JP4432649B2 - Driving force distribution device for four-wheel independent drive vehicle - Google Patents
Driving force distribution device for four-wheel independent drive vehicle Download PDFInfo
- Publication number
- JP4432649B2 JP4432649B2 JP2004205689A JP2004205689A JP4432649B2 JP 4432649 B2 JP4432649 B2 JP 4432649B2 JP 2004205689 A JP2004205689 A JP 2004205689A JP 2004205689 A JP2004205689 A JP 2004205689A JP 4432649 B2 JP4432649 B2 JP 4432649B2
- Authority
- JP
- Japan
- Prior art keywords
- driving force
- wheel
- sensitivity
- front wheel
- rear wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、四輪駆動車の各駆動輪に対応して駆動モータを備える四輪独立駆動車の駆動力配分装置に関するものである。 The present invention relates to a driving force distribution device for a four-wheel independent drive vehicle including a drive motor corresponding to each drive wheel of the four-wheel drive vehicle.
四輪駆動車の各駆動輪に対応して駆動モータを備える四輪独立駆動車の駆動力配分装置が知られている(特許文献1参照)。 A driving force distribution device for a four-wheel independent drive vehicle that includes a drive motor corresponding to each drive wheel of the four-wheel drive vehicle is known (see Patent Document 1).
これは、4個の駆動輪のうち1輪のみがスリップしているときは、左側及び右側のうちスリップ輪と同じ側にある非スリップ輪に、スリップが発生していなければスリップ輪に配分されるはずであった出力トルクを配分する。また、スリップ輪が2輪あり、それらが左側及び右側に1個ずつあるときには、スリップしていなければそのスリップ輪に配分されるはずであったトルク出力を、同じ側にある非スリップ輪に配分する。以上により、駆動力を補正する前後で、前後方向の加速度と、各輪の駆動力によって発生する車両重心周りのヨーモーメントの変化を抑えるようにしている。
しかしながら、上記従来例では、車両の左右各々において前後車輪に配分している制駆動力を変化させないよう補正して車両重心周りのヨーモーメントの変化を抑えるものであり、制駆動力補正の前後における各車輪と路面との間で発生している横方向力の変化を考慮していない。このため、前車輪および後車輪で夫々発生している横方向力が補正前後において大きく変化して、横方向の加速度とそれに基づく車両重心周りのヨーモーメントに変化が発生する場合がある。これはドライバーが意図しない変化であり、運転性を損なう恐れがある。 However, in the above-described conventional example, the braking / driving force distributed to the front and rear wheels on each of the left and right sides of the vehicle is corrected so as not to change to suppress the change in the yaw moment around the center of gravity of the vehicle. It does not take into account changes in the lateral force generated between each wheel and the road surface. For this reason, the lateral force generated at the front wheel and the rear wheel may change greatly before and after the correction, and the lateral acceleration and the yaw moment around the center of gravity of the vehicle based on it may change. This is a change that is not intended by the driver and may impair driving performance.
そこで本発明は、上記問題点に鑑みてなされたもので、いずれか1輪の制駆動力が変化したり任意に変化させる場合における前後方向及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑制可能な四輪独立駆動車の駆動力配分装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and changes in the longitudinal and lateral acceleration and the yaw moment around the vehicle center of gravity when the braking / driving force of any one wheel is changed or arbitrarily changed. An object of the present invention is to provide a driving force distribution device for a four-wheel independent drive vehicle capable of suppressing the above.
本発明は、四輪を夫々独立に駆動可能であり、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段を備える四輪独立駆動車の駆動力配分装置において、左前輪、右前輪、左後輪、右後輪夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段と、前記タイヤ横力感度推定手段で推定した感度k1,k2,k3,k4に基づいて左前輪、右前輪、左後輪、右後輪夫々の駆動力を補正する手段と、を備え、前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、前記タイヤ横力感度推定手段で推定した感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにした。 The present invention relates to a driving force distribution device for a four-wheel independent drive vehicle that is capable of independently driving the four wheels and includes braking / driving force determining means for determining the braking / driving force of each of the four wheels based on a motion demand of the vehicle. Tire lateral force sensitivity estimating means for estimating tire lateral force sensitivities k1, k2, k3, and k4 with respect to changes in driving force of the left front wheel, right front wheel, left rear wheel, and right rear wheel, and the tire lateral force sensitivity estimating means And a means for correcting the driving force of each of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel based on the sensitivity k1, k2, k3, k4 estimated in step S4, and determined by the braking / driving force determining means When the braking / driving force is changed, the driving force correcting means is arranged such that the front left wheel satisfies the motion demand of the vehicle based on the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimating means. , The driving force of each of the right front wheel, left rear wheel, and right rear wheel is ΔF 1, ΔFx2, ΔFx3, was to be corrected only ΔFx4.
したがって、本発明では、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段により決定された制駆動力を変更する場合には、タイヤ横力感度推定手段で推定した左前輪、右前輪、左後輪、右後輪夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4に基づいて、駆動力補正手段により前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにした。このような構成により、前後方向の加速度の変化だけでなく、制駆動力を補正した時のタイヤ横力変化によって発生する横方向の加速度の変化と車両重心周りのヨーモーメントの変化を共に抑制することができ、ドライバーの意図しない車両挙動の乱れを防止し運転性を向上させることができる。 Therefore, in the present invention, when changing the braking / driving force determined by the braking / driving force determining means for determining the braking / driving force of each of the four wheels based on the vehicle motion request, the tire lateral force sensitivity estimating means estimates Based on the sensitivity k1, k2, k3, k4 of the tire lateral force with respect to changes in the driving force of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel, the driving force correcting means is used to satisfy the motion demand of the vehicle. The driving forces of the left front wheel, right front wheel, left rear wheel, and right rear wheel are corrected by ΔFx1, ΔFx2, ΔFx3, and ΔFx4. With such a configuration, not only the change in the longitudinal acceleration but also the change in the lateral acceleration caused by the change in the tire lateral force when the braking / driving force is corrected and the change in the yaw moment around the center of gravity of the vehicle are suppressed. It is possible to prevent disturbance of the vehicle behavior unintended by the driver and improve drivability.
以下、本発明の四輪独立駆動車の駆動力配分装置を一実施形態に基づいて説明する。図1は、本発明を適用した四輪独立駆動車の駆動力配分装置の第1実施形態を示すシステム構成図である。 Hereinafter, a driving force distribution device for a four-wheel independent drive vehicle of the present invention will be described based on an embodiment. FIG. 1 is a system configuration diagram showing a first embodiment of a driving force distribution device for a four-wheel independent drive vehicle to which the present invention is applied.
図1において、四輪独立駆動車の駆動力配分装置は、左前輪1、右前輪2、左後輪3及び右後輪4に、それぞれモータ11,12,13及び14が連結され、夫々のモータ11〜14は各車輪1〜4を独立に駆動可能に構成している。各車輪1〜4の回転半径(R)は全て等しく、各モータ11〜14と各車輪1〜4とは減速比1で直接連結状態で回転する。夫々の駆動軸には車輪速センサ21〜24が配置され、検出された回転速度信号はコントローラ8に出力される。
In FIG. 1, the driving force distribution device for a four-wheel independent drive vehicle has
前記モータ11〜14は、三相同期電動機や三相誘導電動機等の力行運転及び回生運転ができる交流機であり、コントローラ8によりの指令に応じてバッテリ9からの直流電力を夫々インバータ31〜34を介して交流電力に変換して供給されて夫々独立に力行運転して各々の車輪1〜4を駆動可能であり、また、コントローラ8によりの指令に応じて各々の車輪1〜4から駆動される回生運転時にはその交流の回生電力を夫々インバータ31〜34を介して直流電力に変換してバッテリ9に充電可能である。バッテリ9はニッケル水素電池或いはリチウムイオン電池が望ましい。
The
前記左右前輪1、2は、ステアリングギヤ15を介してステアリングハンドル5の操舵により転舵可能であり、その舵角は運転者によるステアリングハンドル5の操舵により機械的に調整される。前記ステアリングハンドル5の操舵量はステアリング角センサ25により検出されて操舵角信号としてコントローラ8に出力される。
The left and right
コントローラ8には、運転者によるアクセルペダル6の踏込み量およびブレーキペダル7の踏込み量を夫々検出するアクセルストロークセンサ26及びブレーキストロークセンサ27の検出信号(踏込み量)、車両の重心位置に取付けられて車両の前後方向および横方向の加速度を検出する加速度センサ100よりの加速度信号、同じく車両の重心位置に取付けられて車両のヨー回転運動を検出するヨーレートセンサ101よりのヨーレート信号、前記した車輪速信号、および、操舵角信号が入力される。コントローラ8は、CPU、ROM、RAM、インターフェース回路等からなり、前記各信号を基に各モータ11〜14へのトルク配分を演算し且つ各インバータ31〜34への指令値を制御する。
The controller 8 is attached to an
図2のフローチャートは各モータ11〜14へのトルク配分を演算し各インバータ31〜34への指令値を制御するルーチンを示しており、コントローラ8において一定周期毎に実行される。このフローチャートにおいて、ステップS20〜S50は車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段を構成し、ステップS60〜S90は左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段を構成し、ステップS100が制駆動力決定手段により決定された制駆動力を変更する要因に基づき必要な制駆動力補正量を決定する手段を構成し、ステップS120〜S130がタイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正する駆動力補正手段を構成している。以下、これについて説明する。
The flowchart of FIG. 2 shows a routine for calculating the torque distribution to each of the
ステップS10では、車輪速センサ21〜24で検出した各車輪1〜4の回転速度ω1,ω2,ω3,ω4[単位:rad/s]に各車輪1〜4の半径Rを乗じて速度V1,V2,V3,V4[単位:m/s]を演算する。また、アクセルストロークセンサ26及びブレーキストロークセンサ27によって検出したアクセルペダル6とブレーキペダル7の踏込量AP[単位:%]及びBP[単位:%]、ステアリング角センサ25によって検出したステアリングハンドル5の回転角θ[単位:rad]、加速度センサ100で検出した車両の前後方向加速度Xg[単位:m/s2]と横方向加速度Yg[単位:m/s2]、ヨーレートセンサ101で検出したヨーレートγ[単位:rad/s]を夫々読込む。なお、各車輪1〜4の速度V1〜V4は車両前進方向を正とし、ステアリングハンドル5の回転角θは反時計回りを正とし、前後方向加速度Xgは車両が前方に加速する方向を正とし、横方向加速度Ygは車両が左旋回時に車両重心位置から旋回中心に向かう方向を正とし、ヨーレートγは車両を鉛直上方からみたときに反時計回りを正とする。
In step S10, the rotational speeds ω1, ω2, ω3, and ω4 [unit: rad / s] detected by the
ステップS20では、車速V(単位:m/s)を下記の式(1)
V=(V1+V2+V3+V4)÷4 ・・・(1)
により求める。なお、車速Vは車両前進方向を正とする。
In step S20, the vehicle speed V (unit: m / s) is expressed by the following equation (1).
V = (V1 + V2 + V3 + V4) ÷ 4 (1)
Ask for. The vehicle speed V is positive in the vehicle forward direction.
ステップS30では、車両に対するドライバーの要求駆動力tFを下記の式(2)
tF=tFa+tFb ・・・(2)
により求める。なお、式(2)中の要求駆動力tFaは、図3に示すように、アクセルペダル6の踏込量AP及び車速Vに対応した要求駆動力を、予めコントローラ8のROMに記録した要求駆動トルクマップに基づいて設定したものである。また、要求制動力tFbは、図4に示すように、ブレーキペダル7の踏込量BPに対応した要求制動力を、予めコントローラ8のROMに記録した要求制動力マップに基づいて設定したものである。また、要求駆動力tFおよびtFa、要求制動力tFbは、いずれも車両を前方に加速させる向きを正とする。
In step S30, the driver's required driving force tF for the vehicle is expressed by the following equation (2).
tF = tFa + tFb (2)
Ask for. The required driving force tFa in the equation (2) is a required driving torque in which the required driving force corresponding to the depression amount AP of the
ステップS40では、ステアリングハンドル5の回転角θと車両速度Vから、車両の左右輪駆動力差ΔF[単位:N]を、予めコントローラ8のROMに記憶しておいた目標左右駆動力差マップに基づいて設定する。この目標左右駆動力差マップは、例えば、図5に示すように、操舵角θと車速Vに対応して左右輪駆動力差ΔFを設定したものである。 In step S40, the left / right wheel driving force difference ΔF [unit: N] of the vehicle is determined from the rotation angle θ of the steering handle 5 and the vehicle speed V in a target left / right driving force difference map stored in the ROM of the controller 8 in advance. Set based on. The target left / right driving force difference map is obtained by setting a left / right wheel driving force difference ΔF corresponding to the steering angle θ and the vehicle speed V, for example, as shown in FIG.
なお、ステップS30の前記要求駆動力やステップS40の左右輪駆動力差は、ドライバーによるアクセルペダル6の踏込量AP及び車速Vに対応した要求駆動力とブレーキペダル7の踏込量BPに対応した要求制動力との和による加減速方向の運動要求、および、ステアリングハンドル5の操舵による車両旋回方向の運動要求に基づいて設定するようにしているが、車両の運動要求としては、ドライバーによるこれらペダル6、7およびハンドル5の操作に限られることなく、例えば、緊急回避装置や車間距離を一定に保持させる自動追尾装置若しくは走行レーンを自動的に維持させるレーンキープ装置等の自動操縦装置よりの信号による前後加速度、横加速度およびヨーレートを加味した車両の運動要求に基づいて設定してもよい。
The difference between the required driving force in step S30 and the left and right wheel driving force in step S40 is a request corresponding to the required driving force corresponding to the
ステップS50では、各車輪1〜4の制駆動力Fx1,Fx2,Fx3,Fx4を下記の式(3)および式(4)
Fx1=Fx3=(tF/4)−(ΔF/4) ・・・(3)
Fx2=Fx4=(tF/4)+(ΔF/4) ・・・(4)
により求める。なお、制駆動力Fx1,Fx2,Fx3,Fx4は車両を前進させる方向に働く力を正とする。
In step S50, the braking / driving forces Fx1, Fx2, Fx3, and Fx4 of the
Fx1 = Fx3 = (tF / 4) − (ΔF / 4) (3)
Fx2 = Fx4 = (tF / 4) + (ΔF / 4) (4)
Ask for. The braking / driving forces Fx1, Fx2, Fx3, and Fx4 are positive forces acting in the direction of moving the vehicle forward.
ステップS60では、各車輪1〜4の輪荷重W1,W2,W3,W4(単位:N)を推定する。推定方法は、例えば、ステップS10で読込んだ前後方向加速度Xg及び横方向加速度Ygから左右前輪1、2及び左右後輪3、4の接地荷重W1,W2,W3,W4を下記の式(5)〜式(8)
W1={(Lr−h・Xg)/2L−ηf・h・Yg/Lt}W/g ・・・(5)
W2={(Lr−h・Xg)/2L+ηf・h・Yg/Lt}W/g ・・・(6)
W3={(Lf+h・Xg)/2L−ηr・h・Yg/Lt}W/g ・・・(7)
W4={(Lf+h・Xg)/2L+ηr・h・Yg/Lt}W/g ・・・(8)
により演算し推定する。なお、図7に示すように、上記式中のL(=Lf+Lr)は車両のホイールベース[単位:m]、Lfは車両のヨー回転方向の車両重心位置から前輪車軸までの距離[単位:m]、Lrはヨー回転方向の車両重心位置から後輪車軸までの距離[単位:m]、Ltは車輌のトレッド[単位:m]、hは車両の重心高さ[単位:m]、Wは車輌の重量、gは重力加速度、ηfは前輪側のロール剛性配分、ηrは後輪側のロール剛性配分、Xgは車輌の前後加速度、Ygは車輌の横加速度を夫々示す。
In step S60, the wheel loads W1, W2, W3, W4 (unit: N) of the
W1 = {(Lr−h · Xg) / 2L−ηf · h · Yg / Lt} W / g (5)
W2 = {(Lr−h · Xg) / 2L + ηf · h · Yg / Lt} W / g (6)
W3 = {(Lf + h · Xg) / 2L−ηr · h · Yg / Lt} W / g (7)
W4 = {(Lf + h · Xg) / 2L + ηr · h · Yg / Lt} W / g (8)
Is calculated and estimated. 7, L (= Lf + Lr) in the above formula is the wheel base [unit: m] of the vehicle, and Lf is the distance from the center of gravity of the vehicle in the yaw rotation direction of the vehicle to the front wheel axle [unit: m. ], Lr is the distance from the center of gravity of the vehicle in the yaw rotation direction to the rear wheel axle [unit: m], Lt is the tread of the vehicle [unit: m], h is the height of the center of gravity of the vehicle [unit: m], and W is Weight of the vehicle, g is gravitational acceleration, ηf is roll stiffness distribution on the front wheel side, ηr is roll stiffness distribution on the rear wheel side, Xg is longitudinal acceleration of the vehicle, and Yg is lateral acceleration of the vehicle.
ステップS70では、各車輪1〜4の横滑り角β1,β2,β3,β4[単位:rad]を推定する。この横滑り角(スリップ角ともいう)とは、車両の進行方向とタイヤの前後方向のなす現時点におけるスリップ角(現状スリップ角)のことである。推定方法については種々あるが、ここでは一例として次の方法を用いる。ステップS10で読込んだ横方向加速度Ygとヨーレートγと車速Vから車体横滑り角βを推定する。その上でこの横滑り角βとヨーレートγと車速Vと操舵角θから、下記のように、横滑り角β1,β2,β3,β4を推定する。
In step S70, the sideslip angles β1, β2, β3, β4 [unit: rad] of the
先ず、前記車体横滑り角βは、下記の式(9)
β=∫(Yg/V−γ)dt ・・・(9)
により推定する。次いで、各車輪1〜4の横滑り角β1,β2,β3,β4は下記の式(10)および式(11)
β1=β2=β+θ/Gs−γ×Lf/V ・・・(10)
β3=β4=β+γ×Lr/V ・・・(11)
により推定する。ただし、β1,β2は前輪スリップ角、β3,β4は後輪スリップ角、Gsはステアリングギヤ15のギヤ比である。なお、β1,β2,β3,β4の符号は、車輪の前後方向から車輪速度の方向までの角度が鉛直上方から見て反時計回りになっている場合を正とする。
First, the vehicle body side slip angle β is expressed by the following equation (9).
β = ∫ (Yg / V−γ) dt (9)
Estimated by Next, the sideslip angles β1, β2, β3, and β4 of the
β1 = β2 = β + θ / Gs−γ × Lf / V (10)
β3 = β4 = β + γ × Lr / V (11)
Estimated by Where β1 and β2 are front wheel slip angles, β3 and β4 are rear wheel slip angles, and Gs is a gear ratio of the steering gear 15. The signs of β1, β2, β3, and β4 are positive when the angle from the front-rear direction of the wheel to the direction of the wheel speed is counterclockwise when viewed from vertically above.
ステップS80では、各車輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定する。推定方法については種々あるが、ここでは一例として次の方法を用いる。先ず、各車輪1〜4が路面から受ける路面反力F1〜F4を推定し、この路面反力F1〜F4とステップS60で求めた輪荷重W1〜W4から各車輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定する。即ち、モータ11〜14には、電磁トルクTmが加えられ、車輪1〜4には路面反力Fに車輪半径Rを乗じた路面反力トルクが、モータ11〜14によるトルクと逆方向に加えられている。
In step S80, the road surface friction coefficients μ1, μ2, μ3, and μ4 of the
そして、各モータ11〜14と車輪1〜4とは直結状態であり、車軸のねじり剛性κが十分に大きいと仮定でき、車軸のねじり変形を無視して、モータ11〜14の回転速度と車輪1〜4の回転速度とは同一速度ωなる関係が成り立つとすると、モータ11〜14と車輪1〜4との回転系の運動方程式は、下記の式(12)
(Jm+Jw)ω’=Tm−Cmw・ω−Rmw−F・R ・・・(12)
にまとめられる。なお、Jm、Jwはモータ11〜14および車輪1〜4の慣性モーメント、Cm、Cwはモータ11〜14および車輪1〜4の回転系の粘性減衰定数、Rm、Rwはモータ11〜14および車輪1〜4の回転系の個体摩擦である。
The
(Jm + Jw) ω ′ = Tm−Cmw · ω−Rmw−F · R (12)
Are summarized in Jm and Jw are the moments of inertia of the
その結果、路面反力Fは、上記の式(12)を用い、下記の式(13)
F={Tm−(Jm+Jw)ω’−Cmw・ω−Rmw}/R ・・・(13)
として推定できる。従って、各車輪1〜4について夫々路面反力F1〜F4を推定して求める。
As a result, the road surface reaction force F is expressed by the following equation (13) using the above equation (12).
F = {Tm− (Jm + Jw) ω′−Cmw · ω−Rmw} / R (13)
Can be estimated. Therefore, the road surface reaction forces F1 to F4 are estimated and obtained for the
また、同様に推定した路面反力F1〜F4とタイヤ荷重W1〜W4とにより、下記の式(14)〜式(17)
μ1=F1/W1 ・・・(14)
μ2=F2/W2 ・・・(15)
μ3=F3/W3 ・・・(16)
μ4=F4/W4 ・・・(17)
を用い、路面摩擦係数μ1、μ2、μ3、μ4を推定することができる。前記式(13)、(14)〜(17)で示されるような路面反力、路面摩擦係数の推定演算は、全てマイクロコンピュータのソフトウェアにより実現できる。
Similarly, the following formulas (14) to (17) are calculated based on the estimated road surface reaction forces F1 to F4 and tire loads W1 to W4.
μ1 = F1 / W1 (14)
μ2 = F2 / W2 (15)
μ3 = F3 / W3 (16)
μ4 = F4 / W4 (17)
Can be used to estimate road surface friction coefficients μ1, μ2, μ3, and μ4. The estimation calculation of the road surface reaction force and the road surface friction coefficient as shown in the above formulas (13) and (14) to (17) can all be realized by software of a microcomputer.
ステップS90では、ステップS60〜S80で推定したWi,βi,μi(i=1〜4)から、各輪1〜4の駆動力変化に対するタイヤ横力の感度Ki(i=1〜4)を求める。タイヤ横力の感度Ki(i=1〜4)の求め方を左前輪1の場合を例にとって説明する。
In step S90, the tire lateral force sensitivity Ki (i = 1 to 4) with respect to the driving force change of each
コントローラ8のROMには、Fx1とFy1との関係を、W1,β1,μ1毎に予め実験或いはシミュレーションによって求めておいた、図6に示すような、各車輪1〜4のW1,β1,μ1毎に、車輪1〜4の制駆動力−タイヤ横力マップを記憶させておく。
In the ROM of the controller 8, the relationship between Fx1 and Fy1 is obtained in advance for each of W1, β1, and μ1 through experiments or simulations, and W1, β1, and μ1 of the
そして、現在の制駆動力Fx1に対応するタイヤ横力Fy1と、次の時点の制駆動力Fx1+dFx1に対応する次の時点のタイヤ横力Fy1+dFy1とを、このマップを参照して求め、感度kiを式(18)
ki=dFy1/dFx1 ・・・(18)
に従って求める。ここで、制駆動力変化dFx1(単位:N、dFx1>0)はタイヤ荷重W1と比較して十分微小な制駆動力である。即ち、制駆動力Fx1が微小なdFx1だけ変化した時のタイヤ横力Fy1の変化量dFy1を求めることによって、制駆動力Fx1の変化に対するタイヤ横力Fy1の感度kiを求める。
The tire lateral force Fy1 corresponding to the current braking / driving force Fx1 and the tire lateral force Fy1 + dFy1 of the next time corresponding to the braking / driving force Fx1 + dFx1 of the next time are obtained with reference to this map, and the sensitivity ki is obtained. Formula (18)
ki = dFy1 / dFx1 (18)
Ask according to. Here, the braking / driving force change dFx1 (unit: N, dFx1> 0) is a braking / driving force that is sufficiently smaller than the tire load W1. That is, the sensitivity ki of the tire lateral force Fy1 with respect to the change in the braking / driving force Fx1 is obtained by obtaining the change amount dFy1 of the tire lateral force Fy1 when the braking / driving force Fx1 changes by a minute dFx1.
車輪2〜4についても同様に制駆動力−タイヤ横力マップを用意しておき、輪荷重W2〜W4と比較して十分微小な制駆動力変化dFx2,dFx3,dFx4を定義してタイヤ横力の感度k2〜k4を求める。
Similarly, for the
ステップS100では、各車輪1〜4のいずれかにおいて、スリップ或いは車輪ロックしているか若しくはその傾向が生じている場合に、当該車輪1〜4のスリップ或いは車輪ロックを防止するために必要な制駆動力補正量ΔFsi(i=1〜4)を求める。この制駆動力補正量ΔFsiの求め方としては、ステップS80で求めた、各輪1〜4が路面から受ける反力Fi(i=1〜4)とモータ11〜14のトルクによって発生する制駆動力Fx1との差を制駆動力補正量ΔFsi(ΔFsi=Fi−Fxi)とする。
In step S100, when any one of the
なお、上記ステップS100では、いずれかの車輪1〜4がスリップ若しくはロックしているか若しくはその傾向が生じているかどうかを要因として、これを防止するために必要な制動力補正量ΔFsiを求めるようにしているが、このステップS100での制駆動力決定手段により決定された制駆動力を変更する要因として、例えば、いずれかの車輪1〜4のモータ11〜14またはモータ駆動系統の故障による性能低下や駆動力能力限界を超えた制駆動力指令に対する等の外乱要因や内部事情に対する受動的若しくは能動的な補正量ΔFsiを設定するものであってもよい。
In step S100, the braking force correction amount ΔFsi necessary to prevent this is determined based on whether any of the
ステップS110では、制駆動力補正量ΔFsiの絶対値|ΔFsi|が、予め設定した閾値Fthより大きい車輪1〜4が1輪以上ある場合にはステップS120へ進み、そうでない場合にはステップS140へ進む。前記閾値Fthは、路面から受ける反力Fiと制駆動力Fxiとの差が大きくなる、即ち、スリップ或いは車輪ロックの傾向が強くなっていることを判断するための閾値であり、例えば、車両重量W(単位:N)の1%、即ち0.01W程度とするのが望ましい。なお、ステップS100での制駆動力の変更の要因に応じて前記閾値Fthを望ましい値に変更して使用する。
In step S110, if there is one or
ステップS120では、制駆動力補正量ΔFsiの絶対値|ΔFsi|が最も大きくなっている車輪1〜4をスリップ或いは車輪ロックの状態から回復させると共に、車両挙動(前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントM)を乱さない各車輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を下記の式(19)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(Lt/L)(k4−k2)+k2(k4−k3):−(Lt/L)(k3−k1)−k1(k4−k3):−(Lt/L)(k4−k2)−k4(k2−k1):(Lt/L)(k3−k1)+k3(k2−k1) ・・・(19)
用いて求める。各輪1〜4の制駆動力補正量ΔFxiの比を上記式(19)の通りにすれば、前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントMの変化を抑えることができる。
In step S120, the
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Lt / L) (k4-k2) + k2 (k4-k3) :-( Lt / L) (k3-k1) -k1 (k4-k3) :-( Lt / L) (k4-k2) -k4 (K2-k1) :( Lt / L) (k3-k1) + k3 (k2-k1) (19)
Use to find. If the ratio of the braking / driving force correction amount ΔFxi of each of the
従って、例えば、左前輪1の制駆動力補正量の絶対値|ΔFs1|が各車輪の制駆動力補正量の絶対値|ΔFs1|〜|ΔFs4|の中で最も大きい場合、各輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は、各輪1〜4の駆動力変化に対するタイヤ横力の感度をkiを用いて式(20)〜式(23)
ΔFx1=ΔFs ・・・(20)
ΔFx2={−(Lt/L)(k3−k1)+k1(k4−k3)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFs ・・・(21)
ΔFx3={−(Lt/L)(k4−k2)+k4(k2−k1)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFs ・・・(22)
ΔFx4={(Lt/L)(k3−k1)+k3(k2−k1)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFs ・・・(23)
の通り求める。他の車輪1〜4の場合についても、同様にして各輪1〜4の制駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求める。
Therefore, for example, when the absolute value | ΔFs1 | of the braking / driving force correction amount of the left
ΔFx1 = ΔFs (20)
ΔFx2 = {− (Lt / L) (k3−k1) + k1 (k4−k3)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFs (21)
ΔFx3 = {− (Lt / L) (k4−k2) + k4 (k2−k1)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFs (22)
ΔFx4 = {(Lt / L) (k3−k1) + k3 (k2−k1)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFs (23)
Ask as follows. In the case of the
ステップS130では、各車輪1〜4の制駆動力Fx1,Fx2,Fx3,Fx4を式(24)〜式(27)
Fx1←Fx1+ΔFx1 ・・・(24)
Fx2←Fx2+ΔFx2 ・・・(25)
Fx3←Fx3+ΔFx3 ・・・(26)
Fx4←Fx4+ΔFx4 ・・・(27)
の通り補正する。
In step S130, the braking / driving forces Fx1, Fx2, Fx3, and Fx4 of the
Fx1 ← Fx1 + ΔFx1 (24)
Fx2 ← Fx2 + ΔFx2 (25)
Fx3 ← Fx3 + ΔFx3 (26)
Fx4 ← Fx4 + ΔFx4 (27)
Correct as follows.
ステップS140では、新たな各車輪1〜4の制駆動力Fxiをそれぞれタイヤ半径Rで除した値、即ちトルク指令値をモータ11〜14が出力するようにインバータ31〜34への電流指令値制御を行う。 In step S140, current command value control to inverters 31-34 is performed so that motors 11-14 output a value obtained by dividing braking / driving force Fxi of each new wheel 1-4 by tire radius R, that is, torque command value. I do.
ところで、前記ステップS120で提案した式(19)に基づいて、各輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を求めることにより、車両挙動(前後方向の加速度Xg、横方向の加速度Yg、車両重心周りのヨーモーメントM)を乱さない根拠、即ち、前後方向及び横方向の加速度と車両重心周りのヨーモーメントが変化しない各輪1〜4の駆動力補正量の求め方について、以下に説明する。
By the way, by calculating the braking / driving force correction amount ΔFxi (i = 1 to 4) of each
図7は、各車輪1〜4の操舵角δi(i=1〜4)が十分小さいという仮定の元で、4輪独立駆動車に加わる駆動力と横力と車両重心周りのヨーモーメントを表した図である。各車輪1〜4の駆動力の総和Fxと、各車輪1〜4のタイヤ横力の総和Fyと、各車輪1〜4の駆動力とタイヤ横力の総和によって発生する車両重心周りのヨーモーメントの総和Mとは、下記の式(28)〜(30)
Fx=Fx1+Fx2+Fx3+Fx4 ・・・(28)
Fy=Fy1+Fy2+Fy3+Fy4 ・・・(29)
M={(Fx2+Fx4)−(Fx1+Fx3)}Lt/2+{(Fy1+Fy2)×Lf−(Fy3+Fy4)×Lr} ・・・(30)
の通り表すことができる。
FIG. 7 shows the driving force and lateral force applied to the four-wheel independent drive vehicle and the yaw moment around the vehicle center of gravity on the assumption that the steering angle δi (i = 1 to 4) of each
Fx = Fx1 + Fx2 + Fx3 + Fx4 (28)
Fy = Fy1 + Fy2 + Fy3 + Fy4 (29)
M = {(Fx2 + Fx4) − (Fx1 + Fx3)} Lt / 2 + {(Fy1 + Fy2) × Lf− (Fy3 + Fy4) × Lr} (30)
Can be expressed as:
従って、駆動力Fxi(i=1〜4)が夫々ΔFx1,ΔFx2,ΔFx3,ΔFx4だけ変化したときのタイヤ横力変化量をΔFyi(i=1〜4)とすると、各車輪1〜4の駆動力・タイヤ横力・ヨーモーメントの総和Fx,Fy,Mの変化量ΔFx,ΔFy,ΔMは、下記の式(31)〜(33)
ΔFx=ΔFx1+ΔFx2+ΔFx3+ΔFx4 ・・・(31)
ΔFy=ΔFy1+ΔFy2+ΔFy3+ΔFy4 ・・・(32)
ΔM={(ΔFx2+ΔFx4)−(ΔFx1+ΔFx3)}Lt/2+{(ΔFy1+ΔFy2)×Lf−(ΔFy3+ΔFy4)×Lr} ・・・(33)
の通りになる。
Accordingly, when the driving force Fxi (i = 1 to 4) is changed by ΔFx1, ΔFx2, ΔFx3, and ΔFx4, respectively, the amount of change in the tire lateral force is ΔFyi (i = 1 to 4). The change amounts ΔFx, ΔFy, ΔM of the sum Fx, Fy, M of force, tire lateral force, and yaw moment are expressed by the following equations (31) to (33).
ΔFx = ΔFx1 + ΔFx2 + ΔFx3 + ΔFx4 (31)
ΔFy = ΔFy1 + ΔFy2 + ΔFy3 + ΔFy4 (32)
ΔM = {(ΔFx2 + ΔFx4) − (ΔFx1 + ΔFx3)} Lt / 2 + {(ΔFy1 + ΔFy2) × Lf− (ΔFy3 + ΔFy4) × Lr} (33)
It becomes as follows.
ここで、駆動力Fxiとタイヤ横力Fyi(i=1〜4)との関係は、図8に示す関係にある。図8は輪荷重と路面摩擦係数に変化が無いとした時の駆動力とタイヤ横力の関係を表した図で、駆動力を横軸に、タイヤ横力を縦軸にとっている。図8から分かるように、前輪1、2が駆動しながら左旋回をしている図7の状態ではタイヤ横力Fy1,Fy2,Fy3,Fy4は全て正であるので、駆動力が増加するとタイヤ横力は減少する関係にある。なお、図8において各滑り角における曲線の両端では、駆動力とタイヤ横力の関係が逆転している(滑り角β3の時の曲線Aの場合では点線で囲んだB及びCの領域がこれに相当する)。この逆転している領域は駆動時ならばホイールスピン(B領域)、制動時なら車輪がほぼロック(C領域)した状態であり、通常は使用されない領域であり、ここでは無視する。
Here, the relationship between the driving force Fxi and the tire lateral force Fyi (i = 1 to 4) is the relationship shown in FIG. FIG. 8 is a diagram showing the relationship between the driving force and the tire lateral force when there is no change in the wheel load and the road surface friction coefficient. The driving force is plotted on the horizontal axis and the tire lateral force is plotted on the vertical axis. As can be seen from FIG. 8, the tire lateral forces Fy1, Fy2, Fy3, and Fy4 are all positive in the state of FIG. 7 in which the
そこで各車輪1〜4の現在の駆動力Fxiとタイヤ横力Fyiにおける、駆動力変化ΔFxiに対するタイヤ横力の感度をki(i=1〜4)とする。駆動力補正量ΔFxi及びタイヤ横力変化量ΔFyiが微小の時のタイヤ横力の感度kiは、下記の式(34)
ki=ΔFyi/ΔFxi ・・・(34)
で求めることができる。
Therefore, the sensitivity of the tire lateral force with respect to the driving force change ΔFxi in the current driving force Fxi and the tire lateral force Fyi of each
ki = ΔFyi / ΔFxi (34)
Can be obtained.
今、駆動力補正量ΔFxi及びタイヤ横力変化量ΔFyiが微小であり、この式(34)の近似が十分成り立つとすると、タイヤ横力変化量は、ΔFyi=ki・ΔFxiとおけるので、式(32)〜式(33)のタイヤ横力およびヨーモーメントの総和変化量ΔFy,ΔMは、下記の式(35)〜(36)
ΔFy=k1ΔFx1+k2ΔFx2+k3ΔFx3+k4ΔFx4 ・・・(35)
ΔM={(ΔFx2+ΔFx4)−(ΔFx1+ΔFx3)}Lt/2+{(ΔFy1+ΔFy2)×Lf−(ΔFy3+ΔFy4)×Lr}
=(k1Lf−Lt/2)ΔFx1+(k2Lf+Lt/2)ΔFx2+(−k3Lr−Lt/2)ΔFx3+(−k4LR+Lt/2)ΔFx4 ・・・(36)
の通り置き換えることができる。
Now, assuming that the driving force correction amount ΔFxi and the tire lateral force change amount ΔFyi are very small and the approximation of the equation (34) is sufficiently established, the tire lateral force change amount can be expressed as ΔFyi = ki · ΔFxi. 32) to (33), the tire lateral force and yaw moment total change ΔFy and ΔM are expressed by the following equations (35) to (36).
ΔFy = k1ΔFx1 + k2ΔFx2 + k3ΔFx3 + k4ΔFx4 (35)
ΔM = {(ΔFx2 + ΔFx4) − (ΔFx1 + ΔFx3)} Lt / 2 + {(ΔFy1 + ΔFy2) × Lf− (ΔFy3 + ΔFy4) × Lr}
= (K1Lf−Lt / 2) ΔFx1 + (k2Lf + Lt / 2) ΔFx2 + (− k3Lr−Lt / 2) ΔFx3 + (− k4LR + Lt / 2) ΔFx4 (36)
Can be replaced as follows.
従って、式(31)および式(35)、式(36)をまとめると、下記の式(37) Therefore, when formula (31), formula (35), and formula (36) are put together, the following formula (37)
そして、式(37)の左辺、即ち、駆動力、タイヤ横力およびヨーモーメントの総和変化量ΔFx、ΔFy、ΔMを0とした下記の式(38) Then, the left side of the equation (37), that is, the following equation (38) in which the total changes ΔFx, ΔFy, ΔM of the driving force, the tire lateral force, and the yaw moment are set to zero.
ΔFx2={−(Lt/L)(k3−k1)−k1(k4−k3)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFx1 ・・・(39)
ΔFx3={−(Lt/L)(k4−k2)−k4(k2−k1)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFx1 ・・・(40)
ΔFx4={+(Lt/L)(k3−k1)+k3(k2−k1)}/{(Lt/L)(k4−k2)+k2(k4−k3)}×ΔFx1 ・・・(41)
の通り表される。ただし、Lはホイールベース長さで、L=Lf+Lrである。
ΔFx2 = {− (Lt / L) (k3−k1) −k1 (k4−k3)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFx1 (39)
ΔFx3 = {− (Lt / L) (k4−k2) −k4 (k2−k1)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFx1 (40)
ΔFx4 = {+ (Lt / L) (k3−k1) + k3 (k2−k1)} / {(Lt / L) (k4−k2) + k2 (k4−k3)} × ΔFx1 (41)
It is expressed as follows. However, L is the wheelbase length, and L = Lf + Lr.
従って、上記の式(39)〜式(41)から明らかな通り、駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4が、前記ステップS120で使用した下記に示す式(19)
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(Lt/L)(k4−k2)+k2(k4−k3):−(Lt/L)(k3−k1)−k1(k4−k3):−(Lt/L)(k4−k2)−k4(k2−k1):(Lt/L)(k3−k1)+k3(k2−k1) ・・・(19)
の通りの比をとると、駆動力、タイヤ横力およびヨーモーメントの総和変化量ΔFx=ΔFy=ΔM=0となり、駆動力・タイヤ横力およびヨーモーメントFx,Fy,Mの変化を0にすることができる。
Therefore, as is clear from the above equations (39) to (41), the driving force correction amounts ΔFx1, ΔFx2, ΔFx3, ΔFx4 are the following equations (19) used in step S120.
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Lt / L) (k4-k2) + k2 (k4-k3) :-( Lt / L) (k3-k1) -k1 (k4-k3) :-( Lt / L) (k4-k2) -k4 (K2-k1) :( Lt / L) (k3-k1) + k3 (k2-k1) (19)
If the ratio is taken as follows, the total change amount ΔFx = ΔFy = ΔM = 0 of the driving force, the tire lateral force, and the yaw moment, and the changes of the driving force / the tire lateral force and the yaw moments Fx, Fy, M are made zero. be able to.
以上、各車輪1〜4における駆動力変化に対するタイヤ横力の感度kiを定義すると、このkiに基づいて各輪1〜4の駆動力を前記の式(19)の比率で変化させることによって、駆動力の総和Fxだけでなくタイヤ横力の総和Fyおよびヨーレートの総和Mの変化も0にすることができる。即ち、いずれかの1輪1〜4において駆動力が故障やスリップ等で駆動力が変化したり、任意に制駆動力を変化させる場合でも、この1輪1〜4の制駆動力変化に対して残り3輪1〜4の制駆動力を式(19)の比率で変化させれば、ドライバーの意図しない駆動力・タイヤ横力およびヨーモーメントFx,Fy,Mの変化を防ぐことができる。
As described above, when the sensitivity k i of the tire lateral force with respect to the driving force change in each
ところで、車両が旋回走行状態や加減速走行状態、および、各車輪1〜4での制駆動力が比較的小さい走行状態、更には、前後輪で輪荷重比が等しい若しくは左右輪で輪荷重比が等しい、前輪駆動状態若しくは後輪駆動状態で走行している走行状態においては、前記ステップS90で求めた各車輪1〜4の駆動力変化に対するタイヤ横力の感度Kiが、左前輪1と右後輪4の感度k1,k4の積および右前輪2と左後輪3の感度k2、k3の積がほぼ等しい場合が存在する。このように、タイヤ横力の感度Kiが、左前輪1と右後輪4の感度k1,k4の積および右前輪2と左後輪3の感度k2,k3の積がほぼ等しい場合には、ステップS100で必要とする制駆動力補正量ΔFsiの補正を行うに当たり、前記ステップS120での車両挙動(前後方向の加速度Xg,横方向の加速度Yg,車両重心周りのヨーモーメントM)を乱さない各車輪1〜4の制駆動力補正量ΔFxi(i=1〜4)を、ΔFx1=−ΔFx3,ΔFx2=−ΔFx4(ΔFx1:ΔFx2:ΔFx3:ΔFx4=k2:−k1:−k2:k1)とすることにより高精度に求めることができる。
By the way, the vehicle is in a turning traveling state, an acceleration / deceleration traveling state, a traveling state in which the braking / driving force on each of the
これは、ステップS120での式(19)において、k1・k4=k2・k3とすると、下記の式(42)〜式(44)
ΔFx1:ΔFx3
=(Lt/L)(k4−k2)+k2(k4−k3):−(Lt/L)(k4−k2)−k4(k2−k1)
=(Lt/L)(k4−k2)+k2k4−k2k3:−(Lt/L)(k4−k2)−k2k4−k1k4=1:−1
(∵k1・k4=k2・k3) ・・・(42)
ΔFx2:ΔFx4
=(Lt/L)(k3−k1)−k1(k4−k3):−(Lt/L)(k3−k1)+k3(k2−k1)
=(Lt/L)(k3−k1)−k1k4+k1k3:−(Lt/L)(k3−k1)+k2k3−k1k3=1:−1
(∵k1・k4=k2・k3) ・・・(43)
ΔFx4/ΔFx1
={[Lt/L](k3−k1)+k3(k2−k1)}/{[Lt/L](k4−k2)+k2(k4−k3)}
ここで、k1・k4=k2・k3=ηと置いた場合、k1=ηk2、k3=ηk4となり、上記式に代入すると
={[Lt/L](ηk4−ηk2)+ηk4(k2−ηk2)}/{[Lt/L](k4−k2)+k2(k4−ηk4)}
=η{[Lt/L](k4−k2)+k2k4(1−η)}/{[Lt/L](k4−k2)+k2k4(1−η)}
=η
=k1/k2=k3/k4 ・・・(44)
の通り式変形ができることで説明ができる。
Assuming that k1 · k4 = k2 · k3 in equation (19) in step S120, the following equations (42) to (44)
ΔFx1: ΔFx3
= (Lt / L) (k4-k2) + k2 (k4-k3) :-( Lt / L) (k4-k2) -k4 (k2-k1)
= (Lt / L) (k4-k2) + k2k4-k2k3 :-( Lt / L) (k4-k2) -k2k4-k1k4 = 1: -1
(∵k1 / k4 = k2 / k3) (42)
ΔFx2: ΔFx4
= (Lt / L) (k3-k1) -k1 (k4-k3) :-( Lt / L) (k3-k1) + k3 (k2-k1)
= (Lt / L) (k3-k1) -k1k4 + k1k3 :-( Lt / L) (k3-k1) + k2k3-k1k3 = 1: -1
(∵k1 / k4 = k2 / k3) (43)
ΔFx4 / ΔFx1
= {[Lt / L] (k3-k1) + k3 (k2-k1)} / {[Lt / L] (k4-k2) + k2 (k4-k3)}
Here, when k1 · k4 = k2 · k3 = η is set, k1 = ηk2 and k3 = ηk4. When substituted into the above equation, = {[Lt / L] (ηk4-ηk2) + ηk4 (k2-ηk2)} / {[Lt / L] (k4-k2) + k2 (k4-ηk4)}
= Η {[Lt / L] (k4−k2) + k2k4 (1−η)} / {[Lt / L] (k4−k2) + k2k4 (1−η)}
= Η
= K1 / k2 = k3 / k4 (44)
This can be explained by the fact that the equation can be modified as follows.
また、車両の旋回走行状態において、前記ステップS90で求めた各車輪1〜4の駆動力変化に対するタイヤ横力の感度Kiが、左前輪1と右前輪2の感度k1、k2がほぼ等しく(k2−k1≒0)、なお、前述のk1・k4=k2・k3の関係より、左後輪3と右後輪4の感度k3、k4も等しい(k4−k3≒0)場合には、各車輪1〜4の駆動力補正量をΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−1:1、と設定することで、ステップS100で必要とする制駆動力補正量ΔFsiの補正を、前記ステップS120での前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を0にする駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比をより高精度に求めることができる。
Further, in the turning state of the vehicle, the sensitivity Ki of the tire lateral force with respect to the driving force change of each of the
この理由は、前記の式(44)において、k2−k1=0であり、(またはk4−k3=0)とすると、下記の式(45)
ΔFx4/ΔFx1=k1/k2=1・・・(45)
の通りになることで説明ができる。
This is because, in the above equation (44), when k2−k1 = 0 (or k4−k3 = 0), the following equation (45)
ΔFx4 / ΔFx1 = k1 / k2 = 1 (45)
This can be explained as follows.
このような旋回走行状態は、左右輪1、2および3、4の駆動力配分が輪荷重比とほぼ等しくなっている状態であり、輪荷重が大きい旋回外輪では駆動力を大きく、輪荷重の小さい旋回内輪では駆動力を小さくするように左右駆動力差をつけて走行している状態である。
Such a turning state is a state in which the driving force distribution of the left and
駆動力とタイヤ横力との関係は、ほぼ楕円(長半径は輪荷重に比例)で近似させることができ、左右輪の滑り角が等しいと、図9に示すように、各楕円は左右輪でほぼ相似形となる。この状態で左右輪の駆動力配分を輪荷重比と等しくすると、図9のように左右輪で感度kが等しくなる。 The relationship between the driving force and the tire lateral force can be approximated by an ellipse (the long radius is proportional to the wheel load). When the slip angles of the left and right wheels are equal, as shown in FIG. It is almost similar. In this state, if the left and right wheel driving force distribution is made equal to the wheel load ratio, the sensitivity k becomes equal between the left and right wheels as shown in FIG.
タイヤ接地面で発生する駆動力とタイヤ横力の合力(摩擦力)は、基本的にはそのタイヤの輪荷重以上にはならないが、左右輪の駆動力配分を輪荷重比とすることは、左右輪の負担を均一化することになり、スリップ等を防ぐ有効な駆動力配分方法となる。 The resultant force (frictional force) of the driving force and tire lateral force generated on the tire contact surface is basically not more than the wheel load of the tire, but the distribution of the driving force of the left and right wheels is the wheel load ratio. As a result, the load on the left and right wheels is made uniform, which is an effective driving force distribution method that prevents slipping and the like.
また、車両が前輪駆動状態若しくは後輪駆動状態で走行している走行状態においては、前記ステップS90で求めた各車輪1〜4の駆動力変化に対するタイヤ横力の感度K1、k2が共にほぼ0、若しくは、感度k3、k4が共にほぼ0である場合が存在する。このように、タイヤ横力の感度k1、k2が共にほぼ0、若しくは、感度k3、k4が共にほぼ0である場合には、ステップS100で必要とする制駆動力補正量ΔFsiの補正を行うに当たり、前記ステップS120で、感度が前者の場合では、右後輪4と左前輪1との駆動力補正量をΔFx4/ΔFx1=k3/k4とし、感度が後者の場合では、右後輪4と左前輪1との駆動力補正量をΔFx4/ΔFx1=k1/k2とする構成とした。前記感度k1、k2が共にほぼ0である場合とは、左右前輪1、2が共に制駆動力が小さい後輪駆動状態であり、また、感度k3、k4が共にほぼ0である場合とは、同じく前輪駆動状態である。このような場合においても、右後輪4と左前輪1との駆動力補正量をΔFx4/ΔFx1=k3/k4、若しくは、ΔFx4/ΔFx1=k1/k2とすることにより、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を0にする駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比をより高精度に求めることができる。
When the vehicle is traveling in the front wheel driving state or the rear wheel driving state, the tire lateral force sensitivities K1 and k2 with respect to the driving force changes of the
この理由は、式(44)において、
ΔFx4/ΔFx1
={[Lt/L](k3−k1)+k3(k2−k1)}/{[Lt/L](k4−k2)+k2(k4−k3)}
=k3/k4 (∵k1=0、k2=0) ・・・(46)
ΔFx4/ΔFx1
={[Lt/L](k3−k1)+k3(k2−k1)}/{[Lt/L](k4−k2)+k2(k4−k3)}
=k1/k2 (∵k3=0、k4=0) ・・・(47)
の通り近似することで説明できる。
The reason for this is that in equation (44)
ΔFx4 / ΔFx1
= {[Lt / L] (k3-k1) + k3 (k2-k1)} / {[Lt / L] (k4-k2) + k2 (k4-k3)}
= K3 / k4 (∵k1 = 0, k2 = 0) (46)
ΔFx4 / ΔFx1
= {[Lt / L] (k3-k1) + k3 (k2-k1)} / {[Lt / L] (k4-k2) + k2 (k4-k3)}
= K1 / k2 (∵k3 = 0, k4 = 0) (47)
It can be explained by approximating as follows.
また、右前輪2および左後輪3の駆動力補正量(ΔFx2、ΔFx3)は、前者の場合には、上記のように「ΔFx4/ΔFx1=k3/k4」であり、しかも、「ΔFx1=−ΔFx3、ΔFx2=−ΔFx4」であることから、「ΔFx1=−(k4/k3)×ΔFx2=−ΔFx3=(k4/k3)×ΔFx4」と導き出すことができる。
Further, the driving force correction amounts (ΔFx2, ΔFx3) of the right
また、右前輪2および左後輪3の駆動力補正量(ΔFx2、ΔFx3)は、後者の場合には、上記のように「ΔFx4/ΔFx1=k1/k2」であり、しかも、「ΔFx1=−ΔFx3、ΔFx2=−ΔFx4」であることから、「ΔFx1=−(k2/k1)×ΔFx2=−ΔFx3=(k2/k1)×ΔFx4」と導き出すことができる。
In the latter case, the driving force correction amounts (ΔFx2, ΔFx3) of the right
図10は、本発明の第2実施形態の四輪独立駆動車の駆動力配分装置のコントローラで実行される駆動力配分制御のフローチャートである。図2に示す第1実施形態では、微小スリップを補正するためのステップを示したが、図10に示すようにスリップが大きい場合も、微小スリップを補正するステップを繰り返すことによりスリップ量が増えても対応することができる。 FIG. 10 is a flowchart of the driving force distribution control executed by the controller of the driving force distribution device for a four-wheel independent drive vehicle according to the second embodiment of the present invention. In the first embodiment shown in FIG. 2, the steps for correcting the minute slip are shown, but even when the slip is large as shown in FIG. 10, the slip amount is increased by repeating the step of correcting the minute slip. Can also respond.
図10に沿って説明するが、ステップS10〜S110までは図2と同じであるので省略する。ただし、ステップS90を逐次変化する横力感度を再検出するために後のステップに組み込むようにしている。なお、図10はステップS80からのステップのみを図示している。 Although described along FIG. 10, steps S10 to S110 are the same as those in FIG. However, step S90 is incorporated in subsequent steps in order to re-detect lateral force sensitivity that changes sequentially. Note that FIG. 10 illustrates only steps from step S80.
ステップS110では、制駆動力補正量ΔFsiの絶対値|ΔFsi|が、予め設定した閾値Fthより大きい車輪1〜4が1輪以上ある場合にはステップS111へ進み、そうでない場合にはステップS140へ進む。前記閾値Fthは、路面から受ける反力Fiと制駆動力Fxiとの差が大きくなる、即ち、スリップ或いは車輪ロックの傾向が強くなっていることを判断するための閾値であり、例えば、車両重量W(単位:N)の1%、即ち0.01W程度とするのが望ましい。なお、ステップS100での制駆動力の変更の要因に応じて前記閾値Fthを望ましい値に変更して使用する。
In step S110, if there is one or
ステップS111では、複数の車輪が制駆動力補正を必要としている場合を鑑みて、最も制駆動力補正の大きい車輪の制駆動力補正量をΔFkとする。 In step S111, considering the case where a plurality of wheels require braking / driving force correction, the braking / driving force correction amount of the wheel having the largest braking / driving force correction is set to ΔFk.
ステップS112では、|ΔFk|が閾値Fthb以下の場合にはフラグflgに1を設定し、ΔFkrにΔFkを設定する。また、|ΔFk|が閾値Fthbより大きい場合にはフラグflgに0を設定し、ΔFk≧0の場合にはΔFkr=Fthb、ΔFk<0の場合にはΔFkr=−Fthbとする。 In step S112, when | ΔFk | is equal to or smaller than the threshold value Fthb, 1 is set in the flag flg, and ΔFk is set in ΔFkr. When | ΔFk | is larger than the threshold value Fthb, 0 is set to the flag flg. When ΔFk ≧ 0, ΔFkr = Fthb, and when ΔFk <0, ΔFkr = −Fthb.
このフラグflg、閾値Fthbについて、以降に説明する。 The flag flg and the threshold value Fthb will be described below.
何れか1輪の駆動力が変化した、或いは任意に変化させたときに、車両挙動を乱さない残り3輪の制駆動力補正量ΔFx1を求める式(19)では、この各輪の制駆動力変化量が微小であるということが前提条件になっている。従って、このΔFkが十分微小とできないほど大きな場合には式(19)を用いて残り3輪のΔFx1を正確に求めることが難しくなる。これを判断するフラグがflgであり、微小と仮定できないほど大きな変化である場合には0が、そうでない場合には1が設定される。 When the driving force of any one wheel is changed or arbitrarily changed, the equation (19) for determining the braking / driving force correction amount ΔFx1 of the remaining three wheels that does not disturb the vehicle behavior is expressed by the braking / driving force of each wheel. The precondition is that the amount of change is small. Accordingly, when ΔFk is so large that it cannot be made sufficiently small, it becomes difficult to accurately obtain ΔFx1 of the remaining three wheels using equation (19). The flag for judging this is flg, and 0 is set when the change is so large that it cannot be assumed to be minute, and 1 is set otherwise.
また、この微小と仮定できる制駆動力変化量の最大値の絶対値が閾値Fthbであり、ΔFkがこの閾値Fthb以上の場合には、|ΔFsi|が最も大きくなっている車輪の制駆動力がFthb変化したと仮置きして、後述するステップS120,S130で各輪の制駆動力Fxiを補正すると共に、ΔFk←ΔFk−Fthb(ΔFk≧0の場合,ステップS140)とする。 Further, when the absolute value of the maximum value of the braking / driving force change amount that can be assumed to be minute is the threshold value Fthb, and when ΔFk is equal to or larger than the threshold value Fthb, the braking / driving force of the wheel having the largest | ΔFsi | Assuming that Fthb has changed, the braking / driving force Fxi of each wheel is corrected in steps S120 and S130, which will be described later, and ΔFk ← ΔFk−Fthb (if ΔFk ≧ 0, step S140).
この処理をΔFkが十分小さくなる、即ち|ΔFkr|<Fthbとなるまで繰り返す(ステップS113、ステップS114)ことによって、ΔFkが微小とできないほど大きい場合でも、残り3輪の制駆動力補正量ΔFxiが得られる。本実施例ではこの閾値Fthbを車両重量W(単位:N)の4%、即ち0.04Wとする。 By repeating this process until ΔFk becomes sufficiently small, that is, | ΔFkr | <Fthb (steps S113 and S114), even when ΔFk is too large to be made minute, the braking / driving force correction amount ΔFxi of the remaining three wheels is can get. In this embodiment, the threshold value Fthb is 4% of the vehicle weight W (unit: N), that is, 0.04 W.
ステップS90では、ステップS60〜S80で推定したWi,βi,μi(i=1〜4)から、各輪1〜4の駆動力変化に対するタイヤ横力の感度ki(i=1〜4)を求める。タイヤ横力の感度ki(i=1〜4)の求め方を左前輪1の場合を例にとって説明する。
In step S90, tire lateral force sensitivity ki (i = 1 to 4) with respect to the driving force change of each
コントローラ8のROMには、Fx1とFy1との関係を、W1,β1,μ1毎に予め実験或いはシミュレーションによって求めておいた、図6に示すような、各車輪1〜4のW1,β1,μ1毎に、車輪1〜4の制駆動力−タイヤ横力マップを記憶させておく。
In the ROM of the controller 8, the relationship between Fx1 and Fy1 is obtained in advance for each of W1, β1, and μ1 through experiments or simulations, and W1, β1, and μ1 of the
そして、現在の制駆動力Fx1に対応するタイヤ横力Fy1と、次の時点の制駆動力Fx1+dFx1に対応する次の時点のタイヤ横力Fy1+dFy1とを、このマップを参照して求め、感度kiを式(18)
ki=dFy1/dFx1 ・・・(18)
に従って求める。ここで、制駆動力変化dFx1(単位:N、dFx1>0)はタイヤ荷重W1と比較して十分微小な制駆動力である。即ち、制駆動力Fx1が微小なdFx1だけ変化した時のタイヤ横力Fy1の変化量dFy1を求めることによって、制駆動力Fx1の変化に対するタイヤ横力Fy1の感度kiを求める。
The tire lateral force Fy1 corresponding to the current braking / driving force Fx1 and the tire lateral force Fy1 + dFy1 of the next time corresponding to the braking / driving force Fx1 + dFx1 of the next time are obtained with reference to this map, and the sensitivity ki is obtained. Formula (18)
ki = dFy1 / dFx1 (18)
Ask according to. Here, the braking / driving force change dFx1 (unit: N, dFx1> 0) is a braking / driving force that is sufficiently smaller than the tire load W1. That is, the sensitivity ki of the tire lateral force Fy1 with respect to the change in the braking / driving force Fx1 is obtained by obtaining the change amount dFy1 of the tire lateral force Fy1 when the braking / driving force Fx1 changes by a minute dFx1.
車輪2〜4についても同様に制駆動力−タイヤ横力マップを用意しておき、輪荷重W2〜W4と比較して十分微小な制駆動力変化dFx2,dFx3,dFx4を定義してタイヤ横力の感度k2〜k4を求める。
Similarly, for the
ステップS140では、新たな各車輪1〜4の制駆動力Fxiをそれぞれタイヤ半径Rで除した値、即ちトルク指令値をモータ11〜14が出力するようにインバータ31〜34への電流指令値制御を行う。 In step S140, current command value control to inverters 31-34 is performed so that motors 11-14 output a value obtained by dividing braking / driving force Fxi of each new wheel 1-4 by tire radius R, that is, torque command value. I do.
本実施形態においては、以下に記載する効果を奏することができる。 In the present embodiment, the following effects can be achieved.
(ア)四輪を夫々独立に駆動可能であり、車両の運動要求に基づいて四輪夫々の制駆動力を決定する制駆動力決定手段(ステップS20〜S50)を備える四輪独立駆動車の駆動力配分装置において、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段(ステップS60〜S90)と、前記タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力を補正する手段(ステップS120)と、を備え、前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、前記タイヤ横力感度推定手段で推定された感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正するようにしている。このような構成により、前後方向の加速度の変化だけでなく、制駆動力を補正した時のタイヤ横力変化によって発生する横方向の加速度の変化と車両重心周りのヨーモーメントの変化を共に抑制することができ、ドライバーの意図しない車両挙動の乱れを防止し運転性を向上させることができる。
(A) A four-wheel independent drive vehicle equipped with braking / driving force determining means (steps S20 to S50) that can independently drive the four wheels and determines the braking / driving force of each of the four wheels on the basis of the motion demand of the vehicle. In the driving force distribution device, tire lateral force sensitivity estimation means for estimating tire lateral force sensitivities k1, k2, k3, k4 with respect to changes in driving force of the left
(イ)駆動力補正手段(ステップS120)は、タイヤ横力感度推定手段(ステップS60〜S90)で推定された左前輪1および右後輪4の感度k1およびk4の積と右前輪2および左後輪3の感度k2およびk3の積との差がほぼ0である場合には、左前輪1および左後輪3の駆動力補正量と右前輪2および右後輪4の駆動力補正量とを、ΔFx1:ΔFx2:ΔFx3:ΔFx4=k2:−k1:−k2:k1の関係とすることにより、例えば前後輪で輪荷重比が同じ場合にいずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正する場合に、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪1〜4の制駆動力の補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をより高精度に求めることができる。
(A) The driving force correcting means (step S120) is a product of the sensitivities k1 and k4 of the left
(ウ)駆動力補正手段(ステップS120)は、タイヤ横力感度推定手段(ステップS60〜S90)で推定された左前輪1および右前輪2の感度k1とk2の差又は左後輪3および右後輪4の感度k3とk4の差がほぼ0である場合、左前輪1、右前輪2、左後輪3、右後輪4夫々の駆動力補正量を、ΔFx1:ΔFx2:ΔFx3:ΔFx4=1:−1:−1:1の関係に決定するため、例えば、左右輪で輪荷重比が同じ場合において、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正する場合に、一層高精度に、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪の制駆動力の補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めることができる。
(C) The driving force correcting means (step S120) is the difference between the sensitivity k1 and k2 of the left
(エ)駆動力補正手段(ステップS120)は、前記タイヤ横力感度推定手段(ステップS60〜S90)で推定された左前輪1および右前輪2の感度k1、k2が共にほぼ0である場合は、左前輪1の制駆動力補正量ΔFx1と右後輪4の制駆動力補正量ΔFx4との比を、ΔFx4/ΔFx1=k3/k4とし、
左後輪3および右後輪4の感度k3、k4が共にほぼ0である場合は、左前輪1の制駆動力補正量ΔFx1と右後輪4の制駆動力補正量ΔFx4との比を、ΔFx4/ΔFx1=k1/k2と決定するため、後輪駆動時、前輪駆動時において、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正する場合に、一層高精度に、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪の制駆動力の補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めることができる。
(D) The driving force correcting means (step S120) is when the sensitivities k1 and k2 of the left
When the sensitivities k3 and k4 of the left
(オ)駆動力補正手段(ステップS120)は、前記タイヤ横力感度推定手段(ステップS60〜S90)で推定された左前輪1、右前輪2、左後輪3、右後輪4の感度k1,k2,k3,k4に基づいて、左前輪1、右前輪2、左後輪3、右後輪4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の比を該四輪独立駆動車のトレッド長さLtとホイールベース長さLを用いた下記の数式
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(Lt/L)(k4−k2)+k2(k4−k3):−(Lt/L)(k3−k1)−k1(k4−k3):−(Lt/L)(k4−k2)−k4(k2−k1):(Lt/L)(k3−k1)+k3(k2−k1)
に基づき決定するため、上記(イ)〜(キ)の走行状態を含み、更に上記(イ)〜(キ)に含まれないその他の走行状態においても、いずれかの車輪1〜4のスリップやロック等の防止のために制駆動力を補正する場合に、前後及び横方向の加速度と車両重心周りのヨーモーメントの変化を抑える各輪の制駆動力の補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を高精度に求めることができる。
(E) The driving force correcting means (step S120) is a sensitivity k1 of the left
= (Lt / L) (k4-k2) + k2 (k4-k3) :-( Lt / L) (k3-k1) -k1 (k4-k3) :-( Lt / L) (k4-k2) -k4 (K2-k1) :( Lt / L) (k3-k1) + k3 (k2-k1)
Therefore, the slipping of any one of the
1〜4 車輪
5 ステアリング
6 アクセルペダル
7 ブレーキペダル
8 コントローラ
9 バッテリ
11〜14 モータ
15 ステアリングギヤ
21〜24 車輪速センサ
25 ステアリング角センサ
26 アクセルストロークセンサ
27 ブレーキストロークセンサ
31〜34 インバータ
100 加速度センサ
101 ヨーレートセンサ
1-4 Wheel 5
Claims (6)
左前輪、右前輪、左後輪、右後輪夫々の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段と、
前記タイヤ横力感度推定手段で推定した感度k1,k2,k3,k4に基づいて左前輪、右前輪、左後輪、右後輪夫々の駆動力を補正する手段と、を備え、
前記制駆動力決定手段により決定された制駆動力を変更する場合には、前記駆動力補正手段は、前記タイヤ横力感度推定手段で推定した感度k1,k2,k3,k4に基づいて、前記車両の運動要求を満たすように左前輪、右前輪、左後輪、右後輪夫々の駆動力をΔFx1,ΔFx2,ΔFx3,ΔFx4だけ補正することを特徴とする四輪独立駆動車の駆動力配分装置。 In the driving force distribution device for a four-wheel independent drive vehicle, which is capable of independently driving the four wheels, and includes braking / driving force determining means for determining the braking / driving force of each of the four wheels based on the motion demand of the vehicle.
Tire lateral force sensitivity estimation means for estimating tire lateral force sensitivities k1, k2, k3, k4 with respect to changes in driving force of each of the left front wheel, right front wheel, left rear wheel, and right rear wheel;
Means for correcting the driving force of each of the left front wheel, the right front wheel, the left rear wheel, and the right rear wheel based on the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimating means,
When changing the braking / driving force determined by the braking / driving force determining means, the driving force correcting means is based on the sensitivity k1, k2, k3, k4 estimated by the tire lateral force sensitivity estimating means. Driving force distribution of a four-wheel independent driving vehicle, wherein the driving force of each of the left front wheel, right front wheel, left rear wheel, and right rear wheel is corrected by ΔFx1, ΔFx2, ΔFx3, and ΔFx4 so as to satisfy the vehicle motion requirements. apparatus.
ΔFx1:ΔFx2:ΔFx3:ΔFx4
=(Lt/L)(k4−k2)+k2(k4−k3):−(Lt/L)(k3−k1)−k1(k4−k3):−(Lt/L)(k4−k2)−k4(k2−k1):(Lt/L)(k3−k1)+k3(k2−k1) The driving force correction means is based on the sensitivity k1, k2, k3, k4 of the left front wheel, right front wheel, left rear wheel, and right rear wheel estimated by the tire lateral force sensitivity estimation means. The ratio of the left rear wheel and right rear wheel driving force correction amounts ΔFx1, ΔFx2, ΔFx3, and ΔFx4 is determined based on the following formula using the tread length Lt and wheelbase length L of the four-wheel independent drive vehicle. The drive force distribution device for a four-wheel independent drive vehicle according to any one of claims 1 to 4, wherein the drive force distribution device is a four-wheel independent drive vehicle.
ΔFx1: ΔFx2: ΔFx3: ΔFx4
= (Lt / L) (k4-k2) + k2 (k4-k3) :-( Lt / L) (k3-k1) -k1 (k4-k3) :-( Lt / L) (k4-k2) -k4 (K2-k1) :( Lt / L) (k3-k1) + k3 (k2-k1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004205689A JP4432649B2 (en) | 2004-07-13 | 2004-07-13 | Driving force distribution device for four-wheel independent drive vehicle |
US11/166,741 US7440834B2 (en) | 2004-07-13 | 2005-06-27 | Drive force distribution system for four wheel independent drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004205689A JP4432649B2 (en) | 2004-07-13 | 2004-07-13 | Driving force distribution device for four-wheel independent drive vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006033927A JP2006033927A (en) | 2006-02-02 |
JP4432649B2 true JP4432649B2 (en) | 2010-03-17 |
Family
ID=35899598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004205689A Expired - Fee Related JP4432649B2 (en) | 2004-07-13 | 2004-07-13 | Driving force distribution device for four-wheel independent drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4432649B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106143210A (en) * | 2015-05-13 | 2016-11-23 | 丰田自动车株式会社 | The driving-force control apparatus of four-wheel drive vehicle |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4524597B2 (en) * | 2004-09-27 | 2010-08-18 | 日産自動車株式会社 | Driving force distribution device for four-wheel independent drive vehicle |
JP4844148B2 (en) * | 2006-02-08 | 2011-12-28 | 日産自動車株式会社 | Driving force distribution device for four-wheel independent drive vehicle |
JP4687487B2 (en) * | 2006-02-08 | 2011-05-25 | 日産自動車株式会社 | Vehicle driving force control device |
JP4626550B2 (en) * | 2006-03-24 | 2011-02-09 | 三菱自動車工業株式会社 | Vehicle turning behavior control device |
JP4929944B2 (en) | 2006-09-20 | 2012-05-09 | 日産自動車株式会社 | Vehicle driving force distribution control device |
JP4811214B2 (en) * | 2006-09-20 | 2011-11-09 | 日産自動車株式会社 | Vehicle driving force distribution control device |
JP4946319B2 (en) * | 2006-09-29 | 2012-06-06 | 日産自動車株式会社 | Vehicle driving force distribution device |
JP5893486B2 (en) * | 2012-04-13 | 2016-03-23 | Ntn株式会社 | Electric car |
KR102052683B1 (en) * | 2013-05-10 | 2019-12-05 | 현대위아 주식회사 | Control method of 4 wheel drive vehicle |
JP7234586B2 (en) * | 2018-11-07 | 2023-03-08 | 株式会社ジェイテクト | Driving force control device, driving device, and driving force transmission device |
CN110929340B (en) * | 2019-12-02 | 2023-09-05 | 山东理工大学 | A Calculation Method of Side Slip Angle Caused by Steering Trapezoid of Front Wheel Drive Vehicle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3079538B2 (en) * | 1990-04-18 | 2000-08-21 | 日産自動車株式会社 | Comprehensive control system for auxiliary steering angle and braking / driving force |
DE4133060C2 (en) * | 1991-10-04 | 1995-08-31 | Mannesmann Ag | Drive arrangement for a motor vehicle |
JP3451912B2 (en) * | 1997-12-18 | 2003-09-29 | トヨタ自動車株式会社 | Drive control device for electric vehicles |
JP4246317B2 (en) * | 1999-02-23 | 2009-04-02 | 本田技研工業株式会社 | Electric drive device for vehicle |
JP3571289B2 (en) * | 2000-12-12 | 2004-09-29 | 独立行政法人 科学技術振興機構 | Electric vehicle steering system |
JP3623456B2 (en) * | 2001-02-28 | 2005-02-23 | トヨタ自動車株式会社 | Vehicle travel control device |
JP2003341500A (en) * | 2002-05-24 | 2003-12-03 | Aisin Seiki Co Ltd | Anti-skid control device |
-
2004
- 2004-07-13 JP JP2004205689A patent/JP4432649B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106143210A (en) * | 2015-05-13 | 2016-11-23 | 丰田自动车株式会社 | The driving-force control apparatus of four-wheel drive vehicle |
CN106143210B (en) * | 2015-05-13 | 2018-05-01 | 丰田自动车株式会社 | The driving-force control apparatus of four-wheel drive vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2006033927A (en) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7440834B2 (en) | Drive force distribution system for four wheel independent drive vehicle | |
US10427669B2 (en) | Method and apparatus for controlling distribution of front and rear wheel torque of four-wheel drive vehicle | |
JP4929944B2 (en) | Vehicle driving force distribution control device | |
CN109747632B (en) | Torque distribution method for double-power-source driven vehicle | |
US8924055B2 (en) | Vehicle control apparatus | |
US10821838B2 (en) | Vehicle control device and vehicle control method | |
JP4524597B2 (en) | Driving force distribution device for four-wheel independent drive vehicle | |
US20150266487A1 (en) | Centroid estimation device and centroid estimation method | |
KR102692354B1 (en) | Vehicle driving control method using friction coefficient estimating of road surface | |
US11827227B2 (en) | Vehicle control apparatus | |
JP4432649B2 (en) | Driving force distribution device for four-wheel independent drive vehicle | |
JP2007282406A (en) | Automotive braking force control system | |
US20170080926A1 (en) | Drive control device with traction control function for right-left independent drive vehicle | |
CN110239499B (en) | Vehicle control device and vehicle control method | |
CN114801772A (en) | Vehicle control device and control method | |
CN111348040A (en) | Vehicle travel control method and travel control device | |
JP6577850B2 (en) | Vehicle control apparatus and vehicle control method | |
JP2017128191A (en) | Vehicle control apparatus and vehicle control method | |
JP4729871B2 (en) | Vehicle turning control device | |
JP5018320B2 (en) | Vehicle travel control apparatus and method | |
US20100066163A1 (en) | Brake Apparatus | |
JP4862423B2 (en) | Vehicle state estimation and control device | |
JP4443582B2 (en) | Understeer suppression device | |
JP2010151205A (en) | Driving force distribution control device for vehicle | |
JP2018129890A (en) | Output control device of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |