JP4434051B2 - Window fogging detector - Google Patents
Window fogging detector Download PDFInfo
- Publication number
- JP4434051B2 JP4434051B2 JP2005077279A JP2005077279A JP4434051B2 JP 4434051 B2 JP4434051 B2 JP 4434051B2 JP 2005077279 A JP2005077279 A JP 2005077279A JP 2005077279 A JP2005077279 A JP 2005077279A JP 4434051 B2 JP4434051 B2 JP 4434051B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- relative humidity
- fogging
- sensor
- window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
本発明は、窓曇り検出装置に関するもので、車両用空調装置の制御に用いて好適なものである。 The present invention relates to a window fogging detection apparatus, and is suitable for use in controlling a vehicle air conditioner.
従来、車両用の窓曇り検出装置は主に次の2つに分類できる。第1は、ガラス温度とその周辺空気の露点温度との比較から窓曇りを推定する方式(以後湿度検出方式と呼ぶ)である。ここで、露点温度は、車室内に設置された湿度センサの出力と空気温度センサの出力とから計算式で求める。ガラス温度は、ガラス内面に配置された温度センサにて接触検出する方式、赤外線センサで非接触検出する方式、車外温度・車速・車室内温度などから計算式で推定する方式等がある。 Conventionally, a window fogging detection device for a vehicle can be classified mainly into the following two types. The first is a method for estimating window fogging (hereinafter referred to as a humidity detection method) from a comparison between the glass temperature and the dew point temperature of the surrounding air. Here, the dew point temperature is obtained by a calculation formula from the output of the humidity sensor installed in the passenger compartment and the output of the air temperature sensor. The glass temperature includes a method of detecting contact with a temperature sensor disposed on the inner surface of the glass, a method of detecting non-contact with an infrared sensor, and a method of estimating with a calculation formula from the outside temperature, vehicle speed, vehicle interior temperature, and the like.
このような湿度検出方式の中には、ガラス温度と露点温度とを比較するのでなく、室内空気の相対湿度を、ガラス温度における相対湿度(以後、ガラス表面相対湿度と呼ぶ)に換算して、曇り判定をしているものもあり、以下この方式で説明を進める。 In such a humidity detection method, instead of comparing the glass temperature and the dew point temperature, the relative humidity of the room air is converted to the relative humidity at the glass temperature (hereinafter referred to as the glass surface relative humidity), Some of them are cloudy, and the explanation will be made in this manner.
第2は、光学センサによりガラス内面に生じた曇りを非接触に検出する方式(以後、光学方式と呼ぶ)である。この光学方式は、受光素子および発光素子を備え、窓曇りによる直接反射光の低減を検知するもの(例えば、特許文献1参照)と、窓曇りによる散乱反射光の増加を検知するもの(例えば、特許文献2、3参照)がある。さらに、光学方式の中には画像処理により曇りが生じたことを判定する方式もある(例えば、特許文献4参照)。
The second method is a non-contact method (hereinafter referred to as an optical method) for detecting fogging generated on the inner surface of the glass by an optical sensor. This optical system includes a light receiving element and a light emitting element, and detects a decrease in directly reflected light due to window fogging (see, for example, Patent Document 1), and detects an increase in scattered reflected light due to window fogging (for example,
これらの従来技術において、窓曇り検出の狙いは次の3つの効果a〜cを発揮することにある。 In these prior arts, the aim of window fogging detection is to exhibit the following three effects a to c.
(a)空調用冷凍サイクルの除湿運転(圧縮機の運転)を車両の窓が曇らない範囲で低減し、それによって、除湿運転の稼働率を低減して圧縮機動力の低減を図る。これは、圧縮機を駆動する車両エンジンの燃費低減に貢献できる。 (A) The dehumidifying operation (compressor operation) of the air-conditioning refrigeration cycle is reduced within a range where the vehicle window is not fogged, thereby reducing the operating rate of the dehumidifying operation and reducing the compressor power. This can contribute to a reduction in fuel consumption of the vehicle engine that drives the compressor.
(b) 車両の窓曇り判定を行って、車両用空調装置の窓曇り防止性能を高める制御を行うことにより、車両の窓曇りを防止する。 (B) The window fogging of the vehicle is prevented by determining the window fogging of the vehicle and performing control to improve the window fogging prevention performance of the vehicle air conditioner.
(c)冬期の低温時には、車両用空調装置における吸い込み空気の内気比率を窓が曇らない範囲で増大することにより、換気熱損失を低減して暖房性能を向上する。
ところで、前者の湿度検出方式では、湿度センサの検出精度のばらつきと耐久劣化があるため、窓曇りが生じないように制御するためには、窓の曇り判定において湿度センサの出力値に対して大きな安全率を設定する必要がある。この結果、上記aの圧縮機動力の低減効果および上記cの換気熱損失低減効果を十分発揮できない。 By the way, in the former humidity detection method, since there are variations in detection accuracy and durability deterioration of the humidity sensor, in order to control so that window fogging does not occur, it is larger than the output value of the humidity sensor in the window fogging determination. It is necessary to set a safety factor. As a result, the compressor power reduction effect a and the ventilation heat loss reduction effect c cannot be sufficiently exhibited.
また、後者の光学方式では、湿度検出方式に比較して検出精度が高いので、窓の曇り判定の安全率を大きくする必要がなく、上記a、cの各効果を十分に発揮できるが、その反面、窓ガラスのうちセンサを設置した部位の曇りしか検出しないので、センサ設置部位以外の領域では窓曇りが発生するリスクがある。また、窓曇りが発生し始める位置は車両により異なるため、センサ設置部位を車両開発時に決める適合作業が煩雑となるなどの不具合がある。 In the latter optical method, since the detection accuracy is higher than the humidity detection method, it is not necessary to increase the safety factor of the fogging determination of the window, and the above effects a and c can be sufficiently exhibited. On the other hand, since only clouding of the part where the sensor is installed is detected in the window glass, there is a risk that window fogging occurs in an area other than the sensor installation part. In addition, since the position at which window fogging starts varies depending on the vehicle, there is a problem such that the adaptation work for determining the sensor installation site during vehicle development becomes complicated.
本発明は上記点に鑑みて、湿度検出方式の窓曇り検出装置において、湿度検出を長期間にわたり精度よく行うことができるようにすることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to enable humidity detection to be performed accurately over a long period of time in a humidity detection type window fogging detection apparatus.
上記目的を達成するため、請求項1に記載の発明では、窓ガラス(12)の曇りを光学的に検出する光学式曇り検出センサ(15、16)と、
室内側空気の相対湿度を検出する湿度センサ(17)と、
前記室内側空気の温度を検出する空気温度センサ(18)と、
前記窓ガラス(12)の温度を検出するガラス温度センサ(23)と、
前記湿度センサ(17)の出力値に基づいて前記室内側空気の相対湿度を所定の演算式にて演算する相対湿度演算手段(20b、S20)と、
前記光学式曇り検出センサ(15、16)の出力値に基づいて前記窓ガラス(12)の曇りが判定されたときに、前記相対湿度演算手段(20b、S20)の前記演算式を補正するセンサ出力補正手段(20e、S90)と、
前記相対湿度演算手段(20b、S20)の演算値と、前記空気温度センサ(18)および前記ガラス温度センサ(23)の出力値とに基づいてガラス表面相対湿度(RHw)を演算するガラス表面相対湿度演算手段(20f、S50)とを具備し、
前記センサ出力補正手段(20e、S90)は、前記光学式曇り検出センサ(15、16)の出力値に基づいて前記窓ガラス(12)の曇りが判定されたときに、前記相対湿度演算手段(20b、S20)の演算値が前記ガラス表面相対湿度(RHw)=100%における前記室内側空気温度での相対湿度となるように前記演算式を補正することを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, an optical fog detection sensor (15, 16) for optically detecting fogging of the window glass (12),
A humidity sensor (17) for detecting the relative humidity of the indoor air;
An air temperature sensor (18) for detecting the temperature of the indoor air;
A glass temperature sensor (23) for detecting the temperature of the window glass (12);
Relative humidity calculating means (20b, S20) for calculating the relative humidity of the indoor air based on an output value of the humidity sensor (17) using a predetermined calculation formula;
A sensor that corrects the calculation formula of the relative humidity calculation means (20b, S20) when the fogging of the window glass (12) is determined based on the output value of the optical fog detection sensor (15, 16). Output correction means (20e , S90) ;
Glass surface relative for calculating the glass surface relative humidity (RHw) based on the calculated value of the relative humidity calculating means (20b, S20) and the output values of the air temperature sensor (18) and the glass temperature sensor (23). Humidity calculating means (20f, S50) ,
The sensor output correcting means (20e, S90) is configured to calculate the relative humidity calculating means (when the fogging of the window glass (12) is determined based on the output value of the optical fogging detection sensor (15, 16). 20b, S20), wherein the arithmetic expression is corrected so that the relative humidity at the indoor air temperature when the glass surface relative humidity (RHw) = 100% is obtained.
これによると、窓ガラスの曇り有無に直結する窓ガラス表面相対湿度(RHw)をガラス表面相対湿度演算手段(20f、S50)にて演算できるので、この窓ガラス表面相対湿度(RHw)の演算値を用いて空調の防曇制御を実行できる。
ところで、窓ガラス(12)が曇るときは、窓ガラス(12)の表面相対湿度(RHw)が100%に到達しているときである。そして、窓ガラス(12)の曇りは光学式曇り検出センサ(15、16)の出力値に基づいて正確に判定できる。
According to this, since the window surface relative humidity (RHw) directly connected to the presence or absence of fogging of the window glass can be calculated by the glass surface relative humidity calculating means (20f, S50), the calculated value of the window glass surface relative humidity (RHw). Can be used to perform anti-fogging control for air conditioning.
By the way, when the window glass (12) is cloudy, the surface relative humidity (RHw) of the window glass (12) reaches 100%. The fogging of the window glass (12) can be accurately determined based on the output values of the optical fogging detection sensors (15, 16).
従って、請求項1によると、このガラス表面相対湿度(RHw)=100%を基準としてセンサ出力補正手段(20e、S90)により相対湿度演算手段(20b、S20)の演算式を補正することで、室内側空気の相対湿度の演算値を適正値となるように補正できる。これによって、湿度センサ(17)の計測ばらつきや耐久劣化を自己補正することができる。その結果、計測ばらつきや耐久劣化の影響を排除して、室内側空気の相対湿度検出を長期間にわたり精度よく行うことができる。
Therefore, according to
なお、光学方式のみによると、窓ガラスのうちセンサを設置した部位の曇りしか検出できないという不具合があるが、請求項1の発明は基本的には湿度検出方式の窓曇り検出装置であるから、このような不具合が発生せず、窓ガラス全域の窓曇りを適切に検出できる。
In addition, according to only the optical method, there is a problem that only the cloudy part of the window glass where the sensor is installed can be detected, but the invention of
請求項2に記載の発明では、請求項1に記載の窓曇り検出装置において、前記光学式曇り検出センサは発光素子(15)と受光素子(16)とにより構成され、
前記発光素子(15)、前記受光素子(16)、前記湿度センサ(17)、前記空気温度センサ(18)および前記ガラス温度センサ(23)が、前記窓ガラス(12)の内面(12a)上で一体構造として構成されることを特徴とする。
In invention of
The light emitting element (15), the light receiving element (16), the humidity sensor (17), the air temperature sensor (18) and the glass temperature sensor (23) are on the inner surface (12a) of the window glass (12). It is characterized by being configured as an integral structure.
これにより、各種センサ類を一体化して、車両への搭載作業等を容易に行うことができる。 Thereby, various sensors can be integrated and the mounting work etc. to a vehicle can be performed easily.
請求項3に記載の発明では、請求項2に記載の窓曇り検出装置において、前記発光素子(15)、前記受光素子(16)、前記湿度センサ(17)、および前記空気温度センサ(18)が、同一の回路基板(14)上に配置されることを特徴とする。
In the invention described in
これにより、各種センサ類を同一の回路基板(14)上に一体化できる。 Thereby, various sensors can be integrated on the same circuit board (14).
請求項4に記載の発明では、請求項2または3に記載の窓曇り検出装置において、前記窓ガラス(12)の内面(12a)上に配置され、かつ、前記窓ガラス(12)の内側空間との連通用開口部(11a)が形成されたケース(11)を具備し、
前記1個のケース(11)内に、前記発光素子(15)、前記受光素子(16)、前記湿度センサ(17)、前記空気温度センサ(18)および前記ガラス温度センサ(23)が収容されることを特徴とする。
In invention of
The light emitting element (15), the light receiving element (16), the humidity sensor (17), the air temperature sensor (18), and the glass temperature sensor (23) are accommodated in the one case (11). It is characterized by that.
これによると、各種センサ類を共通の1個のケース(11)内に収容できる。 According to this, various sensors can be accommodated in one common case (11).
請求項5に記載の発明では、請求項4に記載の窓曇り検出装置において、前記発光素子(15)および前記受光素子(16)と前記窓ガラス(12)の内面(12a)との間隔を規定する位置決め手段(11b)が前記ケース(11)に設けられていることを特徴とする。 According to a fifth aspect of the present invention, in the window fogging detecting device according to the fourth aspect , the distance between the light emitting element (15) and the light receiving element (16) and the inner surface (12a) of the window glass (12) is set. The positioning means (11b) for defining is provided in the case (11).
これによると、受発光素子(15、16)と窓ガラス(12)の内面(12a)との間隔を一定に規定して、光学式曇り検出の精度を確保できる。 According to this, the accuracy of optical fog detection can be ensured by defining the distance between the light emitting / receiving elements (15, 16) and the inner surface (12a) of the window glass (12) constant.
請求項6に記載の発明では、請求項2ないし5のいずれか1つに記載の窓曇り検出装置において、前記窓ガラス(12)の内面(12a)上に熱伝導性および光反射性に優れた遮光フィルム(13)が貼り付けられ、
前記発光素子(15)からの光が前記遮光フィルム(13)で反射して前記受光素子(16)に入射されるようにしたことを特徴とする。
In invention of
The light from the light emitting element (15) is reflected by the light shielding film (13) and is incident on the light receiving element (16).
これによると、遮光フィルム(13)は熱伝導性に優れているから、遮光フィルム(13)の温度は窓ガラス(12)の内面温度とほぼ同一となるから、遮光フィルム(13)の表面上に窓ガラス(12)と同一温度条件で曇りが発生する。そして、窓ガラス(12)を通過する外乱光が受光素子(16)に入射されることを遮光フィルム(13)により遮断できるので、受発光素子(15、16)による曇り検出の精度を向上できる。 According to this, since the light shielding film (13) is excellent in thermal conductivity, the temperature of the light shielding film (13) is almost the same as the inner surface temperature of the window glass (12). Clouding occurs under the same temperature conditions as the window glass (12). Since the disturbance light passing through the window glass (12) can be blocked by the light shielding film (13) from being incident on the light receiving element (16), the accuracy of fog detection by the light receiving and emitting elements (15, 16) can be improved. .
請求項7に記載の発明のように、請求項6に記載の窓曇り検出装置において、前記ガラス温度センサ(23)は前記遮光フィルム(13)上に一体配置される構成とすることができる。 As in a seventh aspect of the invention, in the window fogging detecting device of the sixth aspect , the glass temperature sensor (23) can be integrally disposed on the light shielding film (13).
請求項8に記載の発明では、請求項2ないし7のいずれか1つに記載の窓曇り検出装置において、前記発光素子(15)を所定の時間間隔にてパルス発光させるようにしたことを特徴とする。 According to an eighth aspect of the present invention, in the window fogging detecting device according to any one of the second to seventh aspects, the light emitting element (15) emits pulses at predetermined time intervals. And
これによると、発光素子(15)の発熱による周辺雰囲気温度の上昇を抑制できる。 According to this, an increase in ambient ambient temperature due to heat generation of the light emitting element (15) can be suppressed.
請求項9に記載の発明では、窓ガラス(12)の曇りを光学的に検出する光学式曇り検出センサ(15、16)と、
室内側空気の相対湿度を検出する湿度センサ(17)と、
前記室内側空気の温度を検出する空気温度センサ(18)と、
前記湿度センサ(17)の出力値に基づいて前記室内側空気の相対湿度を所定の演算式にて演算する相対湿度演算手段(20b、S20)とを具備し、
前記光学式曇り検出センサは赤外線発光素子(15)と赤外線受光素子(16)とにより構成され、
前記赤外線発光素子(15)を所定の時間間隔にてパルス発光させるようにし、
前記赤外線発光素子(15)の発光時には、前記赤外線受光素子(16)の受光量により前記窓ガラス(12)の曇りを検出し、一方、前記赤外線発光素子(15)の非発光時には前記赤外線受光素子(16)の受光量により前記窓ガラス(12)の温度を検出するようにし、
さらに、前記赤外線受光素子(16)が前記窓ガラス(12)の曇りを検出したときに、前記相対湿度演算手段(20b、S20)の前記演算式を補正するセンサ出力補正手段(20e、S90)と、
前記相対湿度演算手段(20b、S20)の演算値および前記空気温度センサ(18)の出力値と、前記赤外線受光素子(16)により検出されるガラス温度の出力値とに基づいてガラス表面相対湿度(RHw)を演算するガラス表面相対湿度演算手段(20f、S50)とを具備し、
前記センサ出力補正手段(20e、S90)は、前記赤外線受光素子(16)が前記窓ガラス(12)の曇りを検出したときに、前記相対湿度演算手段(20b、S20)の演算値が前記ガラス表面相対湿度(RHw)=100%における前記室内側空気温度での相対湿度となるように前記演算式を補正することを特徴とする。
In the invention according to claim 9 , an optical fogging sensor (15, 16) for optically detecting fogging of the window glass (12);
A humidity sensor (17) for detecting the relative humidity of the indoor air;
An air temperature sensor (18) for detecting the temperature of the indoor air ;
Relative humidity calculation means (20b, S20) for calculating the relative humidity of the indoor air based on an output value of the humidity sensor (17) using a predetermined calculation formula ,
The optical clouding detection sensor includes an infrared light emitting element (15) and an infrared light receiving element (16).
The infrared light emitting element (15) is caused to emit pulse light at a predetermined time interval,
When the infrared light emitting element (15) emits light, clouding of the window glass (12) is detected based on the amount of light received by the infrared light receiving element (16). On the other hand, when the infrared light emitting element (15) does not emit light, the infrared light receiving element is received. The temperature of the window glass (12) is detected by the amount of light received by the element (16),
Further, sensor output correction means (20e, S90) that corrects the arithmetic expression of the relative humidity calculation means (20b, S20) when the infrared light receiving element (16) detects fogging of the window glass (12). When,
Glass surface relative humidity based on the calculated value of the relative humidity calculating means (20b, S20), the output value of the air temperature sensor (18), and the output value of the glass temperature detected by the infrared light receiving element (16). Glass surface relative humidity calculating means (20f, S50 ) for calculating (RHw) ,
The sensor output correcting means (20e, S90) has a calculated value of the relative humidity calculating means (20b, S20) when the infrared light receiving element (16) detects fogging of the window glass (12). The arithmetic expression is corrected so that the relative humidity at the indoor air temperature when the surface relative humidity (RHw) = 100% is obtained .
これによると、請求項1と同様に、センサ出力補正手段(20e、S90)により相対湿度演算手段(20b、S20)の演算式を補正することで、湿度センサ(17)の計測ばらつきや耐久劣化を自己補正することができるので、これら計測ばらつきや耐久劣化の影響を排除して、室内側空気の相対湿度検出を長期間にわたり精度よく検出できる。
そして、窓ガラスの曇り有無に直結する窓ガラス表面相対湿度(RHw)を演算できるので、この窓ガラス表面相対湿度(RHw)の演算値を用いて空調の防曇制御を実行できる。
According to this, as in the first aspect, the sensor output correction means (20e , S90) corrects the arithmetic expression of the relative humidity calculation means (20b, S20), thereby making it possible to measure variations and durability deterioration of the humidity sensor (17). Therefore, the relative humidity detection of indoor air can be detected accurately over a long period of time by eliminating the influence of these measurement variations and durability deterioration.
And since the window glass surface relative humidity (RHw) directly linked to the presence or absence of fogging of the window glass can be calculated, the defrost control of the air conditioning can be executed using the calculated value of the window glass surface relative humidity (RHw) .
しかも、光学式曇り検出センサを構成する赤外線発光素子(15)の発光時には、赤外線受光素子(16)の受光量により窓ガラス(12)の曇りを検出し、一方、赤外線発光素子(15)の非発光時には赤外線受光素子(16)の受光量により窓ガラス(12)の温度を検出するから、赤外線受光素子(16)に曇り検出機能の他に窓ガラス温度検出機能を兼務させることができる。従って、窓ガラス温度検出専用の温度センサを廃止できる。 Moreover, when the infrared light emitting element (15) constituting the optical fogging detection sensor emits light, the fogging of the window glass (12) is detected based on the amount of light received by the infrared light receiving element (16), while the infrared light emitting element (15) When the light is not emitted, the temperature of the window glass (12) is detected based on the amount of light received by the infrared light receiving element (16). Therefore, the infrared light receiving element (16) can also function as a window glass temperature detecting function in addition to the fogging detecting function. Therefore, a temperature sensor dedicated to window glass temperature detection can be eliminated.
請求項10に記載の発明では、内気導入口(33)と外気導入口(34)を開閉して内気と外気の吸い込みを切り替える内外気切替手段(35)と、
前記内気導入口(33)および前記外気導入口(34)を通して導入される空気を車室内へ向かって送風する送風手段(37)と、
前記送風手段(37)の送風空気を冷却する冷房用熱交換器(38)と、
前記送風手段(37)の送風空気を加熱する暖房用熱交換器(44)と、
前記冷房用熱交換器(38)および前記暖房用熱交換器(44)を通過して温度調整された空気を車室内へ吹き出す複数の吹出口(48、49、50)と、
前記複数の吹出口(48、49、50)を開閉して吹出モードを切り替える吹出モードドア(51、52、53)とを具備し、
前記複数の吹出口(48、49、50)には車両の前面窓ガラス(12)に向かって空気を吹き出すデフロスタ吹出口(48)が備えられており、
請求項1ないし9のいずれか1つに記載の窓曇り検出装置が前記前面窓ガラス(12)の内面に配置され、
前記ガラス表面相対湿度演算手段(20f、S50)の演算値に基づいて、前記内外気切替手段(35)による内外気切替制御、前記送風手段(37)による風量制御、および前記吹出モードドア(51、52、53)による吹出モード切替制御の少なくとも1つを実行する車両用空調装置を特徴としている。
In the invention according to
A blowing means (37) for blowing air introduced through the inside air introduction port (33) and the outside air introduction port (34) toward the vehicle interior;
A cooling heat exchanger (38) for cooling the air blown by the blowing means (37);
A heating heat exchanger (44) for heating the blown air of the blowing means (37);
A plurality of air outlets (48, 49, 50) for blowing out the air whose temperature is adjusted by passing through the cooling heat exchanger (38) and the heating heat exchanger (44);
A blow mode door (51, 52, 53) for switching the blow mode by opening and closing the plurality of blow outlets (48, 49, 50);
The plurality of air outlets (48, 49, 50) are provided with a defroster air outlet (48) for blowing air toward the front window glass (12) of the vehicle,
The window fogging detection device according to any one of
Based on the calculated value of the glass surface relative humidity calculating means (20f, S50), the inside / outside air switching control by the inside / outside air switching means (35), the air volume control by the air blowing means (37), and the blowing mode door (51 , 52, 53) is characterized by a vehicle air conditioner that executes at least one of the blowing mode switching control.
これによると、ガラス表面相対湿度に基づいて内外気切替制御、送風手段(37)の風量制御、および吹出モード切替制御の少なくとも1つを実行して、空調装置による車両窓ガラスの防曇制御を自動的に行うことができる。 According to this, at least one of the inside / outside air switching control, the air volume control of the blowing means (37), and the blowing mode switching control is executed based on the relative humidity on the glass surface, and the antifogging control of the vehicle window glass by the air conditioner is performed. It can be done automatically.
また、内外気切替制御に際して窓が曇らない範囲で内気比率が増大するように内外気吸い込みを切替制御することにより、換気熱損失を低減して暖房性能を向上できる。 In addition, when the inside / outside air suction control is performed so that the inside / outside air suction is switched so that the inside air ratio is increased in a range where the window is not fogged, the ventilation heat loss can be reduced and the heating performance can be improved.
請求項11に記載の発明では、請求項10に記載の車両用空調装置において、前記冷房用熱交換器(38)に冷媒を循環する圧縮機(40)を有し、
前記ガラス表面相対湿度(RHw)が所定範囲内となるように前記冷房用熱交換器(38)の冷却度合いの目標値を設定し、
前記冷房用熱交換器(38)の実際の冷却度合いが前記目標値となるように前記圧縮機(40)の能力を制御することを特徴とする。
In invention of
Setting a target value of the cooling degree of the cooling heat exchanger (38) so that the glass surface relative humidity (RHw) is within a predetermined range;
The capacity of the compressor (40) is controlled so that the actual cooling degree of the cooling heat exchanger (38) becomes the target value.
これによると、冷房用熱交換器(38)の冷却度合いを制御することにより、ガラス表面相対湿度を所定範囲に制御して車両窓ガラスの防曇制御を自動的に行うことができる。 According to this, by controlling the cooling degree of the cooling heat exchanger (38), the glass surface relative humidity can be controlled within a predetermined range, and the anti-fogging control of the vehicle window glass can be automatically performed.
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
(第1実施形態)
第1実施形態は窓曇り検出装置と、この窓曇り検出装置を用いた車両用空調装置に関するもので、図1は本実施形態による窓曇り検出装置を車両の窓ガラスの内面に装着した状態を示す概略断面図で、図2は図1の概略斜視図である。図3は第1実施形態における電気制御のシステム構成図である。
(First embodiment)
The first embodiment relates to a window fogging detection device and a vehicle air conditioner using the window fogging detection device. FIG. 1 shows a state in which the window fogging detection device according to this embodiment is mounted on the inner surface of a vehicle window glass. FIG. 2 is a schematic perspective view of FIG. FIG. 3 is a system configuration diagram of electrical control in the first embodiment.
最初に、図1、図2に基づいて窓曇り検出装置部分の具体例を説明する。窓曇り検出装置10は、樹脂等により成形されたケース11を有している。このケース11は高さの低い薄型の直方体状であって、底面部は全面的に開口した形状になっている。
First, a specific example of the window fogging detection device portion will be described with reference to FIGS. The window
ケース11の前面および背面の壁面には凸形状の開口部11aを形成している。この前面および背面の開口部11aによりケース11の内部空間が周辺の空間、すなわち、車室内空間に常時連通するようになっている。ケース11の前面および背面の壁面のうち、開口部11aの左右両側部分は窓ガラス12の内面12aへの取付ステー部11bを構成する。
窓ガラス12は本例では車両の前面(フロント)ガラスであり、図1の上面側が車室内に面する内面12aであり、図1の下面側が車室外に面する外面12bである。従って、図2は窓ガラス12の内面12aを図示している。取付ステー部11bの下端面には遮光フィルム13が貼り付けられ、さらに、遮光フィルム13が窓ガラス12の内面12aに貼り付けられる。
The
遮光フィルム13はアルミニウムのような熱伝導率の高い金属遮光材料からなる薄膜状部材であって、窓ガラス12を通過して光がケース11内部へ入射されることを防止するものである。なお、遮光フィルム13は取付ステー部11bの下端面および窓ガラス12の内面に対して接着等の手段で貼り付ければよい。
The
ケース11の内部空間において開口部11aの上端部と上側壁面11cとの間に回路基板14が窓ガラス12の面と平行に配置され、図示しない取付手段にて回路基板14はケース11の内壁面に固定される。回路基板14は絶縁基板上に導体回路部を構成する一般にプリント基板と称される部材であり、以下述べるセンサ類および回路部が実装される。
In the internal space of the
回路基板14のうち、窓ガラス12側の表面(図1の下側面)には、発光素子15、受光素子16、湿度センサ17、空気温度検出用温度センサ18、増幅器19、演算回路20、および通信回路21が実装されている。
A
なお、湿度センサ17と温度センサ18は回路基板14の長手方向(図1、2の左右方向)の中央部に配置され、開口部11aの上端部付近、すなわち、車室内空間への連通部位に配置されている。このため、湿度センサ17と温度センサ18は車室内の窓ガラス内面付近の空気の代表的な湿度と温度を検出できる。
The
遮光フィルム13のうちセンサ側の表面の1箇所にガラス温度検出用の温度センサ23が一体化して配置される。遮光フィルム13は上述のように熱伝導率の高い薄膜状部材であるから、窓ガラス12の車室内側表面温度(内面温度)とほぼ同一の温度になっている。
A
なお、本例では、湿度センサ17として、感湿膜の誘電率が空気の相対湿度に応じて変化し、それにより、静電容量が空気の相対湿度に応じて変化する容量変化型のものを用いている。また、温度センサ18、23としては温度に応じて抵抗値が変化するサーミスタを用いている。また、発光素子15として発光ダイオードを用い、受光素子16としては受光量に応じて出力電流が変化するホトダイオードを用いている。
In this example, the
発光素子15の光出口部にはレンズ22が配置されている。このレンズ22は、発光素子15からの光が遮光フィルム13の表面で反射して受光素子16に到達するに際して、この反射光が受光素子16で焦点を結ぶように集光するものである。また、受光素子16の入口側にはフィルタ24が配置されている。このフィルタ24は、発光素子15の発する光線の波長域周辺の光だけを通すものである。
A lens 22 is disposed at the light exit portion of the
なお、遮光フィルム13のうちセンサ側の表面(図1の上側面)には光沢を付けて、遮光フィルム13の光反射率を高めるようにしてある。これにより、遮光フィルム13表面における曇り発生の有無によって受光素子16に向かう光反射量に大きな差が生じるようにして、曇り検出がし易いようになっている。
In addition, the surface (upper side surface in FIG. 1) on the sensor side of the
リード線25はケース11の内部空間からケース11の外部へ取り出される電源線および通信線であり、回路基板14の電気回路部(増幅器19、演算回路20、および通信回路21)と、外部回路(後述の図4の空調制御装置26、車両電源等)との間を電気的に接続するものである。
The
前述したケース11の取付ステー部11bは、回路基板14および回路基板14上に実装される各種センサ類と窓ガラス12の内面12aとの間隔を規定する位置決め手段としての役割を果たす。
The mounting
次に、図3により電気制御のシステム構成を説明すると、上記受光素子16および各センサ17、18、23の出力信号をそれぞれ増幅器19a〜19dで増幅して各演算回路20a〜20dに加える。
Next, the system configuration of electrical control will be described with reference to FIG. 3. The output signals of the
そして、曇り判定演算回路20aの演算値に基づいて湿度演算式の補正を行う演算式補正回路20eと、相対湿度演算回路20bの演算値、空気温度演算回路20cの演算値、およびガラス温度演算回路20dの演算値に基づいてガラス表面相対湿度を演算するガラス表面相対湿度演算回路20fが設けられ、この演算回路20fの演算値および曇り判定演算回路20aの演算値を通信回路21を通して空調制御装置26に出力するようになっている。
Then, an arithmetic expression correction circuit 20e that corrects the humidity arithmetic expression based on the arithmetic value of the fogging determination
次に、図4により車両用空調装置の全体システムの概要を説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)内側部等に配設される。この室内空調ユニット30はケース31を有し、このケース31内に車室内へ向かって空気が送風される空気通路を構成する。
Next, the outline of the entire system of the vehicle air conditioner will be described with reference to FIG. The indoor
このケース31の空気通路の最上流部に内外気切替箱32を配置し、内気導入口33および外気導入口34を内外気切替ドア35により切替開閉するようになっている。この内外気切替ドア35はサーボモータ36によって駆動される。
An inside / outside air switching box 32 is arranged at the most upstream part of the air passage of the
内外気切替箱32の下流側には車室内に向かって空気を送風する電動式の送風機37を配置している。この送風機37は、遠心式の送風ファン37aをモータ37bにより駆動するようになっている。送風機37の下流側には送風空気を冷却する冷房用熱交換器をなす蒸発器38を配置している。
On the downstream side of the inside / outside air switching box 32, an
この蒸発器38は、冷凍サイクル装置39を構成する要素の一つであり、低温低圧の冷媒が送風空気から吸熱して蒸発することにより送風空気を冷却する。なお、冷凍サイクル装置39は周知のものであり、圧縮機40の吐出側から、凝縮器41、受液器42および減圧手段をなす膨張弁43を介して蒸発器38に冷媒が循環するように構成されている。凝縮器41には電動式の冷却ファン41aによって室外空気(冷却空気)が送風される。この冷却ファン41aはモータ41bによって駆動される。
The
冷凍サイクル装置39において、圧縮機40は電磁クラッチ40aを介して車両エンジン(図示せず)により駆動される。従って、電磁クラッチ40aの通電の断続により圧縮機40の作動を断続制御できる。
In the
一方、室内空調ユニット30において、蒸発器38の下流側にはケース31内を流れる空気を加熱するヒータコア44を配置している。このヒータコア44は車両エンジンの温水(エンジン冷却水)を熱源として、蒸発器38通過後の空気(冷風)を加熱する暖房用熱交換器である。ヒータコア44の側方にはバイパス通路45が形成され、このバイパス通路45をヒータコア44のバイパス空気が流れる。
On the other hand, in the indoor
蒸発器38とヒータコア44との間に温度調整手段をなすエアミックスドア46を回転自在に配置してある。このエアミックスドア46はサーボモータ47により駆動されて、その回転位置(開度)が連続的に調整可能になっている。
Between the
このエアミックスドア46の開度によりヒータコア44を通る空気量(温風量)と、バイパス通路45を通過してヒータコア44をバイパスする空気量(冷風量)との割合を調節し、これにより、車室内に吹き出す空気の温度を調整するようになっている。
The ratio of the amount of air passing through the heater core 44 (warm air amount) and the amount of air passing through the
ケース31の空気通路の最下流部には、車両の前面窓ガラス12に向けて空調風を吹き出すためのデフロスタ吹出口48、乗員の顔部に向けて空調風を吹き出すためのフェイス吹出口49、および乗員の足元部に向けて空調風を吹き出すためのフット吹出口50の計3種類の吹出口が設けられている。
At the most downstream part of the air passage of the
これら吹出口48〜50の上流部にはデフロスタドア51、フェイスドア52およびフットドア53が回転自在に配置されている。これらのドア51〜53は、図示しないリンク機構を介して共通のサーボモータ54によって開閉操作される。
A
空調制御装置26は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置26は、そのROM内に空調制御のための制御プログラムを記憶しており、その制御プログラムに基づいて各種演算、処理を行う。
The air
空調制御装置26には、上述した検出装置10の演算値が入力される他に、周知の空調用センサ群61〜65からの検出信号、および空調操作パネル70からの各種操作信号が入力される。
In addition to the calculation value of the
空調用センサ群としては、具体的には、外気温(車室外温度)Tamを検出する外気センサ61、内気温(車室内温度)Trを検出する内気センサ62、車室内に入射する日射量Tsを検出する日射センサ63、蒸発器38の空気吹出部に配置されて蒸発器吹出空気温度Teを検出する蒸発器温度センサ64、ヒータコア44に流入する温水(エンジン冷却水)温度Twを検出する水温センサ65等が設けられる。
Specifically, the air conditioning sensor group includes an
また、空調操作パネル70には各種空調操作部材として、車室内温度を設定する温度設定手段をなす温度設定スイッチ71、吹出モードドア51〜53により切り替わる吹出モードをマニュアル設定する吹出モードスイッチ72、内外気切替ドア35による内外気吸込モードをマニュアル設定する内外気切替スイッチ73、圧縮機40の作動指令信号(電磁クラッチ40aのON信号)を出すエアコンスイッチ74、送風機37の風量をマニュアル設定する送風機作動スイッチ75、空調自動制御状態の指令信号を出すオートスイッチ76等が設けられる。
In addition, the air
空調制御装置26の出力側には、圧縮機40の電磁クラッチ40a、各機器の電気駆動手段をなすサーボモータ36、47、54、送風機37のモータ37b、凝縮器冷却ファン41aのモータ41b等が接続され、これらの機器の作動が空調制御装置26の出力信号により制御される。
On the output side of the air-
次に、上記構成において本実施形態の作動を説明する。最初に、室内空調ユニット30の作動の概要を説明すると、送風機37を作動させることにより、内気導入口33または外気導入口34より導入された空気がケース31内を車室内に向かって送風される。また、電磁クラッチ40aに通電して電磁クラッチ40aを接続状態とし、圧縮機40を車両エンジンにて駆動することにより、冷凍サイクル装置39内を冷媒が循環する。
Next, the operation of this embodiment in the above configuration will be described. First, the outline of the operation of the indoor
送風機37の送風空気は、先ず蒸発器38を通過して冷却、除湿され、この冷風は次にエアミックスドア46の回転位置(開度)に応じてヒータコア44を通過する流れ(温風)とバイパス通路45を通過する流れ(冷風)とに分けられる。
The air blown from the
従って、エアミックスドア46の開度によりヒータコア44を通る空気量(温風量)と、バイパス通路45を通過する空気量(冷風量)との割合を調整することにより、車室内に吹き出す空気の温度を調整できる。
Therefore, by adjusting the ratio of the amount of air passing through the heater core 44 (warm air amount) and the amount of air passing through the bypass passage 45 (cold air amount) by the opening of the
そして、この温度調整された空調風が、ケース31の空気通路の最下流部に位置するデフロスタ吹出口48、フェイス吹出口49およびフット吹出口50のうち、いずれか1つまたは複数の吹出口から車室内へ吹き出して、車室内の空調および車両の前面窓ガラス12の曇り止めを行う。
Then, the temperature-conditioned conditioned air is supplied from any one or a plurality of outlets among the
次に、本実施形態による曇り検出装置10の作動を図5に基づいて説明する。図5は、図3の演算回路20により実行される制御ルーチンであり、まず、図3の各センサ16、17、18、23の出力値(実際には増幅器19a〜19dで増幅された出力値)を読み込む(S10)。
Next, the operation of the
次に、湿度センサ17の出力値Vに基づいて窓ガラス付近の車室内空気の相対湿度RHを演算する(S20)。すなわち、湿度センサ17の出力値Vを相対湿度RHに変換するための所定の演算式が予め設定されており、この演算式に出力値Vを適用することにより、相対湿度RHを演算する。下記(1)式は、この湿度演算式の具体例である。
Next, the relative humidity RH of the passenger compartment air near the window glass is calculated based on the output value V of the humidity sensor 17 (S20). That is, a predetermined arithmetic expression for converting the output value V of the
RH=αV+β (1)
但し、αは制御係数で、βは定数である。
RH = αV + β (1)
Where α is a control coefficient and β is a constant.
次に、空気温度センサ18の出力値を予め設定された所定の演算式に適用することにより、窓ガラス付近の車室内空気温度を演算する(S30)。次に、ガラス温度センサ23の出力値を予め設定された所定の演算式に適用することにより、窓ガラス温度(ガラス室内側表面温度)を演算する(S40)。
Next, the air temperature in the vicinity of the window glass is calculated by applying the output value of the
次に、上記各ステップS20〜S40で演算された相対湿度RH、空気温度および窓ガラス温度に基づいて、窓ガラス表面相対湿度(窓ガラス室内側表面の相対湿度)RHwを演算する(S50)。すなわち、湿り空気線図を用いることにより、相対湿度RHと空気温度と窓ガラス温度とから窓ガラス表面相対湿度RHwを演算できる。 Next, based on the relative humidity RH, the air temperature, and the window glass temperature calculated in the above steps S20 to S40, the window glass surface relative humidity (the relative humidity of the window glass indoor side surface) RHw is calculated (S50). That is, by using the wet air diagram, the window glass surface relative humidity RHw can be calculated from the relative humidity RH, the air temperature, and the window glass temperature.
次に、光学式曇り検出センサを構成する受光素子16の出力値を予め設定された所定の演算式に適用することにより、曇り度合い判定値を演算する(S60)。この曇り度合い判定値は、受光素子16の出力値(生値)を窓ガラスの実際の曇り度合いに適合するように変換した値である。この曇り度合い判定値は、窓ガラスの曇り度合いの上昇に応じて増大する値、または窓ガラスの曇り度合いの上昇に応じて減少する値となるように演算される。
Next, the fogging degree determination value is calculated by applying the output value of the
ところで、本実施形態においては、光学式曇り検出センサを構成する発光素子15を予め設定した所定の時間間隔にてパルス発光させるようにしている。このように、発光素子15をパルス発光させることにより、発光素子15の発熱によるケース11内の温度上昇を抑えることができる。従って、発光素子15の発熱による温度センサ18、23の検出温度等への悪影響を抑えることができる。
By the way, in the present embodiment, the
次に、上記S60の演算値である曇り度合い判定値に基づいて窓ガラスの曇り有無を判定する(S70)。この判定は、上記ステップS60による曇り度合い判定値が予め設定した所定の速度以上で変化しているかどうかを判定する。 Next, the presence or absence of fogging of the window glass is determined based on the fogging degree determination value which is the calculated value of S60 (S70). In this determination, it is determined whether or not the cloudiness degree determination value in step S60 changes at a predetermined speed or higher.
つまり、たばこの脂や細かい塵埃の付着等による窓ガラスの汚れは長時間をかけて極めてゆっくりと進行する。これに反し、窓ガラスの曇りははるかに早い速度で進行する。そこで、本実施形態ではこの点に着目して、ステップS70において上記曇り度合い判定値が予め設定した所定の速度以上で変化している場合、すなわち、曇り度合い判定値の変化速度が所定値以上になった場合を窓ガラスの曇り発生と判定する。 In other words, the contamination of the window glass due to the attachment of cigarette fat or fine dust proceeds very slowly over a long period of time. On the other hand, fogging of the window glass proceeds at a much faster rate. Therefore, in the present embodiment, paying attention to this point, when the cloudiness degree determination value is changed at a predetermined speed or higher in step S70, that is, the change speed of the cloudiness degree determination value is higher than the predetermined value. When it becomes, it determines with fogging of a window glass.
曇り度合い判定値の変化速度は、発光素子15のパルス発光時における所定時間間隔前後での判定値変化割合として求めることができる。
The change rate of the cloudiness degree determination value can be obtained as a determination value change rate before and after a predetermined time interval when the
このような曇り判定によれば、たばこの脂や細かい塵埃の付着等による窓ガラスの汚れに起因する窓曇りの誤判定を回避して、窓曇りを正確に判定できる、
ステップS70にて曇りありを判定した場合はステップS80に進み、窓ガラス表面相対湿度RHw=100%とする。つまり、ステップS50にて演算された、湿度センサ出力値等に基づいて演算された窓ガラス表面相対湿度RHwを100%に強制的に置き換える。そして、ステップS90にて上記湿度演算式(1)の自己補正を行う。
According to such fogging determination, it is possible to accurately determine window fogging by avoiding erroneous determination of window fogging due to dirt on the window glass due to the attachment of tobacco fat or fine dust, etc.
If it is determined in step S70 that there is cloudiness, the process proceeds to step S80, and the window glass surface relative humidity RHw = 100%. That is, the window glass surface relative humidity RHw calculated based on the humidity sensor output value calculated in step S50 is forcibly replaced with 100%. In step S90, the humidity calculation formula (1) is self-corrected.
ところで、空調制御装置26では、窓ガラス表面相対湿度RHwに基づいて後述の図6以降の防曇制御を行っている。それにも係わらず、窓ガラスの曇りが発生することは、湿度センサ17の出力値に基づいて演算される相対湿度RHが実際の相対湿度よりも小さい側にずれていることになる。
By the way, in the air-
そこで、ステップS90では、上記湿度演算式(1)を相対湿度RHの演算値が大きくなる側へ自己補正する。具体的には、上記湿度演算式(1)のごとく湿度センサ出力値Vと相対湿度RHが、RH=αV+βで表されている場合に、窓ガラス表面相対湿度RHw=100%における空気温度での相対湿度に変換した値を空気湿り線図により求め、これをRH’とする。補正された湿度演算式をRH=αV+β’とすると、
β’=β+(RH’−RH)→β’=β−RH+RH’となる。
Therefore, in step S90, the humidity calculation formula (1) is self-corrected to the side where the calculated value of the relative humidity RH increases. Specifically, when the humidity sensor output value V and the relative humidity RH are expressed by RH = αV + β as in the humidity calculation formula (1), the air temperature at the window glass surface relative humidity RHw = 100% A value converted into relative humidity is obtained from an air wetting diagram, and this is defined as RH ′. When the corrected humidity calculation formula is RH = αV + β ′,
β ′ = β + (RH′−RH) → β ′ = β−RH + RH ′.
このように湿度演算式を補正することにより、ステップS20における次回以降の相対湿度RHの演算処理では、実際の相対湿度に近似した演算処理を行うことができる。 By correcting the humidity calculation formula in this way, in the calculation process of the relative humidity RH in the next and subsequent steps in step S20, a calculation process approximating the actual relative humidity can be performed.
ステップS100では、最終的に得られた窓ガラス表面相対湿度RHwの値を空調制御装置26に出力する。すなわち、窓ガラスの曇り有りと判定されたときは、ステップS80にて置換された窓ガラス表面相対湿度RHw=100%の値を空調制御装置26に出力し、窓ガラスの曇り無しと判定されたときは、ステップS50にて演算された窓ガラス表面相対湿度RHwを空調制御装置26に出力する。また、ステップS100では、窓ガラス表面相対湿度RHwの他に、ステップS60にて演算された曇り度合い判定値も空調制御装置26に出力する。
In step S <b> 100, the finally obtained window glass surface relative humidity RHw is output to the
なお、上記湿度演算式補正の具体例では、定数βを補正する例について説明したが、定数βの代わりに制御係数αを補正してもよく、また、定数βと制御係数αの両方を補正してもよい。 In the specific example of the humidity equation correction, the example in which the constant β is corrected has been described. However, the control coefficient α may be corrected instead of the constant β, and both the constant β and the control coefficient α are corrected. May be.
次に、窓ガラス表面相対湿度RHwに基づく空調制御を説明する。図6は空調制御装置26により実行される制御ルーチンであり、まず、図5の制御ルーチンで演算された窓ガラス表面相対湿度RHw、および図5のS70の窓ガラス曇り判定結果を読み込む(S200)。
Next, air conditioning control based on the window glass surface relative humidity RHw will be described. FIG. 6 is a control routine executed by the air
次に、内外気吸込モードが空調操作パネル70の内外気切替スイッチ73により内気モードにマニュアル設定されていないか判定し(S210)、その判定がNOのときは、図5のS70の曇り判定結果が曇り有無のいずれであるか判定する(S220)。窓ガラスの曇り無しのときは内外気制御指令値Sを算出する(S230)。 Next, it is determined whether the inside / outside air suction mode has been manually set to the inside / outside air mode by the inside / outside air changeover switch 73 of the air conditioning operation panel 70 (S210). If the determination is NO, the cloudiness determination result of S70 of FIG. It is determined whether or not clouding is present (S220). When the window glass is not fogged, the inside / outside air control command value S is calculated (S230).
ここで、内外気制御指令値Sは図7に示すように空調装置吸い込み空気の内気比率を決める数値であり、図7の例では、S=0のとき内気比率=0%(すなわち、外気:100%の外気モード)とし、S=7のとき内気比率=100%(すなわち、内気モード)とし、S=1からS=7に向かって内気比率が順次増大する。 Here, the inside / outside air control command value S is a numerical value that determines the inside air ratio of the air sucked into the air conditioner as shown in FIG. 7, and in the example of FIG. 7, the inside air ratio = 0% when S = 0 (that is, outside air: 100% outside air mode), and when S = 7, the inside air ratio = 100% (that is, the inside air mode), and the inside air ratio sequentially increases from S = 1 to S = 7.
図8は上記S230の具体例を示す制御ルーチンであり、まず、車速SPDが低速域Aにあるか高速域Bにあるかを図9のマップに基づいて判定する(S300)。そして、車速SPDが高速域Bにあるときは、図10のマップに示すように窓ガラス表面相対湿度RHwに基づいて内外気制御指令値Sを決定する(S310)。 FIG. 8 is a control routine showing a specific example of S230. First, it is determined based on the map of FIG. 9 whether the vehicle speed SPD is in the low speed range A or the high speed range B (S300). When the vehicle speed SPD is in the high speed range B, the inside / outside air control command value S is determined based on the window glass surface relative humidity RHw as shown in the map of FIG. 10 (S310).
すなわち、窓ガラス表面相対湿度RHwが所定の目標窓ガラス表面相対湿度TRHwよりも上昇すると、S=0(外気モード)とし、そして、窓ガラス表面相対湿度RHwが(TRHw−a)よりも低下するとS=7(内気モード)にする。なお、目標窓ガラス表面相対湿度TRHwは例えば、85%程度の、窓ガラス曇りを十分防止できるレベルの相対湿度である。 That is, when the window glass surface relative humidity RHw rises above the predetermined target window glass surface relative humidity TRHw, S = 0 (outside air mode), and when the window glass surface relative humidity RHw falls below (TRHw−a). S = 7 (inside air mode). The target window glass surface relative humidity TRHw is, for example, about 85% relative humidity at a level that can sufficiently prevent fogging of the window glass.
一方、車速SPDが低速域Aにあるときは、窓ガラス表面相対湿度RHwに基づいて図11のマップに示す制御モード1、2、3を決定する(S320)。
On the other hand, when the vehicle speed SPD is in the low speed range A, the
すなわち、窓ガラス表面相対湿度RHwが所定の目標窓ガラス表面相対湿度TRHw(例えば、85%)よりも上昇すると、制御モード3を決定し、窓ガラス表面相対湿度RHwが目標窓ガラス表面相対湿度TRHwと(TRHw−b)との間にあるときは制御モード2を決定する。さらに、窓ガラス表面相対湿度RHwが(TRHw−b)よりも低下すると制御モード1を決定する。
That is, when the window glass surface relative humidity RHw rises above a predetermined target window glass surface relative humidity TRHw (for example, 85%), the
そして、制御モード1を決定したときは所定時間経過ごとにS=S+1の制御処理を行う(S330)。すなわち、所定時間経過ごとに内外気制御指令値Sの値を「1」づつ増加して、内気比率を所定割合づつ順次増加する制御処理を行う。
When the
また、制御モード2を決定したときは窓ガラス表面相対湿度RHwが目標窓ガラス表面相対湿度TRHw付近にあるため、S=Sの制御処理、すなわち、内外気制御指令値Sの値として、前回算出のSの値を持続する制御処理を行う(S340)。
When
また、制御モード3を決定したときは所定時間経過ごとにS=S−1の制御処理を行う(S350)。すなわち、所定時間経過ごとに内外気制御指令値Sの値を「1」づつ減少して、内気比率を所定割合づつ減少する制御処理を行う。
When the
なお、図10、図11のa、bは内外気制御のハンチングを防ぐためのヒステリシス幅を設定する所定値である。 Note that a and b in FIGS. 10 and 11 are predetermined values for setting a hysteresis width for preventing hunting of the inside / outside air control.
再び、図6に戻って、ステップS240では、上記内外気制御指令値Sの値が外気モードの値(S=0)であるか判定する。この判定がNOであるときはステップS250に進み、上記内外気制御指令値Sの値に基づく内気比率となるように内外気切替ドア35の位置(内外気吸込モード)を制御する。 Returning to FIG. 6 again, in step S240, it is determined whether the inside / outside air control command value S is the outside air mode value (S = 0). When this determination is NO, the process proceeds to step S250, and the position of the inside / outside air switching door 35 (inside / outside air suction mode) is controlled so that the inside air ratio is based on the inside / outside air control command value S.
この内外気吸込モード制御において、目標窓ガラス表面相対湿度TRHwは窓ガラスの曇りが生じない上限湿度付近に設定するから、窓ガラスの曇りが生じない範囲で常に内気比率が高くなるように内外気吸込モードを制御できる。これにより、冬期の暖房始動時に内気比率を上昇することにより換気熱損失を低減して、車室内暖房効果の立ち上げを促進できる。 In this inside / outside air suction mode control, the target window glass surface relative humidity TRHw is set near the upper limit humidity at which the window glass does not fog, so that the inside / outside air is constantly increased so that the window glass does not fog. The suction mode can be controlled. Thereby, by raising the inside air ratio at the start of heating in winter, it is possible to reduce the ventilation heat loss and promote the startup of the vehicle interior heating effect.
一方、図6のステップS210、S220、S240の判定がYESであるときは、窓ガラスの曇り止めの必要性が高いときであり、この場合はステップS260に進み窓ガラスの防曇制御を行う。 On the other hand, when the determinations of steps S210, S220, and S240 in FIG. 6 are YES, it is when the necessity of anti-fogging of the window glass is high. In this case, the process proceeds to step S260 and anti-fogging control of the window glass is performed.
図12はこの防曇制御の具体例を示す制御ルーチンであり、図5のステップS70の曇り判定結果が曇り有無のいずれであるか判定する(S400)。曇り無しのときはステップS410〜S510の防曇制御を行う。 FIG. 12 is a control routine showing a specific example of this anti-fogging control, and it is determined whether the fogging determination result in step S70 of FIG. 5 is the presence or absence of fogging (S400). When there is no fogging, the antifogging control in steps S410 to S510 is performed.
これに対し、曇り有りのときはステップS520にて曇り除去の制御モードを実行する。すなわち、内外気吸込モードを強制的に外気モードに切り替え、また、空調用電動送風機37のブロワレベルを6レベル増加し、吹出モードをデフロスタモードに切り替える。なお、ブロワレベルとは、空調用電動送風機37のモータ印加電圧レベルであり、風量はこのモータ印加電圧レベルの増減に応じて増減されるから、ブロワレベルは空調用電動送風機37の風量レベルを意味することになる。
On the other hand, when there is cloudiness, the fog removal control mode is executed in step S520. That is, the inside / outside air suction mode is forcibly switched to the outside air mode, the blower level of the air-conditioning
ステップS520の実行により、低湿度の外気を導入して加熱した温風をデフロスタ吹出口48から窓ガラス12の内面に吹き出すとともに、この温風の吹出風量を増加することにより、窓ガラス表面相対湿度RHwを速やかに引き下げて窓ガラス12の曇りを除去できる。
By executing step S520, hot air heated by introducing low-humidity outside air is blown from the
一方、ステップS410〜S450の制御モード10〜制御モード50の判定は図13のマップに示すように、窓ガラス表面相対湿度RHwに応じて決定される。図13の制御例では、目標窓ガラス表面相対湿度TRHw(例えば85%)と、これに対して所定量c1、c2、c3、c4を増減した合計5つの判定しきい値を設定し、窓ガラス表面相対湿度RHwの変化により6つの制御モード10〜60のいずれか1つを選択する。
On the other hand, the determination of the
図12のステップS460〜S510は6つの制御モード10〜60のいずれか1つを選択し実行する。なお、ステップS460〜S510において、「AUTO」は、内外気吸込モード、ブロワレベル、および吹出モードの各制御を車室内への吹出空気の目標吹出温度TAOに基づいて行う通常の自動制御であることを表している。
Steps S460 to S510 of FIG. 12 select and execute any one of the six
また、吹出モードの「Face」、「B/L」、「Foot」、「F/D」および「DEF」はそれぞれフェイス吹出口49から空気を吹き出すフェイスモード、フェイス吹出口49とフット吹出口50の両方から空気を吹き出すバイレベルモード、フット吹出口50から空気を吹き出すフットモード、フット吹出口50とデフロスタ吹出口48の両方から空気を吹き出すフットデフロスタモード、およびデフロスタ吹出口48から空気を吹き出すデフロスタモードを表している。
Also, “Face”, “B / L”, “Foot”, “F / D”, and “DEF” in the blowing mode are a face mode in which air is blown out from the
なお、ステップS490(制御モード40)における吹出モードの遷移は具体的には次のように行う。すなわち、制御モード40に移行する前の制御モードの吹出モードがF/DモードであるときはDEFモードに移行し、F/Dモード以外であるときはF/Dモードに移行する。そして、制御モード40にてF/Dモードに移行したときは制御モード40の状態が続いてもF/Dモードが維持される。
In addition, the transition of the blowing mode in step S490 (control mode 40) is specifically performed as follows. That is, when the blowing mode of the control mode before shifting to the
また、図12のステップS460〜S500において、内気モードがマニュアル設定されている場合は、内外気吸込モードを内気モードに維持する。 Moreover, in step S460 to S500 of FIG. 12, when the inside air mode is set manually, the inside / outside air suction mode is maintained in the inside air mode.
図12、図13の防曇制御によると、窓ガラス表面相対湿度RHwの上昇に応じて、制御モード10から制御モード60へと順次、RHwの引き下げ効果の高い制御モードに切り替えることができ、これにより、窓ガラスの防曇を自動的に良好に行うことができる。
According to the anti-fogging control of FIGS. 12 and 13, the
次に、図14は本実施形態による圧縮機制御を示すフローチャートであり、この圧縮機制御は基本的には特開平7−179120号公報と同様であるので、圧縮機制御の概要を述べる。まず、車室内への吹出空気の目標吹出温度TAOに基づいて車室内温度制御のための目標蒸発器温度(すなわち、目標冷房用熱交換器温度)TEOaを算出する(S600)。 Next, FIG. 14 is a flowchart showing compressor control according to this embodiment. Since this compressor control is basically the same as that disclosed in Japanese Patent Laid-Open No. 7-179120, an outline of compressor control will be described. First, a target evaporator temperature (that is, a target cooling heat exchanger temperature) TEOa for controlling the passenger compartment temperature is calculated based on the target outlet temperature TAO of the air blown into the passenger compartment (S600).
このTEOaは、具体的には目標吹出温度TAOが上昇するにつれて最低温度(例えば3℃)から最高温度(例えば11℃)に向かって上昇するように算出される。 Specifically, the TEOa is calculated so as to increase from the lowest temperature (for example, 3 ° C.) toward the highest temperature (for example, 11 ° C.) as the target blowing temperature TAO increases.
なお、目標吹出温度TAOは空調熱負荷変動にかかわらず、温度設定スイッチ71により設定した設定温度Tsetに車室内温度(内気温)Trを維持するために必要な車室内吹出空気温度である。このTAOは周知のように設定温度Tset、外気温Tam、内気温Tr、日射量Tsに基づいて算出できる。 The target blowing temperature TAO is a vehicle cabin blowout air temperature necessary for maintaining the vehicle cabin temperature (inside air temperature) Tr at the set temperature Tset set by the temperature setting switch 71 regardless of the air conditioning thermal load fluctuation. As is well known, this TAO can be calculated based on the set temperature Tset, the outside air temperature Tam, the inside air temperature Tr, and the solar radiation amount Ts.
次に、湿度センサ17により検出される車室内湿度RHrに基づいて車室内湿度制御のための目標蒸発器温度TEObを算出する(S610)。このTEObは、車室内湿度RHrが所定の快適範囲、例えば50〜60%の範囲に維持されるように算出される。 Next, a target evaporator temperature TEOb for vehicle interior humidity control is calculated based on the vehicle interior humidity RHr detected by the humidity sensor 17 (S610). This TEOb is calculated so that the vehicle interior humidity RHr is maintained within a predetermined comfortable range, for example, a range of 50 to 60%.
そのため、車室内湿度RHrが例えば60%以上に上昇すると、TEObの値を低温側へ移行する。また、車室内湿度RHrが例えば50%以下に低下すると、TEObの値を高温側へ移行する。 Therefore, when the vehicle interior humidity RHr rises to, for example, 60% or more, the value of TEOb is shifted to the low temperature side. Further, when the vehicle interior humidity RHr decreases to, for example, 50% or less, the value of TEOb is shifted to the high temperature side.
次に、防曇制御のための目標蒸発器温度TEOcを算出する(S620)。このTEOcは、蒸発器38の冷却(除湿)能力により防曇制御を行うことができるように算出される。
Next, the target evaporator temperature TEOc for anti-fogging control is calculated (S620). This TEOc is calculated so that the anti-fogging control can be performed by the cooling (dehumidifying) ability of the
具体的には、窓ガラス表面相対湿度RHwが図11の目標窓ガラス表面相対湿度TRHwと(TRHw−b)との間に維持できる蒸発器温度を目標蒸発器温度TEOcとする。この目標蒸発器温度TEOcは湿り空気線図を用いることにより、ガラス温度と、上記TRHwおよび(TRHw−b1)と、蒸発器吹出空気の相対湿度(≒95%)とから求めることができる。 Specifically, an evaporator temperature at which the window glass surface relative humidity RHw can be maintained between the target window glass surface relative humidity TRHw and (TRHw−b) in FIG. 11 is defined as a target evaporator temperature TEOc. The target evaporator temperature TEOc can be obtained from the glass temperature, the TRHw and (TRHw−b1), and the relative humidity (≈95%) of the evaporator blowing air by using a wet air diagram.
次に、上記3つの目標蒸発器温度TEOa、TEOb、TEOcのうち、最低温度を最終的な目標蒸発器温度TEOとして算出する(S630)。次に、この最終的な目標蒸発器温度TEOに基づいて圧縮機40の能力制御を行う(S640)。この圧縮機40の能力制御は、目標蒸発器温度TEOと蒸発器温度センサ64により検出される蒸発器吹出空気温度Teとの比較により行う。
Next, among the three target evaporator temperatures TEOa, TEOb, and TEOc, the lowest temperature is calculated as the final target evaporator temperature TEO (S630). Next, the capacity control of the
すなわち、蒸発器吹出空気温度Teが目標蒸発器温度TEO以上に上昇すると、電磁クラッチ40aに通電して圧縮機40を稼働(ON)状態とする。一方、蒸発器吹出空気温度Teが目標蒸発器温度TEOより所定温度z(例えば1℃)だけ低い温度(TEO−z)以下に低下すると、圧縮機40を停止(OFF)状態とする。
That is, when the evaporator blown air temperature Te rises above the target evaporator temperature TEO, the electromagnetic clutch 40a is energized to turn on the
このような圧縮機40の作動の断続制御により実際の蒸発器吹出空気温度Teが目標蒸発器温度TEO付近に制御される。しかも、目標蒸発器温度TEOは、車室内温度制御のための目標蒸発器温度TEOaと、車室内湿度制御のための目標蒸発器温度TEObと、防曇制御のための目標蒸発器温度TEOcのうち、最低温度にしているから、上記圧縮機40の能力制御により蒸発器冷却度合いを制御して、車室内温度制御、車室内湿度制御および防曇制御を実行できる。
The actual evaporator blown air temperature Te is controlled in the vicinity of the target evaporator temperature TEO by such intermittent control of the operation of the
なお、上述の圧縮機40の能力制御は、圧縮機40として固定容量型圧縮機を用い、この固定容量型圧縮機の断続作動により圧縮機の稼働率を変化させるもであるが、圧縮機40として可変容量型圧縮機を用い、圧縮機の吐出容量を変化させることにより、圧縮機40の能力制御を行うようにしてもよい。
In the above-described capacity control of the
なお、「目標蒸発器温度」という用語は蒸発器38の冷却度合いの目標値を表す用語であり、蒸発器38の冷却度合いは、上記蒸発器吹出空気温度Teの他に蒸発器フィン表面温度等で測定してもよい。
The term “target evaporator temperature” is a term that represents a target value for the degree of cooling of the
(第2実施形態)
第1実施形態では、湿度センサ17の出力値の演算値が、実際の湿度よりも低めの側にずれてしまい、その結果、空調装置が防曇制御を行っているにも係わらず、窓の曇りが発生する場合における湿度演算式の補正について説明したが、第2実施形態は、湿度センサ17の出力値の演算値が、実際の湿度よりも高めの側にずれてしまう場合における湿度演算式の補正に関する。
(Second Embodiment)
In the first embodiment, the calculated value of the output value of the
なお、湿度センサ17の出力値の演算値が、実際の湿度よりも高めの側にずれてしまう場合は、空調装置の防曇制御にとって安全側に作用するが、これは、内気比率を必要以上に低下させ換気熱損失を増大させるという不具合、および圧縮機能力を必要以上に増大させ圧縮機動力を無駄に増大させるという不具合につながるので、実用上好ましいことではない。
In addition, when the calculated value of the output value of the
ところで、乗員が空調操作パネル70のエアコンスイッチ74をOFF位置にマニュアル操作すると、空調制御装置26は圧縮機40の電磁クラッチ40aへの通電を遮断するので、圧縮機40は強制的に停止状態となる。その結果、蒸発器38の冷却除湿能力も強制的に停止される。これにより、車室内相対湿度RHrが上昇して窓の曇りが発生する場合がある。
By the way, when the occupant manually operates the air conditioner switch 74 of the air
同様に、乗員が空調操作パネル70の内外気切替スイッチ73を内気モード位置にマニュアル操作すると、空調制御装置26はサーボモータ36を介して内外気切替ドア35を内気モード位置(外気導入口34:全閉、内気導入口33:全開)に制御する。これにより、外気よりも絶対湿度が高い内気を再循環して車室内の空調が行われるので、車室内相対湿度RHrが上昇して窓の曇りが発生する場合がある。
Similarly, when the occupant manually operates the inside / outside air changeover switch 73 of the air
このように、乗員のマニュアル操作に起因して窓の曇りが発生する場合に、第2実施形態では、ガラス表面相対湿度RHwが防曇制御のしきい値(図11のTRHw)を超えても、光学式曇り検出センサ(受発光素子15、16)の出力値を演算する曇り判定演算回路20aの演算値に基づいて、窓の曇りが判定されるまでは、前述の防曇制御の開始を遅らせる。
In this way, when window fogging occurs due to the manual operation of the occupant, in the second embodiment, even if the glass surface relative humidity RHw exceeds the threshold value of fog prevention control (TRHw in FIG. 11). The above-described anti-fogging control is started until the fogging of the window is determined based on the calculation value of the fog
そして、曇り判定演算回路20aの演算値に基づいて、窓の曇りが判定されたときに、図5のステップS80のごとくガラス表面相対湿度RHw=100%とし、そして、ステップS90による湿度演算式の補正を行う。
When the fogging of the window is determined based on the calculated value of the fog
前述のごとく、湿度センサ17の出力値の演算値が、実際の湿度よりも高めの側にずれている場合は、防曇制御の安全率が高くなって、防曇制御が早めのタイミングで実行されるので、窓の曇りが原則発生しないことになるが、第2実施形態のように、乗員のマニュアル操作により窓の曇りが発生する機会を利用すれば、湿度センサ17の出力値の演算値が、実際の湿度よりも高めの側にずれている場合でも、湿度演算式の補正を行うことができる。
As described above, when the calculated value of the output value of the
(第3実施形態)
第2実施形態では、乗員のマニュアル操作が原因で曇りが生じた場合の補正方法を述べたが、同様な補正は、低温時の暖房立ち上がり時にも可能である。冬季のように外気温度が低い場合は、駐車中(エンジン停止中)にエンジン水温が低下するため、次回のエンジン始動後の空調開始時にエンジン水温が一定以上に上がるまで空調風を吹き出さない制御(ウォームアップ制御)を行う場合が多い。
(Third embodiment)
In the second embodiment, the correction method in the case where clouding occurs due to the manual operation of the occupant has been described, but the same correction is possible at the time of heating start-up at a low temperature. When the outside air temperature is low, such as in winter, the engine water temperature drops while parking (when the engine is stopped). (Warm-up control) is often performed.
このウォームアップ制御では空調風を吹き出さないので、その間に、窓曇りを生じることがあるため、その機会に湿度演算式の補正を行うことができる。 In this warm-up control, the conditioned air is not blown out, so that window fogging may occur in the meantime, so that the humidity calculation formula can be corrected at that occasion.
このように、空調装置の空調風吹出の遅動に起因して窓の曇りが発生する場合に、空調風を吹き出すことは乗員の快適性を悪化させる。そのため、光学式曇り検出センサ(受発光素子15、16)で窓曇りの発生を確認してから防曇制御を行った方が乗員の納得を得られやすい。
Thus, when the fogging of the window occurs due to the delay of the air-conditioning air blowing of the air conditioner, blowing the air-conditioning air deteriorates passenger comfort. Therefore, it is easier to obtain the occupant's consent if the fogging control is performed after the occurrence of window fogging is confirmed by the optical fogging detection sensor (light emitting / receiving
そこで、エンジン水温が空調風を吹き出すしきい値よりも低い場合には、防曇制御のしきい値(図11のTRHw)を高くし、光学式曇り検出センサ(受発光素子15、16)の出力値を演算する曇り判定演算回路20aの演算値に基づいて、窓の曇りが判定されるまでは、前述の防曇制御の開始を遅らせる。
Therefore, when the engine water temperature is lower than the threshold value for blowing out the conditioned air, the threshold value for anti-fogging control (TRHw in FIG. 11) is increased, and the optical fog detection sensor (light emitting / receiving
そして、曇り判定演算回路20aの演算値に基づいて、窓の曇りが判定されたときに、図5のステップS80のごとくガラス表面相対湿度RHw=100%とし、そして、ステップS90による湿度演算式の補正を行う。
When the fogging of the window is determined based on the calculated value of the fog
第3実施形態のように、低水温時の遅動制御(ウォームアップ制御)中に窓の曇りが発生する機会を利用すれば、湿度センサ17の出力値の演算値が、実際の湿度よりも高めの側にずれている場合でも、湿度演算式の補正を行うことができる。
As in the third embodiment, if an opportunity for fogging of the window to occur during delay control (warm-up control) at a low water temperature is used, the calculated value of the output value of the
(第4実施形態)
第1実施形態では、光学式曇り検出センサを構成する発光素子15および受光素子16と、湿度センサ17とを、同一の回路基板14上に実装しているが、光学式曇り検出センサを構成する発光素子15および受光素子16と、湿度センサ17とを別々の回路基板上に実装するようにしてもよい。
(Fourth embodiment)
In the first embodiment, the
このように光学式曇り検出センサと湿度センサ17とでそれぞれ別の回路基板を用いても、これらを同一のケース11内に収容して一体化することができる。
As described above, even if different circuit boards are used for the optical fog detection sensor and the
(第5実施形態)
第1実施形態では、光学式曇り検出センサを構成する発光素子15および受光素子16と、湿度センサ17とを、同一ケース11内にて同一の回路基板14上に実装しているが、光学式曇り検出センサと湿度センサ17とをそれぞれ別の場所に配置してもよい。
(Fifth embodiment)
In the first embodiment, the
例えば、車両(自動車)用空調装置の場合、車室内温度(内気温度)Trを検出する内気センサ62(図4)を車室内の計器盤付近に配置して、車室内の代表的温度を検出するようにしている。そこで、湿度センサ17を内気センサ62と同一場所(計器盤付近)に配置して、湿度センサ17と内気センサ62とを一体化し、光学式曇り検出センサは車両前面窓ガラスの内面に配置するようにしてよい。
For example, in the case of an air conditioner for a vehicle (automobile), an internal air sensor 62 (FIG. 4) that detects the vehicle interior temperature (inside air temperature) Tr is arranged near the instrument panel in the vehicle interior to detect a representative temperature in the vehicle interior. Like to do. Therefore, the
これによると、内気センサ62が第1実施形態の空気温度センサ18の役割を兼務するから、空気温度センサ18を廃止できる。
According to this, since the
(第6実施形態)
第1実施形態では、光学式曇り検出センサを構成する発光素子15を発光ダイオードで構成し、また、受光素子16をホトダイオードで構成しているが、発光素子15を赤外線発光素子で構成し、受光素子16を赤外線受光素子で構成してもよい。
(Sixth embodiment)
In the first embodiment, the
ここで、赤外線受光素子は検出対象物からの赤外線の受光量により検出対象物の温度を非接触で検出できる機能を持っているので、IRセンサとも称される。そして、第4実施形態においても、赤外線発光素子を所定の時間間隔にてパルス発光させる。 Here, since the infrared light receiving element has a function of detecting the temperature of the detection target object in a non-contact manner based on the amount of infrared light received from the detection target object, it is also called an IR sensor. And also in 4th Embodiment, an infrared rays light emitting element is light-emitted at a predetermined time interval.
これにより、赤外線発光素子の発光時には、赤外線受光素子の受光量により窓ガラス12の曇りを検出する。一方、赤外線発光素子の非発光時(消灯時)には、窓ガラス12から放出される赤外線量を赤外線受光素子により受光し、この赤外線受光素子の受光量により窓ガラス12の温度を検出する。
Thereby, when the infrared light emitting element emits light, the fogging of the
これによると、光学式曇り検出センの赤外線受光素子が窓ガラス温度検出の役割を兼務するから、ガラス温度センサ23を廃止できる。
According to this, since the infrared light receiving element of the optical fog detection sensor also serves as a window glass temperature detection, the
(第7実施形態)
第1実施形態では、曇り検出装置10のケース11内に配置される回路基板14に演算回路20を設けているが、この演算回路20の機能を空調制御装置26内に設定するようにしてもよい。
(Seventh embodiment)
In the first embodiment, the
(第8実施形態)
第1実施形態では、図5のステップS70にて曇り発生を判定すると、湿度センサ出力値等に基づいて演算された窓ガラス表面相対湿度RHwを100%に強制的に置き換え(S80)、そして、ステップS90にて湿度演算式(1)の自己補正を行っているが、例えば、ステップS70にて曇り発生を判定した後に、湿度センサ出力値を複数回記憶しておき、その複数回の湿度センサ出力値の平均値を用いて、湿度演算式(1)の自己補正(定数βと係数αの一方または両方の補正)を行うようにしてもよい。
(Eighth embodiment)
In the first embodiment, when the occurrence of fogging is determined in step S70 of FIG. 5, the window glass surface relative humidity RHw calculated based on the humidity sensor output value or the like is forcibly replaced with 100% (S80), and In step S90, the humidity calculation formula (1) is self-corrected. For example, after determining the occurrence of fogging in step S70, the humidity sensor output value is stored a plurality of times, and the plurality of humidity sensors are stored. Self-correction (correction of one or both of the constant β and the coefficient α) of the humidity calculation equation (1) may be performed using the average value of the output values.
(他の実施形態)
なお、第1実施形態では、車両の前面(フロント)ガラスに配置する窓曇り検出装置について説明したが、車両の後部(リヤー)ガラス等に配置する窓曇り検出装置に本発明を適用してもよい。また、本発明は車両以外の用途における窓曇り検出装置にも適用できる。
(Other embodiments)
In the first embodiment, the window fogging detection device disposed on the front (front) glass of the vehicle has been described. However, the present invention may be applied to a window fogging detection device disposed on the rear (rear) glass of the vehicle. Good. Further, the present invention can also be applied to a window fogging detection apparatus for uses other than vehicles.
12…窓ガラス、15…発光素子、16…受光素子、17…湿度センサ、
20…演算回路。
12 ... Window glass, 15 ... Light emitting element, 16 ... Light receiving element, 17 ... Humidity sensor,
20: arithmetic circuit.
Claims (11)
室内側空気の相対湿度を検出する湿度センサ(17)と、
前記室内側空気の温度を検出する空気温度センサ(18)と、
前記窓ガラス(12)の温度を検出するガラス温度センサ(23)と、
前記湿度センサ(17)の出力値に基づいて前記室内側空気の相対湿度を所定の演算式にて演算する相対湿度演算手段(20b、S20)と、
前記光学式曇り検出センサ(15、16)の出力値に基づいて前記窓ガラス(12)の曇りが判定されたときに、前記相対湿度演算手段(20b、S20)の前記演算式を補正するセンサ出力補正手段(20e、S90)と、
前記相対湿度演算手段(20b、S20)の演算値と、前記空気温度センサ(18)および前記ガラス温度センサ(23)の出力値とに基づいてガラス表面相対湿度(RHw)を演算するガラス表面相対湿度演算手段(20f、S50)とを具備し、
前記センサ出力補正手段(20e、S90)は、前記光学式曇り検出センサ(15、16)の出力値に基づいて前記窓ガラス(12)の曇りが判定されたときに、前記相対湿度演算手段(20b、S20)の演算値が前記ガラス表面相対湿度(RHw)=100%における前記室内側空気温度での相対湿度となるように前記演算式を補正することを特徴とする窓曇り検出装置。 An optical fog detection sensor (15, 16) for optically detecting fogging of the window glass (12);
A humidity sensor (17) for detecting the relative humidity of the indoor air;
An air temperature sensor (18) for detecting the temperature of the indoor air;
A glass temperature sensor (23) for detecting the temperature of the window glass (12);
Relative humidity calculating means (20b, S20) for calculating the relative humidity of the indoor air based on an output value of the humidity sensor (17) using a predetermined calculation formula;
A sensor that corrects the calculation formula of the relative humidity calculation means (20b, S20) when the fogging of the window glass (12) is determined based on the output value of the optical fog detection sensor (15, 16). Output correction means (20e , S90) ;
Glass surface relative for calculating the glass surface relative humidity (RHw) based on the calculated value of the relative humidity calculating means (20b, S20) and the output values of the air temperature sensor (18) and the glass temperature sensor (23). Humidity calculating means (20f, S50) ,
The sensor output correcting means (20e, S90) is configured to calculate the relative humidity calculating means (when the fogging of the window glass (12) is determined based on the output value of the optical fogging detection sensor (15, 16). 20b, S20) The window fogging detection apparatus , wherein the calculation formula is corrected so that the calculated value of the glass surface relative humidity (RHw) = 100% is a relative humidity at the indoor air temperature .
前記発光素子(15)、前記受光素子(16)、前記湿度センサ(17)、前記空気温度センサ(18)および前記ガラス温度センサ(23)が、前記窓ガラス(12)の内面(12a)上で一体構造として構成されることを特徴とする請求項1に記載の窓曇り検出装置。 The optical fogging detection sensor includes a light emitting element (15) and a light receiving element (16),
The light emitting element (15), the light receiving element (16), the humidity sensor (17), the air temperature sensor (18) and the glass temperature sensor (23) are on the inner surface (12a) of the window glass (12). The window fogging detection apparatus according to claim 1 , wherein the window fogging detection apparatus is configured as an integral structure.
前記1個のケース(11)内に、前記発光素子(15)、前記受光素子(16)、前記湿度センサ(17)、前記空気温度センサ(18)および前記ガラス温度センサ(23)が収容されることを特徴とする請求項2または3に記載の窓曇り検出装置。 A case (11) disposed on the inner surface (12a) of the window glass (12) and having an opening (11a) for communication with the inner space of the window glass (12);
The light emitting element (15), the light receiving element (16), the humidity sensor (17), the air temperature sensor (18), and the glass temperature sensor (23) are accommodated in the one case (11). The window fogging detection apparatus according to claim 2 or 3 , wherein
前記発光素子(15)からの光が前記遮光フィルム(13)で反射して前記受光素子(16)に入射されるようにしたことを特徴とする請求項2ないし5のいずれか1つに記載の窓曇り検出装置。 On the inner surface (12a) of the window glass (12), a light shielding film (13) excellent in thermal conductivity and light reflectivity is attached,
According to any one of claims 2 to 5 light is characterized in that so as to be incident on the reflected light receiving device (16) in said light shielding film (13) from said light emitting element (15) Window fogging detector.
室内側空気の相対湿度を検出する湿度センサ(17)と、
前記室内側空気の温度を検出する空気温度センサ(18)と、
前記湿度センサ(17)の出力値に基づいて前記室内側空気の相対湿度を所定の演算式にて演算する相対湿度演算手段(20b、S20)とを具備し、
前記光学式曇り検出センサは赤外線発光素子(15)と赤外線受光素子(16)とにより構成され、
前記赤外線発光素子(15)を所定の時間間隔にてパルス発光させるようにし、
前記赤外線発光素子(15)の発光時には、前記赤外線受光素子(16)の受光量により前記窓ガラス(12)の曇りを検出し、一方、前記赤外線発光素子(15)の非発光時には前記赤外線受光素子(16)の受光量により前記窓ガラス(12)の温度を検出するようにし、
さらに、前記赤外線受光素子(16)が前記窓ガラス(12)の曇りを検出したときに、前記相対湿度演算手段(20b、S20)の前記演算式を補正するセンサ出力補正手段(20e、S90)と、
前記相対湿度演算手段(20b、S20)の演算値および前記空気温度センサ(18)の出力値と、前記赤外線受光素子(16)により検出されるガラス温度の出力値とに基づいてガラス表面相対湿度(RHw)を演算するガラス表面相対湿度演算手段(20f、S50)とを具備し、
前記センサ出力補正手段(20e、S90)は、前記赤外線受光素子(16)が前記窓ガラス(12)の曇りを検出したときに、前記相対湿度演算手段(20b、S20)の演算値が前記ガラス表面相対湿度(RHw)=100%における前記室内側空気温度での相対湿度となるように前記演算式を補正することを特徴とする窓曇り検出装置。 An optical fog detection sensor (15, 16) for optically detecting fogging of the window glass (12);
A humidity sensor (17) for detecting the relative humidity of the indoor air;
An air temperature sensor (18) for detecting the temperature of the indoor air ;
Relative humidity calculation means (20b, S20) for calculating the relative humidity of the indoor air based on an output value of the humidity sensor (17) using a predetermined calculation formula ,
The optical clouding detection sensor includes an infrared light emitting element (15) and an infrared light receiving element (16).
The infrared light emitting element (15) is caused to emit pulse light at a predetermined time interval,
When the infrared light emitting element (15) emits light, clouding of the window glass (12) is detected based on the amount of light received by the infrared light receiving element (16). On the other hand, when the infrared light emitting element (15) does not emit light, the infrared light receiving element is received. The temperature of the window glass (12) is detected based on the amount of light received by the element (16),
Further, sensor output correction means (20e, S90) that corrects the arithmetic expression of the relative humidity calculation means (20b, S20) when the infrared light receiving element (16) detects fogging of the window glass (12). When,
Glass surface relative humidity based on the calculated value of the relative humidity calculating means (20b, S20), the output value of the air temperature sensor (18), and the output value of the glass temperature detected by the infrared light receiving element (16). Glass surface relative humidity calculating means (20f, S50 ) for calculating (RHw) ,
The sensor output correcting means (20e, S90) has a calculated value of the relative humidity calculating means (20b, S20) when the infrared light receiving element (16) detects fogging of the window glass (12). A window fogging detection apparatus , wherein the arithmetic expression is corrected so as to be a relative humidity at the indoor air temperature at a surface relative humidity (RHw) = 100% .
前記内気導入口(33)および前記外気導入口(34)を通して導入される空気を車室内へ向かって送風する送風手段(37)と、
前記送風手段(37)の送風空気を冷却する冷房用熱交換器(38)と、
前記送風手段(37)の送風空気を加熱する暖房用熱交換器(44)と、
前記冷房用熱交換器(38)および前記暖房用熱交換器(44)を通過して温度調整された空気を車室内へ吹き出す複数の吹出口(48、49、50)と、
前記複数の吹出口(48、49、50)を開閉して吹出モードを切り替える吹出モードドア(51、52、53)とを具備し、
前記複数の吹出口(48、49、50)には車両の前面窓ガラス(12)に向かって空気を吹き出すデフロスタ吹出口(48)が備えられており、
請求項1ないし9のいずれか1つに記載の窓曇り検出装置が前記前面窓ガラス(12)の内面に配置され、
前記ガラス表面相対湿度演算手段(20f、S50)の演算値に基づいて、前記内外気切替手段(35)による内外気切替制御、前記送風手段(37)による風量制御、および前記吹出モードドア(51、52、53)による吹出モード切替制御の少なくとも1つを実行することを特徴とする車両用空調装置。 An inside / outside air switching means (35) that opens and closes the inside air introduction port (33) and the outside air introduction port (34) to switch between the intake of the inside air and the outside air,
A blowing means (37) for blowing air introduced through the inside air introduction port (33) and the outside air introduction port (34) toward the vehicle interior;
A cooling heat exchanger (38) for cooling the air blown by the blowing means (37);
A heating heat exchanger (44) for heating the blown air of the blowing means (37);
A plurality of air outlets (48, 49, 50) for blowing out the air whose temperature is adjusted by passing through the cooling heat exchanger (38) and the heating heat exchanger (44);
A blow mode door (51, 52, 53) for switching the blow mode by opening and closing the plurality of blow outlets (48, 49, 50);
The plurality of air outlets (48, 49, 50) are provided with a defroster air outlet (48) for blowing air toward the front window glass (12) of the vehicle,
The window fogging detection device according to any one of claims 1 to 9 is disposed on an inner surface of the front window glass (12),
Based on the calculated value of the glass surface relative humidity calculating means (20f, S50), the inside / outside air switching control by the inside / outside air switching means (35), the air volume control by the air blowing means (37), and the blowing mode door (51 , 52, 53) executing at least one of the blowout mode switching control.
前記ガラス表面相対湿度(RHw)が所定範囲内となるように前記冷房用熱交換器(38)の冷却度合いの目標値を設定し、
前記冷房用熱交換器(38)の実際の冷却度合いが前記目標値となるように前記圧縮機(40)の能力を制御することを特徴とする請求項10に記載の車両用空調装置。 A compressor (40) for circulating a refrigerant in the cooling heat exchanger (38);
Setting a target value of the cooling degree of the cooling heat exchanger (38) so that the glass surface relative humidity (RHw) is within a predetermined range;
The vehicle air conditioner according to claim 10 , wherein the capacity of the compressor (40) is controlled so that an actual cooling degree of the cooling heat exchanger (38) becomes the target value.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077279A JP4434051B2 (en) | 2005-03-17 | 2005-03-17 | Window fogging detector |
US11/377,494 US7461551B2 (en) | 2005-03-17 | 2006-03-16 | Window fog detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005077279A JP4434051B2 (en) | 2005-03-17 | 2005-03-17 | Window fogging detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006256496A JP2006256496A (en) | 2006-09-28 |
JP4434051B2 true JP4434051B2 (en) | 2010-03-17 |
Family
ID=37096185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005077279A Expired - Fee Related JP4434051B2 (en) | 2005-03-17 | 2005-03-17 | Window fogging detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4434051B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101849173B (en) | 2007-10-01 | 2012-11-21 | 株式会社吾土电子 | Apparatus for detecting fogged window of vehicle |
JP5104572B2 (en) * | 2008-06-13 | 2012-12-19 | 株式会社デンソー | Air conditioner for vehicles |
JP5378166B2 (en) * | 2009-11-12 | 2013-12-25 | 日産自動車株式会社 | Temperature and humidity detector |
CN110082268B (en) * | 2019-04-25 | 2022-06-14 | 国家能源投资集团有限责任公司 | Cooling Tower Fog Measurement System |
CN110068550B (en) * | 2019-05-30 | 2024-11-12 | 常州中能电力科技有限公司 | Mirror type humidity monitoring device and use method thereof |
JP7443919B2 (en) * | 2020-05-01 | 2024-03-06 | 株式会社デンソー | Sensor unit and infrared sensing system |
DE112022005127T5 (en) * | 2021-10-25 | 2024-08-22 | AGC Inc. | SENSOR |
CN114312673B (en) * | 2022-02-09 | 2023-10-17 | 一汽解放汽车有限公司 | Device and method for preventing and controlling frost and fog of vehicle and vehicle |
-
2005
- 2005-03-17 JP JP2005077279A patent/JP4434051B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006256496A (en) | 2006-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7461551B2 (en) | Window fog detecting apparatus | |
US7958740B2 (en) | Vehicular air-conditioner | |
JP4858305B2 (en) | Humidity detection device and vehicle air conditioner | |
US8733428B2 (en) | Air conditioning system for vehicle | |
JP5152355B2 (en) | Air conditioner for vehicles | |
JP5445514B2 (en) | Air conditioner for vehicles | |
JP4534973B2 (en) | Window fogging detector | |
US6978629B2 (en) | Vehicle air conditioner | |
JP4682930B2 (en) | Air conditioner for vehicles | |
JP4784573B2 (en) | TECHNICAL FIELD The present invention relates to a vehicle air conditioner. | |
JP4434051B2 (en) | Window fogging detector | |
JP3843962B2 (en) | Air conditioner for vehicles | |
JP4858353B2 (en) | Air conditioner for vehicles | |
JP2004142492A (en) | Air-conditioner for vehicle | |
JP2010030435A (en) | Air conditioner for vehicle | |
JP4310902B2 (en) | Air conditioner for vehicles | |
US7690210B2 (en) | Automotive air-conditioning system | |
JP4915212B2 (en) | Air conditioner for vehicles | |
JP3417035B2 (en) | Vehicle air conditioner | |
KR101977742B1 (en) | Air conditioner for vehicle and control method thereof | |
JP4457922B2 (en) | Air conditioner for vehicles | |
JP2003326938A (en) | Air-conditioning defogging control device for vehicle | |
JP4082124B2 (en) | Anti-fogging device for vehicle and method for estimating condensation | |
JP5245537B2 (en) | Air conditioner for vehicles | |
JP2006151098A (en) | Air conditioner for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4434051 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |