of the principle are shown.
QPM−LNWGにおける第1の励起光と多波長入力信号光の各光周波数νS1〜νS4の光との和周波光発生効率ηは、比例係数cを用いて近似的に式(1)のように表される。 The sum frequency light generation efficiency η of the first pumping light and the light of each wavelength ν S1 to ν S4 of the multi-wavelength input signal light in the QPM-LNWG is approximately expressed by the equation (1) using the proportional coefficient c. It is expressed as follows.
ここで、β(νSn)は各信号光の伝搬定数、β(νP1)は第1の励起光の伝搬定数、β(νSk+νP1)は両者の和周波光の伝搬定数、LはQPM−LNWG103の導波路長である。また、Δβn0は光学軸反転周期により一意に決定される定数であり、次式のように表される。 Where β (ν Sn ) is the propagation constant of each signal light, β (ν P1 ) is the propagation constant of the first excitation light, β (ν Sk + ν P1 ) is the propagation constant of the sum frequency light of both, and L is It is the waveguide length of QPM-LNWG103. Δβ n0 is a constant uniquely determined by the optical axis inversion period, and is represented by the following equation.
ここで、多波長入力信号光の光周波数間隔はQPM−LNWG103の擬似位相整合光周波数間隔の2倍であるため、任意のnに対してνSn+νP1=2νnを満たすように、第1の励起光の光周波数νP1を設定することが可能である。
Here, since the optical frequency interval of the multi-wavelength input signal light is twice the quasi-phase matched optical frequency interval of the QPM-
これを用いて、式(1)を式(3)のように変形できる。 Using this, equation (1) can be transformed into equation (3).
さらに、νSnはνn近傍の光周波数(|νSn/νn−1|≪1)であると仮定し、β(ν)をνn近傍で展開し、高次の項を無視することで、式(3)は式(4)のように変形できる。 Furthermore, ν Sn is assumed to have an optical frequency near ν n (| ν Sn / ν n −1 | << 1), β (ν) is developed near ν n , and higher-order terms are ignored. Thus, equation (3) can be transformed into equation (4).
従って、νSnが十分にνn近傍(|νSn/νn−1|≪1)である場合、光周波数νP1の第1の励起光を用いることで、任意の光周波数νSnの信号光に対して高効率な和周波発生が可能であることが分かる。 Therefore, [nu Sn is sufficiently [nu n vicinity when it is (| | ν Sn / ν n -1 «1), by using the first excitation light optical frequency [nu P1, signals of any optical frequency [nu Sn It can be seen that highly efficient sum frequency generation is possible for light.
図11は和周波光発生及び差周波光発生のようすを示すものである。 FIG. 11 shows the generation of sum frequency light and difference frequency light.
図11(a)に示すように、和周波光発生により各光周波数νSnの信号光はそれぞれ光周波数2νnの信号光に変換される。さらに、それぞれの和周波光と第2の励起光の差周波光発生によって、変換光を得る。第2の励起光の光周波数νP2として、任意のnに対してνCn+νP2=2νnを満たすようにνP2を設定することが可態であり、この過程においても上記と同様な原理により、擬似位相整合が満たされ、高効率な差周波光発生が実現する(図11(b))。 As shown in FIG. 11A, the signal light of each optical frequency ν Sn is converted into the signal light of optical frequency 2ν n by the sum frequency light generation. Further, converted light is obtained by generating a difference frequency light between each sum frequency light and the second excitation light. It is possible to set ν P2 so as to satisfy ν Cn + ν P2 = 2ν n for an arbitrary n as the optical frequency ν P2 of the second pumping light. In this process, the same principle as above is used. Thus, the quasi-phase matching is satisfied, and high-efficiency difference frequency light generation is realized (FIG. 11B).
また、変換先光周波数はνP2を変化させることで制御可能であるが、νP2に無関係に擬似位相整合が満たされるため、任意のνP2に対して高い和周波/差周波光発生効率が維持され、変換先光周波数を変化させても変換光のパワーが変動することは無い。また、ここでは、擬似位相整合光周波数を多重光周波数間隔Δνの半分としたが、整数分の1でも良い。 Also, although the destination optical frequency is controllable by varying the [nu P2, because it satisfied irrespective quasi-phase matching in [nu P2, higher sum frequency / difference frequency light generation efficiency for any [nu P2 The power of the converted light does not fluctuate even if the conversion destination optical frequency is changed. Here, the quasi phase matching optical frequency is half of the multiple optical frequency interval Δν, but may be a fraction of an integer.
図12は本発明の多波長一括波長変換器の第2の実施の形態、ここでは第7の発明に対応する実施の形態を示すもので、図中、111は第1の励起光源、112は第2の励起光源、113は第1の二次光非線形媒質(QPM−LNWG)、114は第2の二次光非線形媒質(QPM−LNWG)、115,116はEDFA、117は合波器、118は偏光依存型ビームスプリッタ(PBS)、119は偏光回転子、120はビームスプリッタ、121は780nm帯の光を反射し、1550nm帯の光を透過するミラーである。 FIG. 12 shows a second embodiment of the multi-wavelength batch wavelength converter of the present invention, here an embodiment corresponding to the seventh invention , in which 111 is the first excitation light source, 112 is The second pumping light source, 113 is a first secondary optical nonlinear medium (QPM-LNWG), 114 is a second secondary optical nonlinear medium (QPM-LNWG), 115 and 116 are EDFAs, 117 is a multiplexer, 118 is a polarization-dependent beam splitter (PBS), 119 is a polarization rotator, 120 is a beam splitter, and 121 is a mirror that reflects light in the 780 nm band and transmits light in the 1550 nm band.
ここで、合波器117、PBS118及び偏光回転子119が第7の発明でいう第1の合分波手段を構成し、ビームスプリッタ120及びミラー121が第7の発明でいう第2の合分波手段を構成する。
Here, the
前記構成において、多波長入力信号光は、第1の励起光源111で発生し、EDFA115で増幅された第1の励起光と合波器117で合波された後、偏光ビームスプリッタ(PBS)118により2つの直交偏波に分離される。一方の偏波成分はそのままQPM−LNWG113に入力され、他方の偏波成分は偏光回転子119により90度回転されてQPM−LNWG114に入力され、それぞれ和周波光発生を起こす。
In the above-described configuration, the multi-wavelength input signal light is generated by the first
それぞれのQPM−LNWG113,114からの出力光のうち、和周波光のみがミラー121により反射され、互いに他方のQPM−LNWG114,113に入力される。この際、第2の励起光源112で発生し、EDFA116で増幅され、ビームスプリッタ120で等しく分波された第2の励起光と合波される。
Of the output light from each of the QPM-
それぞれのQPM−LNWG113,114において、入力された和周波光と第2の励起光は、和周波光発生過程とは反対方向に伝搬し、差周波光発生を起こす。発生した差周波光はPBS118により合波され、多波長変換光となってPBS118の入力信号光入力ポートから出力される。その後、図示しない光非可逆回路により入力光路から分離され、出力される。
In each of the QPM-
この構成では、入力信号光は直交する2つの偏波に分離され、個々に波長変換された後に合波されるため、任意の偏波状態に対して一定の変換効率を保持できる。 In this configuration, the input signal light is separated into two orthogonal polarizations, and after being individually wavelength-converted, the input signal light is multiplexed, so that a constant conversion efficiency can be maintained for any polarization state.
なお、光非可逆回路の挿入位置はPBS118と合波器117との間、合波器117の前段のいずれでも良い。また、図12では多波長入力信号光を第1の励起光と合波した後に直交する2つの偏波に分離しているが、多波長入力信号光のみを直交する2つの偏波に分離し、その後、それぞれに対して第1の励起光を合波するようにしても良い。
The insertion position of the optical irreversible circuit may be either between the PBS 118 and the
11,101,111:第1の励起光源、12,102,112:第2の励起光源、13,21,22,113,114:二次光非線形媒質、14、23,24、41,42,42’:合波手段、31:光フィルタ、51,52,52’:合分波手段、61:光非可逆回路、71:波長固定フィルタ、103:マルチ擬似位相整合LNWG、104,105,115,116:EDFA、106,107:方向性結合器、108:波長可変BPF、117:合波器、118:PBS、119:偏光回転子、120:ビームスプリッタ、121:ミラー。 11, 101, 111: first excitation light source, 12, 102, 112: second excitation light source, 13, 21, 22, 113, 114: secondary optical nonlinear medium, 14, 23, 24, 41, 42, 42 ': multiplexing means, 31: optical filter, 51, 52, 52': multiplexing / demultiplexing means, 61: optical irreversible circuit, 71: wavelength fixed filter, 103: multi-pseudo phase matching LNWG, 104, 105, 115 116: EDFA, 106, 107: directional coupler, 108: wavelength tunable BPF, 117: multiplexer, 118: PBS, 119: polarization rotator, 120: beam splitter, 121: mirror.
Claims (14)
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む二次光非線形媒質と、
多波長入力信号光と前記第1の励起光源からの出力光と前記第2の励起光源からの出力光とを合波し、前記二次光非線形媒質へ入力する合波手段とを有する
ことを特徴とする多波長一括波長変換器。 For two or more integer N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multi-wavelength batch wavelength converter that converts to 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of the optical frequency [nu P2,
[Nu 1 as an optical frequency second harmonic light generation efficiency becomes maximum, [nu 2, a secondary optical nonlinear medium comprising ...... ν N,
A multiplexing means for combining the multi-wavelength input signal light, the output light from the first excitation light source, and the output light from the second excitation light source, and inputting the combined light to the secondary optical nonlinear medium. Multi-wavelength batch wavelength converter characterized.
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質と、
多波長入力信号光と前記第1の励起光源からの出力光とを合波し、前記第1の二次光非線形媒質へ入力する第1の合波手段と、
前記第1の二次光非線形媒質からの出力光と前記第2の励起光源からの出力光とを合波し、前記第2の二次光非線形媒質へ入力する第2の合波手段とを有する
ことを特徴とする多波長一括波長変換器。 For two or more integer N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multi-wavelength batch wavelength converter that converts to 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of optical frequency ν P2 ;
First and second second-order nonlinear optical media including ν 1 , ν 2 , ν N as optical frequencies at which the second-harmonic light generation efficiency is maximized;
First multiplexing means for multiplexing multi-wavelength input signal light and output light from the first pumping light source and inputting the multiplexed light to the first secondary optical nonlinear medium;
Second combining means for combining the output light from the first secondary light nonlinear medium and the output light from the second pumping light source and inputting the combined light to the second secondary light nonlinear medium; A multi-wavelength batch wavelength converter characterized by comprising:
前記第1の二次光非線形媒質と第2の合波手段との間に、光周波数2ν1,2ν2,……2νNの光のみを透過する光フィルタを設けた
ことを特徴とする多波長一括波長変換器。 The multi-wavelength batch wavelength converter according to claim 2,
An optical filter that transmits only light having an optical frequency of 2ν 1 , 2ν 2 ,... 2ν N is provided between the first secondary optical nonlinear medium and the second multiplexing means. Wavelength batch wavelength converter.
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質と、
多波長入力信号光を直交する2つの偏波に分離し、そのうちの一方を前記第1の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の一端へ入力し、他方を前記第1の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の一端へ入力する、もしくは多波長入力信号光と前記第1の励起光源からの出力光とを合波するとともに直交する2つの偏波に分離し、そのうちの一方を前記第1の二次光非線形媒質の一端へ入力し、他方を前記第2の二次光非線形媒質の一端へ入力する第1の合分波手段と、
前記第1の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第1の二次光非線形媒質の他端へ入力する第2の合分波手段とを有する
ことを特徴とする多波長一括波長変換器。 For two or more integer N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multi-wavelength batch wavelength converter that converts to 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of optical frequency ν P2 ;
First and second second-order nonlinear optical media including ν 1 , ν 2 , ν N as optical frequencies at which the second-harmonic light generation efficiency is maximized;
The multi-wavelength input signal light is separated into two orthogonally polarized waves, and one of them is combined with a part of the output light from the first pumping light source to one end of the first secondary optical nonlinear medium. The other is combined with a part of the output light from the first excitation light source and input to one end of the second secondary optical nonlinear medium, or the multi-wavelength input signal light and the first excitation The output light from the light source is multiplexed and separated into two orthogonal polarized waves, one of which is input to one end of the first secondary optical nonlinear medium, and the other is input to the second secondary optical nonlinear First multiplexing / demultiplexing means for inputting to one end of the medium;
The output light from the other end of the first secondary light nonlinear medium and the part of the output light from the second excitation light source are combined and input to the other end of the second secondary light nonlinear medium. And combining the output light from the other end of the second secondary optical nonlinear medium and a part of the output light from the second pumping light source to combine the other end of the first secondary optical nonlinear medium. And a second wavelength multiplexing / demultiplexing means for inputting to the multi-wavelength batch wavelength converter.
前記第1の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の他端へ入力する第2の合分波手段を有する
ことを特徴とする多波長一括波長変換器。 The multi-wavelength batch wavelength converter according to claim 4 ,
Wherein among light frequency 2v 1 of the output light from the other end of the first secondary optical nonlinear medium, 2v 2, only light of ...... 2ν N combined with the part of the output light from the second excitation light source And input to the other end of the second secondary optical nonlinear medium, and light having optical frequencies of 2ν 1 , 2ν 2 ,... 2ν N out of the output light from the other end of the second secondary optical nonlinear medium. And a second multiplexing / demultiplexing unit that multiplexes only a part of the output light from the second excitation light source and inputs it to the other end of the first second-order nonlinear optical medium. Wavelength batch wavelength converter.
多波長入力信号光と多波長変換光とが互いに逆方向に伝搬する部分に、伝搬方向に応じて光を2つの方路に分離する光非可逆回路を挿入した
ことを特徴とする多波長一括波長変換器。 The multi-wavelength batch wavelength converter according to claim 4 or 5 ,
Multi-wavelength collective, characterized in that an optical non-reciprocal circuit that separates light into two directions according to the propagation direction is inserted in the part where multi-wavelength input signal light and multi-wavelength converted light propagate in opposite directions Wavelength converter.
多波長変換光の出力光路に、光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する長波長帯透過フィルタ又は光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する短波長帯透過フィルタを挿入した
ことを特徴とする多波長一括波長変換器。 The multi-wavelength batch wavelength converter according to any one of claims 1 to 6 ,
The output path of the multi-wavelength converted light, optical frequency ν 1, ν 2, ...... ν long wavelength transmission filter or optical frequency [nu 1 having a cut-off light frequency around N, [nu 2, cut around ...... [nu N A multi-wavelength batch wavelength converter, wherein a short wavelength band transmission filter having an off-light frequency is inserted.
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む二次光非線形媒質とを用い、
多波長入力信号光と前記第1の励起光源からの出力光と前記第2の励起光源からの出力光とを合波し、前記二次光非線形媒質へ入力する
ことを特徴とする多波長一括波長変換方法。 For two or more integer N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multiple wavelength batch wavelength conversion method for converting into 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of optical frequency ν P2 ;
Using a second-order nonlinear optical medium including ν 1 , ν 2 , ν N as the optical frequencies at which the second-harmonic light generation efficiency is maximized,
Multi-wavelength input signal light, output light from the first excitation light source, and output light from the second excitation light source are combined and input to the second-order nonlinear optical medium. Wavelength conversion method.
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質とを用い、
多波長入力信号光と前記第1の励起光源からの出力光とを合波し、前記第1の二次光非線形媒質へ入力し、
前記第1の二次光非線形媒質からの出力光と前記第2の励起光源からの出力光とを合波し、前記第2の二次光非線形媒質へ入力する
ことを特徴とする多波長一括波長変換方法。 For two or more integer N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multiple wavelength batch wavelength conversion method for converting into 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of optical frequency ν P2 ;
Using first and second second-order nonlinear optical media including ν 1 , ν 2 ,... Ν N as optical frequencies at which the second-harmonic light generation efficiency is maximized,
Multi-wavelength input signal light and output light from the first excitation light source are combined and input to the first secondary optical nonlinear medium,
A multi-wavelength package characterized in that the output light from the first secondary light nonlinear medium and the output light from the second pumping light source are combined and input to the second secondary light nonlinear medium. Wavelength conversion method.
前記第1の二次光非線形媒質からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光と合波し、前記第2の二次光非線形媒質へ入力する
ことを特徴とする多波長一括波長変換方法。 In the multiple wavelength batch wavelength conversion method according to claim 9 ,
Of the output light from the first secondary optical nonlinear medium, only the light with optical frequencies 2ν 1 , 2ν 2 ,... 2ν N is combined with the output light from the second excitation light source, and the second A multi-wavelength batch wavelength conversion method characterized by inputting to a secondary optical nonlinear medium.
光周波数νP1の第1の励起光源と、
光周波数νP2の第2の励起光源と、
二次高調波光発生効率が極大となる光周波数としてν1,ν2,……νNを含む第1及び第2の二次光非線形媒質とを用い、
多波長入力信号光を直交する2つの偏波に分離し、そのうちの一方を前記第1の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の一端へ入力し、他方を前記第1の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の一端へ入力し、もしくは多波長入力信号光と前記第1の励起光源からの出力光とを合波するとともに直交する2つの偏波に分離し、そのうちの一方を前記第1の二次光非線形媒質の一端へ入力し、他方を前記第2の二次光非線形媒質の一端へ入力し、
前記第1の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光と前記第2の励起光源からの出力光の一部とを合波して前記第1の二次光非線形媒質の他端へ入力する
ことを特徴とする多波長一括波長変換方法。 Respect integer of 2 or more N, any optical frequency 2ν 1 -ν P1, 2ν 2 -ν P1, ...... 2ν N arbitrary optical frequency -v P1 multi-wavelength input signal light of each 2v 1 -v P2, 2ν 2 −ν P2 ............ Multiple wavelength batch wavelength conversion method for converting into 2ν N −ν P2 multi-wavelength converted light,
A first excitation light source having an optical frequency ν P1 ;
A second excitation light source of optical frequency ν P2 ;
Using first and second second-order nonlinear optical media including ν 1 , ν 2 ,... Ν N as optical frequencies at which the second-harmonic light generation efficiency is maximized,
The multi-wavelength input signal light is separated into two orthogonally polarized waves, and one of them is combined with a part of the output light from the first pumping light source to one end of the first secondary optical nonlinear medium. The other is combined with a part of the output light from the first excitation light source and input to one end of the second secondary optical nonlinear medium, or the multi-wavelength input signal light and the first excitation The output light from the light source is multiplexed and separated into two orthogonal polarizations, one of which is input to one end of the first secondary optical nonlinear medium, and the other is input to the second secondary optical nonlinear Input to one end of the medium,
The output light from the other end of the first secondary light nonlinear medium and the part of the output light from the second excitation light source are combined and input to the other end of the second secondary light nonlinear medium. And combining the output light from the other end of the second secondary optical nonlinear medium and a part of the output light from the second pumping light source to combine the other end of the first secondary optical nonlinear medium. A multi-wavelength batch wavelength conversion method characterized by:
前記第1の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第2の二次光非線形媒質の他端へ入力し、前記第2の二次光非線形媒質の他端からの出力光のうち光周波数2ν1,2ν2,……2νNの光のみを前記第2の励起光源からの出力光の一部と合波して前記第1の二次光非線形媒質の他端へ入力する
ことを特徴とする多波長一括波長変換方法。 In the multiple wavelength batch wavelength conversion method according to claim 11 ,
Of the output light from the other end of the first second-order nonlinear optical medium, only light with optical frequencies 2ν 1 , 2ν 2 ,... 2ν N is combined with a part of the output light from the second excitation light source. And input to the other end of the second secondary optical nonlinear medium, and light having optical frequencies of 2ν 1 , 2ν 2 ,... 2ν N out of the output light from the other end of the second secondary optical nonlinear medium. A multi-wavelength collective wavelength conversion method characterized in that only a part of the output light from the second excitation light source is combined and input to the other end of the first secondary nonlinear optical medium.
伝搬方向に応じて光を2つの方路に分離する光非可逆回路を用いて、互いに逆方向に伝搬する多波長入力信号光と多波長変換光とを分離する
ことを特徴とする多波長一括波長変換方法。 The multi-wavelength batch wavelength conversion method according to claim 11 or 12 ,
A multi-wavelength batch characterized by separating multi-wavelength input signal light and multi-wavelength converted light propagating in opposite directions using an optical irreversible circuit that separates light into two paths according to the propagation direction Wavelength conversion method.
光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する長波長帯透過フィルタ又は光周波数ν1,ν2,……νN付近にカットオフ光周波数を有する短波長帯透過フィルタを用いて、多波長変換光の出力光路から多波長変換光のみを取り出す
ことを特徴とする多波長一括波長変換方法。 The multi-wavelength batch wavelength conversion method according to any one of claims 8 to 13 ,
Optical wavelength ν 1 , ν 2 ,... Long wavelength band pass filter with cutoff optical frequency near ν N or optical frequency ν 1 , ν 2 ,... Short wavelength band transmission with cutoff optical frequency near ν N A multi-wavelength batch wavelength conversion method, wherein only a multi-wavelength converted light is extracted from an output optical path of the multi-wavelength converted light using a filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003346777A JP4454008B2 (en) | 2003-10-06 | 2003-10-06 | Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003346777A JP4454008B2 (en) | 2003-10-06 | 2003-10-06 | Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005114897A JP2005114897A (en) | 2005-04-28 |
JP4454008B2 true JP4454008B2 (en) | 2010-04-21 |
Family
ID=34539595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003346777A Expired - Fee Related JP4454008B2 (en) | 2003-10-06 | 2003-10-06 | Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4454008B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023175691A1 (en) * | 2022-03-14 | 2023-09-21 |
-
2003
- 2003-10-06 JP JP2003346777A patent/JP4454008B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005114897A (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asobe et al. | Multiple quasi-phase-matched device using continuous phase modulation of/spl chi//sup (2)/grating and its application to variable wavelength conversion | |
US6344921B1 (en) | Optical parametric amplifiers and generators in optical communication systems | |
JP7189470B2 (en) | optical signal processor | |
JP2005242219A (en) | Array type wavelength converter | |
Wang et al. | Second-harmonic generation in nanophotonic PPLN waveguides with ultrahigh efficiencies | |
JP4454008B2 (en) | Multi-wavelength batch wavelength converter and multi-wavelength batch wavelength conversion method | |
JP4251040B2 (en) | How to use wavelength converter | |
JP2004020870A (en) | Wavelength conversion element and wavelength conversion apparatus | |
JP6533171B2 (en) | Optical comb generator | |
JP4602923B2 (en) | Wavelength converter | |
JP2007187920A (en) | Nonlinear optical medium and wavelength converter using the same | |
JP3575434B2 (en) | Optical parametric circuit | |
US6856450B2 (en) | Method and apparatus for generating a sequence of optical wavelength bands | |
JP4080819B2 (en) | Wavelength conversion circuit and wavelength conversion method | |
JP2004109916A (en) | Wavelength converter for optical communication | |
Liang et al. | L-band mode and wavelength conversion in a periodically poled lithium niobate ridge waveguide | |
JP2002090786A (en) | Wavelength conversion element | |
JP2001305593A (en) | Wavelength changing | |
JP3075199B2 (en) | Light switch | |
Wang et al. | Double-conversion optical frequency shifter using multiple quasi-phase-matched LiNbO3 waveguides | |
JP2000010130A (en) | Wavelength converter | |
JP2002328405A (en) | Optical frequency shifter and its control method | |
Wang et al. | Tunable wavelength conversion based on cascaded sum and difference frequency generation with double-conversion configuration using M-QPM-LN waveguides | |
Tadanaga et al. | Variable operation of optical frequency shifter using multiple-quasi-phase-matched LiNbO3 wavelength converters | |
JP2001133820A (en) | Wavelength converter, quasi phase matching type wave conversion element, and method for using quasi phase matching type wave conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100128 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |