[go: up one dir, main page]

JP4446430B2 - Luminescent container for high pressure discharge lamp - Google Patents

Luminescent container for high pressure discharge lamp Download PDF

Info

Publication number
JP4446430B2
JP4446430B2 JP2003059690A JP2003059690A JP4446430B2 JP 4446430 B2 JP4446430 B2 JP 4446430B2 JP 2003059690 A JP2003059690 A JP 2003059690A JP 2003059690 A JP2003059690 A JP 2003059690A JP 4446430 B2 JP4446430 B2 JP 4446430B2
Authority
JP
Japan
Prior art keywords
sealing member
end sealing
electrode member
container
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003059690A
Other languages
Japanese (ja)
Other versions
JP2004273187A (en
Inventor
末雄 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003059690A priority Critical patent/JP4446430B2/en
Priority to CN 200410007936 priority patent/CN1280869C/en
Publication of JP2004273187A publication Critical patent/JP2004273187A/en
Application granted granted Critical
Publication of JP4446430B2 publication Critical patent/JP4446430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧放電灯用発光容器およびこれに用いる端部封止部材に関するものである。
【0002】
【従来の技術】
特許文献1に記載の高圧放電灯用発光容器においては、チューブ本体の成形体と環状の端部封止部材の成形体とを別個に作製し、これら2種類の成形体を組み立てて組み立て体を作製している。そして、この組み立て体を焼成してメタルハライド封入用の容器を作製している。この際、チューブ本体の成形体を単独で焼成したときの内径よりも、端部封止部材の成形体を単独で焼成したときの外形が大きくなるように、両者の焼成収縮率を設計しておく。すると、焼成時に、チューブ本体から端部封止部材へと圧着力が加わるので、両者の接合が良好となり、気密性が高く維持される。
【特許文献1】
特開平10−125230号公報
【0003】
【発明が解決しようとする課題】
本発明者がこうした高圧放電灯用発光容器の量産を検討したところ、次の問題点を見いだした。この点について、図10を参照しながら述べる。図10に示す高圧放電灯用発光用容器11は、チューブ本体6と端部封止部材12とからなる。チューブ本体6の内側面6aは放電空間10に面している。端部封止部材12は、本体部分12bと環状部分12aとを備えている。チューブ本体6の端部開口に端部封止部材12の本体部分12bが挿入され、接合一体化されている。端部封止部材12の電極部材挿入孔12d中には電極部材9の保持部9aが挿入固定されている。電極9bは放電空間10内に収容されている。端部封止部材12の内側面と電極部材9の外側面との間は接合材、例えばガラスフリット14によって封止されている。
【0004】
しかし、容器11内にクラックが見られないときでも、端部封止部材12内に電極部材9を挿入し、接合材14で封止した後には、チューブ本体6にクラックが見られることがあった。この場合には不良品となるので、製造歩留りが低下するという問題がある。
【0005】
本発明の課題は、チューブ本体、およびチューブ本体の開口内に設けられている端部封止部材を備えており、チューブ本体の被焼成体と端部封止部材の被焼成体との組み立て体の焼成によって製造されている容器において、電極部材を端部封止部材内に挿入して接合材で封止した後の容器のクラック発生を抑制することである。
【0006】
【課題を解決するための手段】
本発明は、放電空間が形成されているチューブ本体、およびこのチューブ本体の開口内に設けられている端部封止部材を備えており、チューブ本体の被焼成体と端部封止部材の被焼成体との組み立て体の焼成によって製造されているセラミックス製の高圧放電灯用発光容器であって、
端部封止部材が、外側端面、放電空間に面する内側端面および外側端面と内側端面との間に設けられている電極部材挿入孔を備えており、外側端面に凹部が形成されている。
【0007】
ここで、前記凹部が、前記電極部材挿入孔と連続しており、前記電極部材挿入孔を包囲するように環状に設けられている。そして、接合剤が前記外側端面、前記電極部材挿入孔および前記内側端面を濡らしている。
【0008】
本発明者は、容器の端部封止部材に電極部材を挿入し、接合材で封止した後に、電極部材の外周部分で容器にクラックが生ずる原因を検討し、次の発見に至った。即ち、図10、図11に示すように、クラックは、主としてチューブ本体6と端部封止部材12との接合部分の末端部Aに現れることが多かった。そこで、Aの近辺の状況を検討したところ、接合材15がAまで濡らしていることが分かった。これは、接合材14が端部封止部材12の電極部材挿入孔12dから溢れて内側端面12eを濡らし、更にチューブ本体6の内壁面6aまで到達していることを意味している。このようなチューブ本体6の内壁面6aの濡れは、次のようにして生ずると考えられる。即ち、接合時の最高温度が高すぎたり、あるいは最高温度での保持時間が長すぎると、図10に示すように、接合材14が広い面積にわたって壁面に沿って流動し、最終的にチューブ本体6の内壁面6aまで到達することがある。また、接合材14が多すぎると、やはり一部が図11に示すように、チューブ本体6の内壁面6aに到達することがある。
【0009】
ここで、端部封止部材12とチューブ本体6とは、前述したように焼成収縮率の差によって圧着されている。このため、両者の接合部分に沿って応力が残っており、かつ微細な隙間も残っている。この隙間に接合材の一部が流入すると、残留応力と相まってクラック発生の原因となる。特に、接合条件によっては、チューブ本体6を構成するセラミックスの熱膨張率よりも低い熱膨張率を有する結晶が接合材14内に生成することがある。この場合には、封止工程、あるいは点灯時に、一層クラックが発生しやすくなる。
【0010】
これに対して、本発明においては、端部封止部材12の外側端面に凹部を設け、凹部が、電極部材挿入孔と連続しており、電極部材挿入孔を包囲するように環状に設けられている。これによって、溶融工程において接合材の一部を吸収し、接合材がチューブ本体6の内壁面6aに到達しにくいようにすることで、クラックを抑制することに成功した。
【0011】
【発明の実施の形態】
以下、適宜図面を参照しつつ、本発明を更に詳細に説明する。図1は、本発明の一実施形態に係る高圧放電灯用発光容器8を示す断面図であり,電極部材9の固定後の状態を示す。図2は、電極部材9の固定前の容器8を示す。本例の容器8は、端部封止部材7とチューブ本体6からなる。チューブ本体6の内側面6aは放電空間10に面している。端部封止部材7は、本体部分7bと環状部分7aとを備えている。チューブ本体6の端部開口に端部封止部材7の本体部分7bが挿入され、接合一体化されている。端部封止部材7の電極部材挿入孔7d中には電極部材9の保持部9aが挿入固定されている。電極9bは放電空間10内に収容されている。端部封止部材7の内側面と電極部材9の外側面との間は接合材、例えばガラスフリット14によって封止されている。
【0012】
本例においては、端部封止部材7の内側端面7eは略平坦であるが、外側端面7fには略環状の凹部7cが形成されている。そして、接合工程において、流動性の接合材が凹部7cにおいて吸収されるので、チューブ本体6の内壁面6aにまで到達しにくく、これによってチューブ本体6のクラック発生率を低減できる。
【0013】
図3に示す本発明外の高圧放電灯用発光容器8Aは、端部封止部材7Aとチューブ本体6とからなる。本例の端部封止部材7Aにおいては、外側端面7fには凹部が設けられておらず、略平坦である。端部封止部材7Aの放電空間10に面する内側端面7eには、電極部材挿入孔7dを包囲するように環状の凹部7gが形成されている。
【0014】
図4に示す高圧放電灯用発光容器8Bは、端部封止部材7Bとチューブ本体6とからなる。本例の端部封止部材7Bにおいては、放電空間10に面する内側端面7eに、電極部材挿入孔7dを包囲するように環状の凹部7gが形成されている。外側端面7fには略環状の凹部7cが形成されている。これによって、接合工程において、流動性の接合材14が平坦面7eまで到達しににく、従ってチューブ本体6の底壁面6aに到達しにくい。
【0015】
本発明においては、凹部が、電極部材挿入孔7dを包囲するように環状に設けられている。これは、接合工程において、流動性の接合材がチューブ本体6に到達しないようにする上で効果的である。
【0016】
本発明においては、凹部が、電極部材挿入孔に対して連続的に設けられている。
【0017】
容器を構成するセラミックスは特に限定されないが、ハロゲン系腐食性ガスに対する耐蝕性を有するセラミックスが好ましい。特に好ましくは、アルミナ、イットリア、イットリウム−アルミニウムガーネット、窒化アルミニウムである。
【0018】
電極部材の材質や形態は特に限定されない。電極部材の材質は、高融点金属や導電性セラミックスが好ましい。高融点金属としては、モリブデン、タングステン、レニウム、ハフニウム、ニオブおよびタンタルからなる群より選ばれた一種以上の金属、またはこの金属を含む合金が好ましい。
【0019】
凹部の深さは特に限定されない。しかし、接合工程において流動性の接合材を吸収し、チューブ本体6への到達を抑制するという観点からは、凹部の深さは0.2mm以上であることが好ましく、0.4mm以上であることが更に好ましい。また、凹部の深さの上限は特にない。加工時の生産性の観点からは、凹部の深さは0.3mm以下であることが好ましい。
【0020】
接合材の種類は特に限定されないが、いわゆるフリットガラスが好ましく、Al 2 O 3 -CaO-Y 2 O 3 -SrO系の組成系のガラスが特に好ましい。
【0021】
Al 2 O 3 −CaO−Y 2 O 3 −SrO系の組成系のフリットガラスを使用した場合には、溶融後に接合条件によっては12CaO・7Al結晶が生成することがある。例えばアルミナチューブの熱膨張係数は6.8×10−6/℃であり、12CaO・7Alの熱膨張係数は5.98×10−6/℃であり、かなりの熱膨張差が生ずる。
【0022】
次いで好適な製造プロセスについて説明する。図5に示すように、上型1と下型2とを準備し、下型2内に粉末3を収容する。上型1の型面には突起1aを設ける。図6に示すように、上型1と下型2とをはめ合わせ,組み立てる。突起1aの形状は、例えば図1に示す凹部7cを形成可能な形状とする。このときの圧力は粉末の種類によって定まる。次いで、上型1と下型2とを離し、成形体4を離型させる。成形体4は、環状部分4a、本体部分4b、貫通孔4dおよび凹部4cを備えている。
【0023】
次いで、図8に示すように、成形体4の本体部分4bを、チューブ本体6の成形体5の開口5aの端部に挿入し、図9に示す状態とし、組み立て体を得る。組み立て体20を焼成し、例えば図1に示す容器を得る。
【0024】
この例では成形体4と5とを組み立てて組み立て体20を得、組み立て体20を焼成した。しかし、本発明において、端部封止部材の被焼成体、チューブ本体の被焼成体は、それぞれ、成形体以外に、仮焼体であってよく、脱脂体であってもよい。
【0025】
焼成工程においては、端部封止部材の成形体を単独で焼成したときの外径よりも、チューブ本体の成形体を単独で焼成したときの内径が小さくなるようにする。これによって、焼成時に、チューブ本体から端部封止部材へと圧着力が加わり、両者が強く圧着され、気密性が向上する。この観点からは、端部封止部材の成形体を単独で焼成したときの外径ROの、チューブ本体の成形体を単独で焼成したときの内径RIに対する比率(RO/RI)は、接合部分でのクラック等も考慮し、1.005以上であることが好ましく、更に好ましくは1.010以上である。更に、ROは、RIの1.100以下であることが好ましく、更に好ましくは1.080以下であり、更に1.060以下であるとより効果が顕著である。
【0026】
【実施例】
(実施例1)
図5〜図9を参照しつつ説明した手順に従い、図1に示す容器8を作製した。具体的には、純度99.9%以上の高純度アルミナ粉末に、酸化マグネシウム750ppm、ポリビニルアルコール2重量%、ポリエチレングリコール0.5重量%、水50重量部を加え、1時間ボールミルによって粉砕し、混合した。混合物をスプレードライヤーで200℃付近で乾燥および造粒し、平均粒径約70μm、静嵩密度0.7g/cmの造粒粉末を得た。
【0027】
この造粒粉末を、2000kg/cmの圧力下でプレス成型し、図8に示す成形体4、5を得た。この際、端部封止部材7の成形体4を単独で焼成したときの外径ROの、チューブ本体6の成形体5を単独で焼成したときの内径RIに対する比率(RO/RI)が1.040となるように、両者の寸法を調整した。
【0028】
次いで、端部封止部材用の成形体4を1200℃で仮焼してその寸法を収縮させた。仮焼体を成形体5の端部に図9のように挿入し、組み立て体20を得た。組み立て体を1200℃で仮焼し、チューブ本体用の成形体5を収縮させ、成形体5から端部封止部材用の仮焼体へと圧着力を加えた。次いで、組み立て体を1800℃で焼成し、端部封止部材とチューブ本体とを強固に接合した。
【0029】
端部封止部材7の外径は 10.0mmであり、凹部7cの直径は7.0mmであり、深さは0.3mmである。こうして得られたチューブ本体6について内径を各部分で測定したところ、内径が端部封止部材との接合部分Aの近辺で広がっていた。この内径の最大値と最小値との差が0.2mmであった。
【0030】
次いで、Nb製(以後、全てNb製)の電極部材9を電極部材挿入孔7d内に挿入し、接合材で接合した。接合材としては、Al−Ca−Y−Sr系フリットガラスを使用した。この組成は、Al:45重量%、CaO:40%、Y:5%、SrO:10%とした。ガラスの融点は1370℃±10℃である。最高温度1440℃、最高温度での保持時間5分の条件で接合した。得られた接合体について、クラックの有無を観測した。12個の試料を作製したが、クラックが観測されたのは0個であった。
【003
(比較例1)
図5〜図9を参照しつつ説明した手順に従い、図10、11に示す容器11を作製した。作製手順は実施例1、2と同様であるが、端部封止部材に前記凹部を形成していない。
【003
接合後において、端部封止部材11の外径は10mmである。こうして得られたチューブ本体6について内径を各部分で測定したところ、内径が端部封止部材との接合部分Aの近辺で広がっていた。この内径の最大値と最小値との差が0.2mmであった。
【003
次いで、モリブデン製の電極部材9を電極部材挿入孔7d内に挿入し、接合材で接合した。接合材としては、Al−Ca−Y−Sr系フリットガラスう使用した。この組成は、Al:45重量%、CaO:40%、Y:5%、SrO:10%とした。ガラスの融点は1370℃±10℃である。最高温度1440℃、最高温度での保持時間5分の条件で接合した。得られた接合体について、クラックの有無を観測した。12個の試料を作製したが、クラックが観測されたのは10個であった。
【003
【発明の効果】
以上述べたように,本発明によれば、チューブ本体およびその端部を封止する端部封止部材を備えており、チューブ本体の被焼成体と端部封止部材の被焼成体との組み立て体の焼成によって製造されている容器において、電極部材を端部封止部材内に挿入して接合材で封止した後の容器のクラック発生を抑制できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る容器8に電極部材9が固定接合された状態を概略的に示す断面図である。
【図2】本発明の一実施形態に係る容器8を概略的に示す断面図である。
【図3】 本発明外の参考形態に係る容器8Aに電極部材9が固定接合された状態を概略的に示す断面図である。
【図4】本発明の更に他の実施形態に係る容器8Bに電極部材9が固定接合された状態を概略的に示す断面図である。
【図5】端部封止部材の被焼成体を成型するのに用いる上型1および下型2を模式的に示す断面図である。
【図6】上型1と下型2とを組み合わせた状態を示す断面図である。
【図7】離型後の端部封止部材の成形体4を示す断面図である。
【図8】端部封止部材の成形体4およびチューブ本体の成形体5を概略的に示す断面図である。
【図9】端部封止部材の成形体4をチューブ本体の成形体5の端部開口に挿入した状態を概略的に示す断面図である。
【図10】参考例の容器11に対して電極部材9が接合材14、15で接合されている状態を概略的に示す断面図である。
【図11】参考例の容器11に対して電極部材9が接合材14、15で接合されている状態を概略的に示す断面図である。
【符号の説明】
6 チューブ本体 6a チューブ本体の内壁面
7、7A、7B 端部封止部材 7a 環状部分 7b 本体部分7c、7g 凹部 7d 電極部材挿入孔 7e 内側端面
7f 外側端面 8、8A、8B 容器 9 電極部材
10 放電空間 14 接合材 20 組み立て体 15端部封止部材の内側端面上を流れる余剰の接合材 A クラック頻発部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-emitting container for a high-pressure discharge lamp and an end sealing member used therefor.
[0002]
[Prior art]
In the luminous container for a high-pressure discharge lamp described in Patent Document 1, a molded body of the tube main body and a molded body of the annular end sealing member are separately manufactured, and these two types of molded bodies are assembled to form an assembly. I am making it. And this assembly is baked and the container for metal halide enclosure is produced. At this time, the firing shrinkage ratio of both is designed so that the outer shape when the molded body of the end sealing member is baked alone is larger than the inner diameter when the molded body of the tube body is baked alone. deep. Then, since a crimping force is applied from the tube body to the end sealing member at the time of firing, the bonding between the two becomes good and the airtightness is maintained high.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-125230
[Problems to be solved by the invention]
When the present inventor studied mass production of such a light-emitting container for a high-pressure discharge lamp, the following problems were found. This point will be described with reference to FIG. A light emitting container 11 for a high pressure discharge lamp shown in FIG. 10 includes a tube body 6 and an end sealing member 12. An inner side surface 6 a of the tube body 6 faces the discharge space 10. The end sealing member 12 includes a main body portion 12b and an annular portion 12a. The main body portion 12b of the end sealing member 12 is inserted into the end opening of the tube main body 6 and joined and integrated. A holding portion 9 a of the electrode member 9 is inserted and fixed in the electrode member insertion hole 12 d of the end sealing member 12. The electrode 9 b is accommodated in the discharge space 10. A gap between the inner side surface of the end sealing member 12 and the outer side surface of the electrode member 9 is sealed with a bonding material such as a glass frit 14.
[0004]
However, even when no cracks are seen in the container 11, cracks may be seen in the tube body 6 after the electrode member 9 is inserted into the end sealing member 12 and sealed with the bonding material 14. It was. In this case, it becomes a defective product, and there is a problem that the manufacturing yield decreases.
[0005]
An object of the present invention includes a tube main body and an end sealing member provided in the opening of the tube main body, and an assembly of the fired body of the tube main body and the fired body of the end sealing member. In the container manufactured by firing, the generation of cracks in the container after the electrode member is inserted into the end sealing member and sealed with the bonding material is suppressed.
[0006]
[Means for Solving the Problems]
The present invention includes a tube main body in which a discharge space is formed, and an end sealing member provided in an opening of the tube main body, and a fired body of the tube main body and a cover of the end sealing member. A luminous container for a high-pressure discharge lamp made of ceramics manufactured by firing an assembly with a fired body,
The end sealing member includes an outer end face, an inner end face facing the discharge space, and an electrode member insertion hole provided between the outer end face and the inner end face, and a recess is formed in the outer end face.
[0007]
Here, the said recessed part is following the said electrode member insertion hole, and is cyclically | annularly provided so that the said electrode member insertion hole may be surrounded. The bonding agent wets the outer end surface, the electrode member insertion hole, and the inner end surface.
[0008]
The present inventor investigated the cause of cracks in the container at the outer peripheral portion of the electrode member after inserting the electrode member into the end sealing member of the container and sealing it with a bonding material, leading to the next discovery. That is, as shown in FIGS. 10 and 11, cracks often appear mainly at the end portion A of the joint portion between the tube main body 6 and the end sealing member 12. Then, when the situation in the vicinity of A was examined, it was found that the bonding material 15 was wetted up to A. This means that the bonding material 14 overflows from the electrode member insertion hole 12 d of the end sealing member 12, wets the inner end surface 12 e, and further reaches the inner wall surface 6 a of the tube body 6. Such wetting of the inner wall surface 6a of the tube body 6 is considered to occur as follows. That is, if the maximum temperature at the time of bonding is too high or the holding time at the maximum temperature is too long, the bonding material 14 flows along the wall surface over a wide area as shown in FIG. 6 may reach the inner wall surface 6a. Moreover, when there are too many joining materials 14, a part may arrive at the inner wall surface 6a of the tube main body 6 as shown in FIG.
[0009]
Here, as described above, the end sealing member 12 and the tube body 6 are pressure-bonded due to the difference in the firing shrinkage rate. For this reason, stress remains along the joint portion between the two, and a fine gap also remains. If a part of the bonding material flows into this gap, it causes cracking in combination with residual stress. In particular, depending on the joining conditions, crystals having a thermal expansion coefficient lower than that of the ceramics constituting the tube body 6 may be generated in the bonding material 14. In this case, cracks are more likely to occur during the sealing process or during lighting.
[0010]
On the other hand, in the present invention, a concave portion is provided on the outer end surface of the end sealing member 12, and the concave portion is continuous with the electrode member insertion hole and is provided in an annular shape so as to surround the electrode member insertion hole. ing. This succeeded in suppressing cracks by absorbing a part of the bonding material in the melting step and making it difficult for the bonding material to reach the inner wall surface 6a of the tube body 6.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate. FIG. 1 is a cross-sectional view showing a light-emitting container 8 for a high-pressure discharge lamp according to an embodiment of the present invention, and shows a state after the electrode member 9 is fixed. FIG. 2 shows the container 8 before the electrode member 9 is fixed. The container 8 of this example includes an end sealing member 7 and a tube body 6. An inner side surface 6 a of the tube body 6 faces the discharge space 10. The end sealing member 7 includes a main body portion 7b and an annular portion 7a. The main body portion 7b of the end sealing member 7 is inserted into the end opening of the tube main body 6 and joined and integrated. A holding portion 9 a of the electrode member 9 is inserted and fixed in the electrode member insertion hole 7 d of the end sealing member 7. The electrode 9 b is accommodated in the discharge space 10. A gap between the inner side surface of the end sealing member 7 and the outer side surface of the electrode member 9 is sealed with a bonding material, for example, a glass frit 14.
[0012]
In this example, the inner end face 7e of the end sealing member 7 is substantially flat, but a substantially annular recess 7c is formed on the outer end face 7f. And in a joining process, since a fluid joining material is absorbed in crevice 7c, it is hard to reach even inner wall surface 6a of tube body 6, and, thereby, the crack incidence rate of tube body 6 can be reduced.
[0013]
A luminous container 8A for a high-pressure discharge lamp outside the present invention shown in FIG. 3 includes an end sealing member 7A and a tube body 6. In the end sealing member 7A of this example, the outer end surface 7f is not provided with a recess and is substantially flat. An annular recess 7g is formed on the inner end surface 7e of the end sealing member 7A facing the discharge space 10 so as to surround the electrode member insertion hole 7d.
[0014]
A high pressure discharge lamp luminous vessel 8B shown in FIG. 4 includes an end sealing member 7B and a tube body 6. In the end sealing member 7B of this example, an annular recess 7g is formed on the inner end surface 7e facing the discharge space 10 so as to surround the electrode member insertion hole 7d. A substantially annular recess 7c is formed on the outer end surface 7f. As a result, in the joining process, the fluid joining material 14 is unlikely to reach the flat surface 7e, and therefore is difficult to reach the bottom wall surface 6a of the tube body 6.
[0015]
In the present invention , the recess is provided in an annular shape so as to surround the electrode member insertion hole 7d. This is effective in preventing the fluid bonding material from reaching the tube body 6 in the bonding step.
[0016]
In this invention , the recessed part is provided continuously with respect to the electrode member insertion hole.
[0017]
The ceramic constituting the container is not particularly limited, but a ceramic having corrosion resistance against a halogen-based corrosive gas is preferable. Particularly preferred are alumina, yttria, yttrium-aluminum garnet, and aluminum nitride.
[0018]
The material and form of the electrode member are not particularly limited. The material of the electrode member is preferably a refractory metal or conductive ceramic. As the refractory metal, one or more metals selected from the group consisting of molybdenum, tungsten, rhenium, hafnium, niobium and tantalum, or alloys containing these metals are preferable.
[0019]
The depth of the recess is not particularly limited. However, from the viewpoint of absorbing the fluid bonding material in the bonding process and suppressing the arrival at the tube body 6, the depth of the recess is preferably 0.2 mm or more, and 0.4 mm or more. Is more preferable. There is no particular upper limit on the depth of the recess. From the viewpoint of productivity during processing, the depth of the recess is preferably 0.3 mm or less.
[0020]
Type of the bonding material is not particularly limited, so-called frit glass is preferred, Al 2 O 3 -CaO-Y 2 O 3 glass -SrO based composition system is particularly preferred.
[0021]
When a frit glass having a composition system of Al 2 O 3 —CaO—Y 2 O 3 —SrO is used, 12CaO · 7Al 2 O 3 crystals may be formed after melting depending on the joining conditions. For example, the thermal expansion coefficient of an alumina tube is 6.8 × 10 −6 / ° C., and the thermal expansion coefficient of 12CaO · 7Al 2 O 3 is 5.98 × 10 −6 / ° C., resulting in a considerable difference in thermal expansion. .
[0022]
Next, a preferred manufacturing process will be described. As shown in FIG. 5, the upper mold 1 and the lower mold 2 are prepared, and the powder 3 is accommodated in the lower mold 2. A protrusion 1 a is provided on the mold surface of the upper mold 1. As shown in FIG. 6, the upper die 1 and the lower die 2 are fitted together and assembled. The shape of the protrusion 1a is, for example, a shape capable of forming the recess 7c shown in FIG. The pressure at this time is determined by the type of powder. Next, the upper mold 1 and the lower mold 2 are released, and the molded body 4 is released. The molded body 4 includes an annular portion 4a, a main body portion 4b, a through hole 4d, and a recess 4c.
[0023]
Next, as shown in FIG. 8, the main body portion 4 b of the molded body 4 is inserted into the end portion of the opening 5 a of the molded body 5 of the tube body 6 to obtain the state shown in FIG. 9, thereby obtaining an assembly. The assembly 20 is fired to obtain, for example, the container shown in FIG.
[0024]
In this example, the molded bodies 4 and 5 were assembled to obtain the assembled body 20, and the assembled body 20 was fired. However, in this invention, the to-be-fired body of an edge part sealing member and the to-be-fired body of a tube main body may each be a calcined body other than a molded object, and may be a degreased body.
[0025]
In the firing step, the inner diameter when the molded body of the tube body is baked alone is made smaller than the outer diameter when the molded body of the end sealing member is baked alone. As a result, a pressing force is applied from the tube body to the end sealing member at the time of firing, both are strongly pressed and the airtightness is improved. From this viewpoint, the ratio (RO / RI) of the outer diameter RO when the molded body of the end sealing member is baked alone to the inner diameter RI when the molded body of the tube body is baked alone is In consideration of cracks and the like, it is preferably 1.005 or more, more preferably 1.010 or more. Further, RO is preferably 1.100 or less of RI, more preferably 1.080 or less, and further 1.060 or less, the effect is more remarkable.
[0026]
【Example】
Example 1
The container 8 shown in FIG. 1 was produced according to the procedure described with reference to FIGS. Specifically, to high-purity alumina powder having a purity of 99.9% or more, 750 ppm magnesium oxide, 2% by weight of polyvinyl alcohol, 0.5% by weight of polyethylene glycol and 50 parts by weight of water are added and pulverized by a ball mill for 1 hour. Mixed. The mixture was dried and granulated with a spray dryer at around 200 ° C. to obtain a granulated powder having an average particle size of about 70 μm and a static bulk density of 0.7 g / cm 3 .
[0027]
This granulated powder was press-molded under a pressure of 2000 kg / cm 2 to obtain molded bodies 4 and 5 shown in FIG. At this time, the ratio (RO / RI) of the outer diameter RO when the molded body 4 of the end sealing member 7 is baked alone to the inner diameter RI when the molded body 5 of the tube body 6 is baked alone is 1. Both dimensions were adjusted to be .040.
[0028]
Next, the molded body 4 for the end sealing member was calcined at 1200 ° C. to shrink its dimensions. The calcined body was inserted into the end of the molded body 5 as shown in FIG. The assembled body was calcined at 1200 ° C., the molded body 5 for the tube body was shrunk, and a crimping force was applied from the molded body 5 to the calcined body for the end sealing member. Next, the assembly was fired at 1800 ° C., and the end sealing member and the tube main body were firmly joined.
[0029]
The outer diameter of the end sealing member 7 is 10.0 mm, the diameter of the recess 7 c is 7.0 mm, and the depth is 0.3 mm. When the inner diameter of the tube main body 6 thus obtained was measured at each portion, the inner diameter spread in the vicinity of the joint portion A with the end sealing member. The difference between the maximum value and the minimum value of the inner diameter was 0.2 mm.
[0030]
Next, an electrode member 9 made of Nb (hereinafter, all made of Nb) was inserted into the electrode member insertion hole 7d and joined with a joining material. As the bonding material, Al—Ca—Y—Sr based frit glass was used. The composition was Al 2 O 3 : 45% by weight, CaO: 40%, Y 2 O 3 : 5%, and SrO: 10%. The melting point of glass is 1370 ° C. ± 10 ° C. Bonding was performed under conditions of a maximum temperature of 1440 ° C. and a holding time of 5 minutes at the maximum temperature. The obtained bonded body was observed for cracks. Twelve samples were prepared, but no cracks were observed.
[003 1 ]
(Comparative Example 1)
A container 11 shown in FIGS. 10 and 11 was produced according to the procedure described with reference to FIGS. The manufacturing procedure is the same as in Examples 1 and 2, but the concave portion is not formed in the end sealing member.
[003 2 ]
After joining, the outer diameter of the end sealing member 11 is 10 mm. When the inner diameter of the tube main body 6 thus obtained was measured at each portion, the inner diameter spread in the vicinity of the joint portion A with the end sealing member. The difference between the maximum value and the minimum value of the inner diameter was 0.2 mm.
[003 3 ]
Next, the electrode member 9 made of molybdenum was inserted into the electrode member insertion hole 7d and joined with a joining material. As the bonding material, an Al—Ca—Y—Sr-based frit glass was used. The composition was Al 2 O 3 : 45% by weight, CaO: 40%, Y 2 O 3 : 5%, and SrO: 10%. The melting point of glass is 1370 ° C. ± 10 ° C. Bonding was performed under conditions of a maximum temperature of 1440 ° C. and a holding time of 5 minutes at the maximum temperature. The obtained bonded body was observed for cracks. Twelve samples were produced, but 10 were observed for cracks.
[003 4 ]
【The invention's effect】
As described above, according to the present invention, the tube main body and the end sealing member that seals the end thereof are provided, and the fired body of the tube main body and the fired body of the end sealing member In the container manufactured by firing the assembly, the generation of cracks in the container after the electrode member is inserted into the end sealing member and sealed with the bonding material can be suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a state in which an electrode member 9 is fixedly joined to a container 8 according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing a container 8 according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view schematically showing a state in which an electrode member 9 is fixedly joined to a container 8A according to a reference embodiment outside the present invention.
FIG. 4 is a cross-sectional view schematically showing a state where an electrode member 9 is fixedly joined to a container 8B according to still another embodiment of the present invention.
FIG. 5 is a cross-sectional view schematically showing an upper mold 1 and a lower mold 2 used for molding a fired body of an end sealing member.
FIG. 6 is a cross-sectional view showing a state in which an upper die 1 and a lower die 2 are combined.
FIG. 7 is a cross-sectional view showing a molded body 4 of the end sealing member after release.
FIG. 8 is a cross-sectional view schematically showing a molded body 4 of an end sealing member and a molded body 5 of a tube main body.
FIG. 9 is a cross-sectional view schematically showing a state in which the molded body 4 of the end sealing member is inserted into the end opening of the molded body 5 of the tube main body.
FIG. 10 is a cross-sectional view schematically showing a state in which an electrode member 9 is bonded to the container 11 of the reference example with bonding materials 14 and 15;
FIG. 11 is a cross-sectional view schematically showing a state in which an electrode member 9 is bonded to the container 11 of the reference example with bonding materials 14 and 15;
[Explanation of symbols]
6 tube main body 6a inner wall surface 7, 7A, 7B end sealing member 7a annular portion 7b main body portion 7c, 7g recess 7d electrode member insertion hole 7e inner end surface 7f outer end surface 8, 8A, 8B container 9 electrode member 10 Discharge space 14 Bonding material 20 Assembly 15 Excess bonding material flowing on the inner end face of the end sealing member A Crack-prone portion

Claims (1)

放電空間が形成されているチューブ本体、およびこのチューブ本体の端部を封止する端部封止部材を備えており、前記チューブ本体の被焼成体と前記端部封止部材の被焼成体との組み立て体の焼成によって製造されている高圧放電灯用のセラミックス製容器であって、
前記端部封止部材が、外側端面、前記放電空間に面する内側端面および前記外側端面と前記内側端面との間に設けられている電極部材挿入孔を備え、接合剤が前記外側端面、前記電極部材挿入孔および前記内側端面を濡らしており、前記外側端面に凹部が形成されており、前記凹部が、前記電極部材挿入孔と連続しており、前記電極部材挿入孔を包囲するように環状に設けられていることを特徴とする、高圧放電灯用発光容器。
A tube main body in which a discharge space is formed, and an end sealing member that seals an end of the tube main body, and a fired body of the tube main body and a fired body of the end sealing member, A ceramic container for a high-pressure discharge lamp manufactured by firing an assembly of
Said end sealing member, the outer end face, the inner end surface and the outer end surface facing the discharge space and comprising an electrode member insertion hole is provided between the inner end surface, the outer end face bonding agent, wherein The electrode member insertion hole and the inner end surface are wetted , a recess is formed in the outer end surface, the recess is continuous with the electrode member insertion hole, and is annular so as to surround the electrode member insertion hole A light-emitting container for a high-pressure discharge lamp, characterized by being provided in
JP2003059690A 2003-03-06 2003-03-06 Luminescent container for high pressure discharge lamp Expired - Fee Related JP4446430B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003059690A JP4446430B2 (en) 2003-03-06 2003-03-06 Luminescent container for high pressure discharge lamp
CN 200410007936 CN1280869C (en) 2003-03-06 2004-03-05 Luminescent container for superhigh voltage discharge light and end closing component therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059690A JP4446430B2 (en) 2003-03-06 2003-03-06 Luminescent container for high pressure discharge lamp

Publications (2)

Publication Number Publication Date
JP2004273187A JP2004273187A (en) 2004-09-30
JP4446430B2 true JP4446430B2 (en) 2010-04-07

Family

ID=33122435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059690A Expired - Fee Related JP4446430B2 (en) 2003-03-06 2003-03-06 Luminescent container for high pressure discharge lamp

Country Status (2)

Country Link
JP (1) JP4446430B2 (en)
CN (1) CN1280869C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269956A (en) * 2007-04-20 2008-11-06 Ushio Inc Discharge lamp
JP5211712B2 (en) * 2007-08-08 2013-06-12 ウシオ電機株式会社 Discharge lamp
US7710038B2 (en) * 2007-12-21 2010-05-04 Osram Sylvania Inc. Ceramic discharge vessel having molybdenum alloy feedthrough
CN101916711B (en) * 2010-08-06 2013-04-10 杨潮平 Ceramic metal halide lamp shell
CN103137423A (en) * 2011-12-05 2013-06-05 欧司朗股份有限公司 Ceramic metal halogenating lamp with improved frit seal portion

Also Published As

Publication number Publication date
JP2004273187A (en) 2004-09-30
CN1280869C (en) 2006-10-18
CN1531004A (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3450751B2 (en) Joint, high-pressure discharge lamp and method for manufacturing the same
JPH10273370A (en) Jointed body of aluminum nitride ceramic base material, production of jointed body of aluminum nitride ceramic base material and jointing material therefor
WO1996021940A1 (en) High pressure discharge lamp and production method thereof
KR19980032608A (en) Joining aid used in the manufacturing method and joining of the bonded body of aluminum nitride substrate
US20060001346A1 (en) System and method for design of projector lamp
US6642654B2 (en) Joined body and a high pressure discharge lamp
JP4446430B2 (en) Luminescent container for high pressure discharge lamp
JP2011225448A (en) Brittle material-metallic structure
US6812642B1 (en) Joined body and a high-pressure discharge lamp
JP3960796B2 (en) Joint, high pressure discharge lamp assembly and high pressure discharge lamp
EP1367038A2 (en) Joined bodies, high pressure discharge lamps and assemblies therefor
JP3709560B2 (en) High pressure discharge lamp assembly and high pressure discharge lamp
JP3929255B2 (en) Joint and high-pressure discharge lamp
US7936128B2 (en) Frit seal material, lamp with frit seal, and method for sealing a high intensity discharge lamp
JP4953242B2 (en) Luminescent container and assembly thereof
JP4601136B2 (en) Corrosion resistant material
JP2004273184A (en) Luminous envelope for high-pressure discharge lamp and end sealing member used therefor
JP2003288867A (en) Ceramic terminal
JP3953431B2 (en) Luminescent container for high pressure discharge lamp and high pressure discharge lamp
JP2003252687A (en) Airtight joining structure of ceramics and metal and device parts having the structure
JP3462458B2 (en) High pressure discharge lamp and manufacturing method thereof
JP2005056660A (en) High-pressure discharge lamp and its manufacturing method
JP2014125416A (en) Ceramic-metal joined body, and manufacturing method thereof
JP2005216513A (en) Joined body, light emitting vessel, assembly for high-pressure discharge lamp, and high-pressure discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees