JP4430799B2 - Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin - Google Patents
Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin Download PDFInfo
- Publication number
- JP4430799B2 JP4430799B2 JP2000234146A JP2000234146A JP4430799B2 JP 4430799 B2 JP4430799 B2 JP 4430799B2 JP 2000234146 A JP2000234146 A JP 2000234146A JP 2000234146 A JP2000234146 A JP 2000234146A JP 4430799 B2 JP4430799 B2 JP 4430799B2
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- hollow molded
- molded body
- measured
- linear low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 Polyethylene Polymers 0.000 title claims description 54
- 239000004698 Polyethylene Substances 0.000 title claims description 54
- 229920000573 polyethylene Polymers 0.000 title claims description 54
- 229920005989 resin Polymers 0.000 title claims description 31
- 239000011347 resin Substances 0.000 title claims description 31
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 83
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 83
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims description 44
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 27
- 239000005977 Ethylene Substances 0.000 claims description 27
- 238000009826 distribution Methods 0.000 claims description 25
- 239000004711 α-olefin Substances 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 22
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 claims description 22
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 17
- 239000002356 single layer Substances 0.000 claims description 16
- 239000010410 layer Substances 0.000 claims description 12
- 235000013305 food Nutrition 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 238000000748 compression moulding Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000010101 extrusion blow moulding Methods 0.000 description 12
- 238000000071 blow moulding Methods 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 7
- 206010039509 Scab Diseases 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229920001684 low density polyethylene Polymers 0.000 description 5
- 239000004702 low-density polyethylene Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 235000010746 mayonnaise Nutrition 0.000 description 3
- 239000008268 mayonnaise Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical group ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 2
- RWNKSTSCBHKHTB-UHFFFAOYSA-N Hexachloro-1,3-butadiene Chemical compound ClC(Cl)=C(Cl)C(Cl)=C(Cl)Cl RWNKSTSCBHKHTB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 1
- WEPNJTDVIIKRIK-UHFFFAOYSA-N 2-methylhept-2-ene Chemical compound CCCCC=C(C)C WEPNJTDVIIKRIK-UHFFFAOYSA-N 0.000 description 1
- BWEKDYGHDCHWEN-UHFFFAOYSA-N 2-methylhex-2-ene Chemical compound CCCC=C(C)C BWEKDYGHDCHWEN-UHFFFAOYSA-N 0.000 description 1
- UIIMVYYDGLHIAO-UHFFFAOYSA-N 2-methylnon-2-ene Chemical compound CCCCCCC=C(C)C UIIMVYYDGLHIAO-UHFFFAOYSA-N 0.000 description 1
- PKXHXOTZMFCXSH-UHFFFAOYSA-N 3,3-dimethylbut-1-ene Chemical compound CC(C)(C)C=C PKXHXOTZMFCXSH-UHFFFAOYSA-N 0.000 description 1
- AUJLDZJNMXNESO-UHFFFAOYSA-N 3-ethylhex-3-ene Chemical compound CCC=C(CC)CC AUJLDZJNMXNESO-UHFFFAOYSA-N 0.000 description 1
- KNIRLWRQSSLZCZ-UHFFFAOYSA-N 3-ethyloct-3-ene Chemical compound CCCCC=C(CC)CC KNIRLWRQSSLZCZ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- AAUHUDBDDBJONC-UHFFFAOYSA-N 3-methylhept-3-ene Chemical compound CCCC=C(C)CC AAUHUDBDDBJONC-UHFFFAOYSA-N 0.000 description 1
- RGTDIFHVRPXHFT-UHFFFAOYSA-N 3-methylnon-3-ene Chemical compound CCCCCC=C(C)CC RGTDIFHVRPXHFT-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- YCTDZYMMFQCTEO-UHFFFAOYSA-N 3-octene Chemical compound CCCCC=CCC YCTDZYMMFQCTEO-UHFFFAOYSA-N 0.000 description 1
- KLCNJIQZXOQYTE-UHFFFAOYSA-N 4,4-dimethylpent-1-ene Chemical compound CC(C)(C)CC=C KLCNJIQZXOQYTE-UHFFFAOYSA-N 0.000 description 1
- KZJIOVQKSAOPOP-UHFFFAOYSA-N 5,5-dimethylhex-1-ene Chemical compound CC(C)(C)CCC=C KZJIOVQKSAOPOP-UHFFFAOYSA-N 0.000 description 1
- BSJOLASGNWRVEH-UHFFFAOYSA-N 7,7-dimethyloct-1-ene Chemical compound CC(C)(C)CCCCC=C BSJOLASGNWRVEH-UHFFFAOYSA-N 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 244000195452 Wasabia japonica Species 0.000 description 1
- 235000000760 Wasabia japonica Nutrition 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 208000018999 crinkle Diseases 0.000 description 1
- YKNMBTZOEVIJCM-UHFFFAOYSA-N dec-2-ene Chemical compound CCCCCCCC=CC YKNMBTZOEVIJCM-UHFFFAOYSA-N 0.000 description 1
- GVRWIAHBVAYKIZ-UHFFFAOYSA-N dec-3-ene Chemical compound CCCCCCC=CCC GVRWIAHBVAYKIZ-UHFFFAOYSA-N 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- OTTZHAVKAVGASB-UHFFFAOYSA-N hept-2-ene Chemical compound CCCCC=CC OTTZHAVKAVGASB-UHFFFAOYSA-N 0.000 description 1
- WZHKDGJSXCTSCK-UHFFFAOYSA-N hept-3-ene Chemical compound CCCC=CCC WZHKDGJSXCTSCK-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000008960 ketchup Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000021058 soft food Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/04—Extrusion blow-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
- B65D1/0215—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【発明の技術分野】
本発明は、ポリエチレン中空成形体用樹脂およびその樹脂を用いたポリエチレン中空成形体に関し、さらに詳しくは、耐落下衝撃性に優れ、かつ、鮫肌のない外観を有し、食品容器たとえばマヨネーズなどのソフトボトルとして好適なポリエチレン中空成形体用樹脂およびその樹脂を用いたポリエチレン中空成形体に関する。
【0002】
【発明の技術的背景】
従来、高圧法低密度ポリエチレン、あるいはチーグラー・ナッタ触媒の存在下にエチレンと炭素原子数3以上のα- オレフィンとの共重合を一段で行なって得られた直鎖状低密度ポリエチレンを用いたボトルは、食品容器たとえばマヨネーズなどのソフトボトルとして広く用いられている。
【0003】
しかしながら、高圧法低密度ポリエチレンを用いたボトルでは、耐落下衝撃性が十分でなく、また、上記直鎖状低密度ポリエチレンを用いたボトルでは、鮫肌(シャークスキン)が発生し、良好な外観が得られないという問題がある。
そこで、本願発明者らは、これらの問題を解決すべく鋭意研究し、オレフィン重合用触媒たとえば従来公知のチーグラー系触媒の存在下に、エチレンと炭素原子数3〜20のα- オレフィンとを二段重合して得られた、密度(ASTM D 1505)が0.930g/cm3以下であり、135℃デカリン溶媒中で測定した極限粘度が1.6dl/g以上であり、かつ、GPCにより測定される分子量分布(Mw/Mn)が4以上である直鎖状低密度ポリエチレンから、外観に優れ、かつ、耐落下衝撃性に優れるソフトボトルを成形できることを見出し、本発明を完成するに至った。
【0004】
【発明の目的】
本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、外観に優れ、かつ、耐落下衝撃性に優れるソフトボトル等の単層容器、多層容器として好適なポリエチレン中空成形体を調製することができるポリエチレン中空成形体用樹脂、およびそのポリエチレン中空成形体を提供することを目的としている。
【0005】
【発明の概要】
本発明に係るポリエチレン中空成形体用樹脂は、
密度(ASTM D 1505)が0.860〜0.920g/cm 3 であり、135℃デカリン溶媒中で測定した極限粘度[η]が0.01〜0.5dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が2.3〜6.0である直鎖状エチレン・α- オレフィン共重合体(a)5〜95重量%と、
密度(ASTM D 1505)が0.920〜0.975g/cm 3 であり、135℃デカリン溶媒中で測定した極限粘度[η]が3.1〜10.0dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が2.8〜6.0である直鎖状エチレン・α- オレフィン共重合体(b)5〜95重量%とからなるブレンド物であって、
密度(ASTM D 1505)が0.915〜0.925g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.8〜2.5dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が5.0〜10.0である直鎖状低密度ポリエチレン(A)からなることを特徴としている。
【0007】
本発明で用いられる直鎖状低密度ポリエチレン(A)は、−18℃の雰囲気下での5回の繰り返し落下試験でボトルに充填したエチレングリコールが外部に漏れない落下高さが1.5m以上である単層ボトル(内容量780ml、風袋重量25g)を中空成形することが可能である。
本発明に係るポリエチレン中空成形体は、上記のような、本発明に係るポリエチレン中空成形体用樹脂からなる層を有することを特徴としている。
【0008】
本発明に係るポリエチレン中空成形体は、多層構造であってもよい。
本発明に係るポリエチレン中空成形体は、食品容器として好適に用いられる。
また、上記の、本発明に係るポリエチレン中空成形体は、圧縮成形により作製した厚み2mmのプレスシートの引張降伏点応力(ASTM D638)が15MPa以下となる前記直鎖状低密度ポリエチレン(A)からなる層を有し、かつ、中空成形体を構成する層全体の肉厚が0.6mm以下の部分を有するものであってもよい。このようなポリエチレン中空成形体は、一般にソフトボトルと言われる。
【0009】
【発明の具体的説明】
以下、本発明に係るポリエチレン中空成形体用樹脂およびその樹脂を用いたポリエチレン中空成形体について具体的に説明する。
本発明に係るポリエチレン中空成形体用樹脂は、本発明に係るポリエチレン中空成形体の調製の際に用いられる直鎖状低密度ポリエチレン(A)からなる。
【0010】
本発明に係るポリエチレン中空成形体は、密度、極限粘度および分子量分布(Mw/Mn)が特定の範囲にある直鎖状低密度ポリエチレン(A)からなる層を有する。この中空成形体は、単層構造でも、また2または3以上の層を有する多層構造であってもよい。
直鎖状低密度ポリエチレン(A)
本発明で用いられる直鎖状低密度ポリエチレン(A)は、エチレンと炭素原子数3〜20のα- オレフィンとの共重合体であり、密度(ASTM D 1505)が0.930g/cm3以下、通常は0.860〜0.930g/cm3、好ましくは0.900〜0.930g/cm3、さらに好ましくは0.915〜0.925g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.6dl/g以上、通常は1.6〜10.0dl/g、好ましくは1.6〜4.0dl/g、さらに好ましくは1.8〜2.5dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が4以上、通常は4〜20、好ましくは4.5〜13、さらに好ましくは5.0〜10.0である。密度、極限粘度および分子量分布(Mw/Mn)が上記範囲内にある直鎖状低密度ポリエチレン(A)を用いると、外観に優れ、かつ、耐落下衝撃性に優れるソフトボトル等のポリエチレン中空成形体を提供することができる。
【0011】
なお、分子量分布(Mw/Mn)は、ミリポア社製GPC−150Cを用い、以下のようにして測定した。
分離カラムは、TSK GNH HTであり、カラムサイズは直径72mm、長さ600mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業(株)製)および酸化防止剤としてBHT(武田薬品工業(株)製)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は0.1重量%とし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー(株)製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
【0012】
上記の炭素原子数が3〜20のα- オレフィンとしては、具体的には、プロピレン、1-ブテン、1-ペンテン、2-メチル-1- ブテン、3-メチル-1- ブテン、1-ヘキセン、3-メチル-1- ペンテン、4-メチル-1- ペンテン、3,3-ジメチル-1- ブテン、1-ヘプテン、メチル-1- ヘキセン、ジメチル-1- ペンテン、トリメチル-1- ブテン、エチル-1- ペンテン、1-オクテン、メチル-1- ペンテン、ジメチル-1- ヘキセン、トリメチル-1- ペンテン、エチル-1- ヘキセン、メチルエチル-1- ペンテン、ジエチル-1- ブテン、プロピル-1- ペンテン、1-デセン、メチル-1- ノネン、ジメチル-1- オクテン、トリメチル-1- ヘプテン、エチル-1- オクテン、メチルエチル-1- ヘプテン、ジエチル-1- ヘキセン、1-ドデセン、1-ヘキサドデセンなどが挙げられる。
【0013】
これらのα- オレフィンは、単独で、あるいは2種以上組み合わせて用いることができる。
本発明で好ましく用いられる直鎖状低密度ポリエチレン(A)は、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・4-メチル-1- ペンテン共重合体、エチレン・1-オクテン共重合体である。
【0014】
直鎖状低密度ポリエチレン(A)は、エチレンから導かれる構成単位が通常65〜99重量%、好ましくは70〜98重量%、さらに好ましくは75〜96重量%の量で存在し、炭素原子数が3〜20のα- オレフィンから導かれる構成単位が通常1〜35重量%、好ましくは2〜30重量%、さらに好ましくは4〜25重量%の量で存在している。
【0015】
エチレン・α- オレフィン共重合体の組成は、通常10mmφの試料管中で約200mgのエチレン・α- オレフィン共重合体を1mlのヘキサクロロブタジエンに均一に溶解させた試料の13C−NMRスペクトルを、測定温度120℃、測定周波数25.05MHz、スペクトル幅1500Hz、パルス繰返し時間4.2sec.、パルス幅6μsec.の条件下で測定して決定される。
【0016】
上記のような物性を有する直鎖状低密度ポリエチレン(A)は、オレフィン重合用触媒たとえば従来公知のチーグラー系触媒の存在下に、エチレンと炭素原子数3〜20のα- オレフィンとを共重合して調製することができる。
上記直鎖状低密度ポリエチレン(A)は、上記のようにして得られた2種類以上のエチレン・α- オレフィン共重合体をブレンドして調製することができる。
【0017】
このブレンドは、押出機を用いて行なうことができる。また、二段重合のように、重合器内で2種類以上のエチレン・α- オレフィン共重合体が連続的に生産されることにより、ブレンドされてもよく、さらに押出機で造粒されてもかまわない。
本発明で用いられる直鎖状低密度ポリエチレン(A)としては、たとえば
密度(ASTM D 1505)が0.860〜0.975g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が0.01〜1.80dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が1.0〜6.0である直鎖状エチレン・α- オレフィン共重合体(a)5〜95重量%と、
密度(ASTM D 1505)が0.860〜0.975g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.81〜10.0dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が1.0〜6.0である直鎖状エチレン・α- オレフィン共重合体(b)5〜95重量%と
からなるブレンド物が好ましい。
【0018】
上記直鎖状エチレン・α- オレフィン共重合体(a)は、1種または2種以上の組み合わせでもよく、また、直鎖状エチレン・α- オレフィン共重合体(b)も、1種または2種以上の組み合わせでもよい。
本発明で用いられる直鎖状低密度ポリエチレン(A)は、−18℃の雰囲気下での5回の繰り返し落下試験でボトルに充填したエチレングリコールが外部に漏れない落下高さが1.5m以上である単層ボトル(内容量780ml、風袋重量25g)を中空成形することが可能である。この落下試験では、同じ高さからボトルを縦にして床に5回繰り返し落下させてボトル内のエチレングリコールがボトルから外部に漏れなければ、その高さにおける落下試験は合格とする。
【0019】
また、本発明に係るポリエチレン中空成形体用樹脂は、上記直鎖状低密度ポリエチレン(A)の他に、中空成形体の物性を損なわない範囲で、各種添加剤を含有していてもよい。
このような添加剤としては、具体的には、充填剤、耐候安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、防曇剤、滑剤、顔料、染料、核剤、可塑剤、難燃剤、塩酸吸収剤などを挙げることができる。
【0020】
ポリエチレン中空成形体
本発明に係るポリエチレン中空成形体は、上述したような直鎖状低密度ポリエチレン(A)からなる層を有し、単層構造でも、また多層構造であってもよい。一般に、単層構造の中空成形体は、単層容器として用いられ、また、多層構造を有する中空成形体は多層容器として用いられる。
【0021】
本発明に係る多層容器がたとえば3層構造である場合、容器の内外表面層を上記直鎖状低密度ポリエチレン(A)で形成し、これらの表面層に挟まれた中間層をたとえばエチレン−ビニルアルコール共重合体などの樹脂で形成することができる。
本発明に係るポリエチレン中空成形体は、従来公知の中空成形(ブロー成形)法により調製される。ブロー成形法には、各種方法があり、押出ブロー成形法、2段ブロー成形法、射出成形法に大別される。本発明においては、特に押出ブロー成形法が好ましく採用される。
【0022】
【発明の効果】
本発明に係るポリエチレン中空成形体用樹脂によれば、鮫肌がなく外観に優れ、かつ、耐落下衝撃性に優れるソフトボトル等の単層構造または多層構造のポリエチレン中空成形体を提供することができる。
本発明に係るポリエチレン中空成形体は、本発明に係るポリエチレン中空成形体用樹脂からなる層を有しているので、鮫肌がなく外観に優れ、かつ、耐落下衝撃性に優れている。
【0023】
したがって、本発明に係るポリエチレン中空成形体は、マヨネーズ、ケチャップ、練りワサビ、練りカラシなどの食品容器の用途に好適に用いることができる。
【0024】
【実施例】
以下、本発明を実施例により説明するが、本発明は、これら実施例により何ら限定されるものではない。
【0025】
【製造例1】
(直鎖状低密度ポリエチレン(LLDPE(1))の調製)
溶液法重合において、重合器内で2種類のポリエチレン(a1)、(b1)を連続的に生産し、さらに造粒することにより得られた直鎖状低密度ポリエチレン(LLDPE(1))は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が2.1dl/gであり、GPCにより測定した分子量分布(Mw/Mn)が5であった。
【0026】
上記ポリエチレン(a1)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が0.5dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.3である直鎖状エチレン・α- オレフィン共重合体である。
また、上記ポリエチレン(b1)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が3.6dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.8である直鎖状エチレン・α- オレフィン共重合体である。
【0027】
なお、ポリエチレン(a1)とポリエチレン(b1)との重量比((a1)/(b1))は、約50/50であった。
【0028】
【製造例2】
(直鎖状低密度ポリエチレン(LLDPE(2))の調製)
溶液法重合において、重合器内で2種類のポリエチレン(a2)、(b2)を連続的に生産し、さらに造粒することにより得られた直鎖状低密度ポリエチレン(LLDPE(2))は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.8dl/gであり、GPCにより測定した分子量分布(Mw/Mn)が5であった。
【0029】
上記ポリエチレン(a2)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が0.5dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.3である直鎖状エチレン・α- オレフィン共重合体である。
また、上記ポリエチレン(b2)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が3.1dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.8である直鎖状エチレン・α- オレフィン共重合体である。
【0030】
なお、ポリエチレン(a2)とポリエチレン(b2)との重量比((a2)/(b2))は、約50/50であった。
【0031】
【製造例3】
(直鎖状低密度ポリエチレン(LLDPE(3))の調製)
溶液法重合において、重合器内で2種類のポリエチレン(a3)、(b3)を連続的に生産し、さらに造粒することにより得られた直鎖状低密度ポリエチレン(LLDPE(3))は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.6dl/gであり、GPCにより測定した分子量分布(Mw/Mn)が4であった。
【0032】
上記ポリエチレン(a3)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が0.5dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.3である直鎖状エチレン・α- オレフィン共重合体である。
また、上記ポリエチレン(b3)は、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が2.7dl/gであり、かつ、GPCにより測定した分子量分布(Mw/Mn)が2.5である直鎖状エチレン・α- オレフィン共重合体である。
【0033】
なお、ポリエチレン(a3)とポリエチレン(b3)との重量比((a3)/(b3))は、約50/50であった。
【0034】
【製造例4】
(直鎖状低密度ポリエチレン(LLDPE(4))の調製)
溶液法重合により、密度(ASTM D 1505)が0.920g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.8dl/gであり、GPCにより測定した分子量分布(Mw/Mn)が3である直鎖状低密度ポリエチレン(LLDPE(4))を調製した。
【0035】
【製造例5】
(直鎖状低密度ポリエチレン(LLDPE(5))の調製)
溶液法重合により、密度(ASTM D 1505)が0.935g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が2.1dl/gであり、GPCにより測定した分子量分布(Mw/Mn)が5である直鎖状低密度ポリエチレン(LLDPE(5))を調製した。
【0036】
【実施例1】
製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))を、押出ブロー成形機(日本製鋼(株)製、型番:JEB−15)を用い、下記の成形条件でブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
<ブロー成形条件>
直鎖状低密度ポリエチレン(1)の樹脂温度:200℃
樹脂圧力:320kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を下記の方法に従って行なった。その結果を第1表に示す。
<試験方法>
内容量780ml、重量25gの単層ボトルをエチレングリコールで満杯にし、このボトルを縦にして−18℃の雰囲気下で一定の高さから落下を5回繰り返し、この5回の繰り返し落下試験でエチレングリコールがボトルから外部に漏れない最大落下高さを測定し、この最大落下高さをボトルの耐落下衝撃性の指標とした。ボトルを落下させる床には、厚さ2mm以上の鉄板をコンクリート製の床に水平に置いたものを用いた。
【0037】
さらに、上記直鎖状低密度ポリエチレン(LLDPE(1))からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌がなく外観が良好であった。
【0038】
【実施例2】
実施例1において、製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))の代わりに、製造例2で得られた直鎖状低密度ポリエチレン(LLDPE(2))を用いた以外は、実施例1と同様にして、押出ブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
【0039】
ただし、押出ブロー成形の条件は以下の通りであった。
<ブロー成形条件>
直鎖状低密度ポリエチレン(LLDPE(2))の樹脂温度:200℃
樹脂圧力:280kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を上記方法に従って行なった。その結果を第1表に示す。
【0040】
さらに、上記直鎖状低密度ポリエチレン(LLDPE(2))からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌がなく外観が良好であった。
【0041】
【参考例1】
実施例1において、製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))の代わりに、製造例3で得られた直鎖状低密度ポリエチレン(LLDPE(3))を用いた以外は、実施例1と同様にして、押出ブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
【0042】
ただし、押出ブロー成形の条件は以下の通りであった。
<ブロー成形条件>
直鎖状低密度ポリエチレン(LLDPE(3))の樹脂温度:200℃
樹脂圧力:250kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を上記方法に従って行なった。その結果を第1表に示す。
【0043】
さらに、上記直鎖状低密度ポリエチレン(LLDPE(3))からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌がなく外観が良好であった。
【0044】
【比較例1】
実施例1において、製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))の代わりに、高圧法低密度ポリエチレン(HPLDPE:密度(ASTM D 1505)=0.920g/cm3、135℃デカリン溶媒中で測定した極限粘度[η]=1.3dl/g、GPCにより測定される分子量分布(Mw/Mn)=5)を用いた以外は、実施例1と同様にして、押出ブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
【0045】
ただし、押出ブロー成形の条件は以下の通りであった。
<ブロー成形条件>
高圧法低密度ポリエチレン(HPLDPE)の樹脂温度:200℃
樹脂圧力:300kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を上記方法に従って行なった。その結果を第1表に示す。
【0046】
さらに、上記高圧法低密度ポリエチレン(HPLDPE)からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌がなく外観が良好であった。
【0047】
【比較例2】
実施例1において、製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))の代わりに、製造例4で得られた直鎖状低密度ポリエチレン(LLDPE(4))を用いた以外は、実施例1と同様にして、押出ブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
【0048】
ただし、押出ブロー成形の条件は以下の通りであった。
<ブロー成形条件>
直鎖状低密度ポリエチレン(LLDPE(4))の樹脂温度:210℃
樹脂圧力:400kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を上記方法に従って行なった。その結果を第1表に示す。
【0049】
さらに、上記直鎖状低密度ポリエチレン(LLDPE(4))からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌が発生していた。
【0050】
【比較例3】
実施例1において、製造例1で得られた直鎖状低密度ポリエチレン(LLDPE(1))の代わりに、製造例5で得られた直鎖状低密度ポリエチレン(LLDPE(5))を用いた以外は、実施例1と同様にして、押出ブロー成形し、内容量780ml、重量25gのボトル(単層中空成形体)を得た。
【0051】
ただし、押出ブロー成形の条件は以下の通りであった。
<ブロー成形条件>
直鎖状低密度ポリエチレン(LLDPE(5))の樹脂温度:210℃
樹脂圧力:400kg/m2
樹脂押出量:50kg/hr
金型温度:20℃
上記のようにして得られたボトルについて、繰り返し落下試験を上記方法に従って行なった。その結果を第1表に示す。
【0052】
さらに、上記直鎖状低密度ポリエチレン(LLDPE(5))からASTM D1928に従って厚み2mmのプレスシートを圧縮成形し、その引張降伏点応力をASTM D638に従って、測定した。その結果を第1表に示す。
なお、得られたボトルは、鮫肌がなく外観が良好であった。
【0053】
【表1】
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin for a polyethylene hollow molded body and a polyethylene hollow molded body using the resin. More specifically, the present invention has an excellent drop impact resistance and has an appearance free of crinkles, and is a soft food container such as mayonnaise. The present invention relates to a resin for a polyethylene hollow molded article suitable as a bottle and a polyethylene hollow molded article using the resin.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventional bottles using high-pressure low-density polyethylene or linear low-density polyethylene obtained by copolymerizing ethylene and α-olefin having 3 or more carbon atoms in the presence of a Ziegler-Natta catalyst. Is widely used as a soft bottle for food containers such as mayonnaise.
[0003]
However, the bottle using the high pressure method low density polyethylene does not have sufficient drop impact resistance, and the bottle using the above linear low density polyethylene causes shark skin and has a good appearance. There is a problem that it cannot be obtained.
Accordingly, the inventors of the present application have made extensive studies to solve these problems, and in the presence of a catalyst for olefin polymerization, such as a conventionally known Ziegler-based catalyst, two ethylene and α-olefins having 3 to 20 carbon atoms are obtained. The density (ASTM D 1505) obtained by step polymerization is 0.930 g / cm 3 or less, the intrinsic viscosity measured in 135 ° C. decalin solvent is 1.6 dl / g or more, and measured by GPC. It was found that a soft bottle excellent in appearance and excellent in drop impact resistance can be formed from a linear low density polyethylene having a molecular weight distribution (Mw / Mn) of 4 or more, and the present invention has been completed. .
[0004]
OBJECT OF THE INVENTION
The present invention is intended to solve the problems associated with the prior art as described above, and has a polyethylene hollow suitable for use as a single-layer container or a multi-layer container such as a soft bottle having excellent appearance and excellent drop impact resistance. It aims at providing the resin for polyethylene hollow molded objects which can prepare a molded object, and the polyethylene hollow molded object.
[0005]
SUMMARY OF THE INVENTION
The polyethylene hollow molded body resin according to the present invention is
The density (ASTM D 1505) is 0.860-0.920 g / cm 3 , the intrinsic viscosity [η] measured in 135 ° C. decalin solvent is 0.01-0.5 dl / g, and by GPC 5 to 95% by weight of a linear ethylene / α-olefin copolymer (a) having a molecular weight distribution (Mw / Mn) of 2.3 to 6.0,
The density (ASTM D 1505) is 0.920-0.975 g / cm 3 , the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. is 3.1-10.0 dl / g, and by GPC A blend consisting of 5 to 95% by weight of a linear ethylene / α-olefin copolymer (b) having a measured molecular weight distribution (Mw / Mn) of 2.8 to 6.0,
The density (ASTM D 1505) is 0.915 to 0.925 g / cm 3 , the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. is 1.8 to 2.5 dl / g, and by GPC It is characterized by comprising a linear low density polyethylene (A) having a molecular weight distribution (Mw / Mn) of 5.0 to 10.0.
[0007]
The linear low-density polyethylene (A) used in the present invention has a drop height of 1.5 m or more at which ethylene glycol filled in the bottle does not leak to the outside in five repeated drop tests under an atmosphere of −18 ° C. It is possible to hollow-mold a single layer bottle (internal capacity 780 ml, tare weight 25 g).
The polyethylene hollow molded body according to the present invention is characterized by having a layer made of the resin for a polyethylene hollow molded body according to the present invention as described above.
[0008]
The polyethylene hollow molded body according to the present invention may have a multilayer structure.
The polyethylene hollow molded body according to the present invention is suitably used as a food container.
Further, the polyethylene hollow molded body according to the present invention is a linear low density polyethylene (A) in which a tensile yield point stress (ASTM D638) of a press sheet having a thickness of 2 mm produced by compression molding is 15 MPa or less. And the thickness of the entire layer constituting the hollow molded body may be 0.6 mm or less. Such a polyethylene hollow molded body is generally called a soft bottle.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the polyethylene hollow molded body resin and the polyethylene hollow molded body using the resin according to the present invention will be specifically described.
The resin for a polyethylene hollow molded body according to the present invention comprises a linear low density polyethylene (A) used in the preparation of the polyethylene hollow molded body according to the present invention.
[0010]
The polyethylene hollow molded body according to the present invention has a layer made of linear low density polyethylene (A) having a specific range of density, intrinsic viscosity, and molecular weight distribution (Mw / Mn). The hollow molded body may have a single layer structure or a multilayer structure having two or more layers.
Linear low density polyethylene (A)
The linear low density polyethylene (A) used in the present invention is a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, and the density (ASTM D 1505) is 0.930 g / cm 3 or less. , Usually from 0.860 to 0.930 g / cm 3 , preferably from 0.900 to 0.930 g / cm 3 , more preferably from 0.915 to 0.925 g / cm 3 , measured in a 135 ° C. decalin solvent. The intrinsic viscosity [η] is 1.6 dl / g or more, usually 1.6 to 10.0 dl / g, preferably 1.6 to 4.0 dl / g, more preferably 1.8 to 2.5 dl / g. The molecular weight distribution (Mw / Mn) measured by GPC is 4 or more, usually 4 to 20, preferably 4.5 to 13, and more preferably 5.0 to 10.0. Using linear low density polyethylene (A) having density, intrinsic viscosity and molecular weight distribution (Mw / Mn) within the above ranges, polyethylene hollow molding such as soft bottles with excellent appearance and excellent drop impact resistance The body can be provided.
[0011]
The molecular weight distribution (Mw / Mn) was measured as follows using GPC-150C manufactured by Millipore.
The separation column is TSK GNH HT, the column size is 72 mm in diameter and 600 mm in length, the column temperature is 140 ° C., the mobile phase is o-dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.) and antioxidant. BHT (made by Takeda Pharmaceutical Co., Ltd.) 0.025% by weight as the agent, moved at 1.0 ml / min, sample concentration 0.1% by weight, sample injection volume 500 microliters, detector A differential refractometer was used. Standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and used by Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 .
[0012]
Specific examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, and 1-hexene. 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, trimethyl-1-butene, ethyl -1-pentene, 1-octene, methyl-1-pentene, dimethyl-1-hexene, trimethyl-1-pentene, ethyl-1-hexene, methylethyl-1-pentene, diethyl-1-butene, propyl-1- Pentene, 1-decene, methyl-1-nonene, dimethyl-1-octene, trimethyl-1-heptene, ethyl-1-octene, methylethyl-1-heptene, diethyl-1-hexene, 1-dodecene, 1-hexadodecene Etc.
[0013]
These α-olefins can be used alone or in combination of two or more.
The linear low density polyethylene (A) preferably used in the present invention includes an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, an ethylene / 1-pentene copolymer, and an ethylene / 1-hexene copolymer. An ethylene / 4-methyl-1-pentene copolymer and an ethylene / 1-octene copolymer.
[0014]
In the linear low density polyethylene (A), structural units derived from ethylene are usually present in an amount of 65 to 99% by weight, preferably 70 to 98% by weight, more preferably 75 to 96% by weight, and the number of carbon atoms. Is present in an amount of usually 1 to 35% by weight, preferably 2 to 30% by weight, more preferably 4 to 25% by weight.
[0015]
The composition of the ethylene / α-olefin copolymer is usually a 13 C-NMR spectrum of a sample in which about 200 mg of ethylene / α-olefin copolymer is uniformly dissolved in 1 ml of hexachlorobutadiene in a 10 mmφ sample tube. It is determined by measurement under the conditions of a measurement temperature of 120 ° C., a measurement frequency of 25.05 MHz, a spectrum width of 1500 Hz, a pulse repetition time of 4.2 sec., And a pulse width of 6 μsec.
[0016]
The linear low density polyethylene (A) having the physical properties described above is a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms in the presence of an olefin polymerization catalyst such as a conventionally known Ziegler catalyst. Can be prepared.
The linear low-density polyethylene (A) can be prepared by blending two or more kinds of ethylene / α-olefin copolymers obtained as described above.
[0017]
This blending can be done using an extruder. In addition, as in two-stage polymerization, two or more kinds of ethylene / α-olefin copolymers may be continuously produced in the polymerization vessel, and may be blended or further granulated by an extruder. It doesn't matter.
The linear low density polyethylene (A) used in the present invention has, for example, a density (ASTM D 1505) of 0.860 to 0.975 g / cm 3 and an intrinsic viscosity [η measured in a decalin solvent at 135 ° C. ] Is 0.01 to 1.80 dl / g, and the molecular weight distribution (Mw / Mn) measured by GPC is 1.0 to 6.0, which is a linear ethylene / α-olefin copolymer ( a) 5 to 95% by weight;
The density (ASTM D 1505) is 0.860-0.975 g / cm 3 , the intrinsic viscosity [η] measured in 135 ° C. decalin solvent is 1.81-10.0 dl / g, and by GPC A blend comprising 5 to 95% by weight of a linear ethylene / α-olefin copolymer (b) having a measured molecular weight distribution (Mw / Mn) of 1.0 to 6.0 is preferred.
[0018]
The linear ethylene / α-olefin copolymer (a) may be one or a combination of two or more, and the linear ethylene / α-olefin copolymer (b) may be one or two. It may be a combination of more than one species.
The linear low-density polyethylene (A) used in the present invention has a drop height of 1.5 m or more at which ethylene glycol filled in the bottle does not leak to the outside in five repeated drop tests under an atmosphere of −18 ° C. It is possible to hollow-mold a single layer bottle (internal capacity 780 ml, tare weight 25 g). In this drop test, if the bottle is vertically dropped from the same height and repeatedly dropped to the floor five times and the ethylene glycol in the bottle does not leak outside from the bottle, the drop test at that height is passed.
[0019]
Moreover, the resin for polyethylene hollow molded bodies which concerns on this invention may contain various additives in the range which does not impair the physical property of a hollow molded body other than the said linear low density polyethylene (A).
Specific examples of such additives include fillers, weathering stabilizers, heat stabilizers, antistatic agents, antislip agents, antifogging agents, lubricants, pigments, dyes, nucleating agents, plasticizers, and flame retardants. And hydrochloric acid absorbent.
[0020]
Polyethylene hollow molded body The polyethylene hollow molded body according to the present invention has a layer made of the linear low density polyethylene (A) as described above, and has a single layer structure or a multilayer structure. Good. In general, a hollow molded body having a single layer structure is used as a single layer container, and a hollow molded body having a multilayer structure is used as a multilayer container.
[0021]
When the multilayer container according to the present invention has, for example, a three-layer structure, the inner and outer surface layers of the container are formed of the linear low density polyethylene (A), and the intermediate layer sandwiched between these surface layers is, for example, ethylene-vinyl. It can be formed of a resin such as an alcohol copolymer.
The polyethylene hollow molded body according to the present invention is prepared by a conventionally known hollow molding (blow molding) method. There are various blow molding methods, which are roughly classified into an extrusion blow molding method, a two-stage blow molding method, and an injection molding method. In the present invention, an extrusion blow molding method is particularly preferably employed.
[0022]
【The invention's effect】
According to the polyethylene hollow molded body resin of the present invention, it is possible to provide a polyethylene hollow molded body having a single-layer structure or a multilayer structure such as a soft bottle that has no skin and is excellent in appearance and excellent in drop impact resistance. .
Since the polyethylene hollow molded body according to the present invention has the layer made of the resin for polyethylene hollow molded body according to the present invention, the polyethylene hollow molded body has no scab and is excellent in appearance, and is excellent in drop impact resistance.
[0023]
Therefore, the polyethylene hollow molded body according to the present invention can be suitably used for food containers such as mayonnaise, ketchup, kneaded wasabi, kneaded mustard and the like.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by these Examples.
[0025]
[Production Example 1]
(Preparation of linear low density polyethylene (LLDPE (1)))
In solution polymerization, linear low density polyethylene (LLDPE (1)) obtained by continuously producing two types of polyethylene (a1) and (b1) in a polymerization vessel and further granulating, The density (ASTM D 1505) is 0.920 g / cm 3 , the intrinsic viscosity [η] measured in decalin solvent at 135 ° C. is 2.1 dl / g, and the molecular weight distribution (Mw / Mn) measured by GPC is It was 5.
[0026]
The polyethylene (a1) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. of 0.5 dl / g, and measured by GPC. It is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.3.
The polyethylene (b1) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent of 135 ° C. of 3.6 dl / g, and GPC Is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.8 as measured by the above method.
[0027]
The weight ratio ((a1) / (b1)) between polyethylene (a1) and polyethylene (b1) was about 50/50.
[0028]
[Production Example 2]
(Preparation of linear low density polyethylene (LLDPE (2)))
In solution method polymerization, linear low density polyethylene (LLDPE (2)) obtained by continuously producing and granulating two types of polyethylene (a2) and (b2) in a polymerization vessel, The density (ASTM D 1505) is 0.920 g / cm 3 , the intrinsic viscosity [η] measured in decalin solvent at 135 ° C. is 1.8 dl / g, and the molecular weight distribution (Mw / Mn) measured by GPC is It was 5.
[0029]
The polyethylene (a2) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. of 0.5 dl / g, and measured by GPC. It is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.3.
The polyethylene (b2) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent of 135 ° C. of 3.1 dl / g, and GPC Is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.8 as measured by the above method.
[0030]
The weight ratio ((a2) / (b2)) between polyethylene (a2) and polyethylene (b2) was about 50/50.
[0031]
[Production Example 3]
(Preparation of linear low density polyethylene (LLDPE (3)))
In the solution method polymerization, linear low density polyethylene (LLDPE (3)) obtained by continuously producing and further granulating two types of polyethylene (a3) and (b3) in a polymerization vessel, The density (ASTM D 1505) is 0.920 g / cm 3 , the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. is 1.6 dl / g, and the molecular weight distribution (Mw / Mn) measured by GPC is 4.
[0032]
The polyethylene (a3) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. of 0.5 dl / g, and measured by GPC. It is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.3.
The polyethylene (b3) has a density (ASTM D 1505) of 0.920 g / cm 3 , an intrinsic viscosity [η] measured in a decalin solvent of 135 ° C. of 2.7 dl / g, and GPC It is a linear ethylene / α-olefin copolymer having a molecular weight distribution (Mw / Mn) of 2.5 measured by the above.
[0033]
The weight ratio of polyethylene (a3) to polyethylene (b3) ((a3) / (b3)) was about 50/50.
[0034]
[Production Example 4]
(Preparation of linear low density polyethylene (LLDPE (4)))
By solution polymerization, the density (ASTM D 1505) is 0.920 g / cm 3 , the intrinsic viscosity [η] measured in 135 ° C. decalin solvent is 1.8 dl / g, and the molecular weight distribution measured by GPC ( A linear low-density polyethylene (LLDPE (4)) having a Mw / Mn of 3 was prepared.
[0035]
[Production Example 5]
(Preparation of linear low density polyethylene (LLDPE (5)))
By solution polymerization, the density (ASTM D 1505) is 0.935 g / cm 3 , the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. is 2.1 dl / g, and the molecular weight distribution measured by GPC ( A linear low density polyethylene (MLD / Mn) of 5 (LLDPE (5)) was prepared.
[0036]
[Example 1]
The linear low density polyethylene (LLDPE (1)) obtained in Production Example 1 is blow molded under the following molding conditions using an extrusion blow molding machine (manufactured by Nippon Steel Co., Ltd., model number: JEB-15). A bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g was obtained.
<Blow molding conditions>
Resin temperature of linear low density polyethylene (1): 200 ° C
Resin pressure: 320 kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the following method. The results are shown in Table 1.
<Test method>
Fill a single-layer bottle with an internal volume of 780 ml and a weight of 25 g with ethylene glycol, and drop this bottle vertically from a certain height under an atmosphere of −18 ° C. five times. The maximum drop height at which glycol does not leak out from the bottle was measured, and this maximum drop height was used as an index of the drop impact resistance of the bottle. As the floor on which the bottles were dropped, an iron plate having a thickness of 2 mm or more placed horizontally on a concrete floor was used.
[0037]
Further, a press sheet having a thickness of 2 mm was compression-molded from the linear low-density polyethylene (LLDPE (1)) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle did not have a crust and had a good appearance.
[0038]
[Example 2]
In Example 1, instead of the linear low density polyethylene (LLDPE (1)) obtained in Production Example 1, the linear low density polyethylene (LLDPE (2)) obtained in Production Example 2 was used. Except for the above, extrusion blow molding was performed in the same manner as in Example 1 to obtain a bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g.
[0039]
However, the conditions for extrusion blow molding were as follows.
<Blow molding conditions>
Resin temperature of linear low density polyethylene (LLDPE (2)): 200 ° C.
Resin pressure: 280 kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the above method. The results are shown in Table 1.
[0040]
Further, a press sheet having a thickness of 2 mm was compression molded from the linear low density polyethylene (LLDPE (2)) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle did not have a crust and had a good appearance.
[0041]
[ Reference Example 1 ]
In Example 1, instead of the linear low density polyethylene (LLDPE (1)) obtained in Production Example 1, the linear low density polyethylene (LLDPE (3)) obtained in Production Example 3 was used. Except for the above, extrusion blow molding was performed in the same manner as in Example 1 to obtain a bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g.
[0042]
However, the conditions for extrusion blow molding were as follows.
<Blow molding conditions>
Resin temperature of linear low density polyethylene (LLDPE (3)): 200 ° C.
Resin pressure: 250 kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the above method. The results are shown in Table 1.
[0043]
Further, a press sheet having a thickness of 2 mm was compression-molded from the linear low-density polyethylene (LLDPE (3)) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle did not have a crust and had a good appearance.
[0044]
[Comparative Example 1]
In Example 1, instead of the linear low density polyethylene (LLDPE (1)) obtained in Production Example 1, high pressure method low density polyethylene (HPLDPE: density (ASTM D 1505) = 0.920 g / cm 3 , Extrusion in the same manner as in Example 1 except that the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. = 1.3 dl / g and the molecular weight distribution measured by GPC (Mw / Mn) = 5) were used. Blow molding was performed to obtain a bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g.
[0045]
However, the conditions for extrusion blow molding were as follows.
<Blow molding conditions>
Resin temperature of high-pressure low-density polyethylene (HPLDPE): 200 ° C
Resin pressure: 300 kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the above method. The results are shown in Table 1.
[0046]
Further, a press sheet having a thickness of 2 mm was compression-molded from the high-pressure method low-density polyethylene (HPLDPE) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle did not have a crust and had a good appearance.
[0047]
[Comparative Example 2]
In Example 1, instead of the linear low density polyethylene (LLDPE (1)) obtained in Production Example 1, the linear low density polyethylene (LLDPE (4)) obtained in Production Example 4 was used. Except for the above, extrusion blow molding was performed in the same manner as in Example 1 to obtain a bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g.
[0048]
However, the conditions for extrusion blow molding were as follows.
<Blow molding conditions>
Resin temperature of linear low density polyethylene (LLDPE (4)): 210 ° C.
Resin pressure: 400kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the above method. The results are shown in Table 1.
[0049]
Further, a press sheet having a thickness of 2 mm was compression molded from the linear low density polyethylene (LLDPE (4)) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle had a wrinkled skin.
[0050]
[Comparative Example 3]
In Example 1, instead of the linear low density polyethylene (LLDPE (1)) obtained in Production Example 1, the linear low density polyethylene (LLDPE (5)) obtained in Production Example 5 was used. Except for the above, extrusion blow molding was performed in the same manner as in Example 1 to obtain a bottle (single-layer hollow molded body) having an internal volume of 780 ml and a weight of 25 g.
[0051]
However, the conditions for extrusion blow molding were as follows.
<Blow molding conditions>
Resin temperature of linear low density polyethylene (LLDPE (5)): 210 ° C.
Resin pressure: 400kg / m 2
Resin extrusion rate: 50 kg / hr
Mold temperature: 20 ℃
The bottle obtained as described above was repeatedly subjected to a drop test according to the above method. The results are shown in Table 1.
[0052]
Further, a press sheet having a thickness of 2 mm was compression molded from the above-mentioned linear low density polyethylene (LLDPE (5)) according to ASTM D1928, and the tensile yield point stress was measured according to ASTM D638. The results are shown in Table 1.
In addition, the obtained bottle did not have a crust and had a good appearance.
[0053]
[Table 1]
Claims (6)
密度(ASTM D 1505)が0.920〜0.975g/cm3であり、135℃デカリン溶媒中で測定した極限粘度[η]が3.1〜10.0dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が2.8〜6.0である直鎖状エチレン・α- オレフィン共重合体(b)5〜95重量%とからなるブレンド物であって、
密度(ASTM D 1505)が0.915〜0.925g/cm 3 であり、135℃デカリン溶媒中で測定した極限粘度[η]が1.8〜2.5dl/gであり、かつ、GPCにより測定される分子量分布(Mw/Mn)が5.0〜10.0である直鎖状低密度ポリエチレン(A)からなることを特徴とするポリエチレン中空成形体用樹脂。The density (ASTM D 1505) is 0.860-0.920 g / cm 3 , the intrinsic viscosity [η] measured in 135 ° C. decalin solvent is 0.01-0.5 dl / g, and by GPC 5 to 95% by weight of a linear ethylene / α-olefin copolymer (a) having a molecular weight distribution (Mw / Mn) of 2.3 to 6.0,
Density (ASTM D 1505) is 0.920-0.975 g / cm 3 , intrinsic viscosity [η] measured in 135 ° C. decalin solvent is 3.1-10.0 dl / g, and by GPC A blend comprising 5 to 95% by weight of a linear ethylene / α-olefin copolymer (b) having a measured molecular weight distribution (Mw / Mn) of 2.8 to 6.0 ,
The density (ASTM D 1505) is 0.915 to 0.925 g / cm 3 , the intrinsic viscosity [η] measured in a decalin solvent at 135 ° C. is 1.8 to 2.5 dl / g, and by GPC the measured molecular weight distribution (Mw / Mn) of the polyethylene hollow molded body resin, characterized in that it consists of linear low-density polyethylene (a) which is 5.0 to 10.0.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000234146A JP4430799B2 (en) | 1999-09-01 | 2000-08-02 | Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin |
KR1020000048952A KR100610171B1 (en) | 1999-09-01 | 2000-08-23 | Resin for polyethylene blow molded article and polyethylene blow molded article using the resin |
TW089117751A TW553952B (en) | 1999-09-01 | 2000-08-31 | Resin for polyethylene blow molded article and polyethylene blow molded article using the resin |
IDP20000736D ID29316A (en) | 1999-09-01 | 2000-08-31 | DAMAR FOR POLYETHYLENE PRINTED ITEMS AND POLYETHYLENE PRINTED ITEMS USING DAMAR |
CNB001264907A CN1300233C (en) | 1999-09-01 | 2000-09-01 | Resin for blow-moulded polyethylene products and blow-moulded polyethylene product using said resin |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24732399 | 1999-09-01 | ||
JP11-247323 | 1999-09-01 | ||
JP2000234146A JP4430799B2 (en) | 1999-09-01 | 2000-08-02 | Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001139630A JP2001139630A (en) | 2001-05-22 |
JP4430799B2 true JP4430799B2 (en) | 2010-03-10 |
Family
ID=26538211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000234146A Expired - Lifetime JP4430799B2 (en) | 1999-09-01 | 2000-08-02 | Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4430799B2 (en) |
KR (1) | KR100610171B1 (en) |
CN (1) | CN1300233C (en) |
ID (1) | ID29316A (en) |
TW (1) | TW553952B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA022658B1 (en) * | 2010-05-13 | 2016-02-29 | Юнилевер Нв | Injection molded tube |
CN106633325B (en) * | 2015-10-28 | 2019-04-16 | 中国石油化工股份有限公司 | A kind of polyethylene composition and durable membrane |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6016880A (en) * | 1983-07-08 | 1985-01-28 | 今野 富夫 | Manufacture of heat insulating concrete board |
JPH07116251B2 (en) * | 1985-03-11 | 1995-12-13 | 東ソー株式会社 | Method for producing modified polyethylene |
JP3355534B2 (en) * | 1992-09-10 | 2002-12-09 | 住友化学工業株式会社 | Ethylene-α-olefin copolymer and molded article molded using the copolymer |
JPH1180259A (en) * | 1997-09-10 | 1999-03-26 | Tosoh Corp | Polyethylene resin for large blow molding, production method and large blow molded container |
-
2000
- 2000-08-02 JP JP2000234146A patent/JP4430799B2/en not_active Expired - Lifetime
- 2000-08-23 KR KR1020000048952A patent/KR100610171B1/en not_active IP Right Cessation
- 2000-08-31 TW TW089117751A patent/TW553952B/en not_active IP Right Cessation
- 2000-08-31 ID IDP20000736D patent/ID29316A/en unknown
- 2000-09-01 CN CNB001264907A patent/CN1300233C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1288910A (en) | 2001-03-28 |
TW553952B (en) | 2003-09-21 |
CN1300233C (en) | 2007-02-14 |
ID29316A (en) | 2001-08-16 |
JP2001139630A (en) | 2001-05-22 |
KR20010050173A (en) | 2001-06-15 |
KR100610171B1 (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1546253B1 (en) | Polyethylene compositions for rotational molding | |
US6214447B1 (en) | Laminating propylene/1-butene random copolymer composition and composite film using the same | |
US7396881B2 (en) | Polyethylene compositions for rotational molding | |
EP2885326B1 (en) | Highly branched compositions and processes for the production thereof | |
KR100507455B1 (en) | Lldpe blends with an ethylene-norbornene copolymer for resins of improved toughness and processibility for film production | |
KR101333450B1 (en) | Multilayer blow-molded container, and process for production thereof | |
EP1216824B1 (en) | Sealant for polypropylene and easily openable hermetically sealed package including the same | |
JP2001089615A (en) | Rotational molding polyethylene resin composition and rotational molding product using the same composition | |
JP4430799B2 (en) | Polyethylene hollow molded body resin and polyethylene hollow molded body using the resin | |
JP3375168B2 (en) | Polyethylene composition | |
JP2003220675A (en) | Polyolefin stretched film and method of manufacturing the same | |
JP4505321B2 (en) | Laminated body and medical bag comprising the same | |
JP2003292534A (en) | Polyethylene resin for blow molded product and blow molded product composed of the same resin | |
JP2002088170A (en) | Low temperature heat-sealable polypropylene film | |
JP4734841B2 (en) | Multi-layer plastic container | |
JP2004231919A (en) | PROPYLENE-alpha-OLEFIN COPOLYMER COMPOSITION, MOLDED PRODUCT AND USE OF THE SAME | |
JP4491945B2 (en) | Low-temperature heat-sealable polypropylene film | |
JP2017177727A (en) | Multilayer film and manufacturing method thereof | |
JP3106834B2 (en) | High gloss multilayer blow molded container and olefin polymer composition suitable therefor | |
CN118922489A (en) | Ethylene polymer composition and pipe comprising the same | |
JPH0873673A (en) | Polypropylene-based resin composition for blow molding and blow molding using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091029 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4430799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |