[go: up one dir, main page]

JP4447178B2 - Manufacturing method of ceramics based on dry pressure molded body - Google Patents

Manufacturing method of ceramics based on dry pressure molded body Download PDF

Info

Publication number
JP4447178B2
JP4447178B2 JP2001084564A JP2001084564A JP4447178B2 JP 4447178 B2 JP4447178 B2 JP 4447178B2 JP 2001084564 A JP2001084564 A JP 2001084564A JP 2001084564 A JP2001084564 A JP 2001084564A JP 4447178 B2 JP4447178 B2 JP 4447178B2
Authority
JP
Japan
Prior art keywords
molded body
dry
insulator
dry pressure
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084564A
Other languages
Japanese (ja)
Other versions
JP2002283324A (en
Inventor
博己 嶋田
健二 米倉
立 佐藤
悟 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001084564A priority Critical patent/JP4447178B2/en
Publication of JP2002283324A publication Critical patent/JP2002283324A/en
Application granted granted Critical
Publication of JP4447178B2 publication Critical patent/JP4447178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Insulating Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乾式加圧成形体をベースとしたセラミックスの製造方法に関する。特に、乾式加圧法によって成形された懸垂碍子成形体を施釉し、焼成して製造する懸垂碍子の製造方法に有用である。
【0002】
【従来の技術】
懸垂碍子などの複雑形状品は、従来、湿式成形法で成形し、乾燥し、施釉又は白加工し、焼成して製造する方法で製造されてきた。本発明者らは、大幅なコスト削減を目的として、乾式加圧法による成形体を製造し、施釉し、焼成して懸垂碍子を製造することを試みた。しかしながら、釉切れ問題が発生し、良好な釉薬状態の懸垂碍子を得ることができなかった。又、乾式加圧法による成形体を製造し、形状加工し、焼成してセラミックスを製造する場合においても、乾式加圧法による成形体の強度不足のため、研削、研磨などによる形状加工が困難であった。
【0003】
【発明が解決しようとする課題】
従って、本発明は、乾式加圧成形体をベースとしたセラミックスの製造方法において、上記した問題に鑑みてなされたものであり、その目的は、乾式加圧成形体を施釉又は形状加工し、焼成して製造するセラミックスの製造方法において、良好な釉薬状態のセラミックスを得る製造方法又は形状加工の容易な製造方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
即ち、本発明によれば、バインダーを含有する粉体をゴム型と金型からなる成形型に充填し、当該ゴム型を加圧して成形した乾式加圧成形体を施釉し、焼成して製造するセラミックスの製造方法において、当該乾式加圧成形体を100℃〜250℃の温度で加熱処理した後、施釉することを特徴とする乾式加圧成形体をベースとしたセラミックスの製造方法が提供される。
【0005】
本発明においては、前記加熱処理の温度が100℃〜250℃の範囲であることが好ましい。又、前記施釉方法がスプレー方式施釉であることが好ましい。又、前記乾式加圧成形体が懸垂碍子成形体であることが好ましい。
【0006】
【発明の実施の形態】
以下に、本発明の乾式加圧成形体をベースとしたセラミックスの製造方法について、主として懸垂碍子の製造方法に基づいて説明する。懸垂碍子の乾式加圧成形体に施釉して、焼成して懸垂碍子を製造する方法を中心に実施の形態を具体的に説明するが、本発明は、これらに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、各種成形体において実施可能であり、又、種々の変更、修正、改良を加え得るものである。
【0007】
本発明による懸垂碍子の製造方法においては、陶石、長石、粘土を調合微粉砕し、脱鉄したスラリーに所定量のバインダーを加え、その混合スラリーをスプレードライヤーで造粒し、得られた顆粒粉体を、懸垂碍子の外面形状を形成するゴム型と内面形状を形成する金型からなる成形型に充填し、ゴム型を加圧して乾式加圧成形体を成形する。次いで、得られた乾式加圧成形体を加熱処理し、施釉し、焼成することによって、図1に示す通り、釉切れの無い良好な懸垂碍子が得られる。
一方、乾式加圧成形体を加熱処理しないで、施釉した場合、焼成して得られる懸垂碍子は図2に示す通り、釉切れ、即ち釉薬に多数のクラックが発生し、良好な懸垂碍子が得られない。
【0008】
釉切れが発生するメカニズムについて、本発明者らは以下の通り推定している。即ち、水分約0.5wt%のバインダーを含有する顆粒粉体を成形型に投入して、乾式加圧した場合、顆粒粉体(1)は圧縮され、図3(a)に示す通り、6角形形状に変形し、互いに密に圧縮された微構造組織となり、水溶性バインダーが顆粒粉体の表面近傍にフイルム状で存在しているものと推定している。この状態で施釉すると、図3(b)に示す通り、釉薬の水分により顆粒表面近傍の水溶性バインダー層(17)が膨潤し、成形体表面にマイクロクラックを発生し、その結果、焼成の過程で釉薬層(2)にクラックが発生するものと推定している。
【0009】
ここで、図3(a)は成形型内の顆粒粉体(1)が互いに密に圧縮された微構造組織を示す模式図である。図3(b)は乾式加圧成形体の表面に施釉し、顆粒表面近傍の水溶性バインダー層(17)が膨潤した状態を示す模式図である。
【0010】
従来の懸垂碍子の湿式製法では、成形体は水溶性バインダーを含有していない。又、成形体は約20wt%程度の水分を含んでいるが、乾燥工程で水分が蒸発し、図8(a)に示す通り、成形体(20)に毛細管(21)が形成され、この状態で施釉(22)した場合、図8(b)に示す通り、釉薬の水分は毛細管(21)に吸収され、成形体表面にマイクロクラックを発生しない。その結果、焼成の過程においても、徐々に毛細管(21)中の水分(23)が蒸発し、クラックの無い良好な釉薬が施された懸垂碍子が得られていたものと推定している。
【0011】
また、従来、乾式加圧成形体をベースとしたセラミックスの製造方法においては、通常、単純形状の製品のみに適用可能であって、懸垂碍子のような複雑形状品には適用されていなかった。単純形状品においては粉体に少量のバインダーしか必要としない場合が多く、得られた乾式加圧成形体に施釉して焼成しても問題なく、良好な釉薬の施されたセラミックス製品が得られていた。
【0012】
しかしながら、懸垂碍子のような複雑形状品においては、粉体にある程度の量のバインダーを含有させなければ乾式加圧成形体のリブ部にクラックの発生或いは欠落を生じ、良好な乾式加圧成形体が得られない。粉体にある程度の量のバインダーを含有させたことにより、乾式加圧成形体に施釉した場合、上記のような顆粒表面近傍の水溶性バインダー層の膨潤が発生し、釉切れ問題が発生したものと推定される。
【0013】
乾式加圧成形体を加熱処理したことにより、成形体の表面近傍にフイルム状で存在する水溶性バインダーが結晶化して、耐水性の表面になり、バインダー層の膨潤が起こらず、その結果、加熱処理後の乾式加圧成形体に施釉し、焼成しても、釉切れは発生せず、良好な懸垂碍子が得られたものと推定される。
【0014】
粉体に含まれるバインダーとしては、例えば結合剤としてのポリビニルアルコールに成形体と金型の摩擦抵抗を低減する潤滑剤を加えたものが好ましい。潤滑剤としては、モンタン酸、ステアリン酸などが好ましい。
【0015】
又、碍子原料としての粘土に、従来は堆積成因粘土(例えば蛙目粘土)が使用されてきたが、熱水成因粘土(例えばカオリン)を用いれば良好な成形体を得るに必要なバインダーの添加量を低減できるので好ましい。更に、堆積成因粘土の代わりに熱水成因粘土を使用した場合、スプレードライヤーに送入するスラリーの水分が同一粘性であるにもかかわらず低水分化できるため、堆積成因粘土に較べ、スプレードライヤーの燃費を低減できるから好ましい。
【0016】
尚、懸垂碍子のような複雑形状品においては、顆粒粉体が所定量のバインダーを含有していなければ乾式加圧成形体のリブ部にクラックの発生或いは欠落を生じ、良好な乾式加圧成形体が得られないが、懸垂碍子の場合、リブ角度も併せて所定の角度に設定されていなければ良好な乾式加圧成形体が得られない。懸垂碍子の形状は、図4に示す通り、組立の際にキャップ金具と吊り棒金具が取付けられる有底倒立円筒状の頭部(3)と円盤状のかさ部(4)とかさ部(4)の内面に形成された複数のリング状のリブ部(5)と頭部の最下端に位置する最内リング部(6)からなる。
【0017】
各リブ(5(D1),5(D2),5(D3))のリブ角度(θ)は、図5に示す通り、リブ(5)の外面(7)と水平面とのなす角度θ1、θ2、θ3で示す。良好に成形された懸垂碍子成形体(8)の具体的寸法の一例(供試体1)を表1に示す。併せて、リブ部にクラックが発生するか欠落する場合の懸垂碍子成形体の比較例(比較体1、比較体2)を表2に示す。
【0018】
【表1】

Figure 0004447178
【0019】
【表2】
Figure 0004447178
【0020】
表1及び表2において、図5に示す通り、rはリブの半径、即ち、懸垂碍子の中心線からリブ頂点(5a)までの水平距離であり、hは懸垂碍子(8)の頭部(3)の底部内面(3a)からリブ頂点(5a)の水平線までの垂直距離である。
リブ角度(θ)がθ≦tan-1(h/r)の関係式を満足した場合に良好な成形体が得られる。
【0021】
供試体1のリブ部(5)の角度(θ)はθ≦tan-1(h/r)の関係式を満足し、且つ、漏洩距離即ち許容される電気絶縁距離が得られる角度に設定されている。この条件を満足する場合に良好な乾式加圧成形体(8)が得られる。従って金型のリブ部における角度が上記の通り設計されて製作された金型を用いる。尚、tan-1(h/r)はゴム型を加圧し、成形型内の顆粒粉体を圧縮して成形後、降圧する際に、成形体のリブ部に発生するスプリングバック作用力の発生角度に相当するものと本発明者らは推定している。表2において、比較体1及び比較体2はいずれもθ>tan-1(h/r)の関係にあって、クラックが発生している。
供試体1の如き形状寸法の懸垂碍子成形体を加熱処理した後、施釉し、焼成すれば良好な懸垂碍子が低コストで生産できる。
【0022】
ここで、懸垂碍子の乾式加圧成形法について説明をする。図6に示す通り、成形型は懸垂碍子の内面形状を形成する金型(9)と外面形状を形成するゴム型(10)とからなり、金型(9)とゴム型(10)で形成される形成碍子形状の空間(11)に顆粒粉体を充填する。充填する顆粒粉体は、碍子原材料である陶石、長石、粘土の粗粉砕工程、調合微粉砕工程、篩工程、脱鉄工程を経て得られたスラリーにバインダーを加え、スプレードライヤーに送入し、製造した顆粒粉体である。
【0023】
ゴム型(10)の中央部には顆粒粉の投入口が設けられ、顆粒粉体投入後はゴム製のトップパンチ(12)によって密閉する。次いで、基台(13)に取付けられた圧力容器(14)内に成形型をセットする。例えば、水などの圧力媒体(15)に外部より圧力を加え、シールドゴム(16)を介してゴム型(10)を等方加圧する。
成形型内の顆粒粉体(1)はゴム型(10)によって加圧圧縮され、成形される。成形後降圧し、成形体を成形型から取り出す。
【0024】
次に、本発明の乾式加圧成形体をベースとしたセラミックスの製造方法において、乾式加圧成形体を加熱処理する条件について、具体的実施例に基づいて説明をする。
【0025】
(実施例及び比較例)
表1に記載の形状、寸法を有する懸垂碍子の乾式加圧成形体をベースにして、各温度、各時間で処理した後、施釉し、焼成した懸垂碍子を図7に示す。供試体2は150℃、2時間加熱した場合、比較体3は加熱処理をしないで直接施釉した場合、比較体4は100℃、2時間加熱した場合、更に、比較体5は150℃、30分間、比較体6は150℃、1時間加熱処理した場合を各々示す。
【0026】
供試体2には釉切れは発生していない。比較体3には激しい釉切れが発生しており、比較体4〜6においても、釉薬に少量のクラックが発生していた。比較体4〜6においては、加熱処理による成形体表面のバインダーの結晶化が不充分であったため、クラックの発生を生じたものと考えられる。バインダーの結晶化が進むにつれて成形体の抗析強度は増加する。加熱処理後の供試体2の成形体抗析強度は3.38(MPa)、比較体3及び比較体4の成形体抗析強度は各々、2.22(MPa)、2.68(MPa)であった。
【0027】
加熱処理温度を100℃以上とすることによりバインダーの結晶化が進行し、250℃以下にすれば、バインダーの急激な熱分解が起こらない。成形体表面のバインダーの結晶化は処理温度に依存すると考えられ、処理時間は適宜実験によって設定される。又、比較体4〜6の様に成形体表面のバインダーの結晶化が多少不十分であっても、施釉の方法をスプレー施釉すれば釉切れの問題は解決される。従来の施釉方法は成形体を回転させながら水分40%程度の釉薬スラリーを成形体表面に流しがけして行われる。スプレー施釉であれば、成形体表面に施される水分量が少量となり、その結果、釉切れが発生しにくくなるものと推定される。
【0028】
尚、乾式加圧によって成形された乾式加圧成形体を加熱処理すれば強度が増加するから、研削など白加工が有利となる。
【0029】
【発明の効果】
以上説明したように、本発明の乾式加圧成形体をベースとしたセラミックスの製造方法によれば、乾式加圧成形法によるものであり、従来の湿式成形法に比較し、脱水工程、土練押出し工程を必要とせず、工程の簡略化による大幅なコスト削減が可能である。又、バインダーを含有する粉体を乾式加圧するため、複雑形状品であってもクラックのない良好な乾式加圧成形体が得られる。更に、この乾式加圧成形体を加熱処理することにより強度が向上し、白加工が有利となる。更に又、加熱処理後施釉し、焼成したセラミックスは釉切れのない良好なセラミックス製品が得られる。
【図面の簡単な説明】
【図1】 本発明の方法によって製造した釉切れのない良好な懸垂碍子の一例を示す斜視図である。
【図2】 乾式加圧成形体を加熱処理しないで施釉し、焼成した場合の釉切れが発生した懸垂碍子の一例を示す斜視図である。
【図3】 成形体の微構造組織を示すもので、(a)は乾式加圧成形体の微構造組織を示す模式図、(b)は乾式加圧成形体を加熱処理せず、施釉した場合に顆粒表面近傍の水溶液バインダー層が膨潤する状態を示す模式図である。
【図4】 懸垂碍子の形状を示す断面図である。
【図5】 懸垂碍子の各部の寸法を説明する要部拡大断面図である。
【図6】 懸垂碍子の乾式加圧成形法を説明する概略図である。
【図7】 乾式加圧成形体を各温度、各時間で加熱処理し、施釉し、焼成した懸垂碍子の実施例及び比較例を示す。
【図8】 従来の湿式成形体を乾燥し、施釉し、焼成した懸垂碍子が釉切れしないメカニズムを説明する説明図で、(a)は毛細管が形成された状態、(b)は釉薬の水分が毛細管に吸収された状態を示す。
【符号の説明】
1…顆粒粉体、2…釉薬層、3…頭部、4…かさ部、5…リブ部、5(D1),5(D2),5(D3)…3個の各リブ部番号、6…最内リング部、7…リブの外面、8…懸垂碍子乾式加圧成形体、9…金型、10…ゴム型、11…空間、12…トップパンチ、13…基台、14…圧力容器、15…圧力媒体、16…シールドゴム、17…水溶性バインダー層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ceramics based on a dry pressure molded body. In particular, the present invention is useful for a method for manufacturing a suspended insulator in which a suspended insulator molded body formed by a dry press method is applied and fired.
[0002]
[Prior art]
Conventionally, a complicated shape product such as a hanging insulator has been manufactured by a method of forming by a wet forming method, drying, glazing or white processing, and firing. The inventors of the present invention attempted to produce a suspended insulator by manufacturing, glazing and firing a molded body by a dry press method for the purpose of significant cost reduction. However, the problem of breakage occurred, and it was not possible to obtain a suspension with a good glaze state. In addition, even when a molded body is manufactured by a dry press method, shaped, and fired to produce ceramics, it is difficult to process the shape by grinding, polishing, etc. due to insufficient strength of the formed body by the dry press method. It was.
[0003]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above-described problems in a ceramic manufacturing method based on a dry pressure molded body, and its purpose is to glaze or shape-process the dry pressure molded body, and to fire it. It is an object of the present invention to provide a method for producing a ceramic that is manufactured in the above-described manner, and a method for producing a ceramic in a good glaze state or a method for producing a shape easily.
[0004]
[Means for Solving the Problems]
That is, according to the present invention, a powder containing a binder was charged into a mold made of rubber mold and the mold, said gum-type pressurized dry pressed compact obtained by molding and facilities glaze by pressurizing and baking in the method for manufacturing a ceramic for producing, after the dry-pressed compact was heated at a temperature of 100 ° C. to 250 DEG ° C., a method of manufacturing ceramic-based dry pressed compact, characterized in facilities glaze to Rukoto Is provided.
[0005]
In this invention, it is preferable that the temperature of the said heat processing is the range of 100 to 250 degreeC. The glazing method is preferably spray glazing. Moreover, it is preferable that the dry pressure molded body is a suspended insulator molded body.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Below, the manufacturing method of the ceramics based on the dry-type pressure-molded body of the present invention will be described mainly based on the manufacturing method of the hanging insulator. Embodiments will be specifically described centering on a method of producing a suspended insulator by applying it to a dry pressure molded body of the suspended insulator and firing it, but the present invention is not construed as being limited thereto. Without departing from the scope of the present invention, the present invention can be implemented in various molded articles based on the knowledge of those skilled in the art, and various changes, modifications, and improvements can be added.
[0007]
In the method for producing a hanging insulator according to the present invention, a granule obtained by mixing and pulverizing porcelain stone, feldspar and clay, adding a predetermined amount of binder to the deironed slurry, and granulating the mixed slurry with a spray dryer. The powder is filled in a molding die composed of a rubber mold that forms the outer surface shape of the suspended insulator and a mold that forms the inner surface shape, and the rubber mold is pressed to form a dry pressure molded body. Next, by subjecting the obtained dry pressure-molded body to heat treatment, glazing, and firing, as shown in FIG. 1, a good suspended insulator without breakage is obtained.
On the other hand, when the dry press-molded body is glazed without heat treatment, the suspended insulator obtained by firing is broken as shown in FIG. 2, that is, many cracks are generated in the glaze, and a good suspended insulator is obtained. I can't.
[0008]
The present inventors presume the mechanism for the occurrence of fraying as follows. That is, when a granular powder containing a binder having a moisture content of about 0.5 wt% is put into a mold and pressed dry, the granular powder (1) is compressed, and as shown in FIG. It is presumed that the microstructure is deformed into a square shape and is closely packed with each other, and the water-soluble binder is present in the form of a film near the surface of the granular powder. When glazing in this state, as shown in FIG. 3 (b), the water-soluble binder layer (17) in the vicinity of the granule surface swells due to the moisture of the glaze, and microcracks are generated on the surface of the molded body. Therefore, it is estimated that cracks occur in the glaze layer (2).
[0009]
Here, Fig.3 (a) is a schematic diagram which shows the microstructure which the granular powder (1) in a shaping | molding die was compressed mutually closely. FIG. 3B is a schematic view showing a state in which the water-soluble binder layer (17) in the vicinity of the granule surface is swollen by glazing on the surface of the dry pressure molded body.
[0010]
In the conventional wet insulator manufacturing method, the molded body does not contain a water-soluble binder. Further, although the molded body contains about 20 wt% of moisture, the moisture evaporates in the drying process, and as shown in FIG. 8A, a capillary tube (21) is formed in the molded body (20). When glazed (22), as shown in FIG. 8 (b), the moisture of the glaze is absorbed by the capillary tube (21) and no microcracks are generated on the surface of the molded body. As a result, it is presumed that even in the firing process, the moisture (23) in the capillary tube (21) gradually evaporated, and a suspended insulator with a good glaze free of cracks was obtained.
[0011]
Conventionally, a ceramic manufacturing method based on a dry pressure-molded body is usually applicable only to a product having a simple shape, and not to a complicated shape product such as a hanging insulator. Simple shape products often require only a small amount of binder in the powder, and there is no problem even if the resulting dry press-molded body is applied and fired, and a ceramic product with a good glaze can be obtained. It was.
[0012]
However, in a complicated shape product such as a hanging insulator, if a certain amount of binder is not included in the powder, a crack is generated or missing in the rib portion of the dry pressure molded body, and a good dry pressure molded body Cannot be obtained. When a dry pressure-molded body is applied with a certain amount of binder in the powder, the water-soluble binder layer in the vicinity of the granule surface swells as described above, resulting in a fraying problem It is estimated to be.
[0013]
By heat-treating the dry pressure-molded body, the water-soluble binder present in the form of a film near the surface of the molded body is crystallized to form a water-resistant surface, and the binder layer does not swell, resulting in heating. Even if it is applied to the dry pressure-formed body after the treatment and fired, it is presumed that no breakage occurs and a good suspension insulator is obtained.
[0014]
As the binder contained in the powder, for example, a material obtained by adding a lubricant that reduces the frictional resistance between the molded body and the mold to polyvinyl alcohol as a binder is preferable. As the lubricant, montanic acid, stearic acid and the like are preferable.
[0015]
Moreover, sedimentary clay (for example, Sasame clay) has been used for clay as a raw material for coconuts, but the addition of a binder necessary to obtain a good molded body by using hydrothermal clay (for example, kaolin). This is preferable because the amount can be reduced. Furthermore, when hydrothermal clay is used instead of sedimentary clay, the water content of the slurry fed to the spray dryer can be reduced even though the moisture is the same viscosity. It is preferable because fuel consumption can be reduced.
[0016]
In addition, in a complicated shape product such as a hanging insulator, if the granular powder does not contain a predetermined amount of binder, cracks are generated or missing in the rib portion of the dry pressure molded body, and good dry pressure molding is performed. No body can be obtained, but in the case of a suspended insulator, a good dry pressure-formed body cannot be obtained unless the rib angle is also set to a predetermined angle. As shown in FIG. 4, the shape of the hanging insulator is as follows: a bottomed inverted cylindrical head (3), a disc-shaped head (4) and a head (4 ) And a plurality of ring-shaped rib portions (5) formed on the inner surface, and an innermost ring portion (6) positioned at the lowermost end of the head.
[0017]
As shown in FIG. 5, the rib angle (θ) of each rib (5 (D1), 5 (D2), 5 (D3)) is the angle θ1, θ2 formed between the outer surface (7) of the rib (5) and the horizontal plane. , Θ3. Table 1 shows an example (specimen 1) of specific dimensions of a well-shaped suspended insulator molded body (8). In addition, Table 2 shows comparative examples (comparative body 1 and comparative body 2) of the suspended insulator molded body when cracks are generated or missing in the rib portion.
[0018]
[Table 1]
Figure 0004447178
[0019]
[Table 2]
Figure 0004447178
[0020]
In Tables 1 and 2, as shown in FIG. 5, r is the radius of the rib, that is, the horizontal distance from the center line of the suspension insulator to the rib apex (5a), and h is the head of the suspension insulator (8) ( 3) The vertical distance from the bottom inner surface (3a) to the horizontal line of the rib apex (5a).
When the rib angle (θ) satisfies the relational expression of θ ≦ tan −1 (h / r), a good molded body can be obtained.
[0021]
The angle (θ) of the rib portion (5) of the specimen 1 is set to an angle that satisfies the relational expression of θ ≦ tan −1 (h / r) and obtains a leakage distance, that is, an allowable electrical insulation distance. ing. When this condition is satisfied, a good dry pressure molded body (8) is obtained. Therefore, a mold manufactured by designing the angle at the rib portion of the mold as described above is used. Note that tan -1 (h / r) is the generation of a springback action force generated in the rib portion of the molded body when the pressure is reduced after pressing the rubber mold and compressing the granular powder in the molding mold. The present inventors presume that it corresponds to an angle. In Table 2, the comparative body 1 and the comparative body 2 are both in a relation of θ> tan −1 (h / r), and cracks are generated.
A good suspension insulator can be produced at low cost by heat-treating and firing the suspension insulator molded body having the shape and dimension as the specimen 1.
[0022]
Here, the dry pressure molding method of the hanging insulator will be described. As shown in FIG. 6, the mold consists of a mold (9) that forms the inner surface shape of the hanging insulator and a rubber mold (10) that forms the outer surface shape, and is formed by the mold (9) and the rubber mold (10). The formed insulator-shaped space (11) is filled with granular powder. For the granular powder to be filled, a binder is added to the slurry obtained through the coarse pulverization process, the compounding and fine pulverization process, the sieve process and the deironing process of ceramic stone, feldspar, and clay, which are the raw materials for the insulator, and sent to a spray dryer. , Produced granular powder.
[0023]
The center part of the rubber mold (10) is provided with an inlet for granule powder, and after the granule powder is charged, it is sealed with a rubber top punch (12). Subsequently, a shaping | molding die is set in the pressure vessel (14) attached to the base (13). For example, pressure is applied from the outside to a pressure medium (15) such as water, and the rubber mold (10) is isotropically pressurized through the shield rubber (16).
The granular powder (1) in the mold is compressed and molded by the rubber mold (10). After molding, the pressure is reduced and the molded body is taken out of the mold.
[0024]
Next, in the method for producing ceramics based on the dry pressure molded body of the present invention, conditions for heat treatment of the dry pressure molded body will be described based on specific examples.
[0025]
(Examples and Comparative Examples)
FIG. 7 shows a suspended insulator that has been subjected to treatment at each temperature and each time, glazed, and fired, based on a dry pressure molded body of a suspended insulator having the shape and dimensions shown in Table 1. When the specimen 2 is heated at 150 ° C. for 2 hours, the comparative body 3 is directly glazed without heat treatment, the comparative body 4 is heated at 100 ° C. for 2 hours, and the comparative body 5 is 150 ° C. at 30 ° C. The case where the comparative body 6 is heat-treated for 1 minute at 150 ° C. for 1 minute is shown.
[0026]
Specimen 2 has not been severed. The comparative body 3 was severely frayed, and the comparative bodies 4 to 6 also had a small amount of cracks in the glaze. In the comparative bodies 4 to 6, it is considered that cracks were generated because the binder was not sufficiently crystallized by the heat treatment. As the crystallization of the binder proceeds, the segregation strength of the molded body increases. The specimen 2 after the heat treatment has a molded body segregation strength of 3.38 (MPa), and the comparative body 3 and the comparative body 4 have a molded body segregation strength of 2.22 (MPa) and 2.68 (MPa), respectively. Met.
[0027]
When the heat treatment temperature is set to 100 ° C. or higher, crystallization of the binder proceeds. When the heat treatment temperature is set to 250 ° C. or lower, rapid thermal decomposition of the binder does not occur. It is considered that the crystallization of the binder on the surface of the molded body depends on the treatment temperature, and the treatment time is appropriately set by experiment. Moreover, even if the crystallization of the binder on the surface of the molded body is somewhat insufficient as in Comparative Examples 4 to 6, the problem of breakage can be solved by spraying the glazing method. The conventional glazing method is performed by pouring a glaze slurry having a water content of about 40% on the surface of the molded body while rotating the molded body. If spray glazing is applied, the amount of moisture applied to the surface of the molded body is small, and as a result, it is presumed that wrinkles are less likely to occur.
[0028]
It should be noted that white processing such as grinding is advantageous because the strength is increased if a dry pressure molded body formed by dry pressing is heat-treated.
[0029]
【The invention's effect】
As described above, according to the method for producing ceramics based on the dry pressure molded body of the present invention, the method is based on the dry pressure molding method. There is no need for an extrusion process, and the cost can be greatly reduced by simplifying the process. In addition, since the powder containing the binder is dry-pressurized, a good dry-pressed body free from cracks can be obtained even if the product has a complicated shape. Further, the heat treatment of the dry pressure-molded body improves the strength, and white processing is advantageous. Furthermore, a ceramic product that has been glazed after the heat treatment and fired can be obtained without breakage.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a good hanging insulator having no breakage produced by the method of the present invention.
FIG. 2 is a perspective view showing an example of a hanging insulator that has been broken when a dry pressure-formed body is glazed without being heat-treated and fired.
FIG. 3 shows a microstructure of a molded body. (A) is a schematic diagram showing a microstructure of a dry pressure-molded body, and (b) is glazed without heat treatment of the dry pressure-molded body. It is a schematic diagram which shows the state which the aqueous solution binder layer of the granule surface vicinity swells in a case.
FIG. 4 is a cross-sectional view showing the shape of a hanging insulator.
FIG. 5 is an enlarged cross-sectional view of a main part for explaining dimensions of each part of the hanging insulator.
FIG. 6 is a schematic view for explaining a dry pressure forming method of a hanging insulator.
FIG. 7 shows an example and a comparative example of a suspended insulator in which a dry pressure-molded body is heat-treated, glazed, and fired at various temperatures and times.
FIGS. 8A and 8B are explanatory diagrams for explaining a mechanism in which a conventional wet molded body is dried, glazed, and fired, and a suspended insulator is not broken; FIG. Shows a state where is absorbed by the capillary.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Granule powder, 2 ... Glaze layer, 3 ... Head, 4 ... Bulk part, 5 ... Rib part, 5 (D1), 5 (D2), 5 (D3) ... Three rib part numbers, 6 DESCRIPTION OF SYMBOLS ... Innermost ring part, 7 ... Outer surface of rib, 8 ... Suspension insulator dry-type pressure molding, 9 ... Mold, 10 ... Rubber mold, 11 ... Space, 12 ... Top punch, 13 ... Base, 14 ... Pressure vessel 15 ... Pressure medium, 16 ... Shield rubber, 17 ... Water-soluble binder layer.

Claims (2)

バインダーを含有する粉体をゴム型と金型からなる成形型に充填し、当該ゴム型を加圧して成形した乾式加圧成形体を施釉し、焼成して製造するセラミックスの製造方法において、当該乾式加圧成形体を100℃〜250℃の温度で加熱処理した後、施釉することを特徴とする乾式加圧成形体をベースとしたセラミックスの製造方法。The powder containing a binder was charged into a mold made of a rubber-type and the mold, the rubber-type pressure dry pressed compact obtained by molding and facilities glaze in addition, in the manufacturing method of the ceramics produced by firing, after the dry-pressed compact was heated at a temperature of 100 ° C. to 250 DEG ° C., the manufacturing method of the ceramic-based dry pressed compact, characterized in facilities glaze to Rukoto. 前記乾式加圧成形体が懸垂碍子成形体であることを特徴とする請求項1に記載の乾式加圧成形体をベースとしたセラミックスの製造方法。  2. The method for producing ceramics based on a dry pressure molded body according to claim 1, wherein the dry pressure molded body is a suspended insulator molded body.
JP2001084564A 2001-03-23 2001-03-23 Manufacturing method of ceramics based on dry pressure molded body Expired - Fee Related JP4447178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084564A JP4447178B2 (en) 2001-03-23 2001-03-23 Manufacturing method of ceramics based on dry pressure molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084564A JP4447178B2 (en) 2001-03-23 2001-03-23 Manufacturing method of ceramics based on dry pressure molded body

Publications (2)

Publication Number Publication Date
JP2002283324A JP2002283324A (en) 2002-10-03
JP4447178B2 true JP4447178B2 (en) 2010-04-07

Family

ID=18940211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084564A Expired - Fee Related JP4447178B2 (en) 2001-03-23 2001-03-23 Manufacturing method of ceramics based on dry pressure molded body

Country Status (1)

Country Link
JP (1) JP4447178B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707714A (en) * 2021-01-29 2021-04-27 中材江西电瓷电气有限公司 Formula and preparation process of high-strength cylindrical head suspension insulator

Also Published As

Publication number Publication date
JP2002283324A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US20190300447A1 (en) High-temperature Resistant Lightweight Thermal Insulation Material with Dual-pore Structure and Preparation Method Thereof
JPS58204868A (en) Ceramic formed body
CN105503209B (en) A kind of mullite lightweight thermal insulation brick based on flint clay and preparation method thereof
NO803751L (en) SHRIMM-FREE CERAMIC MATERIAL, AND PROCEDURES AND MANUFACTURING PRODUCTS THEREOF
CN110655379A (en) Nano composite heat insulation plate and preparation method thereof
US9321188B2 (en) Method for manufacturing of ceramic electro-insulating pipes
CN104311098A (en) Method of preparing porous material by utilizing shell coal gasification fly ash
JP3000151B2 (en) Refractory support and method for producing the same
JP4447178B2 (en) Manufacturing method of ceramics based on dry pressure molded body
CN106396726A (en) Porous refractory material and preparation method thereof
SU1680668A1 (en) Charge for obtaining ceramic material
CN102115305A (en) Manufacture method of quartz crucible for casting polycrystalline silicon ingot
CN107586099B (en) Manufacturing method of split brick
JP4441138B2 (en) Method for producing axisymmetric ceramic molded body having protrusion-shaped part on inner surface side and method for producing suspended insulator molded body
JPH11228219A (en) Production of high-density ito sintered compact utilizing ito recycled powder
KR19980036657A (en) Method of manufacturing porcelain tableware using mica
JPH11263670A (en) Method for producing high-purity boron nitride compact
CN105837251B (en) A kind of grand hole magnesium-aluminum spinel raw material and preparation method thereof
CN101966724B (en) Preparation method of extrusion molding silicon carbide deck
JP5352218B2 (en) Method for producing composite oxide
JP2000001379A (en) Production of heat-insulating lightweight porcelain
CN1537818A (en) Preparation method of brick used for bottom of tin bath
JP3690998B2 (en) Earthenware tile
CN104177098A (en) Composite setting plate and manufacture method thereof
JP2004131351A (en) Quartz glass and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees