[go: up one dir, main page]

JP4434967B2 - Magnetic toner - Google Patents

Magnetic toner Download PDF

Info

Publication number
JP4434967B2
JP4434967B2 JP2005004850A JP2005004850A JP4434967B2 JP 4434967 B2 JP4434967 B2 JP 4434967B2 JP 2005004850 A JP2005004850 A JP 2005004850A JP 2005004850 A JP2005004850 A JP 2005004850A JP 4434967 B2 JP4434967 B2 JP 4434967B2
Authority
JP
Japan
Prior art keywords
toner
magnetic toner
magnetic
image
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005004850A
Other languages
Japanese (ja)
Other versions
JP2006195034A5 (en
JP2006195034A (en
Inventor
恵理子 柳瀬
建彦 千葉
道久 馬籠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005004850A priority Critical patent/JP4434967B2/en
Publication of JP2006195034A publication Critical patent/JP2006195034A/en
Publication of JP2006195034A5 publication Critical patent/JP2006195034A5/ja
Application granted granted Critical
Publication of JP4434967B2 publication Critical patent/JP4434967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic toner which exhibits good fixing property, excels in offset resistance even in a SURF (Surface Rapid Fusing) fixing system, excels also in charge stability, provides high image density even in long-term use in a high temperature and high humidity environment, and causes no ghost. <P>SOLUTION: The magnetic toner having a weight average particle diameter of 3-10 &mu;m is manufactured by polymerizing a monomer composition containing at least a polymerizable monomer, magnetic iron oxide and a release agent. The magnetic toner has an average circularity of &ge;0.970 and the inertia radius Rw and absolute molecular weight Mw of the magnetic toner on size exclusion chromatography-online-multiple angle light scattering (SEC-MALLS) measurement of an o-dichlorobenzene-soluble component satisfy the expression (1): 0.1&times;10<SP>-4</SP>&le;Rw/Mw&le;5.0&times;10<SP>-4</SP>. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、電子写真法、静電記録法、磁気記録法、トナージェット方式記録法の如き画像形成方法において形成される静電画像の現像に用いるトナーに関する。   The present invention relates to a toner used for developing an electrostatic image formed in an image forming method such as an electrophotographic method, an electrostatic recording method, a magnetic recording method, and a toner jet recording method.

デジタルプリンターおよび高細密画像のコピーにおいてトナーに要求される性能のうち最も重要なものに、定着性能がある。定着工程に関しては、種々の方法や装置が開発されているが、最も一般的な方法は熱ローラーによる加熱圧着方式である。この加熱ローラーによる加熱圧着方式は、トナーに対し離型性を有する材料で表面を形成した熱ローラーの表面に被定着シートのトナー像面を加圧下で接触しながら通過せしめることにより定着を行うものである。この方法は熱ローラーの表面と被定着シートのトナー像とが加圧下で接触するため、トナー像を被定着シート上に融着する際の熱効率が極めて良好であり、迅速に定着を行うことができ、高速度電子写真複写機において非常に有効である。   Fixing performance is the most important performance required for toners in digital printers and high-definition image copying. Various methods and apparatuses have been developed for the fixing process, but the most common method is a thermocompression bonding method using a heat roller. This thermocompression bonding method using a heating roller performs fixing by allowing the toner image surface of a fixing sheet to pass through the surface of a heat roller formed with a material having releasability with respect to the toner while being in contact with pressure. It is. In this method, since the surface of the heat roller and the toner image of the fixing sheet are brought into contact with each other under pressure, the thermal efficiency at the time of fusing the toner image on the fixing sheet is extremely good, and the fixing can be performed quickly. This is very effective in a high-speed electrophotographic copying machine.

近年においては、ウエイト時間が短く、且つ、低消費電力である定着方法を実現することが求められており、代表的なものとしてサーフ定着方式が用いられている。サーフ定着方式とは、加熱装置を備えたフィルムを介して軽圧下で定着を行うものであり、フィルムの熱容量が小さいために電力の消費が格段に少ない。更に、ウエイト時間も短くてすむため、主に中低速度プリンターに好ましく用いられている。   In recent years, it has been demanded to realize a fixing method having a short wait time and low power consumption, and a surf fixing method is used as a representative one. The surf fixing method is a method in which fixing is performed under light pressure through a film provided with a heating device, and power consumption is remarkably low because the heat capacity of the film is small. Furthermore, since the waiting time can be short, it is preferably used mainly for medium and low speed printers.

トナーに対しても、オフセット現像を防止しつつより低い温度で定着することを実現できる設計が求められている。しかしながら、磁性トナーの場合には、トナー中に微粉末の磁性粉体が相当量混合分散されているため、磁性粉体のフィラー効果によりトナーは硬く、変形しにくい構成となっている。このため、加熱ロ−ラーを用いた加熱圧着方式においてはある程度の定着性能を発揮するものの、サーフ定着方式においては、軽圧のためにトナーがつぶれにくく、また熱が十分に伝わりにくいため、トナー像の表面の一層だけが極端に溶融して定着フィルムに付着する低温オフセット、所謂一層オフセットが発生しやすい。この問題は、該磁性粉体のトナー粒子表面への露出あるいは遊離が著しいトナーで一層顕著になる。これは、熱容量の大きい磁性粉体が定着器からの熱を先に吸収してしまうためであると考えられる。このように、磁性トナーのサーフ定着においては、十分な定着性能を得ることは困難な問題であった。   There is also a demand for a toner that can realize fixing at a lower temperature while preventing offset development. However, in the case of magnetic toner, since a considerable amount of fine magnetic powder is mixed and dispersed in the toner, the toner is hard and hardly deformed due to the filler effect of the magnetic powder. For this reason, although a certain degree of fixing performance is exhibited in the thermocompression bonding method using a heating roller, in the surf fixing method, the toner is not easily crushed due to light pressure, and the heat is not easily transmitted. A low temperature offset in which only one surface of the image melts extremely and adheres to the fixing film, that is, a so-called one-off offset is likely to occur. This problem becomes even more pronounced with toners where the magnetic powder is significantly exposed to or released from the toner particle surfaces. This is presumably because the magnetic powder having a large heat capacity first absorbs heat from the fixing device. As described above, it has been difficult to obtain sufficient fixing performance in the surf fixing of magnetic toner.

この問題を解決するための最も簡便で一般的な手法としては、トナー中に離型剤としてワックスを含有させることが知られている。しかし、単に低軟化点のワックスをトナーに含有させると、トナーの現像特性や帯電性、耐久性、保存性に悪影響を及ぼしやすい。その他、様々な種類のワックスをトナーに含有させることが提案されているが、何れの手法を採った場合でも、離型剤からのアプローチのみでは低温定着性や耐オフセット性、およびトナーの耐久安定性を両立させるには今ひとつであり、更なる改良が望まれていた。   As the simplest and most general method for solving this problem, it is known that a wax is contained in the toner as a release agent. However, if the toner simply contains a wax having a low softening point, it tends to adversely affect the developing characteristics, charging properties, durability, and storage properties of the toner. In addition, various types of waxes have been proposed to be included in the toner. Regardless of which method is used, low-temperature fixability, offset resistance, and toner durability stability can be achieved only by using a release agent. It is one more thing to make sex compatible, and further improvement was desired.

従来、定着性に優れた重合トナーを得る方法として、着色剤及び帯電制御剤を含む重合性単量体を、マクロモノマーの存在下に懸濁重合する方法が提案されている(例えば特許文献1)。マクロモノマーは、分子鎖末端に重合可能な官能基を有する、オリゴマーまたはポリマーである。この方法によれば、マクロモノマーが生成重合体の分子鎖中に単量体単位として組み込まれるので、該分子鎖中にマクロモノマーがグラフトしたポリマーが得られる。生成重合体は、ポリマー分子間で、枝部であるマクロモノマーユニットの絡み合い、所謂物理的架橋が起こり、見かけ上高分子量の重合体になるので、耐オフセット性が改善される。さらに、この物理的架橋は、ジビニルベンゼンなどの架橋剤による化学的架橋とは異なり、緩い架橋構造であるから、加熱によって架橋構造が崩れやすい。従って、この重合トナーは、加熱ローラーを用いた定着時には容易に溶融するため、定着性に優れている。しかし、この重合トナーは保存中にトナー同士の凝集が生じやすく、保存性については満足できるものでなかった。   Conventionally, as a method for obtaining a polymerized toner excellent in fixability, a method in which a polymerizable monomer containing a colorant and a charge control agent is subjected to suspension polymerization in the presence of a macromonomer has been proposed (for example, Patent Document 1). ). The macromonomer is an oligomer or polymer having a polymerizable functional group at the molecular chain end. According to this method, since the macromonomer is incorporated as a monomer unit in the molecular chain of the resulting polymer, a polymer in which the macromonomer is grafted into the molecular chain is obtained. In the resulting polymer, entanglement of macromonomer units as branches, that is, so-called physical cross-linking occurs between polymer molecules, and an apparently high molecular weight polymer is obtained, so that offset resistance is improved. Furthermore, this physical cross-linking is a loose cross-linking structure, unlike chemical cross-linking with a cross-linking agent such as divinylbenzene, so that the cross-linking structure tends to be broken by heating. Therefore, the polymerized toner is easily melted at the time of fixing using a heating roller, and thus has excellent fixability. However, this polymerized toner tends to cause aggregation between the toners during storage, and the storage stability is not satisfactory.

保存性の改良手段として、単量体組成物を重合して得られる重合体のガラス転移温度よりも高いガラス転移温度を有するマクロモノマーの存在下に懸濁重合する方法が提案されている(例えば特許文献2)。この方法によれば、擬似的なカプセル構造を有する重合体粒子を得ることができるので、低温定着性を保ちながら保存性を高めることができる。   As a means for improving storage stability, a method of suspension polymerization in the presence of a macromonomer having a glass transition temperature higher than that of a polymer obtained by polymerizing a monomer composition has been proposed (for example, Patent Document 2). According to this method, polymer particles having a pseudo capsule structure can be obtained, so that the storage stability can be improved while maintaining the low-temperature fixability.

また、重合性単量体組成物を油溶性重合開始剤の存在下に重合転化率が30乃至97%の範囲内になるまで懸濁重合し、次いで水溶性重合開始剤を添化して懸濁重合を行うことにより、トナー表面に重合体被膜を形成し、低融点の離型剤が内包化された重合トナーを得る方法も提案されている(例えば特許文献3)。この手法を用いることにより、低温定着性、保存性及び耐久性に優れ、カブリの発生や濃度低下が生じにくいトナーを得ることができる。   In addition, the polymerizable monomer composition is subjected to suspension polymerization in the presence of an oil-soluble polymerization initiator until the polymerization conversion is within the range of 30 to 97%, and then suspended by adding a water-soluble polymerization initiator. There has also been proposed a method of obtaining a polymerized toner in which a polymer film is formed on the toner surface by polymerization and in which a low melting point release agent is encapsulated (for example, Patent Document 3). By using this method, it is possible to obtain a toner that is excellent in low-temperature fixability, storage stability, and durability, and is less likely to cause fogging and density reduction.

しかしながら、本発明者らが検討した結果、上記のような手法は磁性トナーに特化したものではないため、サーフ定着方式においては同様に一層オフセットの発生を抑えきれないことが分かってきた。さらに、高温高湿環境下での長期の使用においては帯電性を十分安定に保つことが難しく、転写性の低下やゴーストが発生してしまう。   However, as a result of investigations by the present inventors, it has been found that the above-described method is not specialized for magnetic toner, and thus the occurrence of offset cannot be further suppressed in the surf fixing method. Furthermore, it is difficult to keep the charging property sufficiently stable during long-term use in a high-temperature and high-humidity environment, resulting in deterioration of transferability and ghosting.

以上のように、磁性トナーの定着性については様々な手法が提案されてはいるものの未だ十分でなく、更なる改良が求められていた。   As described above, although various methods have been proposed for the fixing property of magnetic toner, it has not been sufficient, and further improvement has been demanded.

特開平3−136065号公報Japanese Patent Laid-Open No. 3-136005 特開平10−20547号公報Japanese Patent Laid-Open No. 10-20547 特開平11−160909号公報JP-A-11-160909

本発明の目的は、上記の従来技術の問題点を解決した磁性トナーを提供することにある。   An object of the present invention is to provide a magnetic toner that solves the above-mentioned problems of the prior art.

即ち本発明の目的は、良好な定着性を示し、サーフ定着方式においても耐オフセット性に優れた磁性トナーを提供することにある。   That is, an object of the present invention is to provide a magnetic toner that exhibits good fixability and is excellent in offset resistance even in the surf fixing method.

また、本発明の目的は、帯電安定性に優れ、高温高湿環境下での長期の使用においても画像濃度が高く、ゴーストの無い磁性トナーを提供することにある。   Another object of the present invention is to provide a magnetic toner having excellent charging stability, high image density and no ghost even when used for a long time in a high temperature and high humidity environment.

本発明は、少なくとも重合性単量体、磁性酸化鉄、及び離型剤を含有する重合性単量体組成物を重合することによって製造される重量平均粒径が3乃至10μmの磁性トナーであり、
該磁性トナーの平均円形度が0.970以上であり、
該磁性トナーのo−ジクロロベンゼン可溶分のサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwと絶対分子量Mwが下記式
0.25×10-4≦Rw/Mw≦4.0×10-4 (式1)
を満足することを特徴とする磁性トナーに関する。
The present invention, at least a polymerizable monomer, magnetic iron oxide, and the weight average particle size which is produced by polymerizing a polymerizable monomer composition containing a release agent is located in the magnetic toner of 3 to 10μm ,
The average circularity of the magnetic toner is 0.970 or more,
The inertial radius Rw and absolute molecular weight Mw in the size exclusion chromatography-online-multi-angle light scattering (SEC-MALLS) measurement of the o-dichlorobenzene soluble matter of the magnetic toner are expressed by the following formulae.
0.25 × 10 −4 ≦ Rw / Mw ≦ 4.0 × 10 −4 (Formula 1)
It is related with the magnetic toner characterized by satisfying.

本発明の磁性トナーは良好な定着性を有し、サーフ定着方式においても耐オフセット性に優れる。   The magnetic toner of the present invention has good fixability and is excellent in offset resistance even in the surf fixing system.

また、本発明の磁性トナーを用いることにより、高温高湿環境下での長期使用においても画像濃度が高く、ゴーストのない画像を得ることができる。   Further, by using the magnetic toner of the present invention, an image having a high image density and no ghost can be obtained even in a long-term use in a high temperature and high humidity environment.

以下、本発明の好ましい実施の形態を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention.

本発明者らは、磁性トナーのo−ジクロロベンゼン可溶分のサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwと絶対分子量Mwの比、Rw/Mwの値を制御することで、良好な定着性能と帯電安定性を実現できることを見出し、本発明に至った。   The inventors determined the ratio of the inertia radius Rw to the absolute molecular weight Mw and the value of Rw / Mw in the size exclusion chromatography-online-multi-angle light scattering (SEC-MALLS) measurement of the o-dichlorobenzene soluble matter of the magnetic toner. It was found that by controlling it, good fixing performance and charging stability can be realized, and the present invention has been achieved.

慣性半径Rwは高分子鎖の広がりを示しており、慣性半径と絶対分子量の関係はその分子の分岐度や架橋密度と深い関連性がある。詳細は明らかでないが、本発明者らが検討を行ったところ、この慣性半径Rwと絶対分子量Mwの比が定着時のトナーの溶融性や耐オフセット性、特にサーフ定着方式における一層オフセット性に大きく関与していることが分かってきた。この理由については以下のように考えている。   The inertia radius Rw indicates the spread of the polymer chain, and the relationship between the inertia radius and the absolute molecular weight is closely related to the degree of branching and the crosslinking density of the molecule. Although details are not clear, when the present inventors examined, the ratio between the radius of inertia Rw and the absolute molecular weight Mw is greatly increased in toner melting and offset resistance during fixing, particularly in the offset property in the surf fixing method. It turns out that it is involved. The reason for this is as follows.

適度な架橋密度を有するということは、適度な架橋点間距離を有するということを意味している。このようなトナーは定着時にワックスがしみだしやすく、熱伝達に優れる。さらに、適度な架橋点間距離を有するということは、ゲルがフレキシブルで柔らかく、トナー変形しやすいということである。以上の効果により、サーフ定着においても一層オフセットが発生せず、広い定着領域を有するものと考えられる。   Having an appropriate crosslink density means having an appropriate distance between crosslink points. Such toner easily exudes wax during fixing and has excellent heat transfer. Furthermore, having an appropriate distance between cross-linking points means that the gel is flexible and soft and easily deforms the toner. Due to the above effects, it is considered that there is no further offset in surf fixing, and that a wide fixing area is provided.

本発明の磁性トナーは、o−ジクロロベンゼン可溶分のサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwと絶対分子量Mwが下記式
0.1×10-4≦Rw/Mw≦5.0×10-4 (式1)
を満足することを特徴とし、好ましくは0.25×10-4≦Rw/Mw≦4.0×10-4を満足するものである。Rw/Mwが0.1×10-4未満では、架橋密度が高すぎてワックスのしみだしが不十分となり、またゲルが硬いためにトナー変形しにくい。結果としてサーフ定着において一層オフセットが発生しやすくなる。逆にRw/Mwが5.0×10-4を超える場合には、定着時以外のワックスのしみだしが起こるようになり、現像性、耐久性が悪化してしまう。
In the magnetic toner of the present invention, the radius of inertia Rw and the absolute molecular weight Mw in the size exclusion chromatography-online-multi-angle light scattering (SEC-MALLS) measurement of o-dichlorobenzene soluble component are expressed by the following formula: 0.1 × 10 −4 ≦ Rw / Mw ≦ 5.0 × 10 −4 (Formula 1)
And preferably satisfies 0.25 × 10 −4 ≦ Rw / Mw ≦ 4.0 × 10 −4 . When Rw / Mw is less than 0.1 × 10 −4 , the crosslink density is too high, so that the oozing of the wax is insufficient, and the toner is difficult to deform because the gel is hard. As a result, offset is more likely to occur during surf fixing. On the contrary, when Rw / Mw exceeds 5.0 × 10 −4 , exudation of wax other than during fixing occurs, and developability and durability deteriorate.

尚、SEC−MALLS測定においては溶媒にo−ジクロロベンゼンを用いている。詳しい測定方法については後で述べるが、溶媒にo−ジクロロベンゼンを用い、高温(135℃)で処理することにより、THF中には溶け出して来ることのない高分子量成分についても分析することが可能になった。 In the SEC-MALLS measurement, o-dichlorobenzene is used as a solvent. Although the detailed measurement method will be described later, by using o-dichlorobenzene as a solvent and treating at a high temperature (135 ° C.), it is possible to analyze high molecular weight components that do not dissolve in THF. It became possible.

SEC−MALLSから求められる絶対分子量と慣性半径について説明する。   The absolute molecular weight and radius of inertia determined from SEC-MALLS will be described.

SECで測定される分子量分布は、分子サイズであり、強度はその存在量であるのに対し、SEC−MALLS(分離手段としてSECと多角度光散乱検出器を結合し、絶対分子量及び分子の大きさ(慣性自乗半径)を測定可能となる)で得られる光散乱強度はその分子サイズにより強度が増加する。但し、SEC−MALLS測定において溶出時間によりピークが存在することは、その分子量にある分子の広がり(分子サイズ)を持ったポリマーが個数分布を持って存在することを意味するものである。   The molecular weight distribution measured by SEC is the molecular size and the intensity is its abundance, whereas SEC-MALLS (the SEC and the multi-angle light scattering detector are combined as a separation means, and the absolute molecular weight and molecular size are measured. (The inertial square radius can be measured), and the light scattering intensity obtained increases with the molecular size. However, the presence of a peak due to the elution time in SEC-MALLS measurement means that a polymer having a molecular spread (molecular size) at the molecular weight exists with a number distribution.

従来のSEC法では、測定する分子がカラムを通過する際、分子篩い効果を受け、分子サイズの大きいものから準じ溶出し、分子量が測定される。この場合、分子量が等しい線状ポリマーと分岐ポリマーでは前者のほうが溶液中での分子サイズが大きいので早く溶出することになる。従って、SEC法で測定される分岐ポリマーの分子量は真の分子量より小さく測定される。   In the conventional SEC method, when a molecule to be measured passes through a column, the molecule is subjected to a molecular sieving effect and eluted according to the molecular size, and the molecular weight is measured. In this case, the linear polymer and the branched polymer having the same molecular weight are eluted earlier because the former has a larger molecular size in the solution. Therefore, the molecular weight of the branched polymer measured by the SEC method is measured smaller than the true molecular weight.

一方、本発明の光散乱法では測定分子のRayleigh散乱を利用し、散乱光の強度に及ぼす光の入射角と試料濃度の依存性を測定し、Zimm法、Berry法等で解析することで線状ポリマー、分岐ポリマー全ての分子形態において真の分子量(絶対分子量)が決定でき(本発明では、SEC−MALLS測定法により絶対分子量をZimm法により算出した(後述))、より高度な性能を示すトナーの分子設計が可能となった。   On the other hand, the light scattering method of the present invention uses the Rayleigh scattering of the measurement molecule, measures the dependence of the incident angle of the light on the intensity of the scattered light and the sample concentration, and analyzes it by the Zimm method, the Berry method, etc. True molecular weight (absolute molecular weight) can be determined in all molecular forms of the polymer and branched polymer (in the present invention, the absolute molecular weight was calculated by the Zim method by the SEC-MALLS measurement method (described later)), and shows higher performance. Toner molecular design is now possible.

本発明のトナーの平均円形度は0.970以上である。平均円形度が0.970以上の磁性トナーは、トナー形状が球形であり、トナー形状も比較的そろっているために、帯電が均一になり易く、かぶりやスリーブゴーストの抑制に効果的である。また、トナー担持体上でのトナーの穂が均一となるため、現像部での制御が容易となる。さらに、球形トナー故に流動性も良好であり、現像器内でのストレスを受けにくいため、高湿下での長期の使用においても帯電性が低下しにくい。   The average circularity of the toner of the present invention is 0.970 or more. A magnetic toner having an average circularity of 0.970 or more has a spherical shape, and the toner shapes are relatively uniform. Therefore, charging is likely to be uniform and effective in suppressing fogging and sleeve ghosting. Further, since the toner ears on the toner carrying member become uniform, control at the developing unit is facilitated. Further, since the toner is spherical, it has good fluidity and is not easily subjected to stress in the developing device, so that the chargeability is not easily lowered even when used for a long time under high humidity.

また、本発明の磁性トナーはトナーの円形度分布において、モード円形度が0.99以上であることが好ましい。モード円形度が0.99以上であるということは、トナー粒子の多くが真球に近い形状を有することを意味しており、上記作用が一層顕著になり、好ましい。   The magnetic toner of the present invention preferably has a mode circularity of 0.99 or more in the circularity distribution of the toner. A mode circularity of 0.99 or more means that most of the toner particles have a shape close to a true sphere, and the above action becomes more remarkable, which is preferable.

このように真球状に近いトナーは、定着において熱や圧力がトナー全体に均一にかかりやすい。このため、オフセットの原因となり得る、極端に熱を吸収した部分あるいは極端に冷めている部分が生じにくいので、本発明のトナーの効果が一層顕著なものとなる。   As described above, the toner having a nearly spherical shape tends to apply heat and pressure uniformly to the whole toner during fixing. For this reason, an extremely heat-absorbing portion or an extremely cooled portion that can cause an offset is unlikely to occur, and the effect of the toner of the present invention becomes more remarkable.

なお、本発明における平均円形度は、粒子の形状を定量的に表現する簡便な方法として用いたものであり、本発明では東亞医用電子製フロー式粒子像分析装置「FPIA−1000」を用いて測定を行い、3μm以上の円相当径の粒子群について測定された各粒子の円形度(Ci)を下式(1)によりそれぞれ求め、さらに下式(2)で示すように測定された全粒子の円形度の総和を全粒子数(m)で除した値を平均円形度(C)と定義する。   The average circularity in the present invention is used as a simple method for quantitatively expressing the shape of the particles. In the present invention, the flow type particle image analyzer “FPIA-1000” manufactured by Toago Medical Electronics is used. Measurement was performed, and the circularity (Ci) of each particle measured for a particle group having an equivalent circle diameter of 3 μm or more was obtained by the following formula (1), and further measured as shown by the following formula (2) The value obtained by dividing the sum of the circularity by the total number of particles (m) is defined as the average circularity (C).

Figure 0004434967
Figure 0004434967

また、モード円形度は、円形度を0.40から1.00までを0.01毎に61分割し、測定した粒子の円形度をそれぞれの円形度に応じて各分割範囲に割り振り、円形度頻度分布において頻度値が最大となるピークの円形度である。   In addition, the mode circularity is obtained by dividing the circularity from 0.40 to 1.00 into 61 units every 0.01, and assigning the measured particle circularity to each divided range according to each circularity. This is the circularity of the peak having the maximum frequency value in the frequency distribution.

なお、本発明で用いている測定装置である「FPIA−1000」は、各粒子の円形度を算出後、平均円形度及びモード円形度の算出に当たって、粒子を得られた円形度によって、円形度0.40〜1.00を61分割したクラスに分け、分割点の中心値と頻度を用いて平均円形度及びモード円形度の算出を行う算出法を用いている。しかしながら、この算出法で算出される平均円形度及びモード円形度の各値と、上述した各粒子の円形度を直接用いる算出式によって算出される平均円形度及びモード円形度の各値との誤差は、非常に少なく、実質的には無視出来る程度のものであり、本発明においては、算出時間の短絡化や算出演算式の簡略化の如きデータの取り扱い上の理由で、上述した各粒子の円形度を直接用いる算出式の概念を利用し、一部変更したこのような算出法を用いても良い。   In addition, “FPIA-1000”, which is a measuring apparatus used in the present invention, calculates the circularity of each particle and then calculates the average circularity and the mode circularity. A calculation method is used in which 0.40 to 1.00 is divided into 61 classes, and the average circularity and mode circularity are calculated using the center value and frequency of the dividing points. However, an error between each value of the average circularity and the mode circularity calculated by this calculation method and each value of the average circularity and the mode circularity calculated by the calculation formula that directly uses the circularity of each particle described above. Is very small and substantially negligible, and in the present invention, for the reasons of data handling such as short calculation time and simplified calculation formula, Such a calculation method that is partially changed by using the concept of a calculation formula that directly uses the circularity may be used.

測定手順としては、以下の通りである。   The measurement procedure is as follows.

界面活性剤約0.1mgを溶解している水10mlに、磁性トナー約5mgを分散させて分散液を調製し、超音波(20KHz、50W)を分散液に5分間照射し、分散液濃度を5000〜2万個/μlとして、前記装置により測定を行い、3μm以上の円相当径の粒子群の平均円形度及びモード円形度を求める。   A dispersion is prepared by dispersing about 5 mg of a magnetic toner in 10 ml of water in which about 0.1 mg of a surfactant is dissolved, and ultrasonic waves (20 KHz, 50 W) are irradiated to the dispersion for 5 minutes to adjust the concentration of the dispersion. Measurement is performed with the above apparatus at 5000 to 20,000 / μl, and the average circularity and mode circularity of a particle group having a circle-equivalent diameter of 3 μm or more are obtained.

本発明における平均円形度とは、磁性トナーの凹凸の度合いの指標であり、磁性トナーが完全な球形の場合1.000を示し、磁性トナーの表面形状が複雑になるほど平均円形度は小さな値となる。   The average circularity in the present invention is an index of the degree of unevenness of the magnetic toner, and is 1.000 when the magnetic toner is perfectly spherical, and the average circularity becomes smaller as the surface shape of the magnetic toner becomes more complicated. Become.

なお、本測定において3μm以上の円相当径の粒子群についてのみ円形度を測定する理由は、3μm未満の円相当径の粒子群にはトナー粒子とは独立して存在する外部添加剤の粒子群も多数含まれるため、その影響によりトナー粒子群についての円形度が正確に見積もれないからである。   In this measurement, the reason why the circularity is measured only for the particle group having an equivalent circle diameter of 3 μm or more is that the particle group of the external additive existing independently of the toner particles in the particle group having an equivalent circle diameter of less than 3 μm. This is because the circularity of the toner particle group cannot be accurately estimated due to the influence of such a large amount.

本発明の磁性トナーは高画質化のため、より微小な潜像ドットを忠実に現像するために、トナーの重量平均径は3〜10μmであることが必要である。重量平均粒径が3μm未満のトナーにおいては、転写効率の低下から感光体上の転写残トナーが多くなり、接触帯電工程での感光体の削れやトナー融着の抑制が難しくなる。さらに、トナー全体の表面積が増えることに加え、粉体としての流動性及び撹拌性が低下し、個々のトナー粒子を均一に帯電させることが困難となることからゴースト、カブリ、転写性が悪化傾向となり好ましくない。一方、トナーの重量平均粒径が10μmを超える場合には、文字やライン画像に飛び散りが生じやすく、高解像度が得られにくい。また、装置が高解像度になっていくと1ドットの再現が悪化する傾向にある。さらに、トナーの重量平均粒径が10μm以上になると、一層オフセットも悪化する。   The magnetic toner of the present invention needs to have a weight average diameter of 3 to 10 μm in order to develop finer latent image dots faithfully in order to improve image quality. In a toner having a weight average particle size of less than 3 μm, the transfer residual toner on the photoconductor increases due to a decrease in transfer efficiency, and it becomes difficult to suppress the photoconductor scraping and toner fusion in the contact charging step. Furthermore, in addition to an increase in the surface area of the entire toner, the fluidity and agitation as a powder decrease, and it becomes difficult to uniformly charge individual toner particles, so ghost, fog, and transferability tend to deteriorate. It is not preferable. On the other hand, when the weight average particle diameter of the toner exceeds 10 μm, the characters and line images are likely to be scattered and high resolution is difficult to obtain. Also, as the device becomes higher in resolution, the reproduction of one dot tends to deteriorate. Furthermore, when the weight average particle diameter of the toner is 10 μm or more, the offset is further deteriorated.

ここで、トナーの平均粒径及び粒度分布はコールターカウンターTA−II型あるいはコールターマルチサイザー(コールター社製)等種々の方法で測定可能であるが、本発明においてはコールターマルチサイザー(コールター社製)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びPC9801パーソナルコンピューター(NEC製)を接続し、電解液は1級塩化ナトリウムを用いて1%NaCl水溶液を調整する。たとえば、ISOTON R−II(コールターサイエンティフィックジャパン社製)が使用できる。   Here, the average particle size and particle size distribution of the toner can be measured by various methods such as Coulter Counter TA-II type or Coulter Multisizer (manufactured by Coulter Co.). In the present invention, Coulter Multisizer (manufactured by Coulter Co.). Are connected to an interface (manufactured by Nikka) and a PC9801 personal computer (manufactured by NEC), and a 1% NaCl aqueous solution is prepared using first grade sodium chloride. For example, ISOTON R-II (manufactured by Coulter Scientific Japan) can be used.

測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルフォン酸塩を0.1〜5mlを加え、更に測定試料を2〜20mg加える。試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行い、前記コールターマルチサイザーによりアパーチャーとして100μmアパーチャーを用いて、2μm以上のトナー粒子の体積、個数を測定して体積分布と個数分布とを算出する。それから、体積分布から求めた体積基準の重量平均粒径(D4)、個数分布から求めた個数基準の長さ平均粒径、即ち個数平均粒径(D1)を求める。後述の実施例においても同様に測定した。   As a measuring method, 0.1 to 5 ml of a surfactant, preferably alkylbenzene sulfonate is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and the volume and number of toner particles of 2 μm or more are measured using the 100 μm aperture as the aperture by the Coulter Multisizer. Distribution and number distribution are calculated. Then, the volume-based weight average particle diameter (D4) obtained from the volume distribution and the number-based length average particle diameter obtained from the number distribution, that is, the number average particle diameter (D1) are obtained. The same measurement was performed in the examples described later.

本発明のトナー樹脂成分のテトラヒドロフラン(THF)不溶分は、5乃至70質量%であることが好ましく、より好ましくは8乃至60質量%である。トナー中にテトラヒドロフラン不溶分が存在することにより、トナーの強度が増し、高温高湿下での長期使用においてトナー劣化が生じがたい。このため、テトラヒドロフラン不溶分が5質量%未満ではトナー強度が不足し、劣化を生じてしまう。一方、テトラヒドロフラン不溶分が70質量%を超えると定着性が損なわれてしまい好ましくない。   The tetrahydrofuran (THF) insoluble content of the toner resin component of the present invention is preferably 5 to 70% by mass, more preferably 8 to 60% by mass. Due to the presence of tetrahydrofuran-insoluble matter in the toner, the strength of the toner increases, and the toner is unlikely to deteriorate during long-term use under high temperature and high humidity. For this reason, when the tetrahydrofuran insoluble content is less than 5% by mass, the toner strength is insufficient and the toner deteriorates. On the other hand, if the tetrahydrofuran-insoluble content exceeds 70% by mass, the fixability is impaired, which is not preferable.

本発明の磁性トナーは、実質的に磁性粉体がトナー表面に露出していないことが好ましい。本発明において、実質的に磁性粉体がトナー表面に露出していないとは、X線光電子分光分析により測定されるトナー粒子の表面に存在する炭素元素の含有量(A)に対する鉄元素の含有量(B)の比(B/A)が、0.001未満であることで定義される。磁性粉体が実質的に露出しないことによって、磁性トナーの流動性及び摩擦帯電性が改善され、カブリの抑制、転写性の向上、ゴーストの抑制等といったトナーに要求される種々の性能を満たすようになる。(B/A)が0.001以上になると、トナーの流動性及び摩擦帯電性が低下するばかりか、トナー表面に露出している磁性粉体によってサーフ定着フィルムが傷付けられてしまうので好ましくない。さらに、熱容量の大きい磁性粉体が定着器からの熱を先に吸収してしまうので、一層オフセットが発生しやすくなる。   In the magnetic toner of the present invention, it is preferable that substantially no magnetic powder is exposed on the toner surface. In the present invention, the fact that the magnetic powder is not substantially exposed on the toner surface means that the iron element content relative to the carbon element content (A) present on the toner particle surface measured by X-ray photoelectron spectroscopic analysis. The ratio (B / A) of the quantity (B) is defined as being less than 0.001. Since the magnetic powder is not substantially exposed, the fluidity and triboelectricity of the magnetic toner are improved, so as to satisfy various performances required for the toner, such as suppression of fogging, improvement of transferability, suppression of ghost, etc. become. When (B / A) is 0.001 or more, not only the fluidity and triboelectric chargeability of the toner are lowered, but also the surf fixing film is damaged by the magnetic powder exposed on the toner surface, which is not preferable. Furthermore, since the magnetic powder having a large heat capacity absorbs heat from the fixing device first, offset is more likely to occur.

なお、本発明におけるトナー表面に存在する炭素元素の含有量(A)に対する鉄元素の含有量(B)の比(B/A)及び、トナー表面に存在する炭素元素の含有量(A)に対する硫黄元素の含有量(E)の比(E/A)は、ESCA(X線光電子分光分析)により表面組成分析を行い算出した。   In the present invention, the ratio (B / A) of the iron element content (B) to the carbon element content (A) present on the toner surface and the carbon element content (A) present on the toner surface. The ratio (E / A) of the content (E) of sulfur element was calculated by performing surface composition analysis by ESCA (X-ray photoelectron spectroscopy).

本発明では、ESCAの装置および測定条件は、下記の通りである。
使用装置:PHI社(Physical Electronics Industries,Inc.)製 1600S型 X線光電子分光装置
測定条件:X線源 MgKα(400W)
分光領域800μmφ
In the present invention, the ESCA apparatus and measurement conditions are as follows.
Equipment used: 1600S type X-ray photoelectron spectrometer manufactured by PHI (Physical Electronics Industries, Inc.) Measurement conditions: X-ray source MgKα (400 W)
Spectral region 800μmφ

本発明では、測定された各元素のピーク強度から、PHI社提供の相対感度因子を用いて表面原子濃度(原子%)を算出した。   In the present invention, the surface atomic concentration (atomic%) was calculated from the measured peak intensity of each element using a relative sensitivity factor provided by PHI.

測定試料としては、トナーを用いるが、トナーに外添剤が添加されている場合には、イソプロパノールの如きトナーを溶解しない溶媒を用いて、トナーを洗浄し、外添剤を取り除いた後に測定を行う。   As the measurement sample, toner is used. When an external additive is added to the toner, the toner is washed with a solvent that does not dissolve the toner, such as isopropanol, and the measurement is performed after removing the external additive. Do.

本発明のトナーは、トナーの投影面積相当径をCとし透過型電子顕微鏡(TEM)を用いた該トナーの断面観察における酸化鉄とトナー表面との距離の最小値をDとしたとき、D/C≦0.02の関係を満たすトナーの個数が50%以上である事が好ましい。   In the toner of the present invention, when the projected area equivalent diameter of the toner is C and the minimum value of the distance between the iron oxide and the toner surface in the cross-sectional observation of the toner using a transmission electron microscope (TEM) is D, D / The number of toners satisfying the relationship of C ≦ 0.02 is preferably 50% or more.

D/C≦0.02の関係を満たすトナー数が50%未満ということは、トナー中の磁性粉体の分散状態にばらつきが大きいことを意味し、長期使用によるトナー物性の変化を生じ易く、また、トナーの帯電均一性も損なわれ、尾引きやゴーストを生じ易くなり好ましくない。   When the number of toners satisfying the relationship of D / C ≦ 0.02 is less than 50%, it means that the dispersion state of the magnetic powder in the toner has a large variation, and the toner physical properties are likely to change due to long-term use. In addition, the charging uniformity of the toner is impaired, and tailing and ghosting are likely to occur, which is not preferable.

本発明において、TEMによる具体的なD/Cの測定方法としては、常温硬化性のエポキシ樹脂中へ観察すべき粒子を十分に分散させた後に温度40℃の雰囲気中で2日間硬化させ得られた硬化物を、そのまま、あるいは凍結してダイヤモンド歯を備えたミクロトームにより薄片状のサンプルとして観察する方法が好ましい。   In the present invention, as a specific method for measuring D / C by TEM, particles to be observed can be sufficiently dispersed in a room temperature curable epoxy resin and then cured in an atmosphere at a temperature of 40 ° C. for 2 days. The cured product is preferably observed as it is or as a flaky sample with a microtome equipped with diamond teeth after freezing.

該当する粒子数の割合の具体的な決定方法については、以下のとおりである。TEMにてD/Cを決定するための粒子は、顕微鏡写真での断面積から円相当径を求め、その値がコールターカウンターによって測定される個数平均粒径(D1)の±10%の幅に含まれるものを該当粒子とし、その該当粒子について、磁性粒子表面との距離の最小値(D)を計測し、D/Cを計算する。また、その該当粒子100個についてD/C値が0.02以下の粒子の割合を計算する。このときの顕微鏡写真は精度の高い測定を行うために、1万〜2万倍の倍率が好適である。本発明では、透過型電子顕微鏡(日立製H−600型)を装置として用い、加速電圧100kVで観察し、拡大倍率が1万倍の顕微鏡写真を用いて観察、測定する。   A specific method for determining the ratio of the number of corresponding particles is as follows. For particles for determining D / C by TEM, the equivalent circle diameter is obtained from the cross-sectional area in the micrograph, and the value is within ± 10% of the number average particle diameter (D1) measured by a Coulter counter. The contained particles are regarded as the corresponding particles, and the minimum value (D) of the distance from the magnetic particle surface is measured for the corresponding particles, and D / C is calculated. In addition, the ratio of particles having a D / C value of 0.02 or less is calculated for 100 corresponding particles. In this case, a magnification of 10,000 to 20,000 times is suitable for the microphotograph to perform measurement with high accuracy. In the present invention, a transmission electron microscope (H-600 model manufactured by Hitachi) is used as an apparatus, and observation is performed at an accelerating voltage of 100 kV, and observation and measurement are performed using a micrograph having a magnification of 10,000.

ここで、重合トナー中に通常の磁性粉体を含有させても、先述の(B/A)を0.001未満に制御すること、すなわちトナー表面に実質上、磁性粉体を露出させず、トナー粒子の流動性及び均一な摩擦帯電性を得ることは困難である。さらには、懸濁重合トナーの製造時に磁性粉体と水との相互作用が強いことにより、平均円形度が0.970以上のトナーが得られ難い。これは、(1)磁性粉体は一般的に親水性であるためにトナー表面に存在しやすいこと、さらに先述のように(2)水溶媒撹拌時に磁性粉体が乱雑に動き、それに単量体からなる懸濁粒子表面が引きずられ、形状が歪んで円形になりにくいこと等が原因と考えられる。こういった問題を解決するためには磁性粉体の有する表面特性の改質が重要である。   Here, even when normal magnetic powder is contained in the polymerized toner, the aforementioned (B / A) is controlled to be less than 0.001, that is, the magnetic powder is not substantially exposed on the toner surface. It is difficult to obtain fluidity of toner particles and uniform triboelectric charging. Furthermore, since the interaction between the magnetic powder and water is strong during the production of the suspension polymerization toner, it is difficult to obtain a toner having an average circularity of 0.970 or more. This is because (1) the magnetic powder is generally hydrophilic and thus easily present on the toner surface. Further, as described above, (2) the magnetic powder moves randomly when the aqueous solvent is stirred, This is probably because the surface of suspended particles composed of the body is dragged, the shape is distorted, and it is difficult to form a circle. In order to solve these problems, it is important to modify the surface characteristics of the magnetic powder.

重合トナーに使用される磁性粉体の表面改質に関しては、数多く提案されている。例えば、特開昭63−250660号公報では、ケイ素元素含有磁性粒子をシランカップリング剤で処理する技術が開示されている。しかしながら、これらの処理により磁性粉体のトナー表面への露出はある程度抑制されるものの、磁性粉体表面の疎水化を均一に行うことが困難であるという問題があり、したがって、磁性粉体同士の合一や疎水化されていない磁性粉体の発生を避けることができず、トナー表面への露出が生じたり、磁性粉体の分散性は十分では無く、粒度分布も広いものとなってしまう。   Many proposals have been made regarding the surface modification of magnetic powders used in polymerized toners. For example, Japanese Patent Application Laid-Open No. 63-250660 discloses a technique for treating silicon element-containing magnetic particles with a silane coupling agent. However, although the exposure of the magnetic powder to the toner surface is suppressed to some extent by these treatments, there is a problem that it is difficult to make the magnetic powder surface hydrophobic uniformly. The generation of the magnetic powder that is not united or hydrophobized cannot be avoided, exposure to the toner surface occurs, the dispersibility of the magnetic powder is not sufficient, and the particle size distribution becomes wide.

また、疎水化磁性酸化鉄を用いる例として、特開昭54−84731号公報にアルキルトリアルコキシシランで処理した磁性酸化鉄を含有するトナーが提案されている。この磁性酸化鉄の添加により、確かにトナーの電子写真諸特性は向上しているものの、磁性酸化鉄の表面活性は元来小さく、処理の段階で合一粒子が生じたり、疎水化が不均一であったりで、必ずしも満足のいくものではない。また、小粒径の磁性粉体を用いた場合、均一な処理がより困難なものとなり、本発明に適用するにはさらなる改良が必要である。さらに、磁性粉体の内包性向上の為、処理剤等を多量に使用したり、高粘性の処理剤等を使用した場合、疎水化度は確かに上がるものの、粒子同士の合一等が生じて分散性は逆に悪化してしまう。   As an example of using hydrophobic magnetic iron oxide, Japanese Patent Application Laid-Open No. 54-84731 proposes a toner containing magnetic iron oxide treated with alkyltrialkoxysilane. Although the addition of this magnetic iron oxide has certainly improved the electrophotographic properties of the toner, the surface activity of the magnetic iron oxide is inherently small, and coalesced particles are formed at the processing stage, and the hydrophobicity is not uniform. It is not always satisfactory. Further, when a magnetic powder having a small particle diameter is used, uniform processing becomes more difficult, and further improvement is required to apply to the present invention. Furthermore, in order to improve the inclusion of magnetic powder, when a large amount of treatment agent is used, or when a highly viscous treatment agent is used, the degree of hydrophobicity will surely increase, but the particles will coalesce. On the contrary, dispersibility deteriorates.

このような磁性粉体を用いて製造されたトナーは、摩擦帯電性が不均一であり、それに起因してカブリや転写性、ゴースト、尾引きが良くないものとなる。   The toner produced using such a magnetic powder has non-uniform frictional chargeability, resulting in poor fog, transferability, ghosting and tailing.

このように、従来の表面処理磁性粉体を用いた重合トナーでは、疎水性と分散性の両立は必ずしも達成されておらず、このような重合トナーは高精細な画像を安定して得ることは難しい。   Thus, the conventional polymerized toner using the surface-treated magnetic powder does not necessarily achieve both hydrophobicity and dispersibility, and such polymerized toner can stably obtain a high-definition image. difficult.

そこで、本発明の磁性トナーに使用される磁性粉体は、カップリング剤で均一に疎水化処理されていることが好ましい。磁性粉体表面を疎水化する際、水系媒体中で、磁性粉体を一次粒径となるよう分散しつつカップリング剤を加水分解しながら表面処理する方法を用いることが非常に好ましい。この疎水化処理方法は気相中で処理するより、磁性粉体同士の合一が生じにくく、また疎水化処理による磁性粉体間の帯電反発作用が働き、磁性粉体はほぼ一次粒子の状態で表面処理される。   Therefore, it is preferable that the magnetic powder used in the magnetic toner of the present invention is uniformly hydrophobized with a coupling agent. When hydrophobizing the surface of the magnetic powder, it is very preferable to use a method in which the surface treatment is performed while hydrolyzing the coupling agent while dispersing the magnetic powder to have a primary particle size in an aqueous medium. This hydrophobic treatment method is less likely to cause coalescence between the magnetic powders than in the gas phase, and the repulsive action between the magnetic powders due to the hydrophobic treatment works, and the magnetic powder is almost in the form of primary particles. Surface treatment with.

カップリング剤を水系媒体中で加水分解しながら磁性粉体表面を処理する方法は、クロロシラン類やシラザン類のようにガスを発生するようなカップリング剤を使用する必要もなく、さらに、これまで気相中では磁性粉体同士が合一しやすくて、良好な処理が困難であった高粘性のカップリング剤も使用できるようになり、疎水化の効果は絶大である。   The method of treating the surface of the magnetic powder while hydrolyzing the coupling agent in an aqueous medium does not require the use of a coupling agent that generates gas such as chlorosilanes and silazanes. In the gas phase, the magnetic powders can be easily combined with each other, and a highly viscous coupling agent that has been difficult to be treated can be used, so that the hydrophobizing effect is great.

本発明に係わる磁性粉体の表面処理において使用できるカップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤等が挙げられる。より好ましく用いられるのはシランカップリング剤であり、一般式
Rm SiYn
[式中、Rはアルコオキシ基を示し、mは1〜3の整数を示し、Yはアルキル基、ビニル基、グリシドキシ基、メタクリル基の如き炭化水素基を示し、nは1〜3の整数を示す。]
で示されるものである。例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、n−ブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、イソブチルトリメトキシシラン、トリメチルメトキシシラン、n−デシルトリメトキシシラン、ヒドロキシプロピリトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン等を挙げることができる。
Examples of the coupling agent that can be used in the surface treatment of the magnetic powder according to the present invention include a silane coupling agent and a titanium coupling agent. More preferably used is a silane coupling agent, which has the general formula Rm SiYn
[Wherein, R represents an alkoxy group, m represents an integer of 1 to 3, Y represents a hydrocarbon group such as an alkyl group, a vinyl group, a glycidoxy group, or a methacryl group, and n represents an integer of 1 to 3. Show. ]
It is shown by. For example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyl Diethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxy Silane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, n-butyltrimethoxysilane, n-he Sill trimethoxysilane, isobutyl trimethoxysilane, trimethyl methoxy silane, n- decyl trimethoxysilane, hydroxypropyl Ritori silane, n- hexadecyl trimethoxy silane, can be mentioned n- octadecyl trimethoxysilane.

これらカップリング剤は単独で用いても良いし、複数種組み合わせて用いても良い。   These coupling agents may be used alone or in combination of two or more.

しかし、これらの中でも磁性粉体に十分な疎水性を持たせる為に以下の式で示されるアルキルトリアルコキシシランカップリング剤を少なくとも一種以上用いることがより好ましい。
p2p+1−Si−(OCq2q+13
[式中、pは2〜20の整数を示し、qは1〜3の整数を示す]
However, among these, it is more preferable to use at least one alkyltrialkoxysilane coupling agent represented by the following formula in order to make the magnetic powder sufficiently hydrophobic.
C p H 2p + 1 -Si- ( OC q H 2q + 1) 3
[Wherein p represents an integer of 2 to 20, and q represents an integer of 1 to 3]

上記式におけるpが2より小さいと、疎水化処理は容易となるが、疎水性を十分に付与することが困難であり、トナー粒子からの磁性粒子の露出を抑制するのが難しくなる。またpが20より大きいと、疎水性は十分になるが、磁性粉体粒子同士の合一が多くなり、磁性粉体粒子を十分に分散性させることが困難になり、帯電均一性が損なわれてしまう。   When p in the above formula is smaller than 2, the hydrophobizing treatment is easy, but it is difficult to sufficiently impart hydrophobicity, and it becomes difficult to suppress the exposure of the magnetic particles from the toner particles. On the other hand, if p is larger than 20, the hydrophobicity is sufficient, but the coalescence of the magnetic powder particles increases, making it difficult to sufficiently disperse the magnetic powder particles, and the charging uniformity is impaired. End up.

また、qが3より大きいと、シランカップリング剤の反応性が低下して疎水化が十分に行われにくくなる。   On the other hand, when q is larger than 3, the reactivity of the silane coupling agent is lowered and the hydrophobicity is not sufficiently performed.

特に、式中のpが2〜20の整数(より好ましくは、3〜15の整数)を示し、qが1〜3の整数(より好ましくは、1又は2の整数)を示すアルキルトリアルコキシシランカップリング剤を使用するのが良い。   In particular, p in the formula represents an integer of 2 to 20 (more preferably an integer of 3 to 15), and q represents an integer of 1 to 3 (more preferably an integer of 1 or 2). A coupling agent should be used.

これらカップリング剤の総処理量は磁性粉体100質量部に対して、0.05〜20質量部、好ましくは0.1〜10質量部であり、磁性粉体の表面積、カップリング剤の反応性に応じて処理剤の量を調整することが好ましい。   The total processing amount of these coupling agents is 0.05 to 20 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the magnetic powder, and the surface area of the magnetic powder and the reaction of the coupling agent It is preferable to adjust the amount of the treatment agent according to the property.

ここで、水系媒体とは、水を主要成分としている媒体である。具体的には、水系媒体として水そのもの、水に少量の界面活性剤を添加したもの、水にpH調整剤を添加したもの、水に有機溶剤を添加したものが挙げられる。界面活性剤としては、ポリビニルアルコールの如きノンイオン系界面活性剤が好ましい。界面活性剤は、水に対して0.1〜5質量%添加するのが良い。pH調整剤としては、塩酸の如き無機酸が挙げられ、有機溶剤としてはアルコール類等が挙げられる。   Here, the aqueous medium is a medium containing water as a main component. Specific examples of the aqueous medium include water itself, water added with a small amount of a surfactant, water added with a pH adjusting agent, and water added with an organic solvent. As the surfactant, a nonionic surfactant such as polyvinyl alcohol is preferable. The surfactant is preferably added in an amount of 0.1 to 5% by mass with respect to water. Examples of the pH adjuster include inorganic acids such as hydrochloric acid, and examples of the organic solvent include alcohols.

撹拌は、例えば撹拌羽根を有する混合機で、磁性粉体粒子が水系媒体中で、一次粒子になるように充分におこなうのが良い。   Stirring is preferably performed sufficiently, for example, with a mixer having stirring blades so that the magnetic powder particles become primary particles in the aqueous medium.

なお、複数種のシランカップリング剤を用いる場合、同時、あるいは時間差をもって複数種のカップリング剤を投入し、磁性粉体の処理を行う。   In the case where a plurality of types of silane coupling agents are used, a plurality of types of coupling agents are added simultaneously or with a time difference to process the magnetic powder.

こうして得られる磁性粉体は粒子の凝集が見られず、個々の粒子表面が均一に疎水化処理されているため、帯電均一性にすぐれ、ゴースト、尾引きのないトナーを得ることが出来る。   In the magnetic powder thus obtained, no particle aggregation is observed, and the surface of each particle is uniformly hydrophobized, so that it is excellent in charging uniformity and a toner having no ghost and tailing can be obtained.

本発明のトナーにおいて用いられる磁性粉体は、リン、コバルト、ニッケル、銅、マグネシウム、マンガン、アルミニウム、珪素などの元素を含んでもよい。また、磁性粉体は四三酸化鉄、γ−酸化鉄等、酸化鉄を主成分とするものであり、これらを1種または2種以上併用して用いられる。これら磁性粉体は、窒素吸着法によるBET比表面積が好ましくは2〜30m2/g、特に3〜28m2/g、更にモース硬度が5〜7のものが好ましい。 The magnetic powder used in the toner of the present invention may contain elements such as phosphorus, cobalt, nickel, copper, magnesium, manganese, aluminum, and silicon. The magnetic powder is mainly composed of iron oxide such as triiron tetroxide and γ-iron oxide, and these are used alone or in combination of two or more. These magnetic powders preferably have a BET specific surface area of 2 to 30 m 2 / g, particularly 3 to 28 m 2 / g, and a Mohs hardness of 5 to 7 by the nitrogen adsorption method.

磁性粉体の形状としては、多面体、8面体、6面体、球形、針状、鱗片状などがあるが、多面体、8面体、6面体、球形等の異方性の少ないものが画像濃度を高める上で好ましい。こういった磁性粉体の形状はSEMなどによって確認することができる。磁性粉体の体積平均粒径としては0.05〜0.4μmが好ましく、より好ましくは0.1〜0.3μmである。体積平均径が0.05μm未満の場合、黒色度の低下が顕著となり、白黒用トナーの着色剤としては着色力が不十分となるうえに、磁性粉体どうしの凝集が強くなるため、分散性が悪化する。また、磁性粉体表面の均一性処理が非常に困難なものとなる。一方、体積平均粒径が0.4μmを超えてしまうと、一般の着色剤と同様に着色力が不足するようになる。加えて、体積平均粒径が0.4μmより大きな磁性粉体を用いると、本発明の如き、小粒径トナー用の着色剤として使用する場合、個々のトナー粒子に均一に磁性粒子を分散させることが確率的に困難となり、トナーの均一帯電性が損なわれる。   The shape of the magnetic powder includes polyhedron, octahedron, hexahedron, spherical shape, needle shape, scale shape, and the like, but those having less anisotropy such as polyhedron, octahedron, hexahedron, and spherical shape increase the image density. Preferred above. The shape of such magnetic powder can be confirmed by SEM or the like. The volume average particle size of the magnetic powder is preferably 0.05 to 0.4 μm, more preferably 0.1 to 0.3 μm. When the volume average diameter is less than 0.05 μm, the decrease in blackness becomes remarkable, the coloring power becomes insufficient as a colorant for black-and-white toner, and the cohesion between magnetic powders becomes strong. Gets worse. In addition, it is very difficult to treat the surface of the magnetic powder. On the other hand, when the volume average particle diameter exceeds 0.4 μm, the coloring power becomes insufficient as in the case of a general colorant. In addition, when a magnetic powder having a volume average particle size larger than 0.4 μm is used, when used as a colorant for a small particle size toner as in the present invention, the magnetic particles are uniformly dispersed in individual toner particles. This is difficult to achieve, and the uniform chargeability of the toner is impaired.

本発明のトナーに用られる磁性粉体は、結着樹脂100質量部に対して、10質量部乃至200質量部を用いることが好ましい。さらに好ましくは20〜180質量部を用いることが良い。10質量部未満ではトナーの着色力が乏しく、カブリの抑制も困難である。一方、200質量部を超えると、トナー担持体への磁力による保持力が強まり現像性が低下したり、個々のトナー粒子への磁性粉体の均一な分散が難しくなるだけでなく、定着性が低下してしまう。   The magnetic powder used in the toner of the present invention is preferably used in an amount of 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin. More preferably, 20 to 180 parts by mass are used. If it is less than 10 parts by mass, the coloring power of the toner is poor, and it is difficult to suppress fogging. On the other hand, when the amount exceeds 200 parts by mass, not only the retention by the magnetic force on the toner carrier is increased and the developability is lowered, but it is difficult not only to uniformly disperse the magnetic powder into individual toner particles, but also the fixability. It will decline.

なお、トナー中の磁性粉体の含有量の測定は、パーキンエルマー社製熱分析装置、TGA7、で測定した。測定方法は、窒素雰囲気下において昇温速度25℃/分で常温から900℃までトナーを加熱し、100℃から750℃まで間の減量質量%を結着樹脂量とし、残存質量を近似的に磁性粉体量とした。   The content of the magnetic powder in the toner was measured with a thermal analysis device manufactured by Perkin Elmer, TGA7. In the measurement method, the toner is heated from normal temperature to 900 ° C. at a temperature increase rate of 25 ° C./min in a nitrogen atmosphere, and the weight loss from 100 ° C. to 750 ° C. is defined as the binder resin amount, and the residual mass is approximately The amount of magnetic powder was used.

本発明に係わる磁性トナーに用いられる磁性粉体は、例えばマグネタイトの場合、下記方法で製造される。   For example, in the case of magnetite, the magnetic powder used in the magnetic toner according to the present invention is produced by the following method.

第一鉄塩水溶液に、鉄成分に対して当量または当量以上の水酸化ナトリウムの如きアルカリを加え、水酸化第一鉄を含む水溶液を調製する。調製した水溶液のpHをpH7以上(好ましくはpH8〜14)に維持しながら空気を吹き込み、水溶液を70℃以上に加温しながら水酸化第一鉄の酸化反応をおこない、磁性酸化鉄粒子の芯となる種晶をまず生成する。   An aqueous solution containing ferrous hydroxide is prepared by adding an alkali such as sodium hydroxide in an amount equivalent to or higher than the iron component to the ferrous salt aqueous solution. Air was blown in while maintaining the pH of the prepared aqueous solution at pH 7 or higher (preferably pH 8 to 14), and iron oxide was oxidized while heating the aqueous solution to 70 ° C. or higher. First, a seed crystal is formed.

次に、種晶を含むスラリー状の液に前に加えたアルカリの添加量を基準として約1当量の硫酸第一鉄を含む水溶液を加える。液のpHを6〜14に維持しながら空気を吹込みながら水酸化第一鉄の反応をすすめ種晶を芯にして磁性酸化鉄粒子を成長させる。酸化反応がすすむにつれて液のpHは酸性側に移行していくが、液のpHは6未満にしない方が好ましい。酸化反応の終期に液のpHを調整し、磁性酸化鉄が一次粒子になるよう十分に撹拌し、カップリング剤を添加して十分に混合撹拌し、撹拌後に濾過し、乾燥し、軽く解砕することで疎水性処理磁性酸化鉄粒子が得られる。あるいは、酸化反応終了後、洗浄、濾過して得られた酸化鉄粒子を、乾燥せずに別の水系媒体中に再分散させた後、再分散液のpHを調整し、十分撹拌しながらシランカップリング剤を添加し、カップリング処理を行っても良い。いずれにせよ、酸化反応終了後に乾燥工程を経ずに表面処理を行うことが肝要であり、本発明のトナーにおける重要なポイントである。   Next, an aqueous solution containing about 1 equivalent of ferrous sulfate is added to the slurry-like liquid containing seed crystals based on the amount of alkali added previously. While maintaining the pH of the solution at 6 to 14, the reaction of ferrous hydroxide is promoted while blowing air, and magnetic iron oxide particles are grown around the seed crystal. As the oxidation reaction proceeds, the pH of the liquid shifts to the acidic side, but the pH of the liquid is preferably not less than 6. Adjust the pH of the solution at the end of the oxidation reaction, stir well so that the magnetic iron oxide becomes primary particles, add the coupling agent, stir well, stir, filter, dry, and lightly crush after stirring By doing so, hydrophobic treated magnetic iron oxide particles can be obtained. Alternatively, after completion of the oxidation reaction, the iron oxide particles obtained by washing and filtering are redispersed in another aqueous medium without drying, and then the pH of the redispersion is adjusted and the silane is stirred well. A coupling agent may be added to perform the coupling treatment. In any case, it is important to perform the surface treatment after the oxidation reaction without passing through the drying step, which is an important point in the toner of the present invention.

第一鉄塩としては、一般的に硫酸法チタン製造に副生する硫酸鉄、鋼板の表面洗浄に伴って副生する硫酸鉄の利用が可能であり、更に塩化鉄等が可能である。   As the ferrous salt, iron sulfate generally produced as a by-product in the production of sulfuric acid titanium, iron sulfate produced as a by-product with the surface cleaning of the steel sheet can be used, and iron chloride or the like can be used.

水溶液法による磁性酸化鉄の製造方法は一般に反応時の粘度の上昇を防ぐこと、及び、硫酸鉄の溶解度から鉄濃度0.5〜2mol/lが用いられる。硫酸鉄の濃度は一般に薄いほど製品の粒度が細かくなる傾向を有する。また、反応に際しては、空気量が多い程、そして反応温度が低いほど微粒化しやすい。   In the method for producing magnetic iron oxide by the aqueous solution method, an iron concentration of 0.5 to 2 mol / l is generally used from the viewpoint of preventing the viscosity from increasing during the reaction and the solubility of iron sulfate. Generally, the lower the iron sulfate concentration, the finer the particle size of the product. Further, in the reaction, the larger the amount of air and the lower the reaction temperature, the easier the atomization.

このようにして製造された疎水性磁性粉体を材料とした磁性トナーを使用することにより、安定したトナーの帯電性が得られ、転写効率が高く、高画質及び高安定性が可能となる。   By using the magnetic toner made of the hydrophobic magnetic powder produced as described above, stable toner charging property can be obtained, transfer efficiency is high, and high image quality and high stability are possible.

本発明の磁性トナーは定着性向上のために、離型剤を有することが好ましく、その量は結着樹脂に対し1〜30質量%を含有することが好ましい。より好ましくは、3〜25質量%である。離型剤の含有量が1質量%未満では離型剤の添加効果が十分ではなく、さらに、オフセット抑制効果も不十分である。一方、30質量%を超えてしまうと長期間の保存性が悪化すると共に、離型剤、磁性粉体等のトナー材料の分散性が悪くなり、磁性トナーの流動性の悪化や画像特性の低下につながる。また、定着時以外の離型剤成分のしみ出しも起るようになり、高温高湿下での耐久性が劣るものとなる。さらに、多量のワックスを内包するために、トナー形状がいびつになりやすくなる。   The magnetic toner of the present invention preferably has a release agent for improving fixability, and the amount thereof preferably contains 1 to 30% by mass with respect to the binder resin. More preferably, it is 3 to 25% by mass. When the content of the release agent is less than 1% by mass, the effect of adding the release agent is not sufficient, and further, the offset suppressing effect is also insufficient. On the other hand, if it exceeds 30% by mass, the long-term storage stability is deteriorated and the dispersibility of the toner material such as the release agent and the magnetic powder is deteriorated, and the fluidity of the magnetic toner is deteriorated and the image characteristics are deteriorated. Leads to. Further, exudation of the releasing agent component other than during fixing occurs, and the durability under high temperature and high humidity is inferior. Further, since a large amount of wax is included, the toner shape tends to become distorted.

本発明に係わる磁性トナーに使用可能な離型剤としては、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス及びその誘導体、モンタンワックス及びその誘導体、フィッシャートロプシュ法による炭化水素ワックス及びその誘導体、ポリエチレンに代表されるポリオレフィンワックス及びその誘導体、カルナバワックス、キャンデリラワックス等天然ワックス及びその誘導体などで、誘導体には酸化物や、ビニル系モノマーとのブロック共重合物、グラフト変性物を含む。中でも、パラフィンワックス、フィッシャートロプシュワックスをスチレン系モノマー又は不飽和カルボン酸系モノマーでグラフト変性したものであると、変性部位とトナー樹脂成分との相溶性が高いためにワックスの脱離が起こりにくくなり好ましい。さらには、高級脂肪族アルコール、ステアリン酸、パルミチン酸等の脂肪酸、あるいはその化合物、酸アミドワックス、エステルワックス、ケトン、硬化ヒマシ油及びその誘導体、植物系ワックス、動物性ワックスなども使用できる。   Examples of the release agent that can be used in the magnetic toner according to the present invention include petroleum waxes such as paraffin wax, microcrystalline wax, and petrolactam and derivatives thereof, montan wax and derivatives thereof, and hydrocarbon waxes and derivatives thereof according to the Fischer-Tropsch method. Polyolefin waxes and their derivatives typified by polyethylene, natural waxes and their derivatives such as carnauba wax and candelilla wax, and the derivatives include oxides, block copolymers with vinyl monomers, and graft modified products. Above all, when the paraffin wax or Fischer-Tropsch wax is graft-modified with a styrene monomer or an unsaturated carboxylic acid monomer, the compatibility between the modified portion and the toner resin component is high and the wax is less likely to be detached. preferable. Furthermore, fatty acids such as higher aliphatic alcohols, stearic acid and palmitic acid, or compounds thereof, acid amide waxes, ester waxes, ketones, hydrogenated castor oil and derivatives thereof, plant waxes, animal waxes and the like can also be used.

これらの離型剤は単独で用いてもよいが、二種以上を併用しても良い。二種類のワックスを使用する場合は、低融点のエステルワックスと、高融点(Tmが100℃以上)のフィッシャートロプシュワックスまたはポリエチレンワックスを同時に添加することが好ましい。   These release agents may be used alone or in combination of two or more. When two types of waxes are used, it is preferable to add an ester wax having a low melting point and a Fischer-Tropsch wax or polyethylene wax having a high melting point (Tm of 100 ° C. or higher) at the same time.

これらの離型剤成分の内でも、示差熱分析による吸熱ピークが40〜130℃のもの、即ち、示差走差熱量計により測定されるDSC曲線において昇温時に40〜130℃の領域に最大吸熱ピークを有するものが好ましく、さらには45〜120℃の領域に有するものがより好ましい。上記温度領域に最大吸熱ピークを有することにより、低温定着に大きく貢献しつつ、離型性をも効果的に発現する。最大吸熱ピークが40℃未満であると離型剤成分の自己凝集力が弱くなり、結果として耐高温オフセット性が悪化する。また、定着時以外での離型剤のしみだしが生じ易くなり、トナーの帯電量が低下すると共に、高温高湿下での耐久性が低下する。一方、該最大吸熱ピークが130℃を超えると定着温度が高くなり低温オフセットが発生しやすくなり好ましくない。さらに、水系媒体中で造粒/重合を行い重合方法により直接トナーを得る場合、該最大吸熱ピーク温度が高いと、主に造粒中に離型剤成分が析出する等の問題を生じ、離型剤の分散性が悪化し好ましくない。   Among these release agent components, those having an endothermic peak by differential thermal analysis of 40 to 130 ° C., that is, the maximum endotherm in the region of 40 to 130 ° C. at the time of temperature rise in the DSC curve measured by the differential differential calorimeter. What has a peak is preferable, and what has in a 45-120 degreeC area | region is more preferable. By having the maximum endothermic peak in the above temperature range, the mold releasability is effectively expressed while greatly contributing to low-temperature fixing. When the maximum endothermic peak is less than 40 ° C., the self-aggregating force of the release agent component becomes weak, and as a result, the high temperature offset resistance deteriorates. Further, exudation of the release agent is likely to occur at times other than during fixing, and the charge amount of the toner is reduced, and the durability under high temperature and high humidity is reduced. On the other hand, if the maximum endothermic peak exceeds 130 ° C., the fixing temperature becomes high and low temperature offset is likely to occur, which is not preferable. Further, when granulation / polymerization is performed in an aqueous medium and a toner is obtained directly by the polymerization method, if the maximum endothermic peak temperature is high, a problem such as precipitation of a release agent component mainly occurs during granulation. Dispersibility of the mold is deteriorated, which is not preferable.

離型剤の最大吸熱ピーク温度の測定は、「ASTM D 3418−8」に準じて行う。測定には、例えばパーキンエルマー社製DSC−7を用いる。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。測定サンプルにはアルミニウム製のパンを用い、対照用に空パンをセットし、試料を一回200℃まで昇温させ熱履歴を除いた後、急冷し、再度、昇温速度10℃/minにて温度30〜200℃の範囲で昇温させた時に測定されるDSC曲線を用いる。後述の実施例においても同様に測定した。   The maximum endothermic peak temperature of the release agent is measured according to “ASTM D 3418-8”. For the measurement, for example, DSC-7 manufactured by PerkinElmer is used. The temperature correction of the device detection unit uses the melting points of indium and zinc, and the correction of heat uses the heat of fusion of indium. An aluminum pan is used as a measurement sample, and an empty pan is set as a control. The sample is heated up to 200 ° C. once to remove the heat history, then rapidly cooled, and again at a heating rate of 10 ° C./min. DSC curve measured when the temperature is raised in the range of 30 to 200 ° C. is used. The same measurement was performed in the examples described later.

本発明の磁性トナーは、荷電特性を安定化するために荷電制御剤を配合しても良い。荷電制御剤としては、公知のものが利用できるが、本発明の如き、トナーを直接重合法を用いて製造する場合には、重合阻害性が低く、水系分散媒体への可溶化物が実質的にない荷電制御剤が特に好ましい。具体的な化合物としては、ネガ系荷電制御剤としてサリチル酸、アルキルサリチル酸、ジアルキルサリチル酸、ナフトエ酸、ダイカルボン酸の如き芳香族カルボン酸の金属化合物、アゾ染料あるいはアゾ顔料の金属塩または金属錯体、スルホン酸又はカルボン酸基を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーン等が挙げられる。ポジ系荷電制御剤として四級アンモニウム塩、該四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、ニグロシン系化合物、イミダゾール化合物等が挙げられる。   The magnetic toner of the present invention may contain a charge control agent in order to stabilize the charge characteristics. As the charge control agent, known ones can be used. However, when the toner is produced using the direct polymerization method as in the present invention, the polymerization inhibitory property is low, and the solubilized product in the aqueous dispersion medium is substantially reduced. Especially preferred are charge control agents which are not present. Specific compounds include, as negative charge control agents, metal compounds of aromatic carboxylic acids such as salicylic acid, alkylsalicylic acid, dialkylsalicylic acid, naphthoic acid and dicarboxylic acid, metal salts or metal complexes of azo dyes or azo pigments, sulfones Examples thereof include a polymer compound having an acid or carboxylic acid group in the side chain, a boron compound, a urea compound, a silicon compound, and a calixarene. Examples of the positive charge control agent include a quaternary ammonium salt, a polymer compound having the quaternary ammonium salt in the side chain, a guanidine compound, a nigrosine compound, and an imidazole compound.

これらの電荷制御剤の使用量としては、結着樹脂の種類、他の添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくは結着樹脂100質量部に対して0.1〜10質量部、より好ましくは0.1〜5質量部の範囲で用いられる。   The amount of use of these charge control agents is determined by the toner production method including the type of binder resin, the presence or absence of other additives, and the dispersion method, and is not uniquely limited. Preferably, it is used in the range of 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the binder resin.

しかしながら、本発明の磁性トナーは、上記の如き荷電制御剤の添加は必須ではない。   However, the addition of the charge control agent as described above is not essential for the magnetic toner of the present invention.

次に本発明に関わるトナーの製造方法を説明する。   Next, a toner manufacturing method according to the present invention will be described.

本発明に関わる重合トナーは、一般にトナー組成物、即ち結着樹脂となる重合性単量体中に、磁性粉体、離型剤、可塑剤、荷電制御剤、架橋剤、場合によって着色剤などトナーとして必要な成分及びその他の添加剤、例えば、高分子重合体、分散剤などを適宜加えて、分散機等によって均一に溶解又は分散させた重合性単量体系を得る。次いで、分散安定剤を含有する水系媒体中に懸濁し、重合を行う。   The polymerized toner according to the present invention is generally a toner composition, that is, a polymerizable monomer that becomes a binder resin, a magnetic powder, a release agent, a plasticizer, a charge control agent, a cross-linking agent, and optionally a colorant. Components necessary for the toner and other additives such as a polymer and a dispersant are appropriately added to obtain a polymerizable monomer system uniformly dissolved or dispersed by a disperser or the like. Subsequently, it suspends in the aqueous medium containing a dispersion stabilizer, and superposes | polymerizes.

重合性単量体系を構成する重合性単量体としては以下のものが挙げられる。   The following are mentioned as a polymerizable monomer which comprises a polymerizable monomer type | system | group.

重合性単量体としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−エチルスチレン等のスチレン系単量体、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル類その他のアクリロニトリル、メタクリロニトリル、アクリルアミド等の単量体が挙げられる。これらの単量体は単独、または混合して使用し得る。上述の単量体の中でも、スチレンまたはスチレン誘導体を単独で、あるいは他の単量体と混合して使用することがトナーの現像特性及び耐久性の点から好ましい。   Examples of the polymerizable monomer include styrene monomers such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, p-ethylstyrene, methyl acrylate, ethyl acrylate, Acrylate esters such as n-butyl acrylate, isobutyl acrylate, n-propyl acrylate, n-octyl acrylate, dodecyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate , Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, phenyl methacrylate, Methacrylic acid dimethyl aminoethyl, methacrylic acid esters other acrylonitrile such as diethylaminoethyl methacrylate, methacrylonitrile, and the like monomers acrylamide. These monomers can be used alone or in combination. Among the above-mentioned monomers, styrene or a styrene derivative is preferably used alone or mixed with other monomers from the viewpoint of the developing characteristics and durability of the toner.

また、重合性単量体系に樹脂を添加して重合しても良い。例えば、単量体では水溶性のため水性懸濁液中では溶解して乳化重合を起こすため使用できないアミノ基、カルボン酸基、水酸基、グリシジル基、ニトリル基など親水性官能基含有の重合性単量体成分をトナー中に導入したい時には、これらとスチレンあるいはエチレン等ビニル化合物とのランダム共重合体、ブロック共重合体、あるいはグラフト共重合体など、共重合体の形にして、あるいはポリエステル、ポリアミド等の重縮合体、ポリエーテル、ポリイミンなど重付加重合体の形で使用が可能となる。こうした極性官能基を含む高分子重合体をトナー中に共存させると、前述のワックス成分を相分離させ、より内包化が強力となり、耐ブロッキング性、現像性の良好なトナーを得ることができる。   Further, polymerization may be performed by adding a resin to the polymerizable monomer system. For example, monomers that are water-soluble and cannot be used because they dissolve in an aqueous suspension and cause emulsion polymerization, so that polymerizable monomers containing hydrophilic functional groups such as amino groups, carboxylic acid groups, hydroxyl groups, glycidyl groups, and nitrile groups cannot be used. When it is desired to introduce the monomer component into the toner, it is in the form of a copolymer such as a random copolymer, a block copolymer, or a graft copolymer of these and a vinyl compound such as styrene or ethylene, or a polyester or polyamide. It can be used in the form of polycondensates such as polyaddition polymers such as polyethers and polyimines. When such a polymer containing a polar functional group is allowed to coexist in the toner, the above-described wax component is phase-separated, the encapsulation becomes stronger, and a toner having good blocking resistance and developability can be obtained.

また、材料の分散性や定着性、あるいは画像特性の改良などを目的として上記以外の樹脂を単量体系に添加してもよく、用いられる樹脂としては、例えば、ポリスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−アクリル酸ジメチルアミノエチル共重合体、スチレン−メタアクリル酸メチル共重合体、スチレン−メタアクリル酸エチル共重合体、スチレン−メタアクリル酸ブチル共重合体、スチレン−メタクリル酸ジメチルアミノエチル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリビニルブチラール、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペル樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂、芳香族系石油樹脂などが単独或いは混合して使用できる。これら樹脂の添加量としては、重合性単量体100質量部に対して1乃至20質量部が好ましい。1質量部未満では添加効果が小さく、一方20質量部以上添加すると重合トナーの種々の物性設計が難しくなる。   In addition, resins other than those described above may be added to the monomer system for the purpose of improving the dispersibility and fixing properties of the material, or image characteristics. Examples of the resin used include styrene such as polystyrene and polyvinyltoluene, and the like. Monomer of the substituted product: styrene-propylene copolymer, styrene-vinyltoluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene -Butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-dimethylaminoethyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene- Butyl methacrylate copolymer, styrene-dimethylamino methacrylate Copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-maleic acid Styrene copolymers such as copolymers and styrene-maleic acid ester copolymers; polymethyl methacrylate, polybutyl methacrylate, polyvinyl acetate, polyethylene, polypropylene, polyvinyl butyral, silicone resins, polyester resins, polyamide resins, epoxy resins Polyacrylic acid resin, rosin, modified rosin, terper resin, phenol resin, aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin and the like can be used alone or in combination. The addition amount of these resins is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer. If it is less than 1 part by mass, the effect of addition is small, while if it is added in an amount of 20 parts by mass or more, it becomes difficult to design various physical properties of the polymerized toner.

さらに、重合性単量体を重合して得られるトナーの分子量範囲とは異なる分子量の重合体を単量体中に溶解して重合すれば、分子量分布の広い、耐オフセット性の高いトナーを得ることができる。   Furthermore, if a polymer having a molecular weight different from the molecular weight range of the toner obtained by polymerizing the polymerizable monomer is dissolved in the monomer and polymerized, a toner having a wide molecular weight distribution and high offset resistance can be obtained. be able to.

本発明で使用される重合開始剤としては、従来公知のアゾ系重合開始剤、過酸化物系重合開始剤などがあり、アゾ系重合開始剤としては、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等が例示され、過酸化物系重合開始剤としてはt−ブチルパーオキシアセテート、t−ブチルパーオキシラウレート、t−ブチルパーオキシピバレート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシアセテート、t−ヘキシルパーオキシラウレート、t−ヘキシルパーオキシピバレート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソブチレート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシベンゾエート、α,α’−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシ−m−トルオイルベンゾエート、ビス(t−ブチルパーオキシ)イソフタレート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、2,5−ジメチル−2,5−ビス(m−トルオイルパーオキシ)ヘキサンなどのパーオキシエステル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、イソブチリルパーオキサイドなどのジアシルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネートなどのパーオキシジカーボネート、1,1−ジ−t−ブチルパーオキシシクロヘキサン、1,1−ジ−t−ヘキシルパーオキシシクロヘキサン、1,1−ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、2,2−ジ−t−ブチルパーオキシブタンなどのパーオキシケタール、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイドなどのジアルキルパーオキサイド、その他としてt−ブチルパーオキシアリルモノカーボネート等が挙げられ、必要に応じてこれらの開始剤を2種以上用いることもできる。   Examples of the polymerization initiator used in the present invention include conventionally known azo polymerization initiators and peroxide polymerization initiators. As the azo polymerization initiator, 2,2′-azobis- (2, 4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis-4-methoxy-2,4-dimethyl Examples include valeronitrile, azobisisobutyronitrile, and peroxide polymerization initiators include t-butyl peroxyacetate, t-butyl peroxylaurate, t-butyl peroxypivalate, t-butyl peroxy Oxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxyneodecanoate, t-hexylperoxyacetate, t- Xylperoxylaurate, t-hexylperoxypivalate, t-hexylperoxy-2-ethylhexanoate, t-hexylperoxyisobutyrate, t-hexylperoxyneodecanoate, t-butylper Oxybenzoate, α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 1, 1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) ) Hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoe T-hexylperoxyisopropyl monocarbonate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis ( Benzoylperoxy) hexane, t-butylperoxy-m-toluoylbenzoate, bis (t-butylperoxy) isophthalate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5- Peroxyesters such as trimethylhexanoate, 2,5-dimethyl-2,5-bis (m-toluoylperoxy) hexane, diacyl peroxides such as benzoyl peroxide, lauroyl peroxide, isobutyryl peroxide, diisopropyl Peroxydicarbonates such as pyrperoxydicarbonate and bis (4-t-butylcyclohexyl) peroxydicarbonate, 1,1-di-t-butylperoxycyclohexane, 1,1-di-t-hexylperoxy Peroxyketals such as cyclohexane, 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 2,2-di-t-butylperoxybutane, di-t-butyl peroxide, dioctyl Examples thereof include dialkyl peroxides such as milperoxide and t-butylcumyl peroxide, and t-butylperoxyallyl monocarbonate as the others. If necessary, two or more of these initiators can be used.

本発明の磁性トナーを重合法で製造する際は、架橋剤を添加し、THF不溶分を生成せしめる事が好ましい形態であり、架橋剤の好ましい添加量としては、重合性単量体100質量部に対して0.001〜15質量部である。   When the magnetic toner of the present invention is produced by a polymerization method, it is preferable to add a cross-linking agent to generate a THF-insoluble matter. The preferable addition amount of the cross-linking agent is 100 parts by mass of a polymerizable monomer. It is 0.001-15 mass parts with respect to.

ここで架橋剤としては、主として2個以上の重合可能な二重結合を有する化合物が用いられ、例えば、ジビニルベンゼン、ジビニルナフタレン等のような芳香族ジビニル化合物;例えばエチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,3−ブタンジオールジメタクリレート等のような二重結合を2個有するカルボン酸エステル;ジビニルアニリン、ジビニルエーテル、ジビニルスルフィド、ジビニルスルホン等のジビニル化合物;及び3個以上のビニル基を有する化合物;が単独もしくは混合物として用いられる。   Here, as the crosslinking agent, a compound having two or more polymerizable double bonds is mainly used, for example, an aromatic divinyl compound such as divinylbenzene, divinylnaphthalene, etc .; for example, ethylene glycol diacrylate, ethylene glycol diester Carboxylic acid ester having two double bonds such as methacrylate, 1,3-butanediol dimethacrylate, etc .; Divinyl compounds such as divinylaniline, divinyl ether, divinyl sulfide, divinyl sulfone, etc .; and having three or more vinyl groups Are used alone or as a mixture.

また、本発明の磁性トナーを製造する際には、重合性単量体と共に反応性樹脂を添加して重合反応を行うことが好ましい。ここで反応性樹脂とは、分子鎖末端に重合反応可能な不飽和二重結合を有する、所謂マクロモノマーである。先に述べたように、生成重合体の分子鎖中に単量体単位として組み込まれるので、該分子鎖中に反応性樹脂の長い線状分子に起因する多数の分岐が生じる。この分岐鎖同士の絡み合いによる物理架橋と、前述の架橋剤による化学架橋を組み合わせて用いると、適度な硬性を有しつつ柔らかいゲルが得られるので、耐久性と定着性が両立できる。   Further, when producing the magnetic toner of the present invention, it is preferable to carry out a polymerization reaction by adding a reactive resin together with a polymerizable monomer. Here, the reactive resin is a so-called macromonomer having an unsaturated double bond capable of undergoing a polymerization reaction at the molecular chain terminal. As described above, since it is incorporated as a monomer unit in the molecular chain of the resulting polymer, a large number of branches resulting from long linear molecules of the reactive resin occur in the molecular chain. When the physical cross-linking by the entanglement of the branched chains and the chemical cross-linking by the above-mentioned cross-linking agent are used in combination, a soft gel having appropriate hardness can be obtained, so that both durability and fixability can be achieved.

反応性樹脂は、数平均分子量が1000〜20000のオリゴマーまたはポリマーであることが好ましい。反応性樹脂の数平均分子量が1000より小さいと、分岐鎖が短いために物理架橋による架橋点間距離が短くなり、定着時のワックスのしみだしが不十分となる。反応性樹脂の数平均分子量が20000より大きいと、生成重合体の分子量が高くなるため、低温定着性が低下する。   The reactive resin is preferably an oligomer or polymer having a number average molecular weight of 1000 to 20000. If the number average molecular weight of the reactive resin is less than 1000, the distance between cross-linking points due to physical cross-linking becomes short because the branched chain is short, and the oozing of the wax at the time of fixing becomes insufficient. When the number average molecular weight of the reactive resin is larger than 20000, the molecular weight of the produced polymer becomes high, so that the low-temperature fixability is lowered.

反応性樹脂としては、スチレン、スチレン誘導体、アクリル酸エステル類、メタクリル酸エステル類、アクリロニトリル、メタクリロニトリル、アクリルアミド等を単独で、または2種以上を重合して得られる重合体が好ましく用いられる。これらの中でも、ポリスチレンを主成分とする反応性樹脂であると、重合性単量体組成物とのなじみが良いため、トナー中での分散が良くなり好ましい。反応性樹脂の好ましい添加量としては、重合性単量体100質量部に対して2〜28質量部であり、より好ましくは5〜25質量部である。添加量が2質量部未満では、反応性樹脂の添加効果が十分でなく、一方、28質量部を超えると、生成樹脂の分子量が高くなり低温定着性が低下する。   As the reactive resin, styrene, a styrene derivative, acrylic acid esters, methacrylic acid esters, acrylonitrile, methacrylonitrile, acrylamide, etc. alone or a polymer obtained by polymerizing two or more kinds is preferably used. Among these, a reactive resin having polystyrene as a main component is preferable because it has good compatibility with the polymerizable monomer composition and thus improves dispersion in the toner. A preferable addition amount of the reactive resin is 2 to 28 parts by mass, more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the polymerizable monomer. If the addition amount is less than 2 parts by mass, the effect of addition of the reactive resin is not sufficient. On the other hand, if it exceeds 28 parts by mass, the molecular weight of the resulting resin increases and the low-temperature fixability decreases.

本発明の磁性トナーを製造する方法は、一般に上述の磁性粉体、重合性単量体、離型剤などのトナー組成物等を適宜加えて、ホモジナイザー、ボールミル、コロイドミル、超音波分散機等の分散機によって均一に溶解または分散させた重合性単量体系を、分散安定剤を含有する水系媒体中に懸濁する。このとき、高速撹拌機もしくは超音波分散機のような高速分散機を使用して一気に所望のトナー粒子のサイズとするほうが、得られるトナー粒子の粒径がシャープになる。重合開始剤添加の時期としては、重合性単量体中に他の添化剤を添加する時同時に加えても良いし、水系媒体中に懸濁する直前に混合しても良い。また、造粒直後、重合反応を開始する前に重合性単量体あるいは溶媒に溶解した重合開始剤を加えることもできる。   The method for producing the magnetic toner of the present invention generally includes a toner composition such as the above-mentioned magnetic powder, polymerizable monomer, mold release agent, etc., as appropriate, homogenizer, ball mill, colloid mill, ultrasonic disperser, etc. The polymerizable monomer system uniformly dissolved or dispersed by the disperser is suspended in an aqueous medium containing a dispersion stabilizer. At this time, the particle size of the obtained toner particles becomes sharper by using a high-speed disperser such as a high-speed stirrer or an ultrasonic disperser to obtain a desired toner particle size all at once. The polymerization initiator may be added at the same time as other additives are added to the polymerizable monomer, or may be mixed immediately before being suspended in the aqueous medium. Also, a polymerization initiator dissolved in a polymerizable monomer or solvent can be added immediately after granulation and before starting the polymerization reaction.

造粒後は、通常の撹拌機を用いて、粒子状態が維持され且つ粒子の浮遊・沈降が防止される程度の撹拌を行えばよい。   After granulation, stirring may be performed using a normal stirrer to such an extent that the particle state is maintained and the particles are prevented from floating and settling.

本発明の磁性トナーを製造する場合には、分散安定剤として公知の界面活性剤や有機分散剤・無機分散剤が使用できる。中でも無機分散剤は、有害な超微粉を生じがたく、その立体障害性により分散安定性を得ているので反応温度を変化させても安定性が崩れがたく、洗浄も容易でトナーに悪影響を与えがたいので、好ましく使用できる。こうした無機分散剤の例としては、燐酸カルシウム、燐酸マグネシウム、燐酸アルミニウム、燐酸亜鉛などのリン酸多価金属塩、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、メタ硅酸カルシウム、硫酸カルシウム、硫酸バリウム等の無機塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、シリカ、ベントナイト、アルミナ等の無機酸化物が挙げられる。   In the production of the magnetic toner of the present invention, a known surfactant, organic dispersant, or inorganic dispersant can be used as a dispersion stabilizer. In particular, inorganic dispersants do not easily generate harmful ultrafine powders, and because of their steric hindrance, dispersion stability is obtained, so stability does not collapse even when the reaction temperature is changed, and cleaning is easy and adversely affects the toner. Since it is difficult to give, it can be preferably used. Examples of such inorganic dispersants include polyvalent metal phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate and zinc phosphate, carbonates such as calcium carbonate and magnesium carbonate, calcium metasuccinate, calcium sulfate, barium sulfate and the like. And inorganic oxides such as calcium hydroxide, magnesium hydroxide, aluminum hydroxide, silica, bentonite and alumina.

これら無機分散剤を用いる場合には、そのまま使用してもよいが、より細かい粒子を得るため、水系媒体中にて該無機分散剤粒子を生成させて用いることができる。例えば、燐酸カルシウムの場合、高速撹拌下、燐酸ナトリウム水溶液と塩化カルシウム水溶液とを混合して、水不溶性の燐酸カルシウムを生成させることができ、より均一で細かな分散が可能となる。この時、同時に水溶性の塩化ナトリウム塩が副生するが、水系媒体中に水溶性塩が存在すると、重合性単量体の水への溶解が抑制されて、乳化重合による超微径トナーが発生しがたくなるので、より好都合である。重合反応終期に残存重合性単量体を除去するときには障害となることから、水系媒体を交換するか、イオン交換樹脂で脱塩したほうが良い。無機分散剤は、重合終了後酸あるいはアルカリで溶解して、ほぼ完全に取り除くことができる。   When these inorganic dispersants are used, they may be used as they are, but in order to obtain finer particles, the inorganic dispersant particles can be generated and used in an aqueous medium. For example, in the case of calcium phosphate, a sodium phosphate aqueous solution and a calcium chloride aqueous solution can be mixed with high-speed stirring to produce water-insoluble calcium phosphate, which enables more uniform and fine dispersion. At the same time, a water-soluble sodium chloride salt is produced as a by-product. However, if a water-soluble salt is present in the aqueous medium, dissolution of the polymerizable monomer in water is suppressed, and an ultrafine toner by emulsion polymerization is produced. It is more convenient because it is less likely to occur. When removing the residual polymerizable monomer at the end of the polymerization reaction, it becomes an obstacle, so it is better to replace the aqueous medium or desalinate with an ion exchange resin. The inorganic dispersant can be almost completely removed by dissolving with an acid or alkali after completion of the polymerization.

また、これらの無機分散剤は、重合性単量体100質量部に対して、0.2乃至20質量部を単独で使用することが望ましいが、超微粒子を発生しがたいもののトナーの微粒化はやや苦手であるので、0.001乃至0.1質量部の界面活性剤を併用しても良い。   These inorganic dispersants are desirably used alone in an amount of 0.2 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer. Since it is slightly weak, 0.001 to 0.1 parts by mass of a surfactant may be used in combination.

界面活性剤としては、例えばドデシルベンゼン硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸カリウムなどが挙げられる。   Examples of the surfactant include sodium dodecylbenzene sulfate, sodium tetradecyl sulfate, sodium pentadecyl sulfate, sodium octyl sulfate, sodium oleate, sodium laurate, sodium stearate, potassium stearate and the like.

重合温度は40℃以上、一般には50乃至90℃の温度に設定して重合を行う。この温度範囲で重合を行うと、内部に封じられるべき離経済やワックスの類が、相分離により析出してないようかがより完全となる。残存する重合性単量体を消費するために、重合反応終期ならば、反応温度を90乃至150℃にまで上げることは可能である。   The polymerization is carried out at a polymerization temperature of 40 ° C. or higher, generally 50 to 90 ° C. When the polymerization is carried out in this temperature range, it becomes more complete whether the separation economy to be sealed inside or the kind of wax does not precipitate due to phase separation. In order to consume the remaining polymerizable monomer, it is possible to raise the reaction temperature to 90 to 150 ° C. at the end of the polymerization reaction.

重合トナー粒子は重合反応後、公知の方法によって濾過、洗浄、乾燥を行ない、必要により無機微粉体を混合し表面に付着させることで、本発明の磁性トナーを得ることができる。また、製造工程に分級工程を入れ、粗粉や微分をカットすることも可能である。   After the polymerization reaction, the polymerized toner particles are filtered, washed, and dried by a known method, and if necessary, inorganic fine powder is mixed and adhered to the surface to obtain the magnetic toner of the present invention. Moreover, it is also possible to put a classification process in the manufacturing process and cut coarse powder and differentiation.

本発明のトナー粒子には、流動性向上剤が外添されていることが画質向上のために好ましい。   In order to improve the image quality, it is preferable that a fluidity improver is externally added to the toner particles of the present invention.

流動性向上剤としては、ケイ酸微粉体、酸化チタン、酸化アルミニウムなどの無機微粉体が好ましい。該無機微粉体は、シランカップリング剤、シリコーンオイル又はそれらの混合物の如き疎水化剤で疎水化されていることが好ましい。   As the fluidity improver, inorganic fine powders such as silicate fine powder, titanium oxide, and aluminum oxide are preferable. The inorganic fine powder is preferably hydrophobized with a hydrophobizing agent such as a silane coupling agent, silicone oil or a mixture thereof.

次に、本発明のトナーを好適に用いることの出来る画像形成装置の一例を図に沿って具体的に説明する。   Next, an example of an image forming apparatus that can suitably use the toner of the present invention will be specifically described with reference to the drawings.

図2において、100は感光ドラムで、その周囲に一次帯電ローラー117、現像器140、転写帯電ローラー114、クリーナ116、レジスタローラー124等が設けられている。そして感光体100は一次帯電ローラー117によって−700Vに帯電される。(印加電圧は交流電圧−2.0kVpp、直流電圧−700Vdc)そして、レーザー発生装置121によりレーザー光123を感光体100に照射することによって露光される。感光体100上の静電潜像は現像器140によって一成分磁性トナーで現像され、転写材を介して感光体に当接された転写ローラー114により転写材上へ転写される。トナー画像をのせた転写材は搬送ベルト125等により定着器126へ運ばれ転写材上に定着される。また、一部感光体上に残されたトナーはクリーニング手段116によりクリーニングされる。現像器140は、図2に示すように感光体100に近接してアルミニウム、ステンレス等非磁性金属で作られた円筒状のトナー担持体102(以下現像スリーブと称す)が配設され、感光体100と現像スリーブ102との間隙は図示されないスリーブ/感光体間隙保持部材等により約230μmに維持されている。現像スリーブ内にはマグネットローラー104が現像スリーブ102と同心的に固定、配設されている。但し現像スリーブ102は回転可能である。マグネットローラー104には複数の磁極が具備されており、S1は現像、N1はトナーコート量規制、S2はトナーの取り込み/搬送、N2はトナーの吹き出し防止に影響している。現像スリーブ102に付着して搬送される磁性トナー量を規制する部材として、弾性ブレード103が配設され弾性ブレード103の現像スリーブ102に対する当接圧により現像領域に搬送されるトナー量が制御される。現像領域では、感光体100と現像スリーブ102との間に直流及び交流の現像バイアスが印加され、現像スリーブ上トナーは静電潜像に応じて感光体100上に飛翔し可視像となる。   In FIG. 2, reference numeral 100 denotes a photosensitive drum, around which a primary charging roller 117, a developing device 140, a transfer charging roller 114, a cleaner 116, a register roller 124, and the like are provided. The photoreceptor 100 is charged to −700 V by the primary charging roller 117. (Applied voltage is AC voltage -2.0 kVpp, DC voltage -700 Vdc) Then, exposure is performed by irradiating the photoconductor 100 with laser light 123 by the laser generator 121. The electrostatic latent image on the photoconductor 100 is developed with a one-component magnetic toner by the developing device 140 and transferred onto the transfer material by the transfer roller 114 in contact with the photoconductor via the transfer material. The transfer material on which the toner image is placed is conveyed to the fixing device 126 by the conveying belt 125 or the like and fixed on the transfer material. In addition, toner remaining on a part of the photoconductor is cleaned by the cleaning unit 116. As shown in FIG. 2, the developing device 140 is provided with a cylindrical toner carrier 102 (hereinafter referred to as a developing sleeve) made of a nonmagnetic metal such as aluminum or stainless steel in the vicinity of the photosensitive member 100. The gap between 100 and the developing sleeve 102 is maintained at about 230 μm by a sleeve / photoreceptor gap holding member (not shown). A magnet roller 104 is fixed and arranged concentrically with the developing sleeve 102 in the developing sleeve. However, the developing sleeve 102 is rotatable. The magnet roller 104 is provided with a plurality of magnetic poles, S1 is developing, N1 is the toner coating amount regulation, S2 is toner intake / conveyance, and N2 is the toner blowing prevention. An elastic blade 103 is provided as a member for regulating the amount of magnetic toner that adheres to the developing sleeve 102 and is conveyed, and the amount of toner conveyed to the developing region is controlled by the contact pressure of the elastic blade 103 against the developing sleeve 102. . In the developing region, a DC and AC developing bias is applied between the photoconductor 100 and the developing sleeve 102, and the toner on the developing sleeve flies onto the photoconductor 100 in accordance with the electrostatic latent image and becomes a visible image.

本発明の磁性トナーの慣性半径Rwと絶対分子量Mw、THF不溶分の含有量は、以下のように測定した。   The inertial radius Rw, absolute molecular weight Mw, and THF-insoluble content of the magnetic toner of the present invention were measured as follows.

(1)SEC−MALLS測定
トナー0.03gをo−ジクロロベンゼン10mlに分散し溶解後、135℃で24時間振投機で振投し、0.2μmフィルターで濾過し、その濾液を試料として用いる。
(1) SEC-MALLS measurement After 0.03 g of toner is dispersed in 10 ml of o-dichlorobenzene and dissolved, it is shaken with a shaker at 135 ° C. for 24 hours, filtered with a 0.2 μm filter, and the filtrate is used as a sample.

[分析条件]
分離カラム:Shodex(TSK GMHHR−H HT20)×2
カラム温度:135℃
移動相溶媒:o−ジクロロベンゼン
移動相流速:1.0ml/min.
試料濃度 :約0.3%
注入量 :300μl
検出器1 :多角度光散乱検出器 Wyatt DAWN EOS
検出器2 :示差屈折率検出器 Shodex RI−71
[Analysis conditions]
Separation column: Shodex (TSK GMHHR-H HT20) × 2
Column temperature: 135 ° C
Mobile phase solvent: o-dichlorobenzene mobile phase flow rate: 1.0 ml / min.
Sample concentration: about 0.3%
Injection volume: 300 μl
Detector 1: Multi-angle light scattering detector Wyatt DAWN EOS
Detector 2: Differential refractive index detector Shodex RI-71

[測定理論]
(LS)=(dn/dc)2×C×Mw×KLS (1)
(LS);検出器の測定電圧値(v)
(dn/dc);試料1gあたりの屈折率の増分(ml/g)
C ;濃度(g/ml)
LS ;測定電圧と散乱強度(還元レイリー比)の係数(装置定数)
[Measurement theory]
(LS) = (dn / dc) 2 × C × Mw × KLS (1)
(LS); Measurement voltage value of the detector (v)
(Dn / dc): Increment of refractive index per 1 g of sample (ml / g)
C: concentration (g / ml)
K LS ; Coefficient of measurement voltage and scattering intensity (reduction Rayleigh ratio) (equipment constant)

(dn/dc)は本発明はポリスチレンの文献値から0.068ml/gとした。   In the present invention, (dn / dc) was set to 0.068 ml / g from the literature value of polystyrene.

SEC−MALLSでは、SECカラムの分子篩いにより分子サイズで分離され、Mw(絶対分子量)とC(濃度)が刻々変化し溶出されてくるため別途濃度検出器をMALLSと組み合わせ測定する必要がある。その信号強度を濃度Cに換算し分子量Mwを求める。本発明では、濃度検出器として示差屈折率検出器(RI)を使用し、RI検出器の信号強度(RI)を濃度Cに換算し用いる。
(RI)=(dn/dc)×C×KRI (2)
KRI;測定電圧と屈折率の係数(RI定数 ポリスチレン標準にて校正)
In SEC-MALLS, the molecular size is separated by the molecular sieve of the SEC column, and Mw (absolute molecular weight) and C (concentration) are changed and eluted, so it is necessary to separately measure the concentration detector in combination with MALLS. The signal intensity is converted into a concentration C to determine the molecular weight Mw. In the present invention, a differential refractive index detector (RI) is used as a concentration detector, and the signal intensity (RI) of the RI detector is converted into a concentration C and used.
(RI) = (dn / dc) × C × KRI (2)
KRI: Coefficient of measurement voltage and refractive index (RI constant, calibrated with polystyrene standard)

分子サイズ(慣性半径)はDebye Plotにより算出した。   The molecular size (radius of inertia) was calculated by Debye Plot.

(2)THF不溶分量
ポリエステル樹脂又はトナーを秤量し、円筒ろ紙(例えばNo.86Rサイズ28×10mm 東洋ろ紙社製)に入れてソックスレー抽出器にかける。溶媒としてTHF200mlを用いて、16時間抽出する。このとき、THFの抽出サイクルが約4〜5分に1回になるような還流速度で抽出を行う。抽出終了後、円筒ろ紙を取り出し、秤量することによってポリエステル樹脂又はトナーの不溶分を得る。
(2) Amount of THF-insoluble matter A polyester resin or toner is weighed, put into a cylindrical filter paper (for example, No. 86R size 28 × 10 mm, manufactured by Toyo Filter Paper Co., Ltd.), and applied to a Soxhlet extractor. Extraction is performed for 16 hours using 200 ml of THF as a solvent. At this time, extraction is performed at a reflux rate such that the extraction cycle of THF is about once every 4 to 5 minutes. After completion of the extraction, the cylindrical filter paper is taken out and weighed to obtain an insoluble content of the polyester resin or toner.

トナーが樹脂成分以外の磁性体又は顔料の如き、THF不溶分を含有している場合、円筒ろ紙に入れたトナーの質量をW1gとし、抽出されたTHF可溶樹脂成分の質量をW2gとし、トナーに含まれている樹脂成分以外のTHF不溶成分の質量をW3gとすると、トナー中の樹脂成分のTHF不溶分の含有量は下記式から求められる。
THF不溶分(質量%)=〔(W1−(W3+W2))/(W1−W3)〕×100
When the toner contains a THF-insoluble component such as a magnetic substance or pigment other than the resin component, the weight of the toner put in the cylindrical filter paper is W1 g, and the extracted THF-soluble resin component is W2 g. When the mass of the THF-insoluble component other than the resin component contained in the toner is W3 g, the content of the THF-insoluble component of the resin component in the toner can be obtained from the following formula.
THF insoluble matter (mass%) = [(W1- (W3 + W2)) / (W1-W3)] × 100

以下、本発明を製造例及び実施例により具体的に説明するが、これは本発明をなんら限定するものではない。尚、以下の配合における部数は全て質量部である。   Hereinafter, the present invention will be specifically described with reference to production examples and examples, but this does not limit the present invention in any way. In addition, all the parts in the following mixing | blending are a mass part.

(疎水性磁性酸化鉄の製造例1)
硫酸第一鉄水溶液中に、鉄イオンに対して1.0〜1.1当量の苛性ソーダ溶液を混合し、水酸化第一鉄を含む水溶液を調製した。該水溶液をpH8に維持しながら、空気を吹き込み、80〜90℃で酸化反応を行い、種晶を生成させるスラリー液を調製した。次いで、このスラリー液に当初のアルカリ量(苛性ソーダのナトリウム成分)に対し0.9〜1.2当量となるよう硫酸第一鉄水溶液を加えた後、スラリー液をpH=8に維持して、空気を吹込みながら酸化反応を進め、酸化反応の終期にpHを約6に調整し、酸化反応を終了した。生成した酸化鉄粒子を洗浄、濾過して一旦取り出し、乾燥せずに別の水中に再分散させた後、再分散液のpHを調整し、十分撹拌しながらn−ヘキシルトリメトキシシランカップリング剤を磁性酸化鉄100部に対し2部添加し、十分撹拌した。生成した疎水性酸化鉄粒子を常法により洗浄、濾過、乾燥し、次いで凝集している粒子を解砕処理し、平均粒径が0.19μmの疎水性磁性酸化鉄1を得た。
(Production Example 1 of hydrophobic magnetic iron oxide)
An aqueous solution containing ferrous hydroxide was prepared by mixing 1.0 to 1.1 equivalents of a caustic soda solution with respect to iron ions in an aqueous ferrous sulfate solution. While maintaining the aqueous solution at pH 8, air was blown in, and an oxidation reaction was performed at 80 to 90 ° C. to prepare a slurry liquid for generating seed crystals. Then, after adding ferrous sulfate aqueous solution so that it becomes 0.9 to 1.2 equivalent to the initial alkali amount (sodium component of caustic soda) to this slurry liquid, the slurry liquid is maintained at pH = 8, The oxidation reaction was advanced while blowing air, and the pH was adjusted to about 6 at the end of the oxidation reaction to complete the oxidation reaction. The produced iron oxide particles are washed, filtered, and once taken out, re-dispersed in another water without drying, the pH of the re-dispersed liquid is adjusted, and the n-hexyltrimethoxysilane coupling agent is sufficiently stirred. Was added to 100 parts of magnetic iron oxide and stirred sufficiently. The produced hydrophobic iron oxide particles were washed, filtered and dried by a conventional method, and then the aggregated particles were crushed to obtain hydrophobic magnetic iron oxide 1 having an average particle size of 0.19 μm.

(疎水性磁性粉体の製造例2)
疎水性磁性粉体の製造例1と同様に、酸化反応を進め、酸化反応終了後に生成した磁性粉体を洗浄、濾過、乾燥し、凝集している粒子を解砕し、平均粒径が0.19μmの磁性粉体を得た。
(Production Example 2 of Hydrophobic Magnetic Powder)
In the same manner as in Production Example 1 of hydrophobic magnetic powder, the oxidation reaction proceeds, the magnetic powder produced after the oxidation reaction is washed, filtered and dried, and the aggregated particles are crushed, and the average particle size is 0. A 19 μm magnetic powder was obtained.

上記磁性粉体を、別の水系媒体中に再分散させた後、再分散液のpHを約6に調整し、撹拌しながらn−ヘキシルトリメトキシシランカップリング剤を磁性粉体100部に対し2.0部添加し、カップリング処理を行った。得られた磁性粒子スラリーを常法により洗浄、濾過、乾燥し、次いで凝集している粒子を解砕処理して、平均粒径が0.19μmの疎水性磁性粉体2を得た。   After re-dispersing the magnetic powder in another aqueous medium, the pH of the re-dispersed liquid is adjusted to about 6, and the n-hexyltrimethoxysilane coupling agent is added to 100 parts of the magnetic powder while stirring. 2.0 parts were added and the coupling process was performed. The obtained magnetic particle slurry was washed, filtered and dried by a conventional method, and then the aggregated particles were pulverized to obtain hydrophobic magnetic powder 2 having an average particle diameter of 0.19 μm.

<磁性トナー1の製造>
イオン交換水720部に0.1M−Na3PO4水溶液450部を投入し60℃に加温した後、1.0M−CaCl2水溶液67.7部を添加して分散安定剤を含む水系媒体を得た。
<Manufacture of magnetic toner 1>
An aqueous medium containing a dispersion stabilizer by adding 450 parts of a 0.1M Na 3 PO 4 aqueous solution to 720 parts of ion-exchanged water and heating to 60 ° C., and then adding 67.7 parts of a 1.0 M CaCl 2 aqueous solution. Got.

スチレン 79部
n−ブチルアクリレート 21部
ジビニルベンゼン 0.5部
反応性樹脂(スチレンマクロモノマー、Mn=5700) 10部
飽和ポリエステル樹脂(プロピレンオキサイド変性ビスフェノールAとイソフタル酸との重縮合物、酸価=8mgKOH/g、Tg=65℃、Mn=6000、Mw=10000) 6部
負荷電制御剤(ジアルキルサリチル酸アルミ錯化合物) 1部
疎水性磁性酸化鉄1 90部
上記処方をアトライター(三井三池化工機(株))を用いて均一に分散混合した。
Styrene 79 parts n-Butyl acrylate 21 parts Divinylbenzene 0.5 part Reactive resin (styrene macromonomer, Mn = 5700) 10 parts Saturated polyester resin (polycondensate of propylene oxide-modified bisphenol A and isophthalic acid, acid value = 8 mg KOH / g, Tg = 65 ° C., Mn = 6000, Mw = 10000) 6 parts Negative charge control agent (dialkyl salicylic acid aluminum complex compound) 1 part Hydrophobic magnetic iron oxide 1 90 parts Atlite (Mitsui Miike Chemical) And dispersed and mixed uniformly.

この単量体組成物を60℃に加温し、そこにスチレン変性パラフィンワックス(DSCにおける吸熱ピークの極大値74℃)10部を添加混合溶解し、これに重合開始剤t−ブチル−オキシ2−エチルヘキサノエート4部を溶解して重合性単量体組成物とした。   This monomer composition was heated to 60 ° C., and 10 parts of styrene-modified paraffin wax (maximum endothermic peak in DSC 74 ° C.) was added and dissolved therein, and the polymerization initiator t-butyl-oxy 2 was added thereto. -A polymerizable monomer composition was prepared by dissolving 4 parts of ethylhexanoate.

前記水系媒体中に上記重合性単量体組成物を投入し、60℃,N2雰囲気下においてTK式ホモミキサー(特殊機化工業(株))にて10,000rpmで15分間撹拌し、造粒した。その後パドル撹拌翼で撹拌しつつ、80℃で8時間反応させた。反応終了後、懸濁液を冷却し、塩酸を加えて分散剤を溶解し、分散剤を溶解し、濾過、水洗、乾燥してトナー粒子1を得た。 The polymerizable monomer composition was put into the aqueous medium, and stirred at 10,000 rpm for 15 minutes in a TK homomixer (Special Machine Industries Co., Ltd.) at 60 ° C. in an N 2 atmosphere. Grained. Thereafter, the mixture was reacted at 80 ° C. for 8 hours while stirring with a paddle stirring blade. After completion of the reaction, the suspension was cooled, hydrochloric acid was added to dissolve the dispersant, the dispersant was dissolved, filtered, washed with water, and dried to obtain toner particles 1.

このトナー粒子100部と、一次粒径12nmのシリカにヘキサメチルジシラザンで処理をした後シリコーンオイルで処理し、処理後のBET値が120m2/gの疎水性シリカ微粉体1.0部をヘンシェルミキサー(三井三池化工機(株))を用い混合し、磁性トナー1を調製した。磁性トナー1の物性を表1に示す。 100 parts of the toner particles and silica having a primary particle diameter of 12 nm are treated with hexamethyldisilazane and then treated with silicone oil, and 1.0 part of hydrophobic silica fine powder having a BET value of 120 m 2 / g after the treatment is obtained. Magnetic toner 1 was prepared by mixing using a Henschel mixer (Mitsui Miike Chemical Co., Ltd.). Table 1 shows the physical properties of the magnetic toner 1.

<磁性トナー2の製造>
反応性樹脂を添加しないこと以外は磁性トナー1の製造と同様にして、磁性トナー2を得た。磁性トナー2の物性を表1に示す。
<Manufacture of magnetic toner 2>
A magnetic toner 2 was obtained in the same manner as in the production of the magnetic toner 1 except that no reactive resin was added. Table 1 shows the physical properties of the magnetic toner 2.

<磁性トナー3の製造>
反応性樹脂の量を25部としたこと以外は磁性トナー1の製造と同様にして、磁性トナー3を得た。磁性トナー3の物性を表1に示す。
<Manufacture of magnetic toner 3>
A magnetic toner 3 was obtained in the same manner as in the production of the magnetic toner 1 except that the amount of the reactive resin was 25 parts. Table 1 shows the physical properties of the magnetic toner 3.

<磁性トナー4の製造>
α−メチルスチレンダイマー0.5部を、単量体組成物中にさらに添加したこと以外は磁性トナー1の製造と同様にして、磁性トナー4を得た。磁性トナー4の物性を表1に示す。
<Manufacture of magnetic toner 4>
Magnetic toner 4 was obtained in the same manner as in the production of magnetic toner 1 except that 0.5 part of α-methylstyrene dimer was further added to the monomer composition. Table 1 shows the physical properties of the magnetic toner 4.

<磁性トナー5の製造>
疎水性磁性酸化鉄1を疎水性磁性酸化鉄2に変えたこと以外は磁性トナー1の製造と同様にして、磁性トナー5を得た。磁性トナー5の物性を表1に示す。
<Manufacture of magnetic toner 5>
A magnetic toner 5 was obtained in the same manner as in the production of the magnetic toner 1 except that the hydrophobic magnetic iron oxide 1 was changed to the hydrophobic magnetic iron oxide 2. Table 1 shows the physical properties of the magnetic toner 5.

<磁性トナー6の製造>
スチレン変性パラフィンワックスの量を40部としたこと以外は磁性トナー1の製造1と同様にして、磁性トナー6を得た。磁性トナー6の物性を表1に示す。
<Manufacture of magnetic toner 6>
A magnetic toner 6 was obtained in the same manner as in Production 1 of the magnetic toner 1 except that the amount of styrene-modified paraffin wax was 40 parts. Table 1 shows the physical properties of the magnetic toner 6.

<磁性トナー7の製造>
スチレン変性パラフィンワックスをポリエチレンワックス(DSCにおける吸熱ピークの極大値135℃)に変えたこと以外は磁性トナー1の製造と同様にして、磁性トナー7を得た。磁性トナー7の物性を表1に示す。
<Manufacture of magnetic toner 7>
A magnetic toner 7 was obtained in the same manner as in the production of the magnetic toner 1 except that the styrene-modified paraffin wax was changed to polyethylene wax (maximum value of endothermic peak in DSC: 135 ° C.). Table 1 shows the physical properties of the magnetic toner 7.

<磁性トナー8の製造>
反応性樹脂の量を30部としたこと以外は磁性トナー1の製造と同様にして、磁性トナー8を得た。磁性トナー8の物性を表1に示す。
<Manufacture of magnetic toner 8>
A magnetic toner 8 was obtained in the same manner as in the production of the magnetic toner 1 except that the amount of the reactive resin was 30 parts. Table 1 shows the physical properties of the magnetic toner 8.

<磁性トナー9の製造>
反応性樹脂の量を0.3部とし、t−ドデシルメルカプタン1.0部をさらに添加したこと以外は磁性トナー1の製造と同様にして、磁性トナー9を得た。磁性トナー9の物性を表1に示す。
<Manufacture of magnetic toner 9>
A magnetic toner 9 was obtained in the same manner as in the production of the magnetic toner 1 except that the amount of the reactive resin was 0.3 part and 1.0 part of t-dodecyl mercaptan was further added. Table 1 shows the physical properties of the magnetic toner 9.

<磁性トナー10の製造>
イオン交換水720部に0.1M−Na3PO4水溶液450部を投入し60℃に加温した後、1.0M−CaCl2水溶液67.7部を添加して分散安定剤を含む水系媒体を得た。
<Manufacture of magnetic toner 10>
An aqueous medium containing a dispersion stabilizer by adding 450 parts of a 0.1M Na 3 PO 4 aqueous solution to 720 parts of ion-exchanged water and heating to 60 ° C., and then adding 67.7 parts of a 1.0 M CaCl 2 aqueous solution. Got.

スチレン 79部
n−ブチルアクリレート 21部
ジビニルベンゼン 0.5部
反応性樹脂(スチレンマクロモノマー、Mn=5700) 10部
飽和ポリエステル樹脂(プロピレンオキサイド変性ビスフェノールAとイソフタル酸との重縮合物、酸価=8mgKOH/g、Tg=65℃、Mn=6000、Mw=10000) 6部
疎水性磁性酸化鉄1 90部
上記処方をアトライター(三井三池化工機(株))を用いて均一に分散混合した。
Styrene 79 parts n-Butyl acrylate 21 parts Divinylbenzene 0.5 part Reactive resin (styrene macromonomer, Mn = 5700) 10 parts Saturated polyester resin (polycondensate of propylene oxide-modified bisphenol A and isophthalic acid, acid value = 8 parts KOH / g, Tg = 65 ° C., Mn = 6000, Mw = 10000) 6 parts Hydrophobic magnetic iron oxide 1 90 parts The above formulation was uniformly dispersed and mixed using an attritor (Mitsui Miike Chemical Co., Ltd.).

この単量体組成物を60℃に加温し、これに重合開始剤t−ブチル−オキシ2−エチルヘキサノエート4部を溶解して重合性単量体組成物とした。   This monomer composition was heated to 60 ° C., and 4 parts of a polymerization initiator t-butyl-oxy-2-ethylhexanoate was dissolved therein to obtain a polymerizable monomer composition.

前記水系媒体中に上記重合性単量体系を投入し、60℃,N2雰囲気下においてTK式ホモミキサー(特殊機化工業(株))にて10,000rpmで15分間撹拌し、造粒した。その後パドル撹拌翼で撹拌しつつ、80℃で8時間反応させた。反応終了後、懸濁液を冷却し、塩酸を加えて分散剤を溶解し、分散剤を溶解し、濾過、水洗、乾燥して酸化鉄含有樹脂粒子を得た。 The polymerizable monomer system was charged into the aqueous medium and granulated by stirring at 10,000 rpm for 15 minutes in a TK homomixer (Special Machine Industries Co., Ltd.) at 60 ° C. in an N 2 atmosphere. . Thereafter, the mixture was reacted at 80 ° C. for 8 hours while stirring with a paddle stirring blade. After completion of the reaction, the suspension was cooled, hydrochloric acid was added to dissolve the dispersant, the dispersant was dissolved, filtered, washed with water, and dried to obtain iron oxide-containing resin particles.

次に、
上記酸化鉄含有樹脂粒子 100部
負荷電制御剤(モノアゾ染料系のFe化合物) 1部
スチレン変性パラフィンワックス 3部
(DSCにおける吸熱ピークの極大値74℃)
上記材料をブレンダーにて混合し、110℃に加熱した2軸エクストルーダーで溶融混練し、冷却した混練物をハンマーミルで粗粉砕し、粗粉砕物をジェットミルで微粉砕後、得られた微粉砕物を風力分級して重量平均粒径7.9μmのトナー粒子を得た。このトナー粒子100部に対して磁性トナー1の製造で使用したシリカ1.0部を加え、ヘンシェルミキサーを用い混合し磁性トナー10を調製した。磁性トナー10の物性を表1に示す。
next,
100 parts of the iron oxide-containing resin particles negative charge control agent (monoazo dye-based Fe compound) 1 part styrene-modified paraffin wax 3 parts (maximum endothermic peak at DSC of 74 ° C.)
The above materials are mixed in a blender, melt kneaded with a biaxial extruder heated to 110 ° C., the cooled kneaded product is coarsely pulverized with a hammer mill, and the coarsely pulverized product is finely pulverized with a jet mill. The pulverized product was classified by air to obtain toner particles having a weight average particle diameter of 7.9 μm. To 100 parts of the toner particles, 1.0 part of silica used in the production of the magnetic toner 1 was added and mixed using a Henschel mixer to prepare a magnetic toner 10. Table 1 shows the physical properties of the magnetic toner 10.

Figure 0004434967
Figure 0004434967

<実施例1>
画像形成装置として、LBP−1760を改造し、概ね図2に示される構造のものを用いた。
<Example 1>
As an image forming apparatus, LBP-1760 was remodeled, and an apparatus having a structure generally shown in FIG. 2 was used.

静電荷像担持体(感光体ドラム100)の電位は、暗部電位Vd=−650V、明部電位VL=−130Vとした。また、静電荷像担持体100と現像スリーブ102との間隙は270μmとし、トナー担持体として下記の構成の層厚約7μm、JIS中心線平均粗さ(RA)1.0μmの樹脂層を、表面をブラストした直径16φのアルミニウム円筒上に形成した現像スリーブを使用し、現像磁極85mT(850ガウス)、トナー規制部材として厚み1.0mm、自由長0.5mmのウレタン製ブレードを39.2N/m(40g/cm)の線圧で当接させた。
フェノール樹脂 100部
グラファイト(粒径約7μm) 90部
カーボンブラック 10部
The potential of the electrostatic charge image carrier (photosensitive drum 100) was set to dark portion potential V d = −650V and light portion potential V L = −130V. Further, the gap between the electrostatic charge image carrier 100 and the developing sleeve 102 is 270 μm, and a resin layer having a layer thickness of about 7 μm and a JIS centerline average roughness (RA) of 1.0 μm as a toner carrier is formed on the surface. A developing sleeve formed on an aluminum cylinder with a diameter of 16φ blasted with a developing magnetic pole of 85 mT (850 gauss), a toner regulating member having a thickness of 1.0 mm and a free length of 0.5 mm urethane blade 39.2 N / m The contact was made at a linear pressure of (40 g / cm).
Phenol resin 100 parts Graphite (particle size approx. 7 μm) 90 parts Carbon black 10 parts

次いで、現像バイアスとして直流バイアス成分Vdc=−450V、重畳する交流バイアス成分Vp-p=1600V、F=2200Hzを用いた。また、現像スリーブの周速は感光体周速(94mm/sec)に対して順方向に110%のスピード(103mm/sec)とした。また、転写バイアスは直流1.5kVとした。 Next, a DC bias component V dc = −450 V, an overlapping AC bias component V pp = 1600 V, and F = 2200 Hz were used as the developing bias. The peripheral speed of the developing sleeve was 110% (103 mm / sec) in the forward direction with respect to the peripheral speed of the photosensitive member (94 mm / sec). The transfer bias was set to 1.5 kV DC.

定着方法としてはLBP−1760のオイル塗布機能のない、フィルムを介してヒーターにより加熱加圧定着する方式の定着装置を用いた。この時加圧ローラーはフッ素系樹脂の表面層を有するものを使用し、ローラーの直径は30mmであった。また、定着温度は180℃、ニップ幅を7mmに設定した(定着性の評価については後述)。   As a fixing method, there was used a fixing device of LBP-1760 which does not have an oil application function and which is fixed by heating and pressing with a heater through a film. At this time, a pressure roller having a fluororesin surface layer was used, and the diameter of the roller was 30 mm. The fixing temperature was set to 180 ° C., and the nip width was set to 7 mm (the evaluation of the fixing property will be described later).

磁性トナー1をカートリッジに100g充填し、常温常湿環境下(23℃,60%RH)及び低温低湿環境下(15℃,10%RH)において、印字率2%の横線のみからなる画像パターンで1000枚の画出し試験を行った。なお、転写材としては90g/m2の紙を使用した。 100 g of magnetic toner 1 is filled in a cartridge, and the image pattern consists of only a horizontal line with a printing rate of 2% in a normal temperature and humidity environment (23 ° C., 60% RH) and a low temperature and low humidity environment (15 ° C., 10% RH). An image printing test of 1000 sheets was performed. Note that 90 g / m 2 of paper was used as the transfer material.

その結果、トナー1は初期、及び、1000枚の画出し後において高い転写性を示し、ゴーストも無く、非画像部へのカブリのない良好な画像が得られた。また、低温定着性、耐オフセット性にも優れ、幅広い定着温度幅を取ることができた。常温常湿環境下での評価結果を表2に、高温高湿環境下での評価結果を表3に示す。   As a result, the toner 1 showed high transferability in the initial stage and after the image was printed on 1000 sheets, and there was no ghost and a good image without fogging on the non-image area was obtained. In addition, it was excellent in low-temperature fixability and offset resistance, and was able to take a wide fixing temperature range. Table 2 shows the evaluation results under a normal temperature and humidity environment, and Table 3 shows the evaluation results under a high temperature and high humidity environment.

本発明の実施例、ならびに、比較例中に記載の評価項目とその判断基準について述べる。   The evaluation items described in the examples of the present invention and the comparative examples and the judgment criteria thereof will be described.

(定着性)
LBP−1760の改造機を用い、常温常湿環境下において定着試験を行った。このときの画像面積比率は25%であり、単位面積当たりのトナー載り量は、0.7mg/cm2に設定した。定着開始温度の測定は、定着器の設定温度を130〜230℃迄の温度範囲で5℃おきに温度調節して、各々の温度で定着画像を出力し、得られた定着画像を4.9kPa(50g/cm2)の荷重をかけたシルボン紙で摺擦し、摺擦前後の濃度低下率が10%以下となる定着温度を定着開始温度とした。また、オフセット温度については画像上及び紙裏の汚れを目視で評価した。130℃から設定温度を上げていき、一層オフセットが発生しなくなる直前の温度を一層オフセット温度、さらに温度を上げていき、高温オフセットの発生した温度を高温オフセット温度とした。
(Fixability)
Using a modified LBP-1760 machine, a fixing test was performed in a normal temperature and humidity environment. The image area ratio at this time was 25%, and the applied toner amount per unit area was set to 0.7 mg / cm 2 . The fixing start temperature is measured by adjusting the set temperature of the fixing device every 5 ° C. within a temperature range of 130 to 230 ° C., outputting a fixed image at each temperature, and obtaining the fixed image at 4.9 kPa. The fixing temperature at which the density reduction rate before and after the rubbing was 10% or less was determined as the fixing start temperature by rubbing with a Silbon paper to which a load of (50 g / cm 2 ) was applied. As for the offset temperature, the stain on the image and the back of the paper was visually evaluated. The set temperature was increased from 130 ° C., the temperature immediately before the occurrence of further offset was further increased by the offset temperature, and the temperature was further increased, and the temperature at which the high temperature offset occurred was defined as the high temperature offset temperature.

(画像濃度)
画像濃度はベタ画像部を形成し、このベタ画像をマクベス反射濃度計(マクベス社製)にて測定を行った。
(Image density)
The image density formed a solid image portion, and this solid image was measured with a Macbeth reflection densitometer (manufactured by Macbeth).

(転写効率)
転写効率は、ベタ黒画像転写後の感光体上の転写残トナーをマイラーテープによりテーピングしてはぎ取り、紙上に貼ったもののマクベス濃度の値をC、転写後定着前のトナーの載った紙上にマイラーテープを貼ったもののマクベス濃度をD、未使用の紙上に貼ったマイラーテープのマクベス濃度をEとした時、近似的に以下の式で計算した。
(Transfer efficiency)
The transfer efficiency is determined by tapering the transfer residual toner on the photoconductor after the solid black image transfer with a Mylar tape and pasting it on the paper. The Macbeth density value is C, and the Mylar is applied on the paper with the toner after the fixing before the transfer. When the Macbeth concentration of the tape was affixed to D and the Macbeth concentration of the Mylar tape affixed on unused paper was assumed to be E, it was approximately calculated by the following formula.

Figure 0004434967
Figure 0004434967

上記の計算結果から得られた転写効率を以下の基準で判断した。
A:転写効率が96%以上。
B:転写効率が92%以上、96%未満。
C:転写効率が89%以上、92%未満。
D:転写効率が89%未満。
The transfer efficiency obtained from the above calculation results was judged according to the following criteria.
A: Transfer efficiency is 96% or more.
B: Transfer efficiency is 92% or more and less than 96%.
C: Transfer efficiency is 89% or more and less than 92%.
D: Transfer efficiency is less than 89%.

(カブリ)
カブリの測定は、東京電色社製のREFLECTMETER MODEL TC−6DSを使用して測定した。フィルターは、グリーンフィルターを用い、カブリは下記の式より算出した。
カブリ(反射率)(%)=標準紙上の反射率(%)−サンプル非画像部の反射率(%)
(Fog)
The fog was measured using a REFECTMETER MODEL TC-6DS manufactured by Tokyo Denshoku. The filter used was a green filter, and fog was calculated from the following formula.
Fog (reflectance) (%) = reflectance on standard paper (%) − reflectance of sample non-image area (%)

なお、カブリの判断基準は以下の通り。
A:非常に良好(1.5%未満)
B:良好(1.5%以上乃至2.5%未満)
C:普通(2.5%以上乃至4.0%未満)
D:悪い(4%以上)
The criteria for fogging are as follows.
A: Very good (less than 1.5%)
B: Good (1.5% or more to less than 2.5%)
C: Normal (2.5% or more to less than 4.0%)
D: Poor (4% or more)

(ゴースト)
ゴーストの判断基準は、図1に示す画像を出力し、以下の基準により目視で判断したものである。
A:ゴーストは発生していない。
B:軽微なゴーストが発生しているものの、良好な画像。
C:ゴーストは発生しているものの、実用的には問題の無い画質。
D:ゴーストが悪く、実用上好ましくない画像。
(ghost)
The ghost criterion is that the image shown in FIG. 1 is output and visually judged according to the following criteria.
A: No ghost is generated.
B: Although a slight ghost is generated, a good image is obtained.
C: Although the ghost is generated, there is no problem in practical use.
D: Image with poor ghost and unpreferable for practical use.

参考例1、2実施例2乃至5
トナーとして、磁性トナー2〜7を使用し、実施例1と同様の条件で画出し試験、定着性評価及び耐久性評価を行った。その結果、初期の画像特性も問題なく、印字1000枚までいずれも大きな問題のない結果が得られた。常温常湿環境下での評価結果を表2に、高温高湿環境下での評価結果を表3に示す。
< Reference Examples 1 and 2 and Examples 2 to 5 >
Magnetic toners 2 to 7 were used as toners, and image printing tests, fixing evaluations and durability evaluations were performed under the same conditions as in Example 1. As a result, there were no problems in the initial image characteristics, and no problem was obtained in all of the printed sheets up to 1000 sheets. Table 2 shows the evaluation results under a normal temperature and humidity environment, and Table 3 shows the evaluation results under a high temperature and high humidity environment.

<比較例1〜3>
トナーとして、磁性トナー8〜10を使用し、実施例1と同様の条件で画出し試験、定着性評価及び耐久性評価を行った。その結果、耐久試験と共に転写効率の低下、ゴーストの悪化が生じた。また、磁性トナー9、10については、比較的高温領域においても一層オフセットが発生していた。常温常湿環境下での評価結果を表2に、高温高湿環境下での評価結果を表3に示す。
<Comparative Examples 1-3>
As the toner, magnetic toners 8 to 10 were used, and an image printing test, a fixability evaluation, and a durability evaluation were performed under the same conditions as in Example 1. As a result, the transfer efficiency decreased and the ghost deteriorated along with the durability test. Further, the magnetic toners 9 and 10 were further offset even in a relatively high temperature region. Table 2 shows the evaluation results under a normal temperature and humidity environment, and Table 3 shows the evaluation results under a high temperature and high humidity environment.

Figure 0004434967
Figure 0004434967

Figure 0004434967
Figure 0004434967

ゴーストの概念図である。It is a conceptual diagram of a ghost. 本発明の実施例に用いた画像形成装置の一例を示す概略図である。1 is a schematic diagram illustrating an example of an image forming apparatus used in an embodiment of the present invention.

符号の説明Explanation of symbols

100 感光体(像担持体、被帯電体)
102 現像スリーブ(磁性トナー担持体)
114 転写ローラー(転写部材)
116 クリーナー
117 帯電ローラー(接触帯電部材)
121 レーザービームスキャナー(潜像形成手段、露光装置)
124 給紙ローラ
125 搬送部材
126 定着装置
140 現像装置
141 撹拌部材
100 photoconductor (image carrier, charged body)
102 Developing sleeve (magnetic toner carrier)
114 Transfer roller (transfer member)
116 Cleaner 117 Charging roller (contact charging member)
121 Laser beam scanner (latent image forming means, exposure device)
124 Feed roller 125 Conveying member 126 Fixing device 140 Developing device 141 Stirring member

Claims (9)

少なくとも重合性単量体、磁性酸化鉄、及び離型剤を含有する重合性単量体組成物を重合することによって製造される重量平均粒径が3乃至10μmの磁性トナーであり、
該磁性トナーの平均円形度が0.970以上であり、
該磁性トナーのo−ジクロロベンゼン可溶分のサイズ排除クロマトグラフィ−オンライン−多角度光散乱(SEC−MALLS)測定における慣性半径Rwと絶対分子量Mwが下記式
0.25×10-4≦Rw/Mw≦4.0×10-4 (式1)
を満足することを特徴とする磁性トナー。
At least a polymerizable monomer, a magnetic toner having a weight average particle diameter of 3 to 10μm is prepared by polymerizing magnetic iron oxide, and a polymerizable monomer composition containing a release agent,
The average circularity of the magnetic toner is 0.970 or more,
The inertial radius Rw and absolute molecular weight Mw in the size exclusion chromatography-online-multi-angle light scattering (SEC-MALLS) measurement of the o-dichlorobenzene soluble matter of the magnetic toner are expressed by the following formulae.
0.25 × 10 −4 ≦ Rw / Mw ≦ 4.0 × 10 −4 (Formula 1)
A magnetic toner characterized by satisfying
該重合性単量体組成物中に、分子鎖末端に重合反応可能な不飽和二重結合を有するマクロモノマーを含有させることを特徴とする請求項1に記載の磁性トナー。 During the polymerizable monomer composition, the magnetic toner according to claim 1, characterized in Rukoto contain a macromonomer having a polymerizable reactive unsaturated double bond in the molecular chain ends. 該磁性トナーの樹脂成分のテトラヒドロフラン(THF)不溶分が5乃至70質量%であることを特徴とする請求項1または2に記載の磁性トナー。   The magnetic toner according to claim 1 or 2, wherein the resin component of the magnetic toner has an insoluble content of tetrahydrofuran (THF) of 5 to 70% by mass. 該磁性トナーのモード円形度が0.99以上であることを特徴とする請求項1乃至3のいずれかに記載の磁性トナー。   The magnetic toner according to claim 1, wherein the magnetic toner has a mode circularity of 0.99 or more. 該磁性トナーのX線光電子分光分析により測定される該磁性トナー粒子の表面に存在する炭素元素の存在量(A)に対する鉄元素の存在量(B)の比(B/A)が0.001未満であることを特徴とする請求項1乃至4のいずれかに記載の磁性トナー。   The ratio (B / A) of the abundance (B) of the iron element to the abundance (A) of the carbon element present on the surface of the magnetic toner particle as measured by X-ray photoelectron spectroscopy of the magnetic toner is 0.001. The magnetic toner according to claim 1, wherein the magnetic toner is less than or equal to 5. 該磁性トナーの投影面積相当径をC、透過型電子顕微鏡(TEM)を用いた該磁性トナーの断層面観察において、磁性粉体とトナー粒子表面との距離の最小値をDとしたとき、D/C≦0.02の関係を満たすトナーが50個数%以上であることを特徴とする請求項1乃至5のいずれかに記載の磁性トナー。   When the equivalent diameter of the projected area of the magnetic toner is C and the minimum distance between the magnetic powder and the toner particle surface is D in the tomographic surface observation of the magnetic toner using a transmission electron microscope (TEM), D 6. The magnetic toner according to claim 1, wherein the toner satisfying the relationship of /C≦0.02 is 50% by number or more. 該磁性トナーは、離型剤を重合性単量体に対し、1乃至30質量%含有することを特徴とする請求項1乃至6のいずれかに記載の磁性トナー。   The magnetic toner according to claim 1, wherein the magnetic toner contains a release agent in an amount of 1 to 30% by mass based on the polymerizable monomer. 該離型剤の示差熱分析による吸熱ピークが40乃至130℃の範囲にあることを特徴とする請求項1乃至7のいずれかに記載の磁性トナー。   The magnetic toner according to any one of claims 1 to 7, wherein the endothermic peak of the release agent by differential thermal analysis is in the range of 40 to 130 ° C. 感光体を帯電させる帯電工程、帯電された感光体上に静電潜像を形成する静電潜像形成工程、該静電潜像を磁性トナーを用いて現像し、トナー画像を形成する現像工程、該トナー画像を転写材に転写する転写工程、該転写材に該トナー画像を定着させる定着工程を有する画像形成方法であって、A charging step for charging the photosensitive member, an electrostatic latent image forming step for forming an electrostatic latent image on the charged photosensitive member, and a developing step for developing the electrostatic latent image using magnetic toner to form a toner image An image forming method comprising a transfer step of transferring the toner image to a transfer material, and a fixing step of fixing the toner image to the transfer material,
該定着工程では、フィルムを介してヒーターにより加熱加圧定着する定着装置が用いられ、該磁性トナーは、請求項1乃至8のいずれかに記載の磁性トナーであることを特徴とする画像形成方法。9. The image forming method according to claim 1, wherein the fixing step uses a fixing device that heats and pressurizes with a heater through a film, and the magnetic toner is the magnetic toner according to claim 1. .
JP2005004850A 2005-01-12 2005-01-12 Magnetic toner Expired - Fee Related JP4434967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004850A JP4434967B2 (en) 2005-01-12 2005-01-12 Magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004850A JP4434967B2 (en) 2005-01-12 2005-01-12 Magnetic toner

Publications (3)

Publication Number Publication Date
JP2006195034A JP2006195034A (en) 2006-07-27
JP2006195034A5 JP2006195034A5 (en) 2008-02-21
JP4434967B2 true JP4434967B2 (en) 2010-03-17

Family

ID=36801181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004850A Expired - Fee Related JP4434967B2 (en) 2005-01-12 2005-01-12 Magnetic toner

Country Status (1)

Country Link
JP (1) JP4434967B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441386B2 (en) * 2008-10-08 2014-03-12 キヤノン株式会社 Black toner and toner kit for full color image formation
JP5300401B2 (en) * 2008-10-08 2013-09-25 キヤノン株式会社 toner
JP5371552B2 (en) * 2009-05-29 2013-12-18 キヤノン株式会社 toner
JP5455444B2 (en) * 2009-05-29 2014-03-26 キヤノン株式会社 Magnetic toner
JP5371584B2 (en) * 2009-07-03 2013-12-18 キヤノン株式会社 Magnetic carrier, two-component developer and replenishment developer
US9551947B2 (en) 2010-08-23 2017-01-24 Canon Kabushiki Kaisha Toner
KR101445048B1 (en) * 2010-09-16 2014-09-26 캐논 가부시끼가이샤 Toner
JP5645583B2 (en) * 2010-10-08 2014-12-24 キヤノン株式会社 toner

Also Published As

Publication number Publication date
JP2006195034A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
KR101241088B1 (en) Magnetic toner
EP2616884B1 (en) Toner
JP5341888B2 (en) toner
JP4533062B2 (en) Magnetic toner and method for producing magnetic toner
JP2008015230A (en) Toner
JP4533061B2 (en) toner
JP3977159B2 (en) Magnetic toner
JP4434967B2 (en) Magnetic toner
JP4560462B2 (en) toner
JP4154106B2 (en) Toner particle manufacturing method, magnetic toner, and image forming method
JP2007071993A (en) Toner
JP2010282146A (en) Toner
JP4484357B2 (en) Magnetic toner, image forming method using the magnetic toner, and process cartridge
JP4393179B2 (en) Method for producing magnetic toner
JP5339778B2 (en) Image forming method and fixing method
JP4537161B2 (en) Magnetic toner
JP4154302B2 (en) Two-component developer and developing device
JP2005181489A (en) Resin for toner, toner, and image forming method using the toner
JP4298614B2 (en) Magnetic toner
JP4280517B2 (en) toner
JP2009109827A (en) Magnetic toner
JP3880342B2 (en) Magnetic toner and method for producing the magnetic toner
JP2003043736A (en) Magnetic toner and method of manufacturing magnetic toner
JP4227319B2 (en) toner
JP4143342B2 (en) toner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4434967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees