JP4451336B2 - Titanium copper and method for producing the same - Google Patents
Titanium copper and method for producing the same Download PDFInfo
- Publication number
- JP4451336B2 JP4451336B2 JP2005084074A JP2005084074A JP4451336B2 JP 4451336 B2 JP4451336 B2 JP 4451336B2 JP 2005084074 A JP2005084074 A JP 2005084074A JP 2005084074 A JP2005084074 A JP 2005084074A JP 4451336 B2 JP4451336 B2 JP 4451336B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- rolling
- aging
- titanium
- titanium copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000032683 aging Effects 0.000 claims description 61
- 238000005482 strain hardening Methods 0.000 claims description 59
- 238000005096 rolling process Methods 0.000 claims description 57
- 238000010438 heat treatment Methods 0.000 claims description 48
- 238000005097 cold rolling Methods 0.000 claims description 35
- 239000010936 titanium Substances 0.000 claims description 35
- 238000001816 cooling Methods 0.000 claims description 33
- 230000035882 stress Effects 0.000 claims description 33
- 239000013078 crystal Substances 0.000 claims description 30
- 239000010949 copper Substances 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000003483 aging Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 239000002244 precipitate Substances 0.000 description 20
- 229910052719 titanium Inorganic materials 0.000 description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000012360 testing method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910017945 Cu—Ti Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Conductive Materials (AREA)
Description
本発明はチタン銅及びその製造方法、並びに前記チタン銅を用いた伸銅品及び電子部品に関する。 The present invention relates to titanium copper, a method for producing the same, and a drawn copper product and an electronic component using the titanium copper.
パソコン及び携帯電話等の電子機器の電子部品(例えばコネクタ)に使用される材料に要求される機械的特性として、ばね限界値(材料をたわませたとき、所定の永久たわみ(例えば0.075mm又は0.1mm)が生じるときの表面最大応力値)や耐力(材料を引っ張った場合に所定量の永久ひずみ(通例0.2%)が生じるときの応力)が重要視されてきた。
この観点から、時効硬化型銅合金の高ベリリウム銅(JIS C1720)に代表されるベリリウム銅がコネクタの素材として広く使用されてきた。ベリリウム銅は耐力、ばね限界値及び応力緩和特性といった機械的特性に優れるとともに、導電性等の観点でも優れた特性を有する銅合金である。
近年、ベリリウム銅が高価であることから、ベリリウム銅の代替銅合金の開発が求められており、その代表的なものの一つがチタン銅である(例えば、JIS C1990が挙げられる)。チタン銅は高ベリリウム銅と同じ時効硬化型の銅合金であり、溶体化処理された過飽和固溶体を時効処理すると、スピノーダル分解を起こして母材中に変調構造と呼ばれるチタン濃度の周期的な濃淡を生成し硬化する。高ベリリウム銅に匹敵する高い強度が得られ、また、応力緩和特性も良好であることから、ベリリウム銅の代替銅合金として期待されており、種々の特性の向上を目的とした研究がなされている。
例えば、特許文献1ではチタン銅に適量のCr、Zr、Fe及びNiを添加した、伸びや加工性を損なうことなく、強度と導電性に優れた特性を持つ、導電性バネ材料に適したチタン銅が提案されている。特許文献1では各成分の含有量を発明特定事項とし、合金特性を引張強度(kg/mm2)、伸び(%)、硬度(Hv)、導電率(%IACS)及び加工性を指標として評価している。
また、特許文献2では結晶粒径及び最終圧延加工度を適正化することで強度及び曲げ加工性を両立させたチタン銅合金が提案されている。特許文献2では各成分の含有量、平均結晶粒径、0.2%耐力、割れの発生しない曲げ半径比、引張強さ、導電率等を発明特定事項とし、合金特性を引張強さ(N/mm2)、0.2%耐力(N/mm2)、伸び(%)、曲げ半径比(r/t)及び導電率(%IACS)を指標として評価している。
更に、特許文献3ではTiを2.0〜5.0質量%含有し、残部がCu及び不可避的不純物からなる銅基合金であって、0.2%耐力が700MPa以上、0.2%耐力とばね限界値との差が100MPa以下であり、酸化膜厚が10nm以下であることを特徴とし、ばね性とはんだ濡れ性とを高いレベルで同時に実現したCu−Ti合金が提案されている。特許文献3では合金特性を0.2%耐力(MPa)、ばね限界値(MPa)、残留応力(MPa)、永久変形量(mm)、酸化膜厚(nm)、はんだ濡れ性を指標として評価している。
As mechanical characteristics required for materials used for electronic parts (for example, connectors) of electronic devices such as personal computers and mobile phones, the spring limit value (when the material is deflected, a predetermined permanent deflection (for example, 0.075 mm) Or surface maximal stress value when 0.1 mm) occurs) and yield strength (stress when a predetermined amount of permanent strain (typically 0.2%) occurs when a material is pulled) have been regarded as important.
From this point of view, beryllium copper typified by age-hardening type copper alloy high beryllium copper (JIS C1720) has been widely used as a connector material. Beryllium copper is a copper alloy having excellent mechanical properties such as proof stress, spring limit value, and stress relaxation properties, and also excellent properties from the viewpoint of conductivity.
In recent years, since beryllium copper is expensive, development of an alternative copper alloy for beryllium copper has been demanded, and one of the typical examples is titanium copper (for example, JIS C1990). Titanium copper is the same age-hardening type copper alloy as high beryllium copper. Generate and cure. High strength comparable to high beryllium copper is obtained, and stress relaxation characteristics are also good, so it is expected as an alternative copper alloy for beryllium copper, and research aimed at improving various characteristics has been made. .
For example, in Patent Document 1, a suitable amount of titanium, copper, and titanium, which is suitable for a conductive spring material, which has excellent strength and electrical conductivity, without damaging elongation and workability, by adding appropriate amounts of Cr, Zr, Fe, and Ni to titanium copper. Copper has been proposed. In Patent Document 1, the content of each component is an invention-specific matter, and the alloy properties are evaluated using tensile strength (kg / mm 2 ), elongation (%), hardness (Hv), conductivity (% IACS) and workability as indices. is doing.
Patent Document 2 proposes a titanium-copper alloy that achieves both strength and bending workability by optimizing the crystal grain size and the final rolling workability. In Patent Document 2, the content of each component, average crystal grain size, 0.2% proof stress, bending radius ratio at which cracks do not occur, tensile strength, electrical conductivity, etc. are specified as invention specific matters, and alloy properties are determined as tensile strength (N / Mm 2 ), 0.2% proof stress (N / mm 2 ), elongation (%), bending radius ratio (r / t), and conductivity (% IACS) are evaluated as indices.
Further, in Patent Document 3, a copper-based alloy containing 2.0 to 5.0% by mass of Ti, with the balance being Cu and inevitable impurities, with a 0.2% yield strength of 700 MPa or more and a 0.2% yield strength. And a spring limit value are 100 MPa or less, an oxide film thickness is 10 nm or less, and a Cu—Ti alloy that simultaneously realizes spring properties and solder wettability at a high level has been proposed. In Patent Document 3, the alloy properties are evaluated using 0.2% yield strength (MPa), spring limit value (MPa), residual stress (MPa), permanent deformation (mm), oxide film thickness (nm), and solder wettability as indices. is doing.
コネクタ等の電子部品に使用される材料は曲げ加工が施される場合が多い。このような材料には、曲げ加工が施された状態で嵌合時に必要な接触力(ばね力)が得られることが要求される。コネクタを挿抜する際に、永久たわみ(へたり)が発生すると接触力が下がるため、高い接触力を維持するためには曲げ加工後のばね特性を向上させることが重要である。
しかしながら、上記のように従来のチタン銅の機械的特性の評価及び開発は、ばね限界値や耐力等の曲げ加工が施されていない試料に対する特性値を指標としてなされてきたため、従来のチタン銅は曲げ加工されると所望のばね特性が得られないといった不都合が生じることがあった。すなわち、実際のコネクタ等の電子部品に使用される材料は曲げ加工が施されることが多いが、従来技術では曲げ加工前の特性に着目して合金組成や結晶粒径等を規定したチタン銅を開発し、曲げ加工後のばね特性に優れたチタン銅が有するべき各種パラメータ条件、そしてそのようなチタン銅を製造するための有利な製造条件を見出しておらず、曲げ加工されているコネクタ等の電子部品に要求されるばね特性を充分に得られないという問題があった。
そこで、本発明では曲げ加工後のばね特性が改良されたチタン銅、とりわけ曲げ加工が施されるコネクタ等の電子部品の素材としての使用に好適な、曲げ加工後のばね特性が改良されたチタン銅及びその製造方法並びに前記チタン銅を用いた伸銅品及び電子部品を提供することを課題とする。
Materials used for electronic parts such as connectors are often subjected to bending. Such a material is required to obtain a contact force (spring force) necessary for fitting in a state where the material is bent. When a connector is inserted and removed, if a permanent deflection (sagging) occurs, the contact force decreases. Therefore, in order to maintain a high contact force, it is important to improve the spring characteristics after bending.
However, as described above, the evaluation and development of the mechanical properties of the conventional titanium copper have been made using the characteristic values for the sample that has not been subjected to bending such as the spring limit value and the proof stress as an index. When bent, there may be a problem that desired spring characteristics cannot be obtained. In other words, the materials used for actual electronic components such as connectors are often subjected to bending, but in the prior art, titanium copper with the alloy composition, crystal grain size, etc. specified by focusing on the characteristics before bending. We have developed a variety of parameter conditions that should be possessed by titanium copper with excellent spring characteristics after bending, and have not found advantageous manufacturing conditions for manufacturing such titanium copper. There is a problem that the spring characteristics required for the electronic parts cannot be sufficiently obtained.
Therefore, in the present invention, titanium copper having improved spring characteristics after bending, particularly titanium having improved spring characteristics after bending, which is suitable for use as a material for electronic parts such as connectors subjected to bending. It is an object of the present invention to provide copper, a method for producing the same, a copper product using the titanium copper, and an electronic component.
本発明者らは、曲げ加工が施されたチタン銅のばね特性の改善に対し鋭意研究を重ねたところ、所定の条件を満足するいくつかの特定のパラメータを併せ持つチタン銅が曲げ加工後に有利なばね特性を示すことを見出した。
上記の知見に基づいて完成された本発明は一側面において、
(1) Tiを2.7〜3.7質量%含有し、残部がCu及び不可避的不純物から成る銅合金であって、加工硬化係数が0.1以上であり、0.2%耐力が850MPa以上であり、かつ900℃で10分間加熱後に水冷した場合に加熱処理前後の体積抵抗率(ρ:μΩcm)の差が25〜45である時効硬化型のチタン銅である。
また、本発明は別の一側面において、
(2) 圧延方向に対して直角な断面の平均結晶粒径が2〜10μmである(1)に記載のチタン銅である。
また、本発明は更に別の一側面において、
(3) 熱間圧延A、冷間圧延B、溶体化処理C、冷間圧延D、時効処理Eを順次行うことを少なくとも含むチタン銅の製造方法であって、
・ 前記冷間圧延Dの加工度が35%以下で圧延速度が100m/分以上、
・ 及び、前記時効処理Eの時効温度が380〜450℃で、時効時間が9〜18時間で、冷却時の300℃以上の温度範囲における冷却速度が35〜80℃/時間である、(1)〜(2)の何れかに記載のチタン銅の製造方法である。
また、本発明は更に別の一側面において、
(4) 前記冷間圧延Bの加工度が89%以上である(3)に記載の製造方法である。
また、本発明は更に別の一側面において、
(5) 請求項(1)〜(2)の何れかに記載のチタン銅を用いた伸銅品である。
また、本発明は更に別の一側面において、
(6) (1)〜(2)の何れかに記載のチタン銅を用いた電子部品である。
また、本発明は更に別の一側面において、
(7) 前記電子部品が曲げ加工されたコネクタである(6)に記載の電子部品である。
The inventors of the present invention have made extensive studies on improving the spring characteristics of titanium copper subjected to bending, and titanium copper having several specific parameters that satisfy a predetermined condition is advantageous after bending. It has been found that it exhibits spring characteristics.
In one aspect, the present invention completed based on the above findings,
(1) A copper alloy containing 2.7 to 3.7% by mass of Ti with the balance being Cu and inevitable impurities, having a work hardening coefficient of 0.1 or more, and 0.2% proof stress of 850 MPa. or more, and pressure before and after heat treatment of the volume resistivity when water cooling after heating at 900 ° C. 10 minutes: the difference ([rho .mu..OMEGA.cm) is age hardening type titanium copper is 25 to 45.
In another aspect of the present invention,
(2) Titanium copper as described in (1) whose average crystal grain diameter of a cross section perpendicular to the rolling direction is 2 to 10 μm .
In addition, the present invention yet another aspect,
( 3 ) A method for producing titanium copper comprising at least sequentially performing hot rolling A, cold rolling B, solution treatment C, cold rolling D, and aging treatment E,
-The degree of work of the cold rolling D is 35% or less and the rolling speed is 100 m / min or more,
The aging temperature of the aging treatment E is 380 to 450 ° C., the aging time is 9 to 18 hours, and the cooling rate in the temperature range of 300 ° C. or higher during cooling is 35 to 80 ° C./hour. ) To ( 2 ).
Moreover, the present invention in still another aspect,
( 4 ) The manufacturing method according to ( 3 ), wherein the cold rolling B has a workability of 89% or more.
Moreover, the present invention in still another aspect,
( 5 ) A copper-stretched article using the titanium copper according to any one of claims (1) to ( 2 ).
Moreover, the present invention in still another aspect,
( 6 ) An electronic component using titanium copper according to any one of (1) to ( 2 ).
Moreover, the present invention in still another aspect,
( 7 ) The electronic component according to ( 6 ), wherein the electronic component is a bent connector.
本発明によれば、曲げ加工後のばね特性が改良されたチタン銅を提供すること、とりわけ曲げ加工が施されるコネクタ等の電子部品の素材としての使用に好適な、曲げ加工後のばね特性が改良されたチタン銅及びその製造方法並びに前記チタン銅を用いた伸銅品及び電子部品を提供することが可能となる。 According to the present invention, it is possible to provide titanium copper having improved spring characteristics after bending, and particularly suitable for use as a material for electronic parts such as connectors subjected to bending. It is possible to provide titanium copper improved in the manufacturing method, a method for manufacturing the same, and a copper-drawn product and an electronic component using the titanium copper.
所定の条件を満足するいくつかの特定のパラメータを併せ持つ本発明に係るチタン銅の曲げ加工後のばね特性が向上する理由及び各パラメータの範囲限定の理由を本発明の実施形態と共に以下に説明する。 The reason why the spring characteristics after bending of titanium copper according to the present invention having several specific parameters that satisfy a predetermined condition are improved and the reason for limiting the range of each parameter will be described below together with embodiments of the present invention. .
各パラメータ相互の関係
本発明に係るチタン銅は、チタン濃度、加工硬化係数及び900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差によって特定され、これらパラメータを所定範囲で組み合わせることによって相乗的に所望の曲げ加工後のばね特性が得られることを見出した点に特徴を有する。従って、上記パラメータを一つでも満足しない場合には、本発明の効果が充分に得られないこととなる。
これらのパラメータは相互に影響を与えるため、各パラメータ条件はそれぞれ独立に達成できるものではない。すなわち、一つのパラメータについての条件を満足しようとすると、他のパラメータについての条件が不十分となる場合があるので、すべての条件を満足させるためには製造条件を注意深く選択することが必要となる。本発明者らは本発明に係るチタン銅の製造に好適な製造条件も見出した。
Relationship between parameters The titanium copper according to the present invention is specified by the titanium concentration, work hardening coefficient, and volume resistivity difference before and after heat treatment after heating at 900 ° C. for 10 minutes, and combining these parameters within a predetermined range. It is characterized in that it has been found that a desired spring characteristic can be obtained synergistically. Therefore, if even one of the above parameters is not satisfied, the effect of the present invention cannot be obtained sufficiently.
Since these parameters influence each other, each parameter condition cannot be achieved independently. That is, if the conditions for one parameter are to be satisfied, the conditions for the other parameters may be insufficient, so it is necessary to carefully select the manufacturing conditions in order to satisfy all the conditions. . The inventors have also found production conditions suitable for production of titanium copper according to the present invention.
(1)チタン濃度
本発明者らは種々のチタン濃度を有するチタン銅について曲げ加工後のばね特性を検討した結果、チタン濃度がかなり制限的な範囲にあるとき、すなわちチタン濃度がチタン銅の全体の質量を基準として2.7〜3.7質量%、好ましくは2.9〜3.5質量%の範囲にあるときに、他のパラメータとの相乗効果を良好に発揮し、曲げ加工後のばね特性が向上することを見出した。
チタン濃度が上記範囲を逸脱すると他のパラメータを調節しても本発明の有利な効果を達成できず、また、チタン濃度が規定範囲にあっても、他のパラメータが規定範囲になければ本発明の有利な効果を達成することができない。
(1) Titanium Concentration As a result of examining the spring characteristics after bending of titanium copper having various titanium concentrations, the present inventors have found that the titanium concentration is in a fairly limited range, that is, the titanium concentration is the entire titanium copper. When it is in the range of 2.7 to 3.7% by mass, preferably 2.9 to 3.5% by mass, based on the mass of It has been found that the spring characteristics are improved.
If the titanium concentration deviates from the above range, the advantageous effects of the present invention cannot be achieved even if other parameters are adjusted, and even if the titanium concentration is within the specified range, the present invention is not required unless the other parameters are within the specified range. The advantageous effects of cannot be achieved.
(2)加工硬化係数
一般に、金属材料に弾性限度を越える応力を加え塑性変形させると、該金属材料が加工硬化し、弾性限度が上昇することが知られている。へたりはコネクタに負荷される応力が材料の弾性限度を越え塑性変形が起こると発生するため、材料の曲げ加工後の弾性限度が大きいほど、へたりは発生しにくく、また小さくなる。
一方、引張試験において試験片を引張り、荷重を負荷すると、弾性限度を越えて最高荷重点に達するまでの塑性変形域では試験片各部は一様に伸びる(均一伸び)。この均一伸びが発生する塑性変形域では真応力σtと真ひずみεtの間には式(1)の関係が成立し、これをn乗硬化則という。「n」を加工硬化係数という(須藤一:材料試験法、内田老鶴圃社、(1976)、p.34)。nは0≦n≦1の値をとる。この加工硬化係数が大きいほど加工硬化の程度が大きい。
σt = Kεt n 式(1)
金属材料に弾性限度を越える応力を加え塑性変形させると、材料が加工硬化し、弾性限度が上昇する。よって、加工硬化係数が大きい金属材料ほど塑性変形させた場合、より大きく加工硬化し弾性限度がより大きくなる。
本発明者らは、加工硬化係数のより高いチタン銅は曲げ加工のような比較的ひずみの大きな塑性変形をさせたときにより大きく加工硬化して弾性限度がより大きく上昇し、従って曲げ加工後のばね特性がより大きくなると考えた。実際、同程度の0.2%耐力やばね限界値を有する材料を曲げ加工(塑性変形)してコネクタ等の電子部品に成形する場合、加工硬化係数が大きい材料のほうが曲げ加工後の弾性限度が大きくなり、へたりを小さくすることができることが分かった。本発明者は種々実験を重ねた結果、加工硬化係数が0.1以上であるときに、他のパラメータとの相乗効果を良好に発揮し、曲げ加工後のばね特性が向上することを見出した。
加工硬化係数が0.1未満だと他のパラメータを調節しても本発明の有利な効果を達成できず、また、加工硬化係数が0.1以上であるチタン銅であっても、他のパラメータが規定範囲になければ本発明の有利な効果を充分に達成することができない。
加工硬化係数は成分組成はもちろん製造条件によってもその値が異なってくる。加工硬化係数は例えば最終冷間圧延の加工度を調整することにより達成することができる。より具体的には、最終冷間圧延の加工度を小さくすると、加工硬化係数は大きな値を示す。本発明においては、例えば最終冷間圧延時の加工度を35%以下にすることで0.1以上の加工硬化係数を得ることができる。本発明に係るチタン銅は例えば0.1〜0.2の加工硬化係数を有し、より具体的には例えば0.15や0.18とすることができる。
本発明の特定の実施形態においては、最終冷間圧延時の加工度は10〜35%、好ましくは15〜35%である。
ここで、加工度とは、加工前後の材料板厚の差を加工前の材料板厚で割り、100倍した値(%)である。また、「最終冷間圧延」とはチタン銅の全製造工程の中で最後に行う時効処理直前に行う冷間圧延を指す。従って、例えば当該時効処理後に行う冷間圧延は本発明では最終冷間圧延とは言わない。
(2) Work hardening coefficient Generally, it is known that when a metal material is subjected to plastic deformation by applying stress exceeding the elastic limit, the metal material is work hardened and the elastic limit increases. Since sag occurs when the stress applied to the connector exceeds the elastic limit of the material and plastic deformation occurs, sag is less likely to occur and becomes smaller as the elastic limit after bending of the material is larger.
On the other hand, when a test piece is pulled and a load is applied in a tensile test, each part of the test piece extends uniformly (uniform elongation) in the plastic deformation region exceeding the elastic limit and reaching the maximum load point. In the plastic deformation region where the uniform elongation occurs, the relationship of the formula (1) is established between the true stress σ t and the true strain ε t , and this is called the n-th power hardening law. “N” is referred to as a work hardening coefficient (Kazuto Sudo: Material Testing Method, Uchida Otsukurakusha, (1976), p. 34). n takes a value of 0 ≦ n ≦ 1. The greater the work hardening coefficient, the greater the work hardening.
σ t = Kε t n formula (1)
When a stress exceeding the elastic limit is applied to a metal material to cause plastic deformation, the material is work-hardened and the elastic limit is increased. Therefore, when a metal material having a larger work hardening coefficient is plastically deformed, the work material is hardened more and the elastic limit becomes larger.
The present inventors have found that titanium copper having a higher work hardening coefficient is more work hardened when subjected to plastic deformation with a relatively large strain, such as bending, and the elastic limit is further increased. The spring characteristics were considered to be greater. In fact, when a material with the same 0.2% proof stress or spring limit value is bent (plastically deformed) into an electronic component such as a connector, the material with a higher work hardening coefficient is the elastic limit after bending. It became clear that the sag could be increased and the sag could be reduced. As a result of repeating various experiments, the inventor has found that when the work hardening coefficient is 0.1 or more, the synergistic effect with other parameters is satisfactorily exhibited and the spring characteristics after bending are improved. .
If the work hardening coefficient is less than 0.1, the advantageous effects of the present invention cannot be achieved even if other parameters are adjusted, and even if the work hardening coefficient is titanium copper having a work hardening coefficient of 0.1 or more, If the parameter is not within the specified range, the advantageous effects of the present invention cannot be sufficiently achieved.
The value of the work hardening coefficient varies depending on the production conditions as well as the component composition. The work hardening coefficient can be achieved, for example, by adjusting the work degree of the final cold rolling. More specifically, when the degree of final cold rolling is reduced, the work hardening coefficient shows a large value. In the present invention, for example, a work hardening coefficient of 0.1 or more can be obtained by setting the degree of work at the time of final cold rolling to 35% or less. The titanium copper according to the present invention has a work hardening coefficient of, for example, 0.1 to 0.2, and more specifically, for example, 0.15 or 0.18.
In a particular embodiment of the invention, the degree of work during final cold rolling is 10 to 35%, preferably 15 to 35%.
Here, the processing degree is a value (%) obtained by dividing the difference in material plate thickness before and after processing by the material plate thickness before processing and multiplying by 100. Further, the “final cold rolling” refers to cold rolling performed immediately before the aging treatment that is performed lastly in the entire production process of titanium copper. Therefore, for example, cold rolling performed after the aging treatment is not called final cold rolling in the present invention.
(3)体積抵抗率
銅に他の元素を添加すると、添加された元素の種類や量によって違いはあるが、一般的に銅に固溶して体積抵抗率を上昇させる。りん青銅や黄銅といった固溶強化型の銅合金は添加された元素が固溶したままで析出しないため、体積抵抗率が大きい。これに対して、時効硬化型の銅合金は溶体化処理後に時効処理を実施することにより固溶した添加元素を析出させるため、溶体化処理後に比べ時効処理後の体積抵抗率が低下する。固溶した添加元素が多く析出するほど時効処理後の体積抵抗率の低下量が大きい。
ここで、チタン銅は時効硬化型の銅合金で、溶体化処理された過飽和固溶体を時効処理することにより、微細なCu−Ti金属間化合物相を合金中に均一に分散させ、強度を高めている。よって、チタン銅の強度を高めるには、Tiを充分に析出させることが重要である。Tiを充分に析出させることは、チタン銅に固溶しているTiの量が減少することを意味し、したがって体積抵抗率は低下する。
本発明者らは強度に寄与する析出物が充分に析出していることの指標として体積抵抗率を用いることを考え、その条件について検討を重ねたところ、出来上がったチタン銅に溶体化処理を行い、処理前と処理後の体積抵抗率の差が一定の範囲にあるチタン銅は、析出物が充分に析出しているとともに他のパラメータとの相乗効果を良好に発揮し、曲げ加工後のばね特性が向上することを見出した。
体積抵抗率に関する具体的な条件は、問題となっているチタン銅の室温における体積抵抗率を測定し、次に該チタン銅に含まれるTiを完全に溶体化させるために900℃で10分間加熱した後に室温まで水冷する熱処理を施した該チタン銅の室温における体積抵抗率を測定し、熱処理前後の体積抵抗率の差が25〜45μΩcm、好ましくは30〜40μΩcmである。
前記熱処理前後の体積抵抗率の差が規定範囲外だと他のパラメータを調節しても本発明の有利な効果を達成できない。例えば、前記熱処理前後の体積抵抗率の差が25μΩcm未満である場合は、強度増加に寄与する析出物の量が不十分となり、電子部品として必要な強度を得るためには一般的に最終冷間圧延時の加工度を高くする必要があり、その結果として加工硬化係数が小さくなり、曲げ加工後のばね特性が低下する。前記熱処理前後の体積抵抗率の差が45を超える場合は、析出物量は多いが析出した析出物が粗大化し強度増加への寄与が不十分となるため、同様に曲げ加工後のばね特性が低下する。
また、前記体積抵抗率の差が上の規定範囲であっても、他のパラメータが規定範囲になければ本発明の有利な効果を得ることはできない。
(3) Volume resistivity When other elements are added to copper, although there is a difference depending on the kind and amount of the added element, it is generally dissolved in copper to increase volume resistivity. Solid solution strengthened copper alloys such as phosphor bronze and brass have high volume resistivity because the added elements remain in solid solution and do not precipitate. On the other hand, since the age-hardening type copper alloy precipitates the added element dissolved by performing the aging treatment after the solution treatment, the volume resistivity after the aging treatment is lowered as compared with that after the solution treatment. The more the dissolved additive element precipitates, the greater the decrease in volume resistivity after aging treatment.
Here, titanium copper is an age-hardening type copper alloy. By aging the solution-treated supersaturated solid solution, fine Cu-Ti intermetallic compound phases are uniformly dispersed in the alloy to increase the strength. Yes. Therefore, in order to increase the strength of titanium copper, it is important to sufficiently deposit Ti. Precipitating Ti sufficiently means that the amount of Ti dissolved in titanium copper is reduced, and thus the volume resistivity is lowered.
The present inventors considered using volume resistivity as an indicator that precipitates contributing to strength are sufficiently precipitated, and after repeated examination of the conditions, solution treatment was performed on the finished titanium copper. Titanium copper in which the difference in volume resistivity before and after treatment is within a certain range, the precipitate is sufficiently precipitated and exhibits a good synergistic effect with other parameters, and the spring after bending It has been found that the characteristics are improved.
The specific conditions regarding the volume resistivity are: measure the volume resistivity of the titanium copper in question at room temperature, and then heat at 900 ° C. for 10 minutes in order to completely dissolve the Ti contained in the titanium copper. Then, the volume resistivity at room temperature of the titanium copper subjected to a heat treatment that is water-cooled to room temperature is measured, and the difference in volume resistivity before and after the heat treatment is 25 to 45 μΩcm, preferably 30 to 40 μΩcm.
If the difference in volume resistivity before and after the heat treatment is outside the specified range, the advantageous effects of the present invention cannot be achieved even if other parameters are adjusted. For example, when the difference in volume resistivity before and after the heat treatment is less than 25 μΩcm, the amount of precipitates contributing to the increase in strength is insufficient, and in order to obtain the strength required as an electronic component, it is generally the final cold It is necessary to increase the degree of work during rolling. As a result, the work hardening coefficient is reduced, and the spring characteristics after bending are lowered. When the difference in volume resistivity before and after the heat treatment exceeds 45, the amount of precipitates is large, but the deposited precipitates are coarsened and the contribution to the increase in strength becomes insufficient. To do.
Even if the volume resistivity difference is in the above specified range, the advantageous effects of the present invention cannot be obtained unless the other parameters are in the specified range.
上で規定したような体積抵抗率の差を示すチタン銅の製造条件について述べる。
一般に析出物は転位線上に析出する場合が多いことが知られている。よって、転位密度が高いほど析出する量が多くなる。このことから、時効硬化型合金においては、溶体化処理後に冷間圧延を行い、その後に時効処理する製造工程がよく採用されている。
圧延加工度を高くするほど、導入される転位量が多くなり転位密度が高くなるため、時効処理での析出物量が多くなる。その結果、時効処理後の強度及び導電率が高くなる。しかし、圧延加工度を高くしすぎると曲げ加工性が悪化するため、強度、導電率及び曲げ加工性のバランスを考慮した加工度及びその他の加工条件を設定する必要がある。
また、時効処理においては、時効処理の温度が高いほど、またその時間が長いほど析出物の量が多くなる。しかし、時効処理を高温で行うと、析出に要する処理時間を短くできるが、逆に析出物が成長して粗大化し、強度に寄与しなくなる。一方、低温では微細な析出物が多く析出するが、析出に要する処理時間が長くなり、工業的ではない。よって、経済性や時効処理後に得られる特性を考慮して適切な時効条件を決定する必要がある。
本発明者らは加工硬化係数を0.1以上(本発明においては、例えば最終冷間加工時の加工度を35%以下として達成することができる。)としつつ、900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率(ρ:μΩcm)の差が25〜45であることを満足させるために、例えば熱間圧延、冷間圧延、溶体化処理、冷間圧延、時効処理と順次行なわれるチタン銅の製造工程において、溶体化処理後の冷間圧延工程における圧延速度及び時効条件を以下のように調整することが有効であることを見出した。
すなわち、溶体化処理後の冷間圧延工程における圧延速度を速く、例えば100m/分以上、好ましくは125〜500m/分、より好ましくは150〜350m/分とすることにより加工度35%以下で圧延しても組織内に多量の転位を導入させることが可能となる。そして、時効条件は(1)450℃を時効温度の上限として時効温度を高く、例えば380℃以上、好ましくは400℃以上、より好ましくは420℃以上とし、(2)時効時間を長く、例えば9時間以上、好ましくは9〜18時間、より好ましくは11〜15時間とし、(3)時効処理の加熱炉内での冷却時の300℃以上の温度範囲における冷却速度を遅く、例えば80℃/時間以下、好ましくは35〜80℃/時間、より好ましくは50〜70℃/時間とすることにより、微細なCu−Ti金属間化合物相を均質に析出させることが可能となる。ここで、「時効温度」とは時効処理を行う加熱炉内部の雰囲気温度を指し、「時効時間」とは時効処理を行う加熱炉中に滞留する時間を指す。
この結果、所望の加工硬化係数及び体積抵抗率の差を達成することができる。
The production conditions of titanium copper showing the difference in volume resistivity as defined above will be described.
In general, it is known that precipitates often precipitate on dislocation lines. Therefore, the higher the dislocation density, the more the amount deposited. For this reason, in an age-hardening type alloy, a manufacturing process is often employed in which cold rolling is performed after the solution treatment and aging is performed thereafter.
As the rolling degree is increased, the amount of dislocations introduced is increased and the dislocation density is increased, so that the amount of precipitates in the aging treatment is increased. As a result, the strength and conductivity after the aging treatment are increased. However, if the rolling degree is too high, the bending workability deteriorates, so it is necessary to set the working degree and other processing conditions in consideration of the balance of strength, conductivity and bending workability.
In the aging treatment, the amount of precipitates increases as the temperature of the aging treatment is higher and the time is longer. However, when the aging treatment is performed at a high temperature, the treatment time required for precipitation can be shortened, but conversely, the precipitate grows and becomes coarse, and does not contribute to the strength. On the other hand, many fine precipitates are deposited at a low temperature, but the treatment time required for the precipitation becomes long and is not industrial. Therefore, it is necessary to determine appropriate aging conditions in consideration of economics and characteristics obtained after aging treatment.
The present inventors set the work hardening coefficient to 0.1 or more (in the present invention, for example, the degree of work in the final cold working can be achieved as 35% or less), and after heating at 900 ° C. for 10 minutes. In order to satisfy that the difference in volume resistivity (ρ: μΩcm) before and after the water-cooling heat treatment is 25 to 45, for example, hot rolling, cold rolling, solution treatment, cold rolling, and aging treatment are sequentially performed. In the titanium copper manufacturing process, it has been found that it is effective to adjust the rolling speed and aging conditions in the cold rolling process after the solution treatment as follows.
That is, the rolling speed in the cold rolling step after solution treatment is high, for example, 100 m / min or more, preferably 125 to 500 m / min, more preferably 150 to 350 m / min. Even so, a large amount of dislocations can be introduced into the tissue. The aging conditions are as follows: (1) 450 ° C. is the upper limit of the aging temperature, and the aging temperature is high, for example, 380 ° C. or higher, preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and (2) aging time is long, for example 9 More than time, preferably 9 to 18 hours, more preferably 11 to 15 hours, and (3) slow cooling rate in a temperature range of 300 ° C. or higher when cooling in a heating furnace for aging treatment, for example, 80 ° C./hour The fine Cu—Ti intermetallic compound phase can be homogeneously precipitated by setting the pressure to 35 to 80 ° C./hour, more preferably 50 to 70 ° C./hour, preferably below. Here, “aging temperature” refers to the atmospheric temperature inside the heating furnace in which the aging treatment is performed, and “aging time” refers to the time in which the aging treatment is performed in the heating furnace.
As a result, a desired difference in work hardening coefficient and volume resistivity can be achieved.
(4)結晶粒径
結晶粒径が小さくなるほど材料の強度が高くなることは広く一般に知られている。よって、結晶粒径を小さくすると加工硬化係数を大きくするために最終冷間圧延時の加工度を低くしても高強度化が可能である。
圧延方向に直角な断面の結晶粒径(JIS H0501切断法により測定)が10μmを超えると、結晶粒微細化による材料の高強度化が図れず、高強度化のためには加工度を高くする必要がある。加工度を高くすると加工硬化係数が小さくなり、その結果、曲げ加工後のばね特性が悪化する。また、圧延方向に直角な断面の結晶粒径を2μm未満に調整すると、未再結晶部が残留することが考えられる。未再結晶部とは再結晶焼鈍時に材料の一部が再結晶せず、圧延加工を受けた組織が残留している部位のことである。未再結晶部が残留すると曲げ加工性が劣化するばかりでなく、加工硬化係数も小さくなり曲げ加工後のばね特性が悪くなる。
従って、本発明のチタン銅の圧延方向に直角な断面の平均結晶粒径を、2〜10μm、好ましくは3〜7μmとするとよい。
また、材料が再結晶するとき、圧延等で導入された歪が、再結晶粒の核となる。溶体化処理前の冷間圧延加工度が高いほど多量の歪が導入されるため、再結晶粒の生成が顕著になり、結晶粒の成長が抑制され、微細な結晶粒径が得られる。
従って、溶体化処理前の冷間圧延加工度を高く、例えば89%以上、好ましくは90〜98%、より好ましくは91〜97%とすることで、本発明で規定する結晶粒径を得ることができる。
(4) Crystal grain size It is widely known that the strength of a material increases as the crystal grain size decreases. Therefore, if the crystal grain size is reduced, the work hardening coefficient is increased, so that the strength can be increased even if the degree of work in the final cold rolling is lowered.
If the crystal grain size of the cross section perpendicular to the rolling direction (measured by JIS H0501 cutting method) exceeds 10 μm, the material cannot be strengthened by refining the crystal grains, and the degree of work must be increased to increase the strength. There is a need. When the degree of processing is increased, the work hardening coefficient is reduced, and as a result, the spring characteristics after bending are deteriorated. Further, when the crystal grain size of the cross section perpendicular to the rolling direction is adjusted to less than 2 μm, it is considered that an unrecrystallized portion remains. The non-recrystallized portion is a portion where a part of the material is not recrystallized during recrystallization annealing and the structure subjected to rolling remains. If the non-recrystallized portion remains, not only the bending workability is deteriorated, but also the work hardening coefficient is reduced, and the spring characteristics after bending are deteriorated.
Therefore, the average crystal grain size of the cross section perpendicular to the rolling direction of the titanium copper of the present invention is 2 to 10 μm, preferably 3 to 7 μm.
Further, when the material is recrystallized, strain introduced by rolling or the like becomes the nucleus of the recrystallized grains. As the degree of cold rolling before the solution treatment is higher, a larger amount of strain is introduced, so that the formation of recrystallized grains becomes remarkable, the growth of crystal grains is suppressed, and a fine crystal grain size is obtained.
Therefore, the crystal grain size defined in the present invention can be obtained by setting the cold rolling degree before solution treatment to high, for example, 89% or more, preferably 90 to 98%, more preferably 91 to 97%. Can do.
以上、本発明に係るチタン銅について説明してきたが、本発明に係るチタン銅は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、(とりわけ曲げ加工が要求される)コネクタ、端子、ピン、リレー、リードフレーム、リード端子及びスイッチ等の電子部品用銅合金として好適である。 As described above, the titanium copper according to the present invention has been described, but the titanium copper according to the present invention can be processed into various copper products, for example, plates, strips, tubes, rods and wires (especially requiring bending). It is suitable as a copper alloy for electronic parts such as connectors, terminals, pins, relays, lead frames, lead terminals and switches.
以下に本発明に係るチタン銅の製造例及び特性試験の結果を示すが、これらは本発明及びその利点をより良く理解するために提供するのであり、本発明が限定されることを意図するものではないことに留意すべきである。 The production examples of titanium copper according to the present invention and the results of characteristic tests are shown below, but these are provided for better understanding of the present invention and its advantages, and are intended to limit the present invention. It should be noted that this is not the case.
電気銅及びスポンジチタンを原料として、表1に示す種々のチタン濃度のチタン銅を高周波真空溶解炉にて溶解し、幅60mm×厚さ30mmのインゴットに鋳造した。その後、850℃で7mmまで熱間圧延した後、圧延方向に直角な断面の結晶粒径が3〜5μmとなるように89%以上の加工度で冷間圧延し、溶体化処理を行った。溶体化処理では、溶体化時の板厚に応じて800℃で1〜5分の加熱を行った後、水冷した。その後最終の冷間圧延を行って板厚を0.2mmに調整し、最後に時効処理を行った。最終冷間圧延は速度200m/分で行い、時効条件は、900℃で10分間加熱前後の体積抵抗率の差が25〜45になるように、温度は425℃、時間は12時間、時効温度425℃から300℃まで冷却する間の平均冷却速度は、試料に熱電対を装着して温度測定を行い、加熱炉内での冷却にて60℃/時間となるようにした。一部の実施例を除き、0.2%耐力が約850MPaとなるように溶体化処理時の板厚を増減することにより、最終圧延加工度を調整した。このようにして得られた各チタン銅について、0.2%耐力、加工硬化係数、結晶粒径、へたり及び900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率を測定した。 Using electrolytic copper and sponge titanium as raw materials, titanium copper having various titanium concentrations shown in Table 1 was melted in a high-frequency vacuum melting furnace and cast into an ingot having a width of 60 mm and a thickness of 30 mm. Then, after hot-rolling to 850 degreeC to 7 mm, it cold-rolled by the work degree of 89% or more so that the crystal grain diameter of the cross section orthogonal to a rolling direction might be 3-5 micrometers, and the solution treatment was performed. In the solution treatment, heating was performed at 800 ° C. for 1 to 5 minutes according to the plate thickness at the time of solution treatment, followed by water cooling. Thereafter, the final cold rolling was performed to adjust the plate thickness to 0.2 mm, and finally an aging treatment was performed. The final cold rolling is performed at a speed of 200 m / min, and the aging condition is 900 ° C. for 10 minutes, so that the volume resistivity difference before and after heating is 25 to 45, the temperature is 425 ° C., the time is 12 hours, the aging temperature The average cooling rate during cooling from 425 ° C. to 300 ° C. was set to 60 ° C./hour by cooling in the heating furnace by measuring the temperature with a thermocouple attached to the sample. Except for some examples, the final rolling workability was adjusted by increasing / decreasing the thickness of the solution treatment so that the 0.2% proof stress was about 850 MPa. Each titanium copper thus obtained was measured for 0.2% proof stress, work hardening coefficient, crystal grain size, sag, and volume resistivity before and after heat treatment after heating at 900 ° C. for 10 minutes and water cooling.
(0.2%耐力)
圧延方向に対しその長手方向が平行方向となるように採取したJIS 13B号試験片を使用して、引張試験機(ORIENTEC社製:UTM−10T)を用いて室温、初期標点距離50mm、引張速度5mm/分の条件で引張試験を実施し、得られた応力−ひずみ曲線よりオフセット法で0.2%耐力(永久伸び0.2%)を求めた。試験は、測定数2で実施し、その平均値を0.2%耐力値とした。
(加工硬化係数)
n乗硬化則の成立する材料では、応力−ひずみ曲線の最高荷重点における真ひずみと加工硬化係数は一致することから、最高荷重点における真ひずみを加工硬化係数n値とした(須藤一著、「材料試験法」、内田老鶴圃社、1976年、p.35)。具体的には、先述の0.2%耐力を測定するのと同じ方法で、応力−ひずみ曲線を得る。ただし、測定数は1である。真ひずみεtは、得られた応力−ひずみ曲線より読み取った最高荷重点における公称ひずみεを式(3)に代入して算出する。
εt=ln(1+ε) 式(3)
(体積抵抗率)
JIS H0505に規定されている非鉄金属材料導電率測定法に準拠した四端子法にて測定した。使用した試験片は、圧延方向に対しその長手方向が平行方向となるように採取した幅10mm、長さ100mmの短冊形状のものである。測定は材料温度が20℃となるようにし、測定数2で実施し、その平均値を測定値とした。
(平均結晶粒径)
試料を観察面が圧延方向に対し直角となるように樹脂埋めし、観察面を機械研磨にて鏡面仕上げ後、水100容量部に対して濃度36%の塩酸10容量部の割合で混合した溶液に、その溶液の重量の5%の重量の塩化第二鉄を溶解した。こうして出来上がった溶液中に試料を10秒間浸漬して金属組織を現出させた。次に、前記金属組織を光学顕微鏡で1000倍に拡大して写真に撮り、JISで規定する切断法(JIS H0501)により、写真上に200mmの線分を試料の板幅方向に対して平行な線5本及び直角な線5本の合計10本をそれぞれ25mmの間隔で引き、前記線分で切られる結晶粒数nを数え、〔200mm×10/(n×1000)〕の式から求めた。観察した視野数は、各試料に対して板厚中央部の任意に選定した1視野である。
(へたり)
試験片の長手方向が圧延方向と平行となるように、幅0.8mm、長さ30mmの短冊形状の試験片を作製した。次にこの試験片に対して、図1に示すように角度30°のV曲げ用金型に先端の曲率半径0.2mm、角度30°のポンチを250Nの荷重で押し込んで試料に曲げ加工を施した。次いで図2に示すように精密バイスを使用して試験片の一端の曲げ基部を支持し、他端が水平になるように保持し、ばね長を5mmとして、ナイフエッジ状に加工したポンチを用いて垂直方向に移動速度1mm/分で変位量1mmのたわみを与え、除荷した後のへたりを測定した。へたり測定用の試験片の作製及びへたりの測定は室温で実施し、試験は測定数1で実施した。
(0.2% yield strength)
Using a JIS No. 13B specimen taken so that its longitudinal direction is parallel to the rolling direction, room temperature, initial gauge distance 50 mm, tensile using a tensile tester (ORIENTEC Co., Ltd .: UTM-10T) A tensile test was performed under the condition of a speed of 5 mm / min, and 0.2% yield strength (permanent elongation 0.2%) was determined by an offset method from the obtained stress-strain curve. The test was conducted with 2 measurements, and the average value was defined as a 0.2% proof stress value.
(Work hardening coefficient)
In a material that satisfies the n-th power hardening law, the true strain at the highest load point of the stress-strain curve and the work hardening coefficient coincide with each other. "Material test method", Uchida Otsuruhosha, 1976, p. 35). Specifically, a stress-strain curve is obtained by the same method as that for measuring the 0.2% yield strength described above. However, the number of measurements is 1. The true strain ε t is calculated by substituting the nominal strain ε at the highest load point read from the obtained stress-strain curve into Equation (3).
ε t = ln (1 + ε) Equation (3)
(Volume resistivity)
The measurement was performed by a four-terminal method in conformity with a nonferrous metal material conductivity measurement method defined in JIS H0505. The used test piece is of a strip shape having a width of 10 mm and a length of 100 mm collected so that its longitudinal direction is parallel to the rolling direction. The measurement was carried out so that the material temperature was 20 ° C., and the number of measurements was 2, and the average value was taken as the measurement value.
(Average crystal grain size)
A sample is filled with a resin so that the observation surface is perpendicular to the rolling direction, and the observation surface is mirror-finished by mechanical polishing, and then mixed at a ratio of 10 volume parts of hydrochloric acid having a concentration of 36% to 100 volume parts of water. In addition, 5% by weight of ferric chloride was dissolved in the solution. The sample was immersed in the solution thus prepared for 10 seconds to reveal the metal structure. Next, the metal structure is magnified 1000 times with an optical microscope to take a photograph, and a 200 mm line segment is parallel to the plate width direction of the sample by a cutting method (JIS H0501) defined by JIS. A total of 10 lines of 5 lines and 5 perpendicular lines were drawn at intervals of 25 mm, and the number n of crystal grains cut by the line segment was counted, and obtained from the formula [200 mm × 10 / (n × 1000)]. . The number of observed fields is one field arbitrarily selected at the center of the plate thickness for each sample.
(Settling)
A strip-shaped test piece having a width of 0.8 mm and a length of 30 mm was prepared so that the longitudinal direction of the test piece was parallel to the rolling direction. Next, as shown in FIG. 1, the specimen is bent into a V-bending mold having an angle of 30 ° and a punch having a radius of curvature of 0.2 mm and an angle of 30 ° with a load of 250 N as shown in FIG. gave. Next, as shown in FIG. 2, a precision vice is used to support the bending base at one end of the test piece, the other end is held horizontally, the spring length is 5 mm, and a punch that is processed into a knife edge shape is used. Then, a deflection with a displacement of 1 mm was given in the vertical direction at a moving speed of 1 mm / min, and the sag after unloading was measured. Preparation of a test piece for sag measurement and measurement of sag were performed at room temperature, and the test was performed with 1 measurement.
表1にTi濃度を変化させたチタン銅の0.2%耐力、加工硬化係数、結晶粒径、へたり及び900℃で10分間加熱前後の体積抵抗率の差を示す。すべての試料とも、体積抵抗率の差は25〜45(発明範囲)であり、強度に寄与する微細なCu−Ti化合物が充分に析出したと考えられる。発明例であるNo.1〜3は、Ti濃度が2.9〜3.5%の間にあり、850MPaの0.2%耐力が得られる最終圧延加工度を35%以下に調整することができ、加工硬化係数が0.1以上となった。その結果、曲げ加工後のへたりが小さかった。
一方、比較例のNo.4はTi濃度が4.0%と高かったため、熱間圧延時に大きな割れが発生し、以降の工程を進捗することが不可能であった。
比較例のNo.5は、Ti濃度が2.5%と低かったため、850MPa以上の0.2%耐力を得るためには最終圧延加工度を45%と発明例No.1〜3に比べ高くしなければならず、その結果、加工硬化係数の値が0.1未満となり、曲げ加工後のへたりが大きくなった。
比較例No.6は比較例No.5とTi濃度が同じ2.5%の材料で、加工硬化係数が0.1以上となるように、最終圧延加工度を調整したところ、0.2%耐力が778MPaと低くなった。また、曲げ加工後のへたりは、加工硬化係数が0.1以上であったことから同じTi濃度の比較例No.5に比べ小さくなったが、発明例No.1〜3に比べると大きかった。
Table 1 shows the 0.2% proof stress, work hardening coefficient, crystal grain size, sag, and volume resistivity difference before and after heating at 900 ° C. for 10 minutes for titanium copper with varying Ti concentration. In all the samples, the difference in volume resistivity is 25 to 45 (invention range), and it is considered that the fine Cu—Ti compound contributing to the strength is sufficiently precipitated. Inventive example No. 1 to 3, the Ti concentration is between 2.9 to 3.5%, the final rolling work degree at which 0.2% yield strength of 850 MPa can be obtained can be adjusted to 35% or less, and the work hardening coefficient is It became 0.1 or more. As a result, the sag after bending was small.
On the other hand, no. No. 4 had a high Ti concentration of 4.0%, so that a large crack was generated during hot rolling, making it impossible to proceed with the subsequent steps.
Comparative Example No. No. 5 had a Ti concentration as low as 2.5%, and in order to obtain a 0.2% proof stress of 850 MPa or more, the final rolling work degree was 45%, which was an invention example No. 5. As a result, the value of the work hardening coefficient was less than 0.1 and the sag after bending was increased.
Comparative Example No. 6 is Comparative Example No. When the final rolling work degree was adjusted so that the work hardening coefficient was 0.1 or more with a material having the same 2.5% Ti concentration as 5 and Ti, the 0.2% proof stress was as low as 778 MPa. Moreover, since the work hardening coefficient was 0.1 or more, the sag after bending was the same as in Comparative Example No. with the same Ti concentration. Although it was smaller than 5, the invention example No. It was larger than 1-3.
電気銅及びスポンジチタンを原料とし、溶解後のチタン濃度が3.2%となるように原料を配合して、高周波真空溶解炉にてチタン銅を溶解し、幅60mm×厚さ30mmのインゴットに鋳造した。その後、850℃で7mmまで熱間圧延した後、圧延方向に直角な断面の結晶粒径が3〜5μmとなるように89%以上の加工度で冷間圧延し、溶体化処理を行った。溶体化処理では、溶体化時の板厚に応じて800℃で1〜5分の加熱を行った後、水冷した。その後最終冷間圧延を行って板厚を0.2mmに調整し、最後に時効処理を行った。時効処理前の最終冷間圧延条件及び時効条件を変化させて、加工硬化係数を変化させた。最終冷間圧延条件として、加工度及び圧延速度を変化させた。時効条件として、時効温度、時効時間及び冷却速度を変化させた。冷却速度は、所定の温度及び時間で加熱した後の試料の冷却速度であり、試料に熱電対を装着して温度測定を行い、時効温度から300℃まで冷却する間の1時間あたりの平均冷却速度を求めた。また、一部の実施例を除き、0.2%耐力が850MPa以上となるように、溶体化処理時の板厚を増減することにより、最終圧延加工度を調整した。このようにして得られた各合金について、実施例1と同じ方法で、0.2%耐力、加工硬化係数、結晶粒径、へたり及び900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率を測定した結果を表2に示す。 Using electrolytic copper and sponge titanium as raw materials, blending the raw materials so that the titanium concentration after melting is 3.2%, melting titanium copper in a high-frequency vacuum melting furnace, into an ingot having a width of 60 mm and a thickness of 30 mm Casted. Then, after hot-rolling to 850 degreeC to 7 mm, it cold-rolled by the work degree of 89% or more so that the crystal grain diameter of the cross section orthogonal to a rolling direction might be 3-5 micrometers, and the solution treatment was performed. In the solution treatment, heating was performed at 800 ° C. for 1 to 5 minutes according to the plate thickness at the time of solution treatment, followed by water cooling. Thereafter, final cold rolling was performed to adjust the plate thickness to 0.2 mm, and finally, an aging treatment was performed. The work hardening coefficient was changed by changing the final cold rolling conditions and aging conditions before aging treatment. As the final cold rolling conditions, the working degree and rolling speed were changed. As aging conditions, aging temperature, aging time and cooling rate were changed. The cooling rate is the cooling rate of the sample after heating at a predetermined temperature and time. The temperature is measured by attaching a thermocouple to the sample, and the average cooling per hour during cooling from the aging temperature to 300 ° C. The speed was determined. Moreover, the final rolling work degree was adjusted by increasing / decreasing the plate | board thickness at the time of solution treatment so that 0.2% yield strength might be 850 Mpa or more except for a part of Example. For each alloy thus obtained, 0.2% yield strength, work hardening coefficient, crystal grain size, sag, and volume resistance before and after heat treatment after heating at 900 ° C. for 10 minutes in the same manner as in Example 1. The results of measuring the rate are shown in Table 2.
発明例No.7〜9は、体積抵抗率の差が25〜45であるため、850MPa以上の0.2%耐力が得られる加工度を35%以下に調整することができ、加工硬化係数が0.1以上となった。その結果、へたりが小さかった。 Invention Example No. 7 to 9 have a volume resistivity difference of 25 to 45. Therefore, the degree of processing at which 0.2% proof stress of 850 MPa or more can be obtained can be adjusted to 35% or less, and the work hardening coefficient is 0.1 or more. It became. As a result, the sag was small.
一方、比較例No.10は発明例No.7〜9に比べ時効温度が470℃と高く、時効時間が20時間と長く、さらに300℃までの冷却速度も遅かった。900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差は47と発明例No.7〜9に比べ大きく析出物量は多かったが、強度に寄与していた析出物が粗大化して強度に寄与しなくなり、0.2%耐力を850MPa以上とするために最終圧延加工度を60%にあげる必要があった。その結果、加工硬化係数が0.1未満となり、曲げ加工後のへたりが大きくなった。
比較例No.11は比較例No.10と同じ条件で時効処理し、最終圧延加工度を加工硬化係数が0.1以上となるところまで下げた場合の例である。比較例No.10と同じように900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差は46と大きく析出物量は多かったが、析出物が粗大化したために強度に寄与しなくなった。その結果、加工硬化係数を0.1以上にするために最終圧延加工度を下げると0.2%耐力が787MPaと低くなり、曲げ加工後のへたりは、加工硬化係数が0.1以上であったことから比較例No.10に比べると小さくなったが、発明例No.7〜9に比べると大きかった。
On the other hand, Comparative Example No. 10 is Invention Example No. Compared with 7-9, the aging temperature was as high as 470 degreeC, the aging time was as long as 20 hours, and also the cooling rate to 300 degreeC was also slow. The difference in volume resistivity before and after the heat treatment after heating at 900 ° C. for 10 minutes and water cooling was 47 and Example No. Although the amount of precipitates was large compared to 7-9, the precipitates that had contributed to strength became coarse and no longer contributed to strength, and the final rolling workability was 60% in order to make the 0.2% proof stress 850 MPa or more. It was necessary to give to. As a result, the work hardening coefficient was less than 0.1, and the sag after bending became large.
Comparative Example No. 11 is Comparative Example No. This is an example in which the aging treatment is performed under the same conditions as 10 and the final rolling degree is lowered to a point where the work hardening coefficient is 0.1 or more. Comparative Example No. Similar to 10, the difference in volume resistivity before and after the heat treatment after heating at 900 ° C. for 10 minutes and water cooling was as large as 46, and the amount of precipitates was large, but the precipitates became coarse, so they did not contribute to the strength. As a result, when the final rolling degree is lowered to make the work hardening coefficient 0.1 or more, the 0.2% proof stress is lowered to 787 MPa, and the sag after bending has a work hardening coefficient of 0.1 or more. Comparative Example No. Although it was smaller than that of Example No. 10, Invention Example No. It was larger than 7-9.
比較例No.12は発明例No.7〜9に比べ、時効温度が370℃と低く、時効時間が3時間と短かった。900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差は24と発明例No.7〜9に比べ小さく、強度に寄与するTiの充分な析出が得られず、0.2%耐力を850MPa以上とするためには、最終圧延加工度を55%まで上げる必要があった。その結果、加工硬化係数が0.1未満となり、曲げ加工後のへたりが大きくなった。
比較例No.13は比較例No.12と同じ条件で時効処理し、最終圧延加工度を加工硬化係数が0.1以上となるところまで下げた場合の例である。900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差も23と小さく、比較例No.12と同じように、強度に寄与するTiの充分な析出が得られなかった。その結果、加工硬化係数を0.1以上にするために最終圧延加工度を下げると0.2%耐力が776MPaと低くなり、曲げ加工後のへたりは、比較例No.12に比べると小さくなったが、加工硬化係数が0.1以上であったことから発明例No.7〜9に比べると大きかった。
Comparative Example No. 12 is Invention Example No. Compared to 7-9, the aging temperature was as low as 370 ° C., and the aging time was as short as 3 hours. The difference in volume resistivity between before and after heat treatment after heating at 900 ° C. for 10 minutes and then water cooling is 24 and Example No. It was smaller than 7-9, and sufficient precipitation of Ti which contributes to the strength was not obtained. In order to make the 0.2% proof stress 850 MPa or more, it was necessary to increase the final rolling work degree to 55%. As a result, the work hardening coefficient was less than 0.1, and the sag after bending became large.
Comparative Example No. 13 is Comparative Example No. In this example, aging treatment is performed under the same conditions as in No. 12, and the final rolling degree is lowered to a point where the work hardening coefficient is 0.1 or more. The difference in volume resistivity before and after heat treatment after heating at 900 ° C. for 10 minutes and then water cooling was as small as 23. As in the case of 12, sufficient precipitation of Ti that contributes to the strength was not obtained. As a result, when the final rolling degree is lowered in order to increase the work hardening coefficient to 0.1 or more, the 0.2% proof stress is lowered to 776 MPa. Although it was smaller than that of No. 12, since the work hardening coefficient was 0.1 or more, Invention Example No. It was larger than 7-9.
比較例No.14は、時効条件は発明例No.9と同じであるが、圧延速度が50m/分と発明例No.9の120m/分に比べ遅かった。そのため900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差は23と発明例No.9に比べ小さく、強度に寄与するTiの充分な析出が得られず、0.2%耐力を850MPa以上とするためには、最終圧延加工度を55%まで上げる必要があった。その結果、加工硬化係数が0.1未満となり、曲げ加工後のへたりが大きくなった。
比較例No.15は、比較例No.14と同じ時効条件で時効処理し、冷間圧延の圧延速度を比較例No.14と同じにし、最終圧延加工度を加工硬化係数が0.1以上となるところまで下げた場合の例である。比較例No.14と同じように、900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差も23と小さく、強度に寄与するTiの充分な析出が得られなかった。その結果、加工硬化係数を0.1以上にするために最終圧延加工度を下げると0.2%耐力が768MPaと低くなり、曲げ加工後のへたりは、加工硬化係数が0.1以上であったことから比較例No.14に比べると小さくなったが、発明例No.7〜9に比べると大きかった。
Comparative Example No. No. 14 shows the aging conditions are those of Invention Example No. 9, but with a rolling speed of 50 m / min, Invention Example No. It was slower than 9's 120m / min. Therefore, the difference in volume resistivity before and after heat treatment after heating at 900 ° C. for 10 minutes and then water cooling is 23 and Invention Example No. In order to achieve a 0.2% proof stress of 850 MPa or more, it was necessary to increase the final rolling work degree to 55%. As a result, the work hardening coefficient was less than 0.1, and the sag after bending became large.
Comparative Example No. 15 is Comparative Example No. Aging treatment was performed under the same aging conditions as in No. 14, and the rolling speed of the cold rolling was compared with Comparative Example No. This is an example in which the same degree as 14 is used and the final rolling degree is lowered to a point where the work hardening coefficient is 0.1 or more. Comparative Example No. Similar to 14, the difference in volume resistivity before and after the heat treatment after heating at 900 ° C. for 10 minutes and water cooling was as small as 23, and sufficient precipitation of Ti contributing to the strength could not be obtained. As a result, when the final rolling work degree is lowered to make the work hardening coefficient 0.1 or more, the 0.2% proof stress is lowered to 768 MPa, and the sag after bending has a work hardening coefficient of 0.1 or more. Comparative Example No. Although it was smaller compared to 14, the invention example No. It was larger than 7-9.
比較例No.16は、比較例No.14及びNo.15と同じ圧延速度で圧延を行い、900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差が25〜45となるように時効条件を調整した場合の例である。900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差を25以上とするためには、発明例7〜9に比べ時効温度を470℃と高く、時効時間は20時間と長く、さらに300℃までの冷却速度を遅くする必要があった。その結果、析出物量は多かったが、強度に寄与していた析出物が粗大化し、強度に寄与しなくなったと考えられる。圧延速度が遅く、導入された転位量も少なかったためか、最終圧延加工度を60%まで上げても0.2%耐力が850MPa以上とはならず、加工硬化係数が0.1未満となり、へたりが大きくなった。 Comparative Example No. 16 is Comparative Example No. 14 and no. In this example, rolling is performed at the same rolling speed as 15, and the aging conditions are adjusted so that the volume resistivity difference between before and after heat treatment is 10 to 50 minutes after heating at 900 ° C. and then water-cooled. In order to make the difference in volume resistivity before and after the heat treatment after heating at 900 ° C. for 10 minutes and water cooling to 25 or more, the aging temperature is as high as 470 ° C. compared to Invention Examples 7 to 9, and the aging time is as long as 20 hours. It was necessary to slow down the cooling rate to 300 ° C. As a result, the amount of precipitates was large, but the precipitates that had contributed to the strength were coarsened and no longer contributed to the strength. Probably because the rolling speed was slow and the amount of dislocations introduced was small, even if the final rolling degree was increased to 60%, the 0.2% yield strength did not become 850 MPa or more, and the work hardening coefficient was less than 0.1. The story got bigger.
比較例No.17は、発明例No.8と同じ条件で圧延及び時効処理を行い、900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差を25〜45にしたが、最終圧延加工度を上げ、加工硬化係数を0.1未満にした例である。この場合、0.2%耐力は発明例No.8よりも高くなったが、かえってへたりが大きくなった。この例より、へたりは加工硬化係数の影響を強く受け0.2%耐力だけでは決定されないことがわかる。 Comparative Example No. 17 is Invention Example No. The difference in volume resistivity between before and after the heat treatment was performed under the same conditions as in No. 8 and after performing the rolling and aging treatment at 900 ° C. for 10 minutes and then water cooling, but the final rolling workability was increased and the work hardening coefficient was set at 0. This is an example of less than 1. In this case, the 0.2% proof stress is an invention example No. Although it was higher than 8, it became rather large. From this example, it can be seen that the sag is strongly influenced by the work hardening coefficient and cannot be determined only by 0.2% proof stress.
比較例No.18は、圧延速度を250m/分と発明例No.7と同様速くすることで組織内に多量の転位を導入させれば、時効温度が350℃と低く、時効時間が2時間と短く、300℃までの冷却速度も100℃/hrと速い条件によっても微細なTiの析出が充分に得られることを期待した。しかしながら、900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率の差は23と発明例No.7〜9に比べ小さく、強度に寄与するTiの充分な析出が得られず、その結果、加工度を40%に上げても850MPaの強度を得ることができず、加工硬化係数も0.1未満となり、曲げ加工後のへたりが大きくなった。 Comparative Example No. No. 18 has a rolling speed of 250 m / min. If a large amount of dislocations is introduced into the structure by increasing the speed as in 7, the aging temperature is as low as 350 ° C, the aging time is as short as 2 hours, and the cooling rate to 300 ° C is 100 ° C / hr. In addition, it was expected that fine Ti precipitation could be sufficiently obtained. However, the difference in volume resistivity between before and after the heat treatment after heating at 900 ° C. for 10 minutes and then water cooling is 23 and Example No. Ti, which is smaller than 7 to 9 and contributes to strength, cannot be sufficiently precipitated. As a result, even when the workability is increased to 40%, a strength of 850 MPa cannot be obtained, and the work hardening coefficient is 0.1. And the sag after bending increased.
電気銅及びスポンジチタンを原料として、溶解後のチタン濃度が3.2%となるように原料を配合して、高周波真空溶解炉にてチタン銅を溶解し、幅60mm×厚さ30mmのインゴットに鋳造した。その後、850℃で熱間圧延した後、冷間圧延し、溶体化処理を行った。溶体化処理前の冷間圧延の圧延加工度を調整できるように熱間圧延後の板厚を決定した。この冷間圧延では、10μm以下の平均結晶粒径を得る場合は加工度89%以上で圧延を行い、10μm以上の平均結晶粒径を得る場合は加工度89%未満で圧延を実施した。溶体化処理では、800または900℃で0.1〜10分の加熱を行った後、水冷し、圧延方向に直角な断面の平均結晶粒径を種々の大きさで得た。その後、板厚0.2mmまで冷間圧延し、時効処理を行った。冷間圧延は圧延速度200m/分で実施した。時効条件は、900℃で10分間加熱前後の体積抵抗率の差が25〜45になるように、温度は425℃、時間は12時間、時効温度425℃から300℃まで冷却する間の平均冷却速度温度は、試料に熱電対を装着して温度測定を行い、60℃/時間となるようにした。また、0.2%耐力が850MPa以上となるように時効処理前の最終冷間圧延加工度を調整した。このようにして得られた各合金について、実施例1と同じ方法で、0.2%耐力、加工硬化係数、結晶粒径、へたり及び900℃で10分間加熱後に水冷する熱処理前後の体積抵抗率(ρ:μΩcm)を測定した結果を表3に示す。 Using electrolytic copper and sponge titanium as raw materials, the raw materials are blended so that the titanium concentration after melting is 3.2%, and titanium copper is melted in a high frequency vacuum melting furnace to form an ingot having a width of 60 mm and a thickness of 30 mm. Casted. Then, after hot rolling at 850 ° C., cold rolling and solution treatment were performed. The thickness after hot rolling was determined so that the degree of cold rolling before the solution treatment could be adjusted. In this cold rolling, rolling was performed at a workability of 89% or more when an average crystal grain size of 10 μm or less was obtained, and rolling was performed at a workability of less than 89% when an average crystal grain size of 10 μm or more was obtained. In the solution treatment, heating was performed at 800 or 900 ° C. for 0.1 to 10 minutes, followed by cooling with water, and average crystal grain diameters of cross sections perpendicular to the rolling direction were obtained in various sizes. Then, it cold-rolled to plate thickness 0.2mm, and performed the aging treatment. Cold rolling was performed at a rolling speed of 200 m / min. The aging conditions are: average cooling during cooling from 425 ° C. to 300 ° C. at a temperature of 425 ° C., a time of 12 hours, so that the volume resistivity difference before and after heating at 900 ° C. for 10 minutes is 25 to 45 The speed temperature was set to 60 ° C./hour by measuring the temperature with a thermocouple attached to the sample. Further, the final cold rolling degree before aging treatment was adjusted so that the 0.2% proof stress was 850 MPa or more. For each alloy thus obtained, 0.2% yield strength, work hardening coefficient, crystal grain size, sag, and volume resistance before and after heat treatment after heating at 900 ° C. for 10 minutes in the same manner as in Example 1. The results of measuring the rate (ρ: μΩcm) are shown in Table 3.
発明例No.19〜21は、結晶粒径が2〜10μmの範囲内にあり、850MPa以上の0.2%耐力が得られる加工度を35%以下に調整することができ、加工硬化係数が0.1以上となった。その結果、へたりが小さかった。
一方、比較例No.22は溶体化処理前の圧延加工度を高くし、圧延方向に直角な断面の結晶粒径を2μm未満にしようとしたが、金属組織を観察した結果、未再結晶部が残留し、へたりを測定するための曲げ加工時に曲げ部に大きな割れが発生したため、へたりを測定できなかった。
また、比較例No.23では、溶体化前の圧延加工度及び溶体化条件を比較例No.22と同じとし、未再結晶部が残留しても時効処理前の圧延を行わなければ、加工硬化係数が大きくなり、また、曲げ加工も可能となることを期待した。しかし、加工硬化係数は0.08と0.1未満で、へたりを測定するための曲げ加工時に曲げ部に大きな割れが発生したため、へたりを測定できなかった。
Invention Example No. Nos. 19 to 21 have a crystal grain size in the range of 2 to 10 μm, can adjust the degree of processing to obtain 0.2% proof stress of 850 MPa or more to 35% or less, and have a work hardening coefficient of 0.1 or more. It became. As a result, the sag was small.
On the other hand, Comparative Example No. No. 22 tried to increase the degree of rolling before the solution treatment, and to reduce the crystal grain size of the cross section perpendicular to the rolling direction to less than 2 μm. Since a large crack occurred in the bent part during the bending process for measuring the sag, the sag could not be measured.
Comparative Example No. 23, the degree of rolling and the solution treatment conditions before solution treatment were compared with those of Comparative Example No. 23. It was expected that the work hardening coefficient would be increased and bending could be performed if rolling before aging treatment was not performed even if an unrecrystallized portion remained. However, the work hardening coefficients were 0.08 and less than 0.1, and since a large crack occurred in the bent portion during bending for measuring sag, sag could not be measured.
比較例No.24は、溶体化処理前の圧延加工度を82%と89%以下にしたため、発明例No.19〜21に比べ圧延方向に直角な断面の結晶粒径が16μmと大きくなり、最終圧延加工度を45%まで上げても0.2%耐力は850MPaのレベルには到達せず、加工硬化係数が0.1未満となり、曲げ加工後のへたりが大きくなった。
比較例No.25は、圧延面に直角な断面の結晶粒径を15μmと比較例No.24と同じくらいの大きさにし、加工度を35%まで下げたものであり、得られた0.2%耐力は783MPaと低くなった。また、加工硬化係数は0.08と発明例No.19〜21に比べ小さく、曲げ加工後のへたりは発明例No.19〜21よりも大きくなった。
Comparative Example No. 24, since the degree of rolling before the solution treatment was 82% and 89% or less, Example No. Compared to 19-21, the crystal grain size of the cross section perpendicular to the rolling direction is as large as 16 μm. Even if the final rolling degree is increased to 45%, the 0.2% yield strength does not reach the level of 850 MPa, and the work hardening coefficient Was less than 0.1, and the sag after bending increased.
Comparative Example No. No. 25 is a comparative example No. 25 having a crystal grain size of 15 μm in the cross section perpendicular to the rolling surface. The degree of processing was reduced to 35%, and the 0.2% yield strength obtained was as low as 783 MPa. The work hardening coefficient is 0.08, which is an invention example No. It is smaller than 19-21, and the sag after bending is inventive example no. It became larger than 19-21.
Claims (7)
・ 前記冷間圧延Dの加工度が35%以下で圧延速度が100m/分以上であり、
・ 及び、前記時効処理Eの時効温度が380〜450℃で、時効時間が9〜18時間で、冷却時の300℃以上の温度範囲における冷却速度が35〜80℃/時間である請求項1又は2に記載のチタン銅の製造方法。 A method for producing titanium copper comprising at least performing hot rolling A, cold rolling B, solution treatment C, cold rolling D, aging treatment E in sequence,
The degree of work of the cold rolling D is 35% or less and the rolling speed is 100 m / min or more,
- and, at the aging temperature of 380-450 ° C. of the aging treatment E, with aging time is 9-18 hours, according to claim 1 the cooling rate in the temperature range of 300 ° C. or more during cooling is 35 to 80 ° C. / Time Or the manufacturing method of the titanium copper of 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005084074A JP4451336B2 (en) | 2005-03-23 | 2005-03-23 | Titanium copper and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005084074A JP4451336B2 (en) | 2005-03-23 | 2005-03-23 | Titanium copper and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265611A JP2006265611A (en) | 2006-10-05 |
JP4451336B2 true JP4451336B2 (en) | 2010-04-14 |
Family
ID=37201881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005084074A Expired - Fee Related JP4451336B2 (en) | 2005-03-23 | 2005-03-23 | Titanium copper and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4451336B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110218899A (en) * | 2019-06-21 | 2019-09-10 | 灵宝金源朝辉铜业有限公司 | A kind of high strength anti-corrosion Cu-Ti system alloy foil and preparation method thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010007159A (en) * | 2008-06-30 | 2010-01-14 | Sumitomo Light Metal Ind Ltd | Copper alloy material and electrode member of welding equipment |
KR101895558B1 (en) * | 2008-11-20 | 2018-09-07 | 도와 메탈테크 가부시키가이샤 | Cu-Ti-based copper alloy sheet material and method of manufacturing same |
EP2196548B1 (en) | 2008-12-02 | 2012-05-16 | Dowa Metaltech Co., Ltd. | Cu-Ti based copper alloy sheet material and method of manufacturing same |
US8097102B2 (en) | 2008-12-08 | 2012-01-17 | Dowa Metaltech Co., Ltd. | Cu-Ti-based copper alloy sheet material and method of manufacturing same |
JP5214701B2 (en) * | 2010-10-18 | 2013-06-19 | Jx日鉱日石金属株式会社 | Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method |
JP6192916B2 (en) | 2012-10-25 | 2017-09-06 | Jx金属株式会社 | High strength titanium copper |
JP6192917B2 (en) | 2012-10-25 | 2017-09-06 | Jx金属株式会社 | High strength titanium copper |
JP5718436B1 (en) | 2013-11-18 | 2015-05-13 | Jx日鉱日石金属株式会社 | Titanium copper for electronic parts |
JP5718443B1 (en) | 2013-12-27 | 2015-05-13 | Jx日鉱日石金属株式会社 | Titanium copper for electronic parts |
KR101664819B1 (en) * | 2016-01-22 | 2016-10-11 | 도와 메탈테크 가부시키가이샤 | Cu-Ti-based copper alloy sheet material and method of manufacturing same |
CN113802026B (en) * | 2021-09-18 | 2022-06-14 | 宁波博威合金板带有限公司 | Titanium bronze strip and preparation method thereof |
CN115927985A (en) * | 2022-12-24 | 2023-04-07 | 安徽鑫科铜业有限公司 | Titanium copper with excellent bending workability and manufacturing method thereof |
-
2005
- 2005-03-23 JP JP2005084074A patent/JP4451336B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110218899A (en) * | 2019-06-21 | 2019-09-10 | 灵宝金源朝辉铜业有限公司 | A kind of high strength anti-corrosion Cu-Ti system alloy foil and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2006265611A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI447239B (en) | Copper alloy sheet and method of manufacturing the same | |
KR101331339B1 (en) | Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor | |
JP5476149B2 (en) | Copper alloy with low strength anisotropy and excellent bending workability | |
KR101935987B1 (en) | Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet | |
CN103403202B (en) | Cu-Ni-Si alloy and manufacture method thereof | |
JP4001491B2 (en) | High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same | |
EP2570506B1 (en) | Copper alloy for electronic device, method for producing this alloy, and copper alloy rolled material for this device | |
KR101579629B1 (en) | Copper alloy sheet and method for producing same | |
EP2221390A1 (en) | Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same | |
EP2772560B1 (en) | Copper alloy for electronic equipment, method for producing this alloy, rolled material made of this alloy, and part made of this alloy | |
JP5226056B2 (en) | Copper alloys, copper products, electronic components and connectors | |
CN103781925A (en) | Cu-Ni-Si alloy and method for manufacturing same | |
JP4451336B2 (en) | Titanium copper and method for producing the same | |
TWI429766B (en) | Copper alloy and its use of copper products, electronic parts and connectors, and copper alloy manufacturing methods | |
JP5916418B2 (en) | Copper alloy sheet and manufacturing method thereof | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP3717321B2 (en) | Copper alloy for semiconductor lead frames | |
CN103140591A (en) | Cu-co-si-based alloy for electronic material and method of manufacturing the same | |
JP5135914B2 (en) | Manufacturing method of high-strength copper alloys for electrical and electronic parts | |
JP6835638B2 (en) | Copper alloy plate with excellent strength and conductivity | |
KR20060046273A (en) | Titanium copper with excellent strength, conductivity and bending workability and its manufacturing method | |
JP6581755B2 (en) | Copper alloy sheet and manufacturing method thereof | |
JP5665186B2 (en) | Copper-zinc alloy strip | |
JP7644022B2 (en) | Copper alloys having high strength and high conductivity and methods for making such copper alloys | |
JP6339361B2 (en) | Copper alloy sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091214 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091214 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4451336 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130205 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140205 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |