JP4434644B2 - Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor - Google Patents
Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor Download PDFInfo
- Publication number
- JP4434644B2 JP4434644B2 JP2003199080A JP2003199080A JP4434644B2 JP 4434644 B2 JP4434644 B2 JP 4434644B2 JP 2003199080 A JP2003199080 A JP 2003199080A JP 2003199080 A JP2003199080 A JP 2003199080A JP 4434644 B2 JP4434644 B2 JP 4434644B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- diffusion prevention
- metal
- providing
- metal diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 53
- 229910052751 metal Inorganic materials 0.000 claims description 209
- 239000002184 metal Substances 0.000 claims description 209
- 238000009792 diffusion process Methods 0.000 claims description 182
- 230000002265 prevention Effects 0.000 claims description 144
- 238000000034 method Methods 0.000 claims description 132
- 239000010949 copper Substances 0.000 claims description 113
- 229910052802 copper Inorganic materials 0.000 claims description 109
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 108
- 239000012535 impurity Substances 0.000 claims description 83
- 239000004065 semiconductor Substances 0.000 claims description 61
- 238000007772 electroless plating Methods 0.000 claims description 55
- 238000005530 etching Methods 0.000 claims description 30
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims description 17
- 230000003213 activating effect Effects 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 238000002513 implantation Methods 0.000 claims description 13
- 238000009713 electroplating Methods 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 333
- 230000008569 process Effects 0.000 description 38
- 239000000758 substrate Substances 0.000 description 29
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 23
- 229920005591 polysilicon Polymers 0.000 description 21
- 239000004973 liquid crystal related substance Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 239000011229 interlayer Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 238000000137 annealing Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 5
- 238000005401 electroluminescence Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000004151 rapid thermal annealing Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- 229910008807 WSiN Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- -1 copper halide Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液晶表示装置やエレクトロルミネッセンス(EL)装置に代表される表示装置に用いられる低濃度ドレイン(LDD:Lightly Doped Drain)領域を有する薄膜トランジスタの製造方法と、この薄膜トランジスタを備える表示装置の製造方法に関する。
【0002】
【従来の技術】
一般に、薄膜トランジスタ(TFT:Thin Film Transistor)は、透明ガラス基板上に設けること可能なため、アクティブマトリクス型液晶表示装置やアクティブマトリクス型EL表示装置等の表示装置に用いられている。このTFTをアクティブマトリクス型液晶表示装置の画素スイッチング素子であるn型TFTに適用する場合には、15〜20V程度のゲート電圧が印加され、特にオフ領域のリーク電流を小さくすることが必要とされている。一方、画素スイッチング素子を駆動するために設けられている周辺駆動回路は、基本的にCMOS回路で構成され、主にオン領域の特性が重要とされている。
【0003】
しかしながら、多結晶シリコンを用いたTFTは、初期特性でのオフ領域のリーク電流が大きいため、長時間駆動させるとオン電流が低下し、オフ電流の増加という劣化現象が生じている。この原因の1つは、ドレイン近傍の高電界が原因で発生するホットキャリア注入現象であると考えられている。
【0004】
半導体集積回路の技術分野では、MOSトランジスタのオフ電流を下げ、さらにドレイン近傍の高電界を緩和する方法として、低濃度ドレイン(LDD:Lightly Doped Drain)構造が知られている。従来技術では、ゲート電極をマスクとして、第1の不純物元素の注入工程によりLDD領域となる低濃度不純物領域を形成しておき、その後、レジストマスクを用いて第2の不純物元素の注入工程により、ソース領域とドレイン領域となる高濃度不純物領域を形成する方法が用いられている。
【0005】
しかし、このLDD構造は通常の構造のTFTと比べて、オフ電流を下げることはできても、構造的に直列抵抗成分が増えてしまうため、結果としてTFTのオン電流も低下させてしまう。また、オン電流の劣化抑制及び前記欠点を補う構造として、LDD領域をゲート電極とオーバーラップさせる構造が知られている。
【0006】
この構造を形成する方法は幾つかあるが、例えば、GOLD(Gate-drain Overlapped LDD)や、LATID(Large-tilt-angle implanted drain)などが知られている。このような構造を採用することで、ドレイン近傍の高電界を緩和し、ホットキャリア耐性を高め、同時にオン電流の低下を防ぐことが知られている。
【0007】
また、ULSIに代表される半導体の分野における配線や電極等の金属材料としては、集積度の向上による微細化の進展や、動作スピードの向上等により、従来から用いられているアルミニウム(Al)よりも、配線抵抗が低く、且つエレクトロマイグレーションやストレスマイグレーション等の耐性が高い、銅(Cu)を用いた配線に関する検討が進められている。
【0008】
また、液晶表示装置等に代表される表示装置の分野においても、表示面積の拡大による配線長の増加や、駆動用ドライバ回路や画素内メモリといった、様々な付加機能の取り込みによる周辺回路部分のモノリシック化等の要求によって、半導体分野と同様に低抵抗な配線の要求が高まってきている。金属材料としての銅は、前述したように、従来の金属材料であるAlと比較して、低抵抗性、耐マイグレーション性に優れていることから、次世代の配線や電極等の金属材料として期待されている。
【0009】
しかしながら、従来、微細配線の形成に用いられてきたようにフォトリソグラフィ技術によるマスキングと、反応性イオンエッチング(Reactive Ion Etching)法等の組み合わせにより、銅を用いた微細配線を形成しようとした場合、銅のハロゲン化物は蒸気圧が低い(即ち、蒸発しにくい)ために、上記エッチングによって形成されるハロゲン化物を揮発、除去するためには、プロセス温度として200〜300℃でのエッチング処理が必要となるために、銅配線のエッチングによる微細加工は困難であった。
【0010】
このことから、半導体技術の分野では、銅を用いた微細配線の形成手法としては、例えば特許文献1や特許文献2に開示されている、いわゆる、ダマシン法がある。このダマシン方法では、まず、基板上の絶縁層に対して、あらかじめ所望の配線パターン形状の配線溝を形成し、この溝を埋め込むようにスパッタ法等のPVD(Physical Vapor Deposition)、メッキ法又は、有機金属材料を用いたCVD法等の各種手法により、銅薄層を前記溝内をに埋め込み、さらに絶縁層上の全面に渡って形成する。その後、その銅薄層を埋め込まれた溝の上部端面まで、化学的機械研磨法(CMP:Chemical Mechanical Polishing)等の研磨法や、エッチバック等を用いて除去することによって、銅薄層を前記溝内部のみに残し、埋め込み型の銅配線パターンを形成している。
【0011】
【特許文献1】
特開2001−189295号公報
【0012】
【特許文献2】
特開平11−135504号公報
【0013】
【発明が解決しようとする課題】
前述した特許文献1,2等の従来から用いられている種々の形成方法においては、以下に挙げるような課題がある。
LATIDは、斜め入射のイオン注入により達成されるが、大型基板用の非質量分離型のイオンシャワー注入装置では難しい。
【0014】
また、GOLD構造においては、通常、第1のゲート電極層を形成して、その第1のゲート電極層をマスクとして低濃度の不純物注入を行う。その後、第1のゲート電極層を覆うように第2のゲート電極層を形成する。この第2のゲート電極層は、第1のゲート電極層のゲート長幅よりも両側に所望幅広く形成されている。そして、その第2のゲート電極層をマスクとして用いて高濃度の不純物注入をする方法で形成される。この形成方法は、プロセス的には容易であるが、ソース側及びドレイン側のLDD長が露光装置の位置合わせ精度や、エッチングなどの加工精度等が原因となり、大面積基板内であれば、その中央に比べて周辺が不均一となることや製造工程数が多いという問題がある。セルフアラインでGOLD構造を作る形成方法としては、ゲート絶縁膜上にポリシリコンゲート電極膜上と酸化膜の2層構造のゲート電極を形成して低濃度の不純物注入を行い、その後にゲート電極上にポリシリコン膜を形成して異方性エッチングすることでゲート電極の両サイドにサイドウォールを形成し、ソース及びドレイン部に高濃度の不純物注入する際にサイドウォール部にも高濃度の不純物注入する方法が提案されている。("A Novel Self-aligned Gate-overlapped LDD Poly-Si TFT with High Reliability and Performance", Mutsuko Hatano, Hajime Akimoto and Takeshi Sakai, IEDM97 p-523)しかしながら、この形成方法はサイドウォール部の低抵抗化には高温活性化が必要でありサイドウォール部の低抵抗化も難しい。更に、銅からなるゲート電極配線には適用が難しい。
【0015】
そこで本発明は、大面積基板上への銅等からなる低抵抗な金属を用いて、LDD長のばらつきを低減するとともに、製造工程数の低減による製造コストの削減を実現する薄膜トランジスタ製造方法と、この薄膜トランジスタを備える表示装置の製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記目的を達成するために、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、前記マスクパターンを除去した後、前記金属層をマスクとして、前記金属拡散防止下地層をエッチングする第5工程と、前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第6工程と、無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第7工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第8工程と、前記注入された不純物を活性化する第9工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0017】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上へ金属シード層を設ける第4工程と、前記金属シード層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法又は電解メッキを用いて前記溝内に選択的に前記金属層を設ける第5工程と、前記マスクパターンを除去した後、前記金属層又は前記金属層上に設けたフォトレジスト層をマスクとして、前記金属シード層及び前記金属拡散防止下地層をエッチングする第6工程と、前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第7工程と、無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第8工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第9工程と、前記注入された不純物を活性化する第10工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0018】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成する第4工程と、無電解メッキ法を用いて前記溝内に選択的に金属シード層を設ける第5工程と、無電解メッキ法又は電解メッキ法を用いて前記金属シード層上に選択的に前記金属層を設ける第6工程と、前記マスクパターンを除去した後、前記金属層をマスクとして、前記金属拡散防止下地層をエッチングする第7工程と、前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第8工程と、無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第9工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第10工程と、前記注入された不純物を活性化する第11工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0019】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第5工程と、前記第2の金属拡散防止カバー層をマスクとして、前記金属拡散防止層をエッチングする第6工程と、前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第7工程と、前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第8工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止層カバーの層厚分の幅をあけて高濃度の不純物注入を行う第9工程と、前記注入された不純物を活性化する第10工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0020】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上へ金属シード層を設ける第4工程と、前記金属シード層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法又は電解メッキを用いて前記溝内に選択的に前記金属層を設ける第5工程と、前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第6工程と、
前記第2の金属拡散防止カバー層をマスクとして、前記金属シード層及び前記金属拡散防止層をエッチングする第7工程と、前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第8工程と、前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第9工程と、 前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第10工程と、前記注入された不純物を活性化する第11工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0021】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成する第4工程と、無電解メッキ法を用いて前記溝内に選択的に金属シード層を設ける第5工程と、無電解メッキ法又は電解メッキ法を用いて前記金属シード層上に選択的に前記金属層を設ける第6工程と、前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第7工程と、前記第2の金属拡散防止カバー層をマスクとして、前記金属拡散防止下地層をエッチングする第8工程と、前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第9工程と、前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第10工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第11工程と、前記注入された不純物を活性化する第12工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0022】
本発明は更に、半導体層を設ける第1工程と、前記半導体層上にゲート絶縁層を設ける第2工程と、前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第5工程と、前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第6工程と、前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第7工程と、前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第8工程と、
前記注入された不純物を活性化する第9工程と、前記第1の金属拡散防止カバー層をマスクとして、前記金属拡散防止層をエッチングする第10工程と、を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0023】
本発明は更に、前記金属層を設ける工程が、銅層若しくは銅を含む金属層を選択的に設ける工程を含むことを特徴とする請求項1ないし7のいずれか1項に記載のGOLD構造を有する薄膜トランジスタの製造方法を提供する。
【0024】
本発明は更に、請求項1ないし8のいずれか1項に記載の薄膜トランジスタを備える表示装置の製造方法を提供する。
【0025】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について詳細に説明する。
図1、図2及び図3は、本発明の薄膜トランジスタの製造方法に係る第1の実施形態として、銅層を用いたゲート電極とLDD(Lightly Doped Drain)領域を有するMOS構造nチャネル型TFT(薄膜トランジスタ)の形成方法について説明するための工程図である。
【0026】
図1(a)に示す工程では、PE−CVD法を用いて、透明体例えばガラス等からなる絶縁基板1上のTFTを形成する領域に不純物の拡散を防ぐための例えば、窒化シリコン(SiN)からなる層厚300nm程度の下地絶縁層2を堆積させる。その下地絶縁層2上に活性層となる半導体層例えば、層厚例えば50nmのアモルファスシリコン層3’を堆積する。その後、基板1に対して温度例えば500℃の雰囲気でアニール処理を施し、アモルファスシリコン層3’中から水素を脱離させる。さらに、ELA(Excimer Laser Anneal)法により、アモルファスシリコン層3’をポリシリコン層3に結晶化する。この結晶化工程は、エキシマレーザ光を位相シフタにより位相シフタ部で回折、干渉して逆ピークパターンのレーザ光を出射して、アモルファスシリコン層3’を照射し、ポリシリコン層3に結晶化することが望ましい。
【0027】
図1(b)に示す工程では、PEP(Photo Engraving Process)により感光性樹脂即ち、フォトレジスト層4からなるマスクパターンを形成し後、CDE(Chemical Dry Etching)法を用いてアイランド状のポリシリコン層3を形成する。
図1(c)に示す工程では、ポリシリコン層3上を含む基板1上にPE−CVD法により、層厚例えば50nmのゲート絶縁層5を堆積させる。
【0028】
図1(d)に示す工程では、ゲート絶縁層5上に銅拡散防止下地層例えば、窒化チタン(TiN)からなる層厚例えば50nm程度の銅拡散防止下地層6を成層した後、さらに、この銅拡散防止下地層6上にPEPを用いてフォトレジスト層7のマスクパターンを形成する。このフォトレジスト層7において開口された溝7aは、選択的に配線パターンや電極パターン等を形成するものである。選択的に配線パターンや電極パターン等の形成は、配線や電極の材料を省資源化するための工程である。
【0029】
図2(a)に示す工程では、この溝7a内に無電解メッキ法を用いて、例えば層厚0.5μmの銅層8を選択的に形成する。無電解メッキの前処理として触媒能のあるPd核もしくはCu核を置換メッキ法で形成することが望ましい。
【0030】
図2(b)に示す工程では、この銅層8を形成した後、フォトレジスト層7を除去した後、この銅層8をマスクとして、自己整合的に銅拡散防止下地層6をエッチングして除去する。
【0031】
図2(c)に示す工程では、第1の銅拡散防止層6上に形成された銅層8をマスクとして、ポリシリコン層3にソース領域、およびドレイン領域を形成するための不純物例えば砒素を、ドーピング量例えば1×1013atoms/cm2を注入例えばイオンドーピングして、低濃度領域(n−)のLDD領域3aを形成する。
【0032】
図3(a)に示す工程では、銅層8上に銅拡散防止層を形成例えば無電解メッキ法を用いて、銅層8及び第1の銅拡散防止層6の表面を覆うように、ほぼLDD長に相当する層厚、例えば0.5μmを堆積させて、第1の銅拡散防止カバー層9を形成する。
【0033】
図3(b)に示す工程では、さらにソース領域、およびドレイン領域を高濃度に形成するための不純物例えば砒素を、第2の銅拡散防止層9をマスクとしてドーピング量例えば4×1014atoms/cm2を銅層8へイオンドーピングして、LDD領域3a内に高濃度領域(n+)のソース・ドレイン領域3bを形成する。
図3(c)に示す工程では、PE−CVD法を用いて、例えば酸化シリコンからなる層厚例えば400nmの層間絶縁層10を形成する。次にイオンドーピング工程後に、注入した不純物を活性化する工程、例えばレーザーアニール、フラッシュランプアニール、ラピッドサーマルアニール(RTA)等による熱処理工程を行う。さらに、この層間絶縁層10上にフォトレジスト層11によるマスクパターンを形成して、層間絶縁層10のエッチングを行い、ポリシリコン層3(ソース・ドレイン領域3b)の表面が露出するようにコンタクトホール11aを形成する。
図3(d)に示す工程では、コンタクトホール11a内を例えばアルミニウム(Al)等の金属で埋め込み、ソース・ドレイン領域3bに接続するソース・ドレイン電極12を形成する。
【0034】
以上説明した第1の実施形態によれば、上述した製造工程を用いることにより、ソース側とドレイン側の低濃度領域3aの長さは、第1の銅拡散防止層カバー9の層厚と略等しく構成することができ、低濃度領域3aの長さが均等性に優れているとともに、PEPが不要で、且つ選択的に成層することができ、低コストのGOLD構造を有する薄膜トランジスタの製造方法を提供することができる。
【0035】
銅拡散防止下地層としては、前述のTiNのみならず銅の拡散防止能のあるTaN、TaSiN、TiSiN、WSiN、Ti、Ta等であってもよく、また、前述の材料の積層であってもよい。銅拡散防止層カバー層は、銅の表面に無電解めっき法により選択時に形成できる金属で形成することが好ましい。このような銅拡散防止層カバー層としては、例えばコバルト(Co)−タングステン(W)−ホウ素(B)合金、コバルト(Co)−ホウ素(B)合金、コバルト(Co)−リン(P)合金、ニッケル(Ni)−タングステン(W)−リン(P)合金等がある。ここで、コバルト系合金やニッケル系合金は、高融点金属であるとともに、不純物の活性化に用いられるエキシマーレーザー光の波長領域では、不純物が注入されたシリコン領域によりも低反射率であり、加えて銅の配線側面も含めた表面を覆っているために光吸収効果も高く、ゲート電極端部に発生しがちな接合欠陥を抑制する効果も有している。
【0036】
次に第2の実施形態について説明する。
前述した第1の実施形態では、形成した銅配線層8をマスクとして用いて銅拡散防止下地層6をエッチングしたが、本実施形態では、銅配線層を形成した後に、無電解メッキ法を用いて第2の銅拡散防止カバー層を形成し、その後に銅拡散防止下地層をエッチングする。ここで、第2の実施形態の工程において、前述した図1乃至図3で説明した第1の実施形態と同等の工程においては、簡略化して記載する。また薄膜トランジスタを構成する各層の層厚は、第1の実施形態の各層の層厚と同等でよい。
【0037】
図4(a)に示す工程では、前述した図1(a)〜(c)における工程と同等に、ガラス等からなる基板11上に窒化シリコン(SiNx)からなる下地絶縁層12を堆積させる。さらに、アモルファスシリコン層13’を堆積し、アニール処理により水素を脱離させた後、ELA法を用いて結晶化させてポリシリコン層13を形成する。そして、PEP及びエッチングによりポリシリコン層13をアイランド状に形成し、このポリシリコン層13上を含む基板11上にゲート絶縁層14を堆積させる。
【0038】
図4(b)に示す工程は、図1(d)及び図2(a)に示す工程と同等であり、ゲート絶縁層14上に窒化チタン(TiN)等からなる銅拡散防止下地層15を成層した後、PEPによるレジストマスク16により開口された溝15aに無電解メッキ法を用いて銅配線層17を選択的に形成する。無電解メッキの前処理として触媒能のあるPd核もしくはCu核を置換メッキ法で形成することが望ましい。
【0039】
図4(c)に示す工程では、図2(b)に示す工程と同等であり、フォトレジスト層16を除去した後、この銅配線層17を覆うように、無電解メッキ法を用いて第2の銅拡散防止カバー層18を形成する。
【0040】
図4(d)に示す工程では、第2の銅拡散防止カバー層をマスクとして、自己整合的に銅拡散防止下地層15をエッチングして除去する。
図5(a)に示す工程では、第2の銅拡散防止カバー層18に覆われたゲート電極を
マスクとして、ポリシリコン層13に砒素をイオンドーピングして、低濃度不純物領域(n−)のLDD部13aを形成する。
【0041】
図5(b)に示す工程では、無電解メッキ法を用いて、第2の銅拡散防止層19上にLDD長に相当する層厚を更に堆積させて、第1の銅拡散防止層19を形成する。その後、再度、砒素をイオンドーピングして、高濃度不純物領域(n+)のソース・ドレイン電極13bを形成する。
【0042】
図5(c)に示す工程では、PE−CVD法により、酸化シリコン等からなる層間絶縁層20を形成した後、不純物の活性化工程を行い、更に図示しないフォトレジスト層によるマスクパターンを形成して、層間絶縁層20をエッチングして、ポリシリコン層13(ソース・ドレイン領域13b)の表面が露出するようにコンタクトホールを形成する。このコンタクトホールを、例えばアルミニウム(Al)等の金属で埋め込み、ソース・ドレイン領域13bに接続するソース・ドレイン電極21を形成する。
【0043】
以上の第2の実施形態によれば、前述した第1の実施形態と同様に、ソース側とドレイン側の低濃度領域13aの長さは、第1の銅拡散防止層19の層厚と略等しく構成することができ、低濃度領域13aの長さが均等性に優れているとともに、PEPが不要で、且つ選択的に成層することができ、低コストのGOLD構造を有する薄膜トランジスタの製造方法を提供することができる。この場合、第2の銅拡散防止層19は、低濃度の不純物の注入工程及び銅配線層の酸化防止や銅拡散防止下地層15のエッチングの保護層として有効である。
【0044】
次に第3の実施形態について説明する。
前述した第2の実施形態では、形成した第2の銅拡散防止カバー層18をマスクとして用いて銅拡散防止下地層15をエッチングしたが、本実施形態では、第2の銅拡散防止カバー層の後に第1の銅拡散防止カバー層を形成して高濃度領域のイオンドーピングを行い、更に活性化のためのアニール工程を行った後に、前記第1の銅拡散防止カバー層をマスクに銅拡散防止下地層をエッチングする。ここで、第3の実施形態の工程において、前述した図4乃至図6で説明した第2の実施形態と同等の工程においては、簡略化して記載する。また薄膜トランジスタを構成する各層の層厚は、第2の実施形態の各層の層厚と同等でよい。
【0045】
図10(a)に示す工程では、前述した図4(a)〜(c)における工程と同等に、ガラス等からなる基板61上に窒化シリコン(SiNx)からなる下地絶縁層62を堆積させる。さらに、アモルファスシリコン層63’を堆積し、アニール処理により水素を脱離させた後、ELA法を用いて結晶化させてポリシリコン層63を形成する。そして、PEP及びエッチングによりポリシリコン層13をアイランド状に形成し、このポリシリコン層63上を含む基板61上にゲート絶縁層64を堆積させる。
【0046】
図10(b)に示す工程は、図4(d)及び図2(a)に示す工程と同等であり、ゲート絶縁層64上に窒化チタン(TiN)等からなる銅拡散防止下地層65を成層した後、PEPによるレジストマスク66により開口された溝65aに無電解メッキ法を用いて銅配線層67を選択的に形成する。無電解メッキの前処理として触媒能のあるPd核もしくはCu核を置換メッキ法で形成することが望ましい。
図10(c)に示す工程では、図5(b)に示す工程と同等であり、フォトレジスト層66を除去した後、この銅配線層67を覆うように、無電解メッキ法を用いて第2の銅拡散防止カバー層68を形成する。
【0047】
図10(d)に示す工程では、第2の銅拡散防止カバー層68に覆われたゲート電極をマスクとして、ポリシリコン層63に砒素をイオンドーピングして、低濃度不純物領域(n−)のLDD部63aを形成する。
【0048】
図11(a)に示す工程では、無電解メッキ法を用いて、第2の銅拡散防止カバー層69上にLDD長に相当する層厚を更に堆積させて、第1の銅拡散防止カバー層69を形成する。その後、再度、砒素をイオンドーピングして、高濃度不純物領域(n+)のソース・ドレイン電極13bを形成する。
【0049】
図11(b)に示す工程では、レーザーアニール、フラッシュランプアニール、ラピッドサーマルアニール(RTA)等による熱処理工程を行った後に、第1の銅拡散防止カバー層69に覆われたゲート電極をマスクとして、自己整合的に銅拡散防止下地層65をエッチングして除去する。
【0050】
図11(c)に示す工程では、PE−CVD法により、酸化シリコン等からなる層間絶縁層70を形成した後、更に図示しないフォトレジスト層によるマスクパターンを形成して、層間絶縁層70をエッチングして、ポリシリコン層63(ソース・ドレイン領域63b)の表面が露出するようにコンタクトホールを形成する。このコンタクトホールを、例えばアルミニウム(Al)等の金属で埋め込み、ソース・ドレイン領域63bに接続するソース・ドレイン電極71を形成する。
【0051】
以上の第3の実施形態によれば、前述した第2の実施形態と同様に、ソース側とドレイン側の低濃度領域63aの長さは、第1の銅拡散防止カバー層69の層厚と略等しく構成することができ、低濃度領域63aの長さが均等性に優れているとともに、PEPが不要で、且つ選択的に成層することができ、低コストのGOLD構造を有する薄膜トランジスタの製造方法を提供することができる。この場合、銅拡散防止下地層65が不純物活性化のためのアニール工程まで全面に形成されていることで、アニール処理による温度むらが抑制されるとともに温度制御も容易となり均一化も図れる。更に前工程であるイオンドーピング工程におけるゲート絶縁層64へのダメージも抑制できる。また、銅拡散防止下地層65のエッチング工程におけるゲート絶縁膜64のエッチングによる膜厚減少もないために、イオンドーピング工程の条件設定も容易である。
【0052】
次に、前述した第1、第2、第3の実施形態の銅配線層8、17又は67の形成方法の第1の変形例について説明する。この変形例は、銅配線層8(又は17)の下に金属シード層31を設けた構造である。ここでは、図1乃至図3に記載した各層と同等の層には、同じ参照符号を用いて説明する。
図6(a)に示す工程では、図1(a)に示した工程と同様に、基板1上に下地絶縁層2が堆積され、さらに、アイランド状のポリシリコン層3が設けられ、その上層にゲート絶縁層5が堆積される。このゲート絶縁層5上に、第1の金属拡散防止層6及び金属シード層31が形成される。
【0053】
図6(b)に示す工程では、この金属シード層31上にPEPを用いてフォトレジスト層7のマスクパターンを形成され、ゲート電極を形成するための領域が露出するように溝が開口される。無電解メッキ法を用いて、この溝内に銅配線層8が選択的に形成される。
【0054】
図6(c)に示す工程では、フォトレジスト層7を除去した後、銅配線層8をマスクとして、自己整合的に金属シード層31をエッチングして除去する。銅配線層8は、このエッチングが影響を及ぼさないように、金属シード層31の層厚に対して十分な層厚を有するように形成しておく。続けて、銅拡散防止下地層6をエッチングする。この金属シード層31及び銅拡散防止下地層6に対するエッチング処理は、別々の工程で行ってもよいし、連続若しくは、同じ工程内で行ってもよい。また、ここでは、銅配線層8をマスクとしたが、第2の実施形態のように金属拡散防止カバー層18を設けてマスクとしてもよいし、銅配線層8上にフォトレジスト層(図示せず)からなるマスクを設けて、金属シード層31及び第1の銅拡散防止層6のエッチングを行ってもよい。
【0055】
この以降の製造工程は、第1の実施形態においては、図2(b)に示した工程に移行し、第2の実施形態においては、図5(a)に示した工程に移行する。この第1の変形例によれば、金属シード層31を設けることにより、無電解メッキ法だけではなく、電解メッキ法も用いることができる。
【0056】
また、第2の変形例について説明する。
図7(a)に示す工程では、図1(a)に示した工程と同様に、基板1上に下地絶縁層2が堆積され、さらに、アイランド状のポリシリコン層3が設けられ、その上層にゲート絶縁層5及び金属拡散防止下地層6が形成される。
【0057】
図7(b)に示すように、金属拡散防止下地層6の上にPEPによるフォトレジスト層7からなるマスクを形成して、ゲート電極を形成するための領域が露出するように溝が開口される。無電解メッキ法を用いて、この溝内に選択的に金属シード層22を形成する。さらに、無電解メッキ法又は電解メッキ法を用いて、金属シード層22上に銅配線層8を選択的に形成する。
図7(c)に示す工程では、銅配線層8をマスクとして、自己整合的に金属拡散防止下地層6をエッチングして除去する。
【0058】
尚、前述した各実施形態の製造工程とは異なるが、図6(b)に示した工程の後、フォトレジスト層7を除去する。そして、銅配線層8を覆うように第2の銅拡散防止層9を形成してしまう。この第2の銅拡散防止層9をマスクに用いて、金属シード層31及び第1の銅拡散防止層6のエッチングを行ってもよい。このエッチング終了後に、第2の銅拡散防止層9、金属シード層22及び第1の銅拡散防止層6を覆うように第3の銅拡散防止層(第3の銅拡散防止層19に相当する)を形成してもよい。
【0059】
この第1の変形例によれば、金属シード層22を形成する際に、エッチング処理工程が必要なく、銅配線層8の形成方法に無電解メッキ法だけではなく、電解メッキ法も用いることができる。
また、上述の実施形態では、銅拡散防止下地層6をエッチングした後に低濃度もしくは高濃度の不純物を行う工程で説明したが、銅拡散防止下地層6を不純物注入時の保護層として用いるようにして低濃度もしくは高濃度の不純物を行った後に銅拡散防止下地層6を第1の銅拡散防止層19をマスクにエッチングすることもできる。
【0060】
また、前述した第1、第2及び第3の実施形態における薄膜トランジスタの製造方法は、液晶表示装置やEL表示装置などに用いられる薄膜トランジスタの製造方法に適用することは容易にできる。
【0061】
以上具体的に説明したが、本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。例えば、第1、第2及び第3の実施形態では、電極の材料として銅を一例としたが、これに限定されず、銅を含む合金やその他の金属を適用してもよい。
【0062】
従って、本発明の薄膜トランジスタの製造方法によれば、工程数も短く、しかも低濃度領域長のソース側及びドレイン側の均等性に優れるGOLD構造を有する薄膜トランジスタの製造方法である。さらに、金属拡散防止層で取り囲まれた高信頼性の銅からなるゲート電極を形成することができ、銅配線層及び銅拡散防止カバー層を選択的に形成することが可能であり、配線材料の除去・廃棄が抑制され配線材料の省資源化が可能である。
【0063】
次に第4の実施形態として、図8(a)、(b)には、本発明の薄膜トランジスタを液晶表示装置の駆動回路や、画素電極に接続されるトランジスタに用いた例について説明する。
この液晶表示装置31は、内面側に対向電極43が設けられた透明基板(基層)41と、内面側に画素電極33が設けられた透明基板(基層)32とが対向されて配置され、これらの一対の透明基板41、32の周囲が枠状のシール材44に接合され、その内部には液晶が充填された液晶層42が設けられている。これらの透明基板41、32としては、例えばガラス板や石英ガラス板を用いることができる。
【0064】
この透明基板32の内面側に設けられた画素電極33は、行方向および外方向にマトリックス状に複数配置されており、これらの画素電極33には、それぞれ複数のTFT34が設けられて電気的に接続される。これらのTFT34のゲートには、画素電極33の行方向に沿った走査配線36及び、ソースには列方向に沿った信号配線35が設けられ、それぞれに電気的に接続されている。これら走査配線36の一端は、後側の透明基板32の一側縁部に設けられた複数の走査配線端子(図示せず)にそれぞれ接続されている。これらの走査配線端子は、走査線駆動回路37に接続されている。
また、これら信号配線35の一端は、後側の透明基板32の一端縁部に設けられた複数の信号配線35の端子(図示せず)を介してそれぞれに信号線駆動回路38に接続されている。
【0065】
走査線駆動回路37及び信号線駆動回路38は、液晶コントローラ39に接続される。液晶コントローラ39は、例えば外部から供給される画像信号及び同期信号を受け取り、画素映像信号Vpix、垂直走査制御信号YCT、及び水平走査制御信号XCTを発生する。
【0066】
透明基板41の内面に設けられた一枚膜状の透明な対向電極43は、複数の画素電極33に対向している。透明基板41の内面には、複数の画素電極33と対面電極43とが互いに対向する複数の画素部に対応させて、カラーフィルタを設けるとともに、前記画素部の間の領域に対応させて遮光膜を設けてもよい。
【0067】
1対の透明基板41、32の外側には、図示しない偏光板が設けられている。また、透過型の液晶表示装置31では、後側の透視基板32の後側に後示しない面光源が設けられている。なお、液晶表示装置30は、反射型或いは半透過反射型であってもよい。
【0068】
図9には、前述した液晶表示装置の画素回路に用いられる薄膜トランジスタの具体的な構造例を示す。この例では、前述した第1の実施形態における図3(d)に示した薄膜トランジスタを用いた例である。
この薄膜トランジスタは、ガラス等からなる透明基板(アレイ基板)32上に下地絶縁層2に形成し、さらに前述した第1の実施形態における製造工程により、薄膜トランジスタ51を設ける。層間絶縁層10に設けられたコンタクトホールを埋め込むようにソース電極12a、ドレイン電極12bを形成する。更にこれらの上層にドレイン電極部分が露出するように、パッシベーション層(SiNx)52と平坦化層53が積層形成される。そして、このドレイン電極12bに接続する画素電極(ITO)54が設けられ、ポリイミドから成る配向膜55に覆われている。一方、対向する透明基板41上(対向する面側)には、対向電極43が設けられ、ポリイミドから成る配向膜56に覆われている。これらの配向膜55、56間には液晶層42が介在されている。
【0069】
以上のように本発明の薄膜トランジスタは、液晶表示装置やEL装置に代表される表示装置の駆動回路や画素電極に接続されるトランジスタに容易に用いることができる。
【0070】
上記実施形態では、ソース領域およびドレイン領域の形成は、前記ゲート電極の表面を覆うように設けられた金属拡散防止カバー層をマスクとして高濃度の不純物注入を行う工程について説明したが、ソース領域又はドレイン領域の一方の形成を上記金属拡散防止カバー層をマスクとして高濃度の不純物注入を行ってもよい。
【0071】
【発明の効果】
以上詳述したように本発明によれば、大面積基板上への銅等からなる低抵抗な金属配線を用いて、LDD長のばらつきを低減し、製造工程数の低減による製造コストの削減を実現する薄膜トランジスタの製造方法と、この薄膜トランジスタを備える表示装置の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の薄膜トランジスタの製造方法に係る第1の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図2】図1に続いて第1の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図3】図2に続いて第1の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図4】本発明の薄膜トランジスタの製造方法に係る第2の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図5】図4に続いて第2の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図6】第1の変形例について説明するための工程図である。
【図7】第2の変形例について説明するための工程図である。
【図8】第3の実施形態として本発明の薄膜トランジスタを液晶表示装置の駆動回路に用いた例について説明するための図である。
【図9】第3の実施形態における液晶表示装置の駆動回路に用いられる薄膜トランジスタの具体的な構造例を示す図である。
【図10】本発明の薄膜トランジスタの製造方法に係る第3の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【図11】図10に続いて第3の実施形態となる薄膜トランジスタの製造方法を説明するための工程図である。
【符号の説明】
1…基板、2…下地絶縁層、3’…アモルファスシリコン層、3…ポリシリコン層、3a…LDD領域、3b…ソース・ドレイン領域、4,7,11…フォトレジスト層、5…ゲート絶縁層、6…第1の銅拡散防止層、7a…溝、8…銅配線層、9…第2の銅拡散防止層、10…層間絶縁層、11a…コンタクトホール、12…ソース・ドレイン電極。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film transistor having a lightly doped drain (LDD) region used in a display device typified by a liquid crystal display device or an electroluminescence (EL) device.OfManufacturing method and display device including the thin film transistorSetIt relates to a manufacturing method.
[0002]
[Prior art]
In general, a thin film transistor (TFT) can be provided over a transparent glass substrate, and thus is used in a display device such as an active matrix liquid crystal display device or an active matrix EL display device. When this TFT is applied to an n-type TFT which is a pixel switching element of an active matrix liquid crystal display device, a gate voltage of about 15 to 20 V is applied, and it is particularly necessary to reduce the leakage current in the off region. ing. On the other hand, the peripheral drive circuit provided for driving the pixel switching element is basically composed of a CMOS circuit, and the on-region characteristics are mainly important.
[0003]
However, TFTs using polycrystalline silicon have a large off-region leakage current in the initial characteristics, and therefore, when driven for a long time, the on-current decreases and a deterioration phenomenon occurs in which the off-current increases. One of the causes is considered to be a hot carrier injection phenomenon caused by a high electric field near the drain.
[0004]
In the technical field of semiconductor integrated circuits, a lightly doped drain (LDD) structure is known as a method for reducing the off-current of a MOS transistor and further mitigating a high electric field near the drain. In the prior art, a low concentration impurity region to be an LDD region is formed by a first impurity element implantation process using a gate electrode as a mask, and then a second impurity element implantation process is performed using a resist mask. A method of forming a high concentration impurity region to be a source region and a drain region is used.
[0005]
However, although this LDD structure can reduce the off-current compared to a TFT having a normal structure, the series resistance component is structurally increased, resulting in a decrease in the on-current of the TFT. In addition, a structure in which the LDD region overlaps with the gate electrode is known as a structure that suppresses deterioration of on-current and compensates for the above-described drawbacks.
[0006]
There are several methods for forming this structure. For example, GOLD (Gate-drain Overlapped LDD) and LATID (Large-tilt-angle implanted drain) are known. By adopting such a structure, it is known that the high electric field in the vicinity of the drain is relaxed, the hot carrier resistance is enhanced, and at the same time, the decrease in the on-current is prevented.
[0007]
In addition, as a metal material such as wiring and electrodes in the field of semiconductors represented by ULSI, due to the progress of miniaturization due to the improvement of the degree of integration and the improvement of the operation speed, the conventional aluminum (Al) is used. However, studies are being made on wiring using copper (Cu), which has low wiring resistance and high resistance to electromigration and stress migration.
[0008]
Also in the field of display devices such as liquid crystal display devices, monolithic peripheral circuit parts by increasing the wiring length due to the expansion of the display area and incorporating various additional functions such as driver circuits for drivers and in-pixel memories. The demand for low resistance wiring, like the semiconductor field, has been increasing due to demands such as downsizing. As described above, copper as a metal material is excellent in low resistance and migration resistance as compared to Al, which is a conventional metal material. Has been.
[0009]
However, when trying to form fine wiring using copper by combining the masking by photolithography technology and the reactive ion etching (Reactive Ion Etching) method, etc., as conventionally used for forming fine wiring, Since the copper halide has a low vapor pressure (that is, it is difficult to evaporate), in order to volatilize and remove the halide formed by the etching, an etching process at 200 to 300 ° C. is required as a process temperature. For this reason, it is difficult to finely process the copper wiring by etching.
[0010]
For this reason, in the field of semiconductor technology, a so-called damascene method disclosed in, for example,
[0011]
[Patent Document 1]
JP 2001-189295 A
[0012]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-135504
[0013]
[Problems to be solved by the invention]
The various forming methods conventionally used in
LATID is achieved by ion implantation with oblique incidence, but is difficult with a non-mass-separated ion shower implanter for large substrates.
[0014]
In the GOLD structure, a first gate electrode layer is usually formed, and low-concentration impurity implantation is performed using the first gate electrode layer as a mask. After that, a second gate electrode layer is formed so as to cover the first gate electrode layer. The second gate electrode layer is formed as wide as desired on both sides of the gate length of the first gate electrode layer. Then, the second gate electrode layer is used as a mask to form a high concentration impurity. Although this formation method is easy in terms of process, the LDD length on the source side and the drain side is caused by the alignment accuracy of the exposure apparatus, the processing accuracy such as etching, etc. There are problems that the periphery is not uniform and the number of manufacturing processes is large compared to the center. As a method of forming a GOLD structure by self-alignment, a gate electrode having a two-layer structure of a polysilicon gate electrode film and an oxide film is formed on the gate insulating film, and low-concentration impurity implantation is performed, and then the gate electrode is formed. A polysilicon film is formed on the gate electrode and anisotropically etched to form sidewalls on both sides of the gate electrode. When a high concentration impurity is implanted into the source and drain portions, a high concentration impurity is also implanted into the sidewall portion. A method has been proposed. ("A Novel Self-aligned Gate-overlapped LDD Poly-Si TFT with High Reliability and Performance", Mutsuko Hatano, Hajime Akimoto and Takeshi Sakai, IEDM97 p-523) Requires activation at a high temperature and it is difficult to reduce the resistance of the sidewall. Furthermore, it is difficult to apply to a gate electrode wiring made of copper.
[0015]
Therefore, the present invention uses a low-resistance metal made of copper or the like on a large-area substrate to reduce the variation in LDD length and to reduce the manufacturing cost by reducing the number of manufacturing processes.TManufacturing method and display device including the thin film transistorSetAn object is to provide a manufacturing method.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present inventionA first step of providing a semiconductor layer; a second step of providing a gate insulating layer on the semiconductor layer; a third step of providing a metal diffusion preventing underlayer on the gate insulating layer; and on the metal diffusion preventing underlayer Forming a mask pattern made of a photosensitive resin and having a groove opened to expose a region for forming a gate electrode, and selectively depositing the metal layer in the groove using an electroless plating method. A fourth step of providing, a fifth step of etching the metal diffusion preventing underlayer using the metal layer as a mask after removing the mask pattern, and a low concentration impurity in the semiconductor layer using the metal layer as a mask. A sixth step of implanting, a seventh step of providing a first metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating, and a first metal diffusion prevention cover layer. mask Then, an eighth step of implanting the high-concentration impurity into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer, and the implantation And a ninth step of activating the impurities, and having a GOLD structureA method for manufacturing a thin film transistor is provided.
[0017]
The present invention further includesA first step of providing a semiconductor layer, a second step of providing a gate insulating layer on the semiconductor layer, a third step of providing a metal diffusion preventing underlayer on the gate insulating layer, and on the metal diffusion preventing underlayer A fourth step of providing a metal seed layer; and a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the metal seed layer; A fifth step of selectively providing the metal layer in the groove using a plating method or electrolytic plating, and after removing the mask pattern, using the photoresist layer provided on the metal layer or the metal layer as a mask A sixth step of etching the metal seed layer and the metal diffusion prevention underlayer, a seventh step of implanting low-concentration impurities into the semiconductor layer using the metal layer as a mask, and an electroless plating method An eighth step of providing a first metal diffusion prevention cover layer so as to cover the surface of the metal layer more selectively, and the low concentration impurity is implanted using the first metal diffusion prevention cover layer as a mask. A ninth step of implanting high-concentration impurities into the semiconductor layer having a width corresponding to the thickness of the first metal diffusion prevention cover layer; and a tenth step of activating the implanted impurities. It has a GOLD structure characterized by includingProvided thin film transistor manufacturing methodDo.
[0018]
The present invention further includes a first step of providing a semiconductor layer, a second step of providing a gate insulating layer on the semiconductor layer, a third step of providing a metal diffusion preventing underlayer on the gate insulating layer, and the metal diffusion. A fourth step of forming a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode on the prevention base layer; and the groove using an electroless plating method. A fifth step of selectively providing a metal seed layer therein, a sixth step of selectively providing the metal layer on the metal seed layer using an electroless plating method or an electrolytic plating method, and removing the mask pattern After the metalLayerAs a mask,in frontA seventh step of etching the metal diffusion preventing underlayer; an eighth step of implanting low-concentration impurities into the semiconductor layer using the metal layer as a mask; and a surface of the metal layer selectively by electroless plating. A first step of providing a first metal diffusion prevention cover layer to cover the first metal diffusion prevention cover layer, using the first metal diffusion prevention cover layer as a mask, to the semiconductor layer into which the low-concentration impurities are implanted A GOLD structure comprising: a tenth step of implanting a high concentration of impurities with a width corresponding to the thickness of the metal diffusion prevention cover layer; and an eleventh step of activating the implanted impurities. A method for manufacturing a thin film transistor is provided.
[0019]
The present invention further includesA first step of providing a semiconductor layer; a second step of providing a gate insulating layer on the semiconductor layer; a third step of providing a metal diffusion preventing underlayer on the gate insulating layer; and on the metal diffusion preventing underlayer Forming a mask pattern made of a photosensitive resin and having a groove opened to expose a region for forming a gate electrode, and selectively depositing the metal layer in the groove using an electroless plating method. A fourth step of providing, a fifth step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern, A sixth step of etching the metal diffusion prevention layer using the metal diffusion prevention cover layer as a mask; a seventh step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask; Above And an eighth step of selectively providing a first metal diffusion prevention cover layer on the metal diffusion prevention cover layer of 2 by electroless plating, and using the first metal diffusion prevention cover layer as a mask, the low concentration A ninth step of implanting a high-concentration impurity into the semiconductor layer into which the first impurity is implanted with a width corresponding to the thickness of the first metal diffusion prevention layer cover; and activating the implanted impurity A thin film having a GOLD structure characterized by comprising a tenth stepA method for manufacturing a transistor is provided.
[0020]
The present invention further includesA first step of providing a semiconductor layer, a second step of providing a gate insulating layer on the semiconductor layer, a third step of providing a metal diffusion preventing underlayer on the gate insulating layer, and on the metal diffusion preventing underlayer A fourth step of providing a metal seed layer; and a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the metal seed layer; A fifth step of selectively providing the metal layer in the groove using a plating method or electrolytic plating, and after removing the mask pattern, selectively covering the surface of the metal layer by an electroless plating method A sixth step of providing a second metal diffusion prevention cover layer;
A seventh step of etching the metal seed layer and the metal diffusion prevention layer using the second metal diffusion prevention cover layer as a mask, and a low concentration to the semiconductor layer using the second metal diffusion prevention cover layer as a mask. An eighth step of implanting impurities; a ninth step of selectively providing a first metal diffusion prevention cover layer by electroless plating on the second metal diffusion prevention cover layer; and the first metal. Tenth step of implanting high-concentration impurities into the semiconductor layer into which the low-concentration impurities are implanted using the diffusion-preventing cover layer as a mask with a width corresponding to the thickness of the first metal diffusion-preventing cover layer. And an eleventh step of activating the implanted impurity, and a thin film having a GOLD structureA method for manufacturing a transistor is provided.
[0021]
The present invention further includesA first step of providing a semiconductor layer; a second step of providing a gate insulating layer on the semiconductor layer; a third step of providing a metal diffusion preventing underlayer on the gate insulating layer; and on the metal diffusion preventing underlayer A fourth step of forming a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode; and selectively in the groove using an electroless plating method A fifth step of providing a metal seed layer, a sixth step of selectively providing the metal layer on the metal seed layer using an electroless plating method or an electrolytic plating method, and electroless after removing the mask pattern A seventh step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by plating; and using the second metal diffusion prevention cover layer as a mask, etching A ninth step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask, and further electroless plating on the second metal diffusion prevention cover layer. A first step of selectively providing a first metal diffusion prevention cover layer by a method, and the first metal diffusion prevention cover layer as a mask to the first semiconductor layer into which the low-concentration impurities are implanted. A GOLD structure comprising: an eleventh step of implanting a high concentration of impurities with a width corresponding to the thickness of the metal diffusion prevention cover layer; and a twelfth step of activating the implanted impurities. HaveA method for manufacturing a thin film transistor is provided.
[0022]
The present invention further includes a first step of providing a semiconductor layer, a second step of providing a gate insulating layer on the semiconductor layer, a third step of providing a metal diffusion preventing underlayer on the gate insulating layer, and the metal diffusion. A mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the preventive underlayer, and selectively formed in the groove using an electroless plating method. And a fifth step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern. A sixth step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask, and further selectively deposited on the second metal diffusion prevention cover layer by an electroless plating method. First metal diffusion A seventh step of providing a stop cover layer, and a layer thickness of the first metal diffusion prevention cover layer into the semiconductor layer into which the low-concentration impurities are implanted using the first metal diffusion prevention cover layer as a mask An eighth step of implanting high-concentration impurities with a width of
A GOLD structure comprising: a ninth step of activating the implanted impurities; and a tenth step of etching the metal diffusion prevention layer using the first metal diffusion prevention cover layer as a mask. A method for manufacturing a thin film transistor is provided.
[0023]
According to the present invention, the step of providing the metal layer further includes a step of selectively providing a copper layer or a metal layer containing copper. The GOLD structure according to any one of
[0024]
The present invention further provides a method of manufacturing a display device comprising the thin film transistor according to any one of
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1, FIG. 2 and FIG. 3 show a MOS structure n-channel TFT having a gate electrode using a copper layer and an LDD (Lightly Doped Drain) region as a first embodiment according to the thin film transistor manufacturing method of the present invention. It is process drawing for demonstrating the formation method of a thin-film transistor.
[0026]
In the process shown in FIG. 1A, for example, silicon nitride (SiN) is used to prevent diffusion of impurities in a region where a TFT is formed on an insulating
[0027]
In the process shown in FIG. 1B, after forming a mask pattern made of a photosensitive resin, that is, a photoresist layer 4 by PEP (Photo Engraving Process), island-shaped polysilicon is formed using a CDE (Chemical Dry Etching) method.
In the step shown in FIG. 1C, a
[0028]
In the step shown in FIG. 1D, after a copper diffusion preventing underlayer, for example, a copper
[0029]
In the step shown in FIG. 2A, a
[0030]
In the step shown in FIG. 2B, after the
[0031]
In the step shown in FIG. 2C, an impurity such as arsenic for forming a source region and a drain region in the
[0032]
In the step shown in FIG. 3A, a copper diffusion prevention layer is formed on the
[0033]
In the step shown in FIG. 3B, an impurity such as arsenic for forming the source region and the drain region at a high concentration is used, and a doping amount such as 4 × 10 is used with the second copper
In the step shown in FIG. 3C, the
In the step shown in FIG. 3D, the source /
[0034]
According to the first embodiment described above, the length of the low-
[0035]
The copper diffusion preventing underlayer may be not only TiN described above but also TaN, TaSiN, TiSiN, WSiN, Ti, Ta, etc. having the ability to prevent copper diffusion, and may be a laminate of the above materials. Good. The copper diffusion prevention layer cover layer is preferably formed of a metal that can be formed on the surface of copper when selected by an electroless plating method. Examples of such a copper diffusion prevention layer cover layer include cobalt (Co) -tungsten (W) -boron (B) alloy, cobalt (Co) -boron (B) alloy, and cobalt (Co) -phosphorus (P) alloy. And nickel (Ni) -tungsten (W) -phosphorus (P) alloy. Here, cobalt-based alloys and nickel-based alloys are refractory metals, and in the wavelength region of excimer laser light used for impurity activation, the reflectance is lower than the silicon region into which impurities are implanted. Since it covers the surface including the copper wiring side surface, it has a high light absorption effect and also has an effect of suppressing junction defects that tend to occur at the end of the gate electrode.
[0036]
Next, a second embodiment will be described.
In the first embodiment described above, the copper diffusion
[0037]
In the step shown in FIG. 4A, the
[0038]
The process shown in FIG. 4B is the same as the process shown in FIGS. 1D and 2A, and a copper diffusion
[0039]
The process shown in FIG. 4C is the same as the process shown in FIG. 2B, and after removing the
[0040]
In the step shown in FIG. 4D, the copper diffusion
In the step shown in FIG. 5A, the gate electrode covered with the second copper diffusion
As a mask, the
[0041]
In the step shown in FIG. 5B, an electroless plating method is used to further deposit a layer thickness corresponding to the LDD length on the second copper
[0042]
In the step shown in FIG. 5C, after the interlayer insulating
[0043]
According to the second embodiment described above, the length of the low-
[0044]
Next, a third embodiment will be described.
In the second embodiment described above, the copper diffusion
[0045]
In the step shown in FIG. 10A, the
[0046]
The process shown in FIG. 10B is the same as the process shown in FIGS. 4D and 2A, and a copper diffusion
The process shown in FIG. 10C is the same as the process shown in FIG. 5B, and after removing the
[0047]
In the step shown in FIG. 10D, the
[0048]
In the step shown in FIG. 11A, a layer thickness corresponding to the LDD length is further deposited on the second copper diffusion
[0049]
In the step shown in FIG. 11B, after performing a heat treatment step such as laser annealing, flash lamp annealing, rapid thermal annealing (RTA), etc., the gate electrode covered with the first copper diffusion
[0050]
In the step shown in FIG. 11C, an
[0051]
According to the above third embodiment, the length of the low-
[0052]
Next, a first modification of the method for forming the
In the step shown in FIG. 6A, as in the step shown in FIG. 1A, the
[0053]
In the step shown in FIG. 6B, a mask pattern of the
[0054]
In the step shown in FIG. 6C, after removing the
[0055]
The subsequent manufacturing process shifts to the process shown in FIG. 2B in the first embodiment, and shifts to the process shown in FIG. 5A in the second embodiment. According to this first modification, by providing the
[0056]
A second modification will be described.
In the step shown in FIG. 7A, as in the step shown in FIG. 1A, a
[0057]
As shown in FIG. 7B, a mask made of a
In the step shown in FIG. 7C, the metal
[0058]
Although different from the manufacturing process of each embodiment described above, the
[0059]
According to the first modification, when the
In the above-described embodiment, the step of performing low-concentration or high-concentration impurities after etching the copper diffusion
[0060]
In addition, the thin film transistor manufacturing method in the first, second, and third embodiments described above can be easily applied to a thin film transistor manufacturing method used for a liquid crystal display device, an EL display device, or the like.
[0061]
Although specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, in the first, second, and third embodiments, copper is taken as an example of the electrode material. However, the present invention is not limited to this, and alloys including copper and other metals may be applied.
[0062]
Therefore, according to the method for manufacturing a thin film transistor of the present invention, the method is a method for manufacturing a thin film transistor having a GOLD structure in which the number of steps is short and the uniformity on the source side and the drain side is low. Furthermore, a highly reliable gate electrode made of copper surrounded by a metal diffusion prevention layer can be formed, and a copper wiring layer and a copper diffusion prevention cover layer can be selectively formed. Removal and disposal are suppressed, and wiring materials can be saved.
[0063]
Next, as a fourth embodiment, FIGS. 8A and 8B illustrate an example in which the thin film transistor of the present invention is used for a driver circuit of a liquid crystal display device or a transistor connected to a pixel electrode.
The liquid
[0064]
A plurality of
In addition, one end of each of the signal wirings 35 is connected to a signal line driving circuit 38 via a terminal (not shown) of a plurality of signal wirings 35 provided at one end edge of the rear
[0065]
The scanning
[0066]
A single film-like
[0067]
A polarizing plate (not shown) is provided outside the pair of
[0068]
FIG. 9 shows a specific structural example of a thin film transistor used in the pixel circuit of the liquid crystal display device described above. In this example, the thin film transistor shown in FIG. 3D in the first embodiment described above is used.
The thin film transistor is formed on the
[0069]
As described above, the thin film transistor of the present invention can be easily used for a driver circuit of a display device typified by a liquid crystal display device or an EL device or a transistor connected to a pixel electrode.
[0070]
In the above embodiment, the formation of the source region and the drain region has been described with respect to the step of implanting a high concentration of impurities using the metal diffusion prevention cover layer provided to cover the surface of the gate electrode as a mask. One of the drain regions may be formed by implanting a high concentration of impurities using the metal diffusion prevention cover layer as a mask.
[0071]
【The invention's effect】
As described above in detail, according to the present invention, by using a low resistance metal wiring made of copper or the like on a large area substrate, variation in LDD length is reduced, and the manufacturing cost is reduced by reducing the number of manufacturing steps. Realized thin film transistorOfManufacturing method and display device including the thin film transistorSetA manufacturing method can be provided.
[Brief description of the drawings]
FIG. 1 is a process diagram for explaining a thin film transistor manufacturing method according to a first embodiment of the thin film transistor manufacturing method of the present invention;
FIG. 2 is a process diagram for explaining the thin film transistor manufacturing method according to the first embodiment following FIG. 1;
FIG. 3 is a process diagram for describing the manufacturing method of the thin film transistor according to the first embodiment following FIG. 2;
FIG. 4 is a process diagram for explaining a thin film transistor manufacturing method according to a second embodiment of the thin film transistor manufacturing method of the present invention;
FIG. 5 is a process diagram for explaining the manufacturing method of the thin film transistor according to the second embodiment following FIG. 4;
FIG. 6 is a process diagram for describing a first modification.
FIG. 7 is a process diagram for describing a second modification.
FIG. 8 is a diagram for explaining an example in which a thin film transistor of the present invention is used in a driving circuit of a liquid crystal display device as a third embodiment.
FIG. 9 is a diagram illustrating a specific structural example of a thin film transistor used in a driving circuit of a liquid crystal display device according to a third embodiment.
FIG. 10 is a process diagram for explaining a thin film transistor manufacturing method according to a third embodiment of the thin film transistor manufacturing method of the present invention.
FIG. 11 is a process diagram for describing the manufacturing method of the thin film transistor according to the third embodiment following FIG. 10;
[Explanation of symbols]
DESCRIPTION OF
Claims (9)
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、
前記マスクパターンを除去した後、前記金属層をマスクとして、前記金属拡散防止下地層をエッチングする第5工程と、
前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第6工
程と、
無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第7工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第8工程と、
前記注入された不純物を活性化する第9工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the metal diffusion prevention underlayer, and the inside of the groove is formed using an electroless plating method. A fourth step of selectively providing the metal layer on
A fifth step of etching the metal diffusion preventing underlayer using the metal layer as a mask after removing the mask pattern ;
A sixth step of implanting low-concentration impurities into the semiconductor layer using the metal layer as a mask;
A seventh step of providing a first metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by an electroless plating method ;
Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer An eighth step of performing
A ninth step of activating the implanted impurities;
A method for manufacturing a thin film transistor having a GOLD structure , comprising:
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上へ金属シード層を設ける第4工程と、
前記金属シード層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法又は電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第5工程と、
前記マスクパターンを除去した後、前記金属層又は前記金属層上に設けたフォトレジスト層をマスクとして、前記金属シード層及び前記金属拡散防止下地層をエッチングする第6工程と、
前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第7工程と、
無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第8工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第9工程と、
前記注入された不純物を活性化する第10工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A fourth step of providing a metal seed layer on the metal diffusion prevention underlayer;
On the metal seed layer, a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed, using the electroless plating method or the electrolytic plating method. A fifth step of selectively providing the metal layer in the groove;
A sixth step of etching the metal seed layer and the metal diffusion prevention underlayer using the metal layer or the photoresist layer provided on the metal layer as a mask after removing the mask pattern;
A seventh step of implanting low concentration impurities into the semiconductor layer using the metal layer as a mask;
An eighth step of providing a first metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by an electroless plating method ;
Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer A ninth step of performing
A tenth step of activating the implanted impurities;
A method for manufacturing a thin film transistor having a GOLD structure , comprising:
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成する第4工程と、
無電解メッキ法を用いて前記溝内に選択的に金属シード層を設ける第5工程と、
無電解メッキ法又は電解メッキ法を用いて前記金属シード層上に選択的に前記金属層を設ける第6工程と、
前記マスクパターンを除去した後、前記金属層をマスクとして、前記金属拡散防止下地層をエッチングする第7工程と、
前記金属層をマスクとして、前記半導体層へ低濃度の不純物注入を行う第8工程と、
無電解メッキ法により選択的に前記金属層の表面を覆うように第1の金属拡散防止カバー層を設ける第9工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第10工程と、
前記注入された不純物を活性化する第11工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A fourth step of forming a mask pattern having a groove made of a photosensitive resin and opened to expose a region for forming a gate electrode on the metal diffusion prevention base layer;
A fifth step of selectively providing a metal seed layer in the groove using an electroless plating method;
A sixth step of selectively providing the metal layer on the metal seed layer using an electroless plating method or an electrolytic plating method;
After removing the mask pattern, the metal layer as a mask, a seventh step of etching the pre Symbol metal diffusion preventing underlayer,
An eighth step of implanting low-concentration impurities into the semiconductor layer using the metal layer as a mask;
A ninth step of providing a first metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by an electroless plating method;
Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer A tenth step of performing
An eleventh step of activating the implanted impurities;
A method for manufacturing a thin film transistor having a GOLD structure, comprising:
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、
前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第5工程と、
前記第2の金属拡散防止カバー層をマスクとして、前記金属拡散防止層をエッチングする第6工程と、
前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第7工程と、
前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第8工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止層カバーの層厚分の幅をあけて高濃度の不純物注入を行う第9工程と、
前記注入された不純物を活性化する第10工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the metal diffusion prevention underlayer, and the inside of the groove is formed using an electroless plating method. A fourth step of selectively providing the metal layer on
A fifth step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern ;
A sixth step of etching the metal diffusion prevention layer using the second metal diffusion prevention cover layer as a mask ;
A seventh step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask;
An eighth step of further providing a first metal diffusion prevention cover layer selectively on the second metal diffusion prevention cover layer by an electroless plating method ;
Using the first metal diffusion prevention cover layer as a mask, the semiconductor layer into which the low-concentration impurity is implanted has a width corresponding to the thickness of the first metal diffusion prevention layer cover and is implanted with a high-concentration impurity. A ninth step of performing
A tenth step of activating the implanted impurities;
A method for manufacturing a thin film transistor having a GOLD structure , comprising:
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上へ金属シード層を設ける第4工程と、
前記金属シード層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法又は電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第5工程と、
前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第6工程と、
前記第2の金属拡散防止カバー層をマスクとして、前記金属シード層及び前記金属拡散防止層をエッチングする第7工程と、
前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第8工程と、
前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第9工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第10工程と、
前記注入された不純物を活性化する第11工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A fourth step of providing a metal seed layer on the metal diffusion prevention underlayer;
On the metal seed layer, a mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed, using the electroless plating method or the electrolytic plating method. A fifth step of selectively providing the metal layer in the groove;
A sixth step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern ;
A seventh step of etching the metal seed layer and the metal diffusion prevention layer using the second metal diffusion prevention cover layer as a mask ;
An eighth step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask;
A ninth step of further providing a first metal diffusion prevention cover layer selectively by an electroless plating method on the second metal diffusion prevention cover layer;
Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation is performed on the semiconductor layer into which the low-concentration impurity has been implanted, with a width corresponding to the thickness of the first metal diffusion prevention cover layer. A tenth step of performing
An eleventh step of activating the implanted impurities;
A method for manufacturing a thin film transistor having a GOLD structure , comprising:
前記半導体層上にゲート絶縁層を設ける第2工程と、
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、
前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成する第4工程と、
無電解メッキ法を用いて前記溝内に選択的に金属シード層を設ける第5工程と、
無電解メッキ法又は電解メッキ法を用いて前記金属シード層上に選択的に前記金属層を設ける第6工程と、
前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第7工程と、
前記第2の金属拡散防止カバー層をマスクとして、前記金属拡散防止下地層をエッチングする第8工程と、
前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第9工程と、
前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第10工程と、
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第11工程と、
前記注入された不純物を活性化する第12工程と、
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A first step of providing a semiconductor layer;
A second step of providing a gate insulating layer on the semiconductor layer;
A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
A fourth step of forming a mask pattern having a groove made of a photosensitive resin and opened to expose a region for forming a gate electrode on the metal diffusion prevention base layer;
A fifth step of selectively providing a metal seed layer in the groove using an electroless plating method;
A sixth step of selectively providing the metal layer on the metal seed layer using an electroless plating method or an electrolytic plating method;
A seventh step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern ;
An eighth step of etching the metal diffusion prevention base layer using the second metal diffusion prevention cover layer as a mask;
A ninth step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask;
A tenth step of further providing a first metal diffusion prevention cover layer selectively on the second metal diffusion prevention cover layer by an electroless plating method;
Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer An eleventh step of performing
A twelfth step of activating the implanted impurities;
Method for manufacturing a thin film transistor having a GOLD structure characterized by it to contain.
前記半導体層上にゲート絶縁層を設ける第2工程と、A second step of providing a gate insulating layer on the semiconductor layer;
前記ゲート絶縁層上に金属拡散防止下地層を設ける第3工程と、A third step of providing a metal diffusion prevention base layer on the gate insulating layer;
前記金属拡散防止下地層上に、感光性樹脂からなり、ゲート電極を形成するための領域が露出するように開口された溝を有するマスクパターンを形成し、無電解メッキ法を用いて前記溝内に選択的に前記金属層を設ける第4工程と、A mask pattern made of a photosensitive resin and having a groove opened so as to expose a region for forming a gate electrode is formed on the metal diffusion prevention underlayer, and the inside of the groove is formed using an electroless plating method. A fourth step of selectively providing the metal layer on
前記マスクパターンを除去した後、無電解メッキ法により選択的に前記金属層の表面を覆うように第2の金属拡散防止カバー層を設ける第5工程と、A fifth step of providing a second metal diffusion prevention cover layer so as to selectively cover the surface of the metal layer by electroless plating after removing the mask pattern;
前記第2の金属拡散防止カバー層をマスクとして前記半導体層へ低濃度の不純物注入を行う第6工程と、A sixth step of implanting low-concentration impurities into the semiconductor layer using the second metal diffusion prevention cover layer as a mask;
前記第2の金属拡散防止カバー層上に更に、無電解メッキ法により選択的に第1の金属拡散防止カバー層を設ける第7工程と、A seventh step of further providing a first metal diffusion prevention cover layer selectively on the second metal diffusion prevention cover layer by an electroless plating method;
前記第1の金属拡散防止カバー層をマスクとして、前記低濃度の不純物が注入されている半導体層へ、この第1の金属拡散防止カバー層の層厚分の幅をあけて高濃度の不純物注入を行う第8工程と、Using the first metal diffusion prevention cover layer as a mask, high-concentration impurity implantation into the semiconductor layer into which the low-concentration impurity has been implanted with a width corresponding to the thickness of the first metal diffusion prevention cover layer An eighth step of performing
前記注入された不純物を活性化する第9工程と、A ninth step of activating the implanted impurities;
前記第1の金属拡散防止カバー層をマスクとして、前記金属拡散防止層をエッチングする第10工程と、A tenth step of etching the metal diffusion prevention layer using the first metal diffusion prevention cover layer as a mask;
を含むことを特徴とするGOLD構造を有する薄膜トランジスタの製造方法。A method for manufacturing a thin film transistor having a GOLD structure, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003199080A JP4434644B2 (en) | 2003-07-18 | 2003-07-18 | Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003199080A JP4434644B2 (en) | 2003-07-18 | 2003-07-18 | Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005038994A JP2005038994A (en) | 2005-02-10 |
JP4434644B2 true JP4434644B2 (en) | 2010-03-17 |
Family
ID=34208644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003199080A Expired - Fee Related JP4434644B2 (en) | 2003-07-18 | 2003-07-18 | Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4434644B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150033407A (en) * | 2013-09-24 | 2015-04-01 | 엘지디스플레이 주식회사 | Forming method of metal line and array substrate applying the same and method of fabricating the array substrate |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100847846B1 (en) | 2007-08-01 | 2008-07-23 | 실리콘 디스플레이 (주) | Method of manufacturing thin film transistor using local doping |
JP5278129B2 (en) * | 2009-04-14 | 2013-09-04 | セイコーエプソン株式会社 | Electro-optical device and electronic apparatus |
US8569754B2 (en) * | 2010-11-05 | 2013-10-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR102517127B1 (en) * | 2015-12-02 | 2023-04-03 | 삼성디스플레이 주식회사 | Thin film transistor array panel and organic light emitting diode display including the same |
KR102550605B1 (en) | 2018-08-28 | 2023-07-04 | 에스케이하이닉스 주식회사 | Semiconductor device and manufacturing method thereof |
CN115376925B (en) * | 2022-10-26 | 2023-02-03 | 深圳市美浦森半导体有限公司 | A trench gate MOSFET device and its manufacturing method |
-
2003
- 2003-07-18 JP JP2003199080A patent/JP4434644B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150033407A (en) * | 2013-09-24 | 2015-04-01 | 엘지디스플레이 주식회사 | Forming method of metal line and array substrate applying the same and method of fabricating the array substrate |
KR102091400B1 (en) | 2013-09-24 | 2020-03-20 | 엘지디스플레이 주식회사 | Forming method of metal line and array substrate applying the same and method of fabricating the array substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2005038994A (en) | 2005-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5128091B2 (en) | Display device and manufacturing method thereof | |
US8067278B2 (en) | Semiconductor device and method for manufacturing the same | |
US7626125B2 (en) | Wiring, display device and method of manufacturing the same | |
JP4386978B2 (en) | Method for manufacturing semiconductor device | |
US7138715B2 (en) | Interconnect, interconnect forming method, thin film transistor, and display device | |
JP4485078B2 (en) | Method for manufacturing semiconductor device | |
US20030148561A1 (en) | Semiconductor device and manufacturing method thereof | |
US20020151120A1 (en) | Method of manufacturing a semiconductor device | |
US7755708B2 (en) | Pixel structure for flat panel display | |
JP2005166757A (en) | Wiring structure, wiring structure forming method, thin film transistor, thin film transistor forming method, and display device | |
US7071040B2 (en) | Method of fabricating thin film transistor | |
US7387920B2 (en) | Method of manufacturing thin film transistor array panel | |
US7804096B2 (en) | Semiconductor device comprising planarized light-shielding island films for thin-film transistors | |
JP4434644B2 (en) | Thin film transistor manufacturing method and display device manufacturing method including the thin film transistor | |
JP4209619B2 (en) | Method for manufacturing semiconductor device | |
EP1017108B1 (en) | Semiconductor devices and methods of manufacturing the same | |
JP4785258B2 (en) | Semiconductor device and manufacturing method thereof | |
US6534350B2 (en) | Method for fabricating a low temperature polysilicon thin film transistor incorporating channel passivation step | |
JP2001284601A (en) | Semiconductor device and method of manufacturing the same | |
JP4080168B2 (en) | Method for manufacturing semiconductor device | |
US20060267015A1 (en) | Thin film transistor, production method thereof and liquid crystal display device | |
JP2004356216A (en) | Thin film transistor, display device, and method of manufacturing them | |
JP4495428B2 (en) | Method for forming thin film transistor | |
JP3180499B2 (en) | Method for manufacturing semiconductor device | |
US8067771B2 (en) | Semiconductor device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091007 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091021 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4434644 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |