[go: up one dir, main page]

JP4426680B2 - Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method - Google Patents

Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method Download PDF

Info

Publication number
JP4426680B2
JP4426680B2 JP32304399A JP32304399A JP4426680B2 JP 4426680 B2 JP4426680 B2 JP 4426680B2 JP 32304399 A JP32304399 A JP 32304399A JP 32304399 A JP32304399 A JP 32304399A JP 4426680 B2 JP4426680 B2 JP 4426680B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
reaction
chlorine
containing organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32304399A
Other languages
Japanese (ja)
Other versions
JP2001137664A (en
Inventor
泰良 加藤
雅敏 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP32304399A priority Critical patent/JP4426680B2/en
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to SK661-2002A priority patent/SK287089B6/en
Priority to CA002389853A priority patent/CA2389853C/en
Priority to US10/130,155 priority patent/US6759565B1/en
Priority to EP00974909A priority patent/EP1236498B1/en
Priority to PCT/JP2000/007935 priority patent/WO2001036070A1/en
Priority to PL356182A priority patent/PL206072B1/en
Priority to TW089123877A priority patent/TW555590B/en
Priority to DE60036637T priority patent/DE60036637T2/en
Priority to HU0204194A priority patent/HUP0204194A3/en
Priority to AT00974909T priority patent/ATE374647T1/en
Priority to CZ20021592A priority patent/CZ302209B6/en
Priority to DK00974909T priority patent/DK1236498T3/en
Priority to KR1020027006103A priority patent/KR100850060B1/en
Publication of JP2001137664A publication Critical patent/JP2001137664A/en
Application granted granted Critical
Publication of JP4426680B2 publication Critical patent/JP4426680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中の含塩素有機化合物の分解方法およびその方法に用いる板状触媒に係り、特に、ごみ焼却炉などの排ガス中に含まれるダイオキシン類で代表される含塩素有機化合物を低温から効率よく分解することができる、硫黄含有排ガス中の塩素有機化合物の分解方法およびその方法に用いる触媒に関する。
【0002】
【従来の技術】
近年、都市ごみや産業廃棄物などを焼却する焼却炉の排ガス中に含まれる毒性の高いポリ塩化ジベンゾジオキシンやポリ塩化ジベンゾフランなどのダイオキシン類、コプラナー(ポリ塩化ビニル,PCB)などの毒性の強い含塩素有機化合物(以下、ダイオキシンまたはDXNs類ということがある)が環境汚染物質として問題となり、その除去技術の確立が望まれている。また最近では、DXNs類が内分泌機能攪乱物質(いわゆる環境ホルモン)としてはたらくことや、母乳に高濃度に蓄積されて新生児に悪影響を与えるがことが知られるようになり、DXNs類の排出規制がさらに強化されつつある。このため、排ガス中のDXNs類をより低減するための技術の重要度は一層高まり、多くの分野で種々の研究、開発がなされている。
【0003】
排ガス中のDXNs類を低減する方法は種々提案されているが、中でも触媒を用いて、熱分解する方法、酸素により酸化分解する方法などの接触分解法が主流になりつつあり、特に酸素による酸化分解法はDXNs類の分解性能が高いだけでなく脱硝性能を兼ねることから広く実用化が図られている。
【0004】
(1)式および(2)式は、それぞれ熱分解および酸素による酸化分解によるDXNs類の分解反応を示す示性式である。
熱分解反応
R-Cl(含塩素有機化合物) → mH2 + nC+pHCl + R'-Cl … (1)
酸素による酸化分解解反応
R-Cl(含塩素有機化合物) + kO2→ mCO2 + nH2O + pHCl … (2)
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、反応開始温度や反応速度が十分配慮されておらず、本発明者等の研究によれば上記(1)式の熱分解反応速度は遅く、実用性能を得るためには大量の触媒と高温を必要とするという問題があった。また、(2)式の酸素による酸化分解反応速度は前記熱分解反応速度よりも速いものの、実用的な反応速度が得られず、しかもSOxの存在により触媒が劣化することが分かっている。
【0006】
本発明の課題は、上記従来技術の問題点を解決し、低温でも高いダイオキシン類分解率が得られ、実用性能を得るための触媒量を低減でき、しかもSOxによる影響を最小限に抑えることができる、排ガス中の含塩素有機化合物の分解方法およびこれに用いる触媒を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明者は、触媒を用いた、DXNs類の熱分解方法および酸素による酸化分解方法について種々検討したところ、以下の問題があることが分かった。
【0008】
すなわち第一に、接触反応の開始温度が高く、高温でなければ高いダイオキシン類分解反応速度が得られず、特に熱分解反応は反応速度が遅く、300℃以上の高温でなければ実用的な速度を得ることはできない。反応温度を高くすれば分解率は高くなるものの、排ガス中に含まれる炭化水素、一酸化炭素(CO)、塩素化合物等からダイオキシン類の再生成反応やより毒性の高いポリ塩素化反応(異性化)が進行し、ダイオキシン類低減の意図とは逆にダイオキシン類を発生させることにもなるという重大な危険性がある。
【0009】
第二に、熱分解反応および酸素による酸化分解反応は共に反応速度が遅いために大量の触媒を必要とする。高価な触媒を大量に使用することはごみ焼却炉を運用する中小自治体にとって大きな負担となる。また触媒量増量時にはダイオキシン類が発生する危険性が増大する傾向にある。すなわち、排ガス中に触媒が存在する場合、熱分解または酸素による酸化分解反応と上述したようなDXNs類の再生成反応とが同時に起こり、両者の差分がダイオキシン類の低減分となるので、触媒量の増大は見かけ上ダイオキシン類の分解率を向上させることになるが、その反面ダイオキシン類が再合成される危険性も増加し、触媒が劣化した際にはダイオキシン類が多量に発生するという危険性がある。
【0010】
さらに第三に、排ガス中に含まれるイオウ酸化物(SOx)の影響を受けやすい点が挙げられる。すなわち、ごみまたは産業廃棄物などの燃焼時におけるSOxの発生は不可避であり、特に、上述したダイオキシン類の再合成を避けるために、最近ではより低温で触媒を使用する傾向にあるが、このような低温域ではSOxによる触媒の劣化がより顕著になり、このためSOx対策が十分に施されていない従来技術では高いダイオキシン分解率を得ることは容易でない。
【0011】
そこで本発明者は、上記研究で得られた種々の知見に基いて、排ガス中のDXNs類を効率よく分解、無害化するための条件およびその際使用する触媒等について鋭意研究した結果、DXNs類と共に通常排ガス中に含まれる窒素酸化物、特にNO2 に着目し、該NO2 を用いてDXNs類を酸化分解すればよいこと、このとき酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とする特定の板状触媒を用いることによってDXNs類の分解が促進されることを見出し、本発明に到達したものである。
【0012】
すなわち、本願で特許請求される発明は以下のとおりである。
(1)硫黄酸化物を含む排ガス中に含まれる含塩素有機化合物を板状触媒の存在下100〜450℃で酸化分解させる方法であって、該酸化分解を酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にある触媒の存在下に二酸化窒素によって行い、かつ該二酸化窒素による酸化分解が、含塩素有機化合物の酸素による分解反応及び熱分解反応よりも優先して進行するように、該二酸化窒素を排ガス中の含塩素有機化合物よりも過剰に存在させるとともに、反応後の排ガス中に二酸化窒素が残留するようにしたことを特徴とする排ガス中の含塩素有機化合物の分解方法。
【0013】
(2)含塩素有機化合物、窒素酸化物および硫黄酸化物を含有する排ガス中にアンモニアを注入した後、100〜450℃で酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にある板状触媒と接触させ、酸化分解させる方法であって、該酸化分解を二酸化窒素によって行い、かつ二酸化窒素による酸化分解が、含塩素有機化合物の酸素による分解反応および熱分解反応よりも優先して進行するように、該二酸化窒素を排ガス中の含塩素有機化合物よりも過剰に存在させるとともに、反応後の排ガス中に二酸化窒素が残留するようにしたことを特徴とする排ガス中の含塩素有機化合物の分解方法。
(3)前記排ガスを前記板状触媒と接触させる前に、あらかじめ窒素酸化物のアンモニアによる分解反応の一部を進行させておくことを特徴とする上記(2)に記載の方法。
【0016】
(4)酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にあることを特徴とする上記(1)に記載の方法に用いる板状触媒。
【0017】
本発明は、硫黄含有排ガス中に含まれるか、または外部から新たに排ガス中に添加された二酸化窒素(NO2 )と排ガス中の含塩素有機化合物とを特定組成の板状触媒の存在下、所定温度で接触させ、前記含塩素有機化合物(DXNs類)をNO2 により酸化分解するものである。本発明に適用される特定組成の触媒とは、酸化チタン(TiO2 )、酸化モリブデン(MoO3 )および酸化バナジウム(V2 5 )を主成分とする板状に形成された触媒であり、TiとMoとVの混合比が原子比で99〜70/0.5〜15/0.5〜15の範囲にあるものをいう。
【0018】
触媒成分がTiとVだけのものでも一定の、NO2 によるDXNs類分解活性を示すが、これにMoを共存させることにより、NO2 によるDXNs類の分解活性が大幅に向上する。また、Ti、Mo、Vを共存させることにより、SOx共存下におけるNO2 によるDXNs類の分解活性の低下を回避し、SOxによる劣化が顕著に現れ易い低温度域においても高い分解活性が得られる。例えば、Ti−VやTi−V−W系触媒の200℃における酸素による含ハロゲン有機化合物の分解活性は、50ppmのSOxの存在でほとんど消滅するが、Ti−Mo−Vの三成分系触媒である本発明触媒によれば、同濃度のSOxが存在しても、NO2 による含ハロゲン有機化合物分解活性はほとんど低下しない。
【0019】
本発明の触媒は、その製造過程の何処かで300〜650℃、好ましくは400℃〜600℃で焼成される。焼成温度が低すぎると原料中の有機物が分解しなかったり、酸化物相互の複合化が不十分となって高い触媒性能が得難い。一方、温度が高すぎると組成物中の酸化モリブデンが昇華したり、酸化チタンが焼結することによって触媒性能が低下する。
【0020】
本発明の触媒は、硫酸法、塩素法など各種製法で得られる酸化チタンまたはオルトもしくはメタチタン酸などの含水酸化チタンと、モリブデンおよびバナジウムの酸化物、アンモニウム塩、硫酸などの鉱酸塩とを原料に用い、混練法、含浸法、ウォシュコーティング法等公知の方法によって得ることができる。また、製造過程で無機繊維やコロイダルシリカなどの無機または有機結合剤を添加して、成形体強度を向上させることもできる。触媒の形態としては、例えば粒状、板状、ハニカム状に成形したものの他、バグフィルター用濾布、セラミック製の粒状またはハニカム状担体に担持したもの等が挙げられる。
【0021】
本発明において、排ガス中のDXNs類がNO2 により酸化分解される反応は、例えば下記のように表される。
NO2 による含塩素有機化合物の酸化分解反応
R-Cl(含塩素有機化合物) + kNO2→ mCO2 + nH2O + pHCl +kNO
… (3)
反応温度は100〜450℃、好ましくは120〜250℃である。NO2 によるDXNs類の酸化分解反応は、120℃程度からはじまり、従来技術である熱分解反応や酸素による酸化反応に比べると遙かに低い温度から進行する。そして250℃以下の低温域における反応速度は従来方法の数倍〜数十倍と高く、このような低温域であってもDXNs類は効率よく分解される。ダイオキシン類の再生成温度は250〜350℃と言われているが、低温活性に優れる本発明触媒を用いる分解方法では、再生温度域を避けて効率よく分解することができる。
【0022】
本発明において、NO2 は、排ガスに含まれるものの他、外部から新たに添加されたものであってもよい。また、酸素存在下における、上記反応温度域ではNOとNO2 の平衡はNO2 側に傾くことから、排ガス中のNOは逐次NO2 に変換されるので、排ガス中に含まれるNOが酸化したNO2 であってもよい。NO2 の濃度は、DXNs類の濃度以上含まれていればよい。本発明の触媒は、DXNs類の分解活性に加え、排ガス中のNOxをNH3 で還元する触媒としての活性をも有している。従って一つの触媒を用いて、DXNs類の分解とNOxの分解とを同時にまたは相前後して行わせることができる。
【0023】
【発明の実施の形態】
図1は、本発明の一実施例を示す装置系統図である。図において、排ガス発生源1で発生したDXNs類含有排ガス2は、排ガス煙道3を経て本発明触媒5が充填された触媒反応器4に流入し、ここで排ガス2に含まれるかまたは新たに添加されたNO2 と接触してDXNs類が前記NO2 によって酸化分解される。DXNs類が除去された排ガス2は、処理ガス6となって流出する。
【0024】
図2は、本発明の他の実施例を示す装置系統図である。図において、排ガス発生源1で発生したDXNs類含有排ガス2は適当量のNH3 が添加されたのち排ガス煙道3を経て後流の本発明触媒5が充填された触媒反応器4に流入し、ここで排ガス2に含まれるかまたは新たに添加されたNO2 と接触し、DXNs類がNO2 によって酸化分解されるとともに、窒素酸化物がNH3 によってN2 に分解される。
【0025】
図3は、本発明の別の実施例を示す装置系統図である。図において、排ガス発生源1で発生したDXNs類含有排ガス2は適当量のNH3 が添加されたのち排ガス煙道3を経て、順次公知の脱硝触媒7および本発明触媒5が充填された触媒反応器4に流入し、脱硝触媒7でNOxの一部がNH3 によってN2 に分解されたのち、本発明触媒5上で、DXNs類が排ガス2に含まれるかまたは新たに添加されたNO2 によって酸化分解される。
【0026】
図2および3において、NO2 は、NH3 との反応とDXNs類との反応の両方に用いられ、その間で競争になる。このため、添加NH3 濃度を高くし過ぎてガス中にNOxが存在しなくなるとDXNs類の分解反応が進行しなくなるので、本発明においては、触媒反応器の入口は勿論、出口でNOxが検出されるようにすることが好ましい。すなわち、本発明方法は、前記触媒を用いて排ガス中のNO2 によりDXNs類を酸化分解するものであり、触媒層出口においてNO2 を存在させるために脱硝反応のために添加するNH3 の注入量を制限し、脱硝率が100%にならないように運転することが好ましい。
【0027】
DXNs類よりもNO2 が過剰に存在すれば、NO2 によるDXNs類の酸化分解反応(上記(3)式の反応)は、熱分解反応および酸素による酸化分解反応(上記(1)および(2)式)に優先して進行することから、本発明における排ガス中に含まれるNO2 または新たに添加されたNO2 は、上記(1)式や(2)式の逆反応によるDXNs類の再合成反応を防止する役割を果たす。
【0028】
また、本発明において、排ガス中のNOx濃度がDXNs類の濃度よりも低い場合は、上述した図1の装置を用い、NO2 を添加しながら処理することが好ましい。一方、排ガス中のNOx濃度がDXNs類の濃度よりも高い場合は、上述した図2または図3の装置を用い、DXNs類の酸化分解とNOxの分解を同時にまたは相前後して行うことが好ましい。
【0029】
なお、脱硝活性はSOxの存在の影響を受けやすく、低温での活性低下は大きいが、NO2 によるDXNs類の分解反応はSOxの影響を受けにくい。従って、本発明においては、脱硝活性をモニターしておけば、猛毒のダイオキシン類の排出を防止できるようになる利点がある。
【0030】
【実施例】
以下、本発明の具体的実施例を説明する。
実施例1
酸化チタン粉末,メタバナジン酸アンモニウムおよびモリブデン酸アンモニウムに水を加え、ニーダで混練し、原子比でTi/Mo/V=88/5/7なる触媒ペーストを調製した。一方、繊維径9μmのEガラス製繊維1400本の捻糸を10本/25.4mmの荒さで平織りにした網状物に、チタニア、シリカゾル、ポリビニルアルコールのスラリを含浸して剛性を持たせ触媒基材とした。得られた触媒基材2枚の間に上記触媒ペーストを置き、圧延ローラを通したものを12時間大気中で風乾した後、500℃で2時間焼成し、厚さ1.0mmの板状触媒を得た。
【0031】
得られた触媒を20mm×100mmの短冊状に切り出し、これを3枚反応管に充填し、表1に示したように、ジクロロベンゼン8ppm、NO2 200ppmを含む疑似排ガスを反応温度180℃、面積速度10m/hで接触させ、ジクロロベンゼンの触媒層入り口および出口濃度からその分解率を求めたところ、87%であった。
【0032】
【表1】

Figure 0004426680
【0033】
比較例1
排ガス組成を、表2に示したようにNO2 に代えて酸素10%を含むものとした以外は上記実施例1と同様の触媒を用い、同様にしてジクロロベンゼンの分解テストを行い、ジクロロベンゼンの酸素による分解率を求めたところ、45%であった。
【0034】
【表2】
Figure 0004426680
【0035】
比較例2
排ガス組成を、表3に示したようにNO2 も酸素も共存させないものとした以外は上記実施例1と同様の触媒を用い、同様にしてジクロロベンゼンの分解テストを行い、ジクロロベンゼンの熱分解による分解率を求めたところ、11%であった。
【0036】
【表3】
Figure 0004426680
【0037】
実施例2
排ガス組成を、表4に示したようにジクロロベンゼン:8ppm、NO2 :200ppm、O2 :10%、H2 O:10%が共存するものとした以外は上記実施例1と同様の触媒を用い、同様にしてジクロロベンゼンの分解率を測定したところ、85%であった。これに合わせて、触媒層出口のCO2 、CO、NO2 およびNO濃度を測定し、これらの値から、上述した(1)〜(3)式で示される酸素バランス、および炭素バランスを計算し、本実施例で生起している上記(1)〜(3)式の反応割合を計算したところ、(1)式の反応が0.5%、(2)式の反応が3%、(3)式の反応が96.5%生起していた。
【0038】
【表4】
Figure 0004426680
【0039】
実施例3および4
実施例1および実施例2で用いた触媒テストピース(100×100mm)をSO2 を50ppm添加した軽油燃焼排ガス中に500時間暴露し、暴露後のテストピースを20mm×100mmの短冊状に切り出し、このSO2 暴露後の触媒を用いた以外は前記実施例1および2とそれぞれ同様にしてジクロロベンゼンの分解率を求めたところ、それぞれ83%、82%であった。
なお、実施例4について、上記実施例2と同様に、上述した(1)式〜(3)式の反応割合を計算したところ、(1)式の反応が0.1%以下、(2)式の反応が2%、(3)式の反応が98%以上生起していた。
【0040】
比較例3及び4
比較例1および比較例2で用いた触媒テストピース(100×100mm)をSO2 を50ppm添加した軽油燃焼排ガス中に500時間暴露し、暴露後のテストピースを20mm×100mmの短冊状に切り出し、このSO2 暴露後の触媒を用いた以外は前記比較例1および2とそれぞれ同様にしてジクロロベンゼンの分解率を求めたところ、それぞれ14%および3%であった。
実施例1〜4、および比較例1〜4のジクロロベンゼン分解率をまとめて表5に示した。
【0041】
【表5】
Figure 0004426680
【0042】
表5から明らかなように、実施例1および2のようにNO2 の存在する系では、極めて高いジクロロベンゼン分解活性が得られることが分かる。一方、NO2 に代えてO2 を存在させた系(比較例1)におけるジクロロベンゼン分解性能は著しく低く、またNO2 もO2 も存在させず熱分解活性のみを調べた系(比較例2)のジクロロベンゼン分解性能はほとんどゼロにに近かった。
このことから本発明方法のように、NO2 を存在させると酸素の存在の有無に関係なく、DXNs類の酸化分解反応(上記(3)式)が効率的に進行することが解る。
【0043】
また、表5のSO2 暴露試験後のジクロロベンゼン分解率をみると、比較例3の酸素による酸化反応および比較例4の熱分解反応によるジクロロベンゼンの分解率は大幅に低下しているが、実施例3と4における分解率はほとんど低下しておらず、本発明触媒は、NO2 によるDXNs類の分解触媒として優れたものであることが分かる。
表6は、実施例2および4で生起した上記(1)式〜(3)式の反応割合を示したものである。
【0044】
【表6】
Figure 0004426680
【0045】
表6から明らかなように、酸素が10%存在する系においても、数100ppmのNO2 が存在すればジクロロベンゼンはNO2 により優先的に酸化分解されることが分かる。この傾向はSO2 含有ガスに暴露した触媒を用いた場合(実施例4)において顕著に表れ、熱分解、酸素による酸化分解の割合が共に実施例2よりも小さくなっている。このことから、本発明触媒は、ごみ焼却炉の排ガスなどダイオキシン類のみならずSOxをも含む排ガスにおいてもNO2 によるDXNs類の酸化分解に極めて有利で有ることが分かる。
【0046】
実施例5〜14
実施例1で用いた触媒の触媒組成の影響を見るため、Ti/Mo/V=(95−α)/5/α(ただしα=0.5、4、7、10、15)とTi/Mo/V=(95−β)/β/4(ただしβ=0.5、4、7、10、15)の触媒を調製した。
比較例5
実施例1の触媒において、Moを添加しないで触媒を調製した。
【0047】
比較例6〜8
実施例10のモリブデン酸アンモニウムに変えて、硝酸マンガン(Mn(NO3 2 )、硝酸セリウム(Ce(NO3 2 )、および硝酸銅(Cu(NO3 2 )を前記モリブデンと等モル用いて触媒を調製した。
【0048】
実施例5〜14および比較例5〜8の触媒をそのまま用いたものと、実施例4と同様にSO2 含有ガス中に500時間暴露したものについて、表4に示した条件の内ジクロロベンゼンをクロロベンゼンに代えた以外は実施例4と同様の条件で前記クロロベンゼンの分解率を測定した。得られた結果を表7に示した。
【0049】
【表7】
Figure 0004426680
【0050】
表7において、実施例触媒と比較例触媒の性能を比較すると、実施例触媒の性能が顕著に高いこと、また実施例触媒のSO2 による劣化は極めて小さいことが分かる。このことからNO2 によるDXNs類の分解に対しては、Ti−Mo−Vの三者が複合化して発揮されていることが分かる。さらに、SO2 に対する耐久性は、Mo含有率が5〜15原子%の範囲で顕著に向上すること、高いDXNs類分解率を得るためにはV含有量が4〜15%程度が適することが分かる。
【0051】
実施例15および16
実施例2および4における反応温度を120〜400℃の範囲で変化させてそれぞれジクロロベンゼンの分解率の変化を求めた。
比較例9およびび10
比較例3および4における反応温度を120〜400℃の範囲で変化させてそれぞれジクロロベンゼンの分解率の変化を求めた。
【0052】
実施例15、16および比較例9、10で得られた結果を図4にまとめて示した。
図4から明らかなように、本発明の触媒はSO2 に被毒されることなく、低温から極めて高活性であり、ごみ焼却炉等の排ガス中に含まれるダイオキシン類の分解に適していることが分かる。
【0053】
実施例17
実施例1の触媒を用いてDXNs類のNO2 による酸化分解反応とNOxのNH3 による還元分解反応を同時に行わせる場合を模擬するため、20mm×100mmの短冊状に切り出した実施例1の触媒を3枚反応管に充填して表8に示したように、ジクロロベンゼン:1ppm、NO2 :20ppm、NO:180ppm、NH3 :190ppm、O2 :10%、H2 O:10%を含む疑似排ガスを反応温度230℃、面積速度6m/hの条件で接触させたところ、ジクロロベンゼンの分解率は98%、脱硝率は94%であった。このとき、NH3 /NOx比は0.95であった。
【0054】
【表8】
Figure 0004426680
【0055】
比較例11
実施例17のNH3 注入量をNH3 /NOx比が1.2になるように選定し、反応管出口におけるNOx濃度が限りなく少なく、例えば1ppm以下になるようにした以外は実施例17と同様にしてジクロロベンゼンの分解率と脱硝率を求めたところ、ジクロロベンゼンの分解率は23%、脱硝率は99.5%であった。
実施例17と比較例11で得られた結果を表9に示した。
【0056】
【表9】
Figure 0004426680
【0057】
表9において、実施例17は、NH3 /NOx比を0.95として反応管出口においてNOxが残存するようにしたことにより、NH3 を過剰に添加して反応管出口においてNOxをほとんど残存させなかった比較例11に較べて高いDXNs類分解活性が得られたことが分かる。
【0058】
実施例18
実施例1の触媒を6mm間隔で積層した触媒ユニットを作成し、この触媒ユニットにごみ焼却炉排ガスを空間速度が6m/hになるように流通させ、230℃で2000時間運転した。本試験の初期および2000時間後の触媒ユニット入口と出口の排ガスをサンプリングし、DXNs類の分解率を求めたところ、初期およびび2000時間後も95%以上の高いダイオキシン分解率が得られた。
【0059】
本実施例においては、DXNs類の再合成温度域よりも低温で処理したことにより、触媒層がDXNs類発生器になるという、従来技術で見られていた不都合を生じることはなかった。
【0060】
比較例12
モリブデン酸アンモニウムをパラタングステン酸アンモニウムに代えた以外は上記実施例1と同様にして触媒を調製し、得れた触媒を実施例18と同様に6mm間隔で積層して触媒ユニットとし、実施例18と同様にしてダイオキシンの分解率を求めたところ、初期ダイオキシン分解率こそ85%以上と高かったが、2000時間経過後には40%以下に低下した。
【0061】
【発明の効果】
本願の請求項1に記載の発明によれば、ごみ焼却炉排ガスなどに含まれる有害含塩素有機物(DXNs類)をSO の共存下であってもNO2 によって少ない触媒量で、より低温度から効率よく酸化分解することができ、しかもDXNs類の再合成を回避することができる。
【0064】
本願の請求項2および3に記載の発明によれば、SO 2 の共存下であっても触媒活性を低下させることなく、排ガス中のDXNs類とNOxをそれぞれ効率よく分解除去することができる。本願の請求項に記載の発明によれば、Ti−Mo−Vの三成分の複合作用により、NO2 によるDXNs類の分解活性に優れた触媒が得られる。従って、反応温度をより低下させることができ、触媒必要量の低減を図ることもできる。またSOxに対する耐性に優れており、長期間安定してDXNs類分解活性を発現することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す装置系統図。
【図2】本発明の他の実施例を示す装置系統図。
【図3】本発明の別の実施例を示す装置系統図。
【図4】本発明と従来技術との含塩素有機化合物の分解活性を比較して示す図。
【符号の説明】
1…排ガス発生源、2…DXNs類含有ガス、3…排ガス煙道、4…触媒反応器、5…本発明触媒、6…処理ガス、7…脱硝触媒。[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for decomposing chlorine-containing organic compounds in exhaust gas and the method thereof.PlateIn particular, it can efficiently decompose chlorine-containing organic compounds represented by dioxins contained in exhaust gas from garbage incinerators, etc. from low temperatures.Containing sulfurIn exhaust gasSalt ofThe present invention relates to a method for decomposing organic organic compounds and a catalyst used in the method.
[0002]
[Prior art]
In recent years, highly toxic dioxins such as highly toxic polychlorinated dibenzodioxins and polychlorinated dibenzofurans, coplanar (polyvinyl chloride, PCB), and other highly toxic substances contained in the exhaust gas from incinerators that incinerate municipal waste and industrial waste. Chlorine organic compounds (hereinafter sometimes referred to as dioxins or DXNs) have become a problem as environmental pollutants, and establishment of removal techniques is desired. Recently, it has become known that DXNs act as endocrine disruptors (so-called environmental hormones) and accumulate in high concentrations in breast milk and adversely affect newborns. It is being strengthened. For this reason, the importance of the technology for further reducing DXNs in the exhaust gas is further increased, and various studies and developments have been made in many fields.
[0003]
Various methods for reducing DXNs in exhaust gas have been proposed. Among them, catalytic cracking methods such as a thermal decomposition method using a catalyst and a oxidative decomposition method using oxygen are becoming mainstream. The decomposition method has been widely put into practical use because it not only has high decomposition performance of DXNs but also has denitration performance.
[0004]
Equations (1) and (2) are characteristic equations showing the decomposition reaction of DXNs by thermal decomposition and oxidative decomposition with oxygen, respectively.
Thermal decomposition reaction
R-Cl (chlorine-containing organic compound) → mH2+ NC + pHCl + R'-Cl (1)
Oxidative decomposition reaction with oxygen
R-Cl (chlorine-containing organic compound) + kO2→ mCO2+ NH2O + pHCl (2)
[0005]
[Problems to be solved by the invention]
However, in the above prior art, the reaction start temperature and the reaction rate are not sufficiently considered, and according to the study by the present inventors, the thermal decomposition reaction rate of the above formula (1) is slow, and in order to obtain practical performance There was a problem of requiring a large amount of catalyst and high temperature. Moreover, although the oxidative decomposition reaction rate by oxygen of the formula (2) is faster than the thermal decomposition reaction rate, it is known that a practical reaction rate cannot be obtained and the catalyst is deteriorated by the presence of SOx.
[0006]
The object of the present invention is to solve the above-mentioned problems of the prior art, obtain a high decomposition rate of dioxins even at low temperatures, reduce the amount of catalyst for obtaining practical performance, and minimize the influence of SOx. Another object of the present invention is to provide a method for decomposing chlorine-containing organic compounds in exhaust gas and a catalyst used therefor.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor conducted various studies on the thermal decomposition method of DXNs and the oxidative decomposition method with oxygen using a catalyst, and found that there are the following problems.
[0008]
That is, first, if the starting temperature of the catalytic reaction is high and a high temperature is not high, a high dioxin decomposition reaction rate cannot be obtained. In particular, a thermal decomposition reaction has a slow reaction rate, and a practical rate unless the temperature is higher than 300 ° C. Can't get. Although the decomposition rate increases as the reaction temperature is increased, dioxins are regenerated from hydrocarbons, carbon monoxide (CO), chlorine compounds, etc. contained in exhaust gas, and more toxic polychlorination reactions (isomerization) ) Progresses, and there is a serious danger that dioxins may be generated contrary to the intention of reducing dioxins.
[0009]
Secondly, both the thermal decomposition reaction and the oxidative decomposition reaction with oxygen require a large amount of catalyst because of their slow reaction rates. The use of a large amount of expensive catalyst is a heavy burden for small and medium-sized municipalities that operate waste incinerators. Further, when the amount of the catalyst is increased, the risk of generating dioxins tends to increase. That is, when a catalyst is present in the exhaust gas, thermal decomposition or oxidative decomposition reaction with oxygen and the above-described regeneration reaction of DXNs occur simultaneously, and the difference between the two becomes a reduction in dioxins. The increase in the apparently improves the decomposition rate of dioxins, but on the other hand, the risk of resynthesis of dioxins also increases, and the risk that a large amount of dioxins will be generated when the catalyst deteriorates There is.
[0010]
Thirdly, it is easy to be influenced by sulfur oxide (SOx) contained in the exhaust gas. That is, the generation of SOx during combustion of garbage or industrial waste is unavoidable. In particular, in order to avoid the above-mentioned resynthesis of dioxins, recently, there is a tendency to use a catalyst at a lower temperature. In such a low temperature range, the deterioration of the catalyst due to SOx becomes more conspicuous. For this reason, it is not easy to obtain a high dioxin decomposition rate with the prior art that does not sufficiently take measures against SOx.
[0011]
Therefore, the present inventor conducted extensive research on the conditions for efficiently decomposing and detoxifying DXNs in exhaust gas and the catalyst used in the process based on various findings obtained in the above research. Nitrogen oxides usually contained in exhaust gas, especially NO2Paying attention to the NO2It is sufficient to oxidatively decompose DXNs using a nitrile, and at this time, a specific component mainly composed of titanium oxide, molybdenum oxide and vanadium oxide is used.Use plate catalystThus, the present inventors have found that the decomposition of DXNs is promoted and have reached the present invention.
[0012]
That is, the invention claimed in the present application is as follows.
(1) Chlorine-containing organic compounds contained in exhaust gas containing sulfur oxidesPlateA method of oxidizing and decomposing at 100 to 450 ° C. in the presence of a catalyst, the main component being titanium oxide, molybdenum oxide and vanadium oxide, and containing titanium (Ti), molybdenum (Mo) and vanadium (V) The reaction is carried out with nitrogen dioxide in the presence of a catalyst having an atomic ratio in the range of 99 to 70 / 0.5 to 15 / 0.5 to 15, and the oxidative decomposition by the nitrogen dioxide is caused by oxygen of the chlorine-containing organic compound. The nitrogen dioxide should be present in excess of the chlorine-containing organic compounds in the exhaust gas so that it proceeds in preference to the decomposition reaction and thermal decomposition reaction, and nitrogen dioxide should remain in the exhaust gas after the reaction. A method for decomposing chlorine-containing organic compounds in exhaust gas.
[0013]
(2) After injecting ammonia into the exhaust gas containing a chlorine-containing organic compound, nitrogen oxide and sulfur oxide, titanium oxide, molybdenum oxide and vanadium oxide as main components at 100 to 450 ° C., and titanium (Ti) and The content of molybdenum (Mo) and vanadium (V) is in the range of 99 to 70 / 0.5 to 15 / 0.5 to 15 in terms of atomic ratio.PlateA method of contacting with a catalyst and oxidative decomposition, wherein the oxidative decomposition is carried out with nitrogen dioxide, and the oxidative decomposition with nitrogen dioxide proceeds in preference to the decomposition reaction and thermal decomposition reaction of chlorine-containing organic compounds with oxygen. As described above, the nitrogen dioxide is present in excess of the chlorine-containing organic compound in the exhaust gas, and the nitrogen dioxide remains in the exhaust gas after the reaction. Method.
(3) The exhaust gas isPlateThe method as described in (2) above, wherein a part of the decomposition reaction of nitrogen oxide with ammonia is allowed to proceed before contacting with the catalyst.
[0016]
(4) The main component is titanium oxide, molybdenum oxide and vanadium oxide, and the content ratio of titanium (Ti), molybdenum (Mo) and vanadium (V) is 99 to 70 / 0.5 to 15 / 0.5 in atomic ratio. It is in the range of -15, It uses for the method as described in said (1) characterized by the above-mentioned.Platecatalyst.
[0017]
The present inventionContaining sulfurNitrogen dioxide (NO) contained in exhaust gas or newly added to exhaust gas from outside2) And chlorine-containing organic compounds in the exhaust gasPlateContacting at a predetermined temperature in the presence of a catalyst, the chlorine-containing organic compounds (DXNs) are changed to NO.2It decomposes by oxidation. The catalyst having a specific composition applied to the present invention is titanium oxide (TiO 2).2), Molybdenum oxide (MoO)Three) And vanadium oxide (V2OFive)Formed in a plate shapeA catalyst having a mixing ratio of Ti, Mo, and V in the range of 99 to 70 / 0.5 to 15 / 0.5 to 15 in terms of atomic ratio.
[0018]
NO even if the catalyst components are Ti and V only2Shows DXNs decomposition activity by NO, but by making Mo coexist with this, NO2Greatly improves the degradation activity of DXNs. Moreover, by coexisting Ti, Mo and V, NO in the coexistence of SOx2Thus, the degradation activity of DXNs due to the above is avoided, and high degradation activity can be obtained even in a low temperature range in which degradation due to SOx is likely to appear remarkably. For example, the decomposition activity of halogen-containing organic compounds by oxygen at 200 ° C. of Ti—V and Ti—V—W catalysts almost disappears in the presence of 50 ppm of SOx, but with Ti—Mo—V ternary catalysts. According to a certain catalyst of the present invention, even if SOx of the same concentration is present, NO2The degradation activity of halogen-containing organic compounds by is hardly reduced.
[0019]
The catalyst of the present invention is calcined at 300 to 650 ° C., preferably 400 to 600 ° C., somewhere in the production process. If the calcination temperature is too low, the organic matter in the raw material will not be decomposed, or the complexing of the oxides will be insufficient, making it difficult to obtain high catalyst performance. On the other hand, when the temperature is too high, the molybdenum oxide in the composition is sublimed or the titanium oxide is sintered, so that the catalyst performance is lowered.
[0020]
The catalyst of the present invention is made from titanium oxide or hydrous titanium oxide such as ortho or metatitanic acid obtained by various production methods such as sulfuric acid method and chlorine method, and mineral acid salts such as molybdenum and vanadium oxides, ammonium salts and sulfuric acid. And can be obtained by a known method such as a kneading method, an impregnation method, or a wash coating method. In addition, an inorganic or organic binder such as inorganic fiber or colloidal silica can be added during the production process to improve the strength of the molded body. Examples of the form of the catalyst include those formed in a granular shape, a plate shape, and a honeycomb shape, as well as filter bags for bag filters, those supported on ceramic granular shapes or a honeycomb-shaped carrier, and the like.
[0021]
In the present invention, DXNs in the exhaust gas are NO.2The reaction oxidatively decomposed by is expressed as follows, for example.
NO2Oxidative decomposition of chlorine-containing organic compounds
R-Cl (chlorine-containing organic compound) + kNO2→ mCO2+ NH2O + pHCl + kNO
… (3)
The reaction temperature is 100 to 450 ° C, preferably 120 to 250 ° C. NO2The oxidative decomposition reaction of DXNs starts from about 120 ° C., and proceeds from a temperature lower than that of the conventional thermal decomposition reaction or oxygen oxidation reaction. The reaction rate in a low temperature range of 250 ° C. or lower is as high as several times to several tens of times that of the conventional method. Even in such a low temperature range, DXNs are efficiently decomposed. The regeneration temperature of dioxins is said to be 250 to 350 ° C. However, in the decomposition method using the catalyst of the present invention having excellent low-temperature activity, it can be efficiently decomposed while avoiding the regeneration temperature range.
[0022]
In the present invention, NO2May be newly added from outside in addition to those contained in the exhaust gas. Further, in the above reaction temperature range in the presence of oxygen, NO and NO2The equilibrium is NO2NO in the exhaust gas is sequentially NO.2NO converted to NO is oxidized by NO contained in the exhaust gas.2It may be. NO2It is sufficient that the concentration of is higher than the concentration of DXNsYes. BookIn addition to the decomposition activity of DXNs, the catalyst of the invention converts NOx in exhaust gas to NHThreeIt also has an activity as a catalyst for reducing with. Therefore, the decomposition of DXNs and the decomposition of NOx can be carried out simultaneously or sequentially using one catalyst.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an embodiment of the present invention. In the figure, the DXNs-containing exhaust gas 2 generated at the exhaust gas generation source 1 flows into the catalytic reactor 4 filled with the catalyst 5 of the present invention through the exhaust gas flue 3, where it is contained in the exhaust gas 2 or newly added. NO added2DXNs in contact with the NO2Is oxidatively decomposed. The exhaust gas 2 from which DXNs have been removed flows out as a processing gas 6.
[0024]
FIG. 2 is an apparatus system diagram showing another embodiment of the present invention. In the figure, DXNs-containing exhaust gas 2 generated from the exhaust gas generation source 1 is an appropriate amount of NH.ThreeIs added to the catalytic reactor 4 filled with the downstream catalyst 5 of the present invention through the exhaust gas flue 3, where NO is contained in the exhaust gas 2 or newly added.2In contact with DXNs2Is oxidized and decomposed byThreeBy N2Is broken down into
[0025]
FIG. 3 is an apparatus system diagram showing another embodiment of the present invention. In the figure, DXNs-containing exhaust gas 2 generated from the exhaust gas generation source 1 is an appropriate amount of NH.ThreeIs added to the catalyst reactor 4 filled with the known denitration catalyst 7 and the catalyst 5 of the present invention sequentially through the exhaust gas flue 3, and a part of NOx is NH in the denitration catalyst 7.ThreeBy N2After being decomposed into NO, DXNs are contained in the exhaust gas 2 or newly added NO on the catalyst 5 of the present invention.2Is oxidatively decomposed.
[0026]
2 and 3, NO2Is NHThreeAnd reaction with DXNs, and competition between them. For this reason, added NHThreeIn the present invention, NOx is detected not only at the inlet of the catalytic reactor but also at the outlet because the decomposition reaction of DXNs does not proceed if the concentration is too high and NOx is not present in the gas. Is preferred. That is, the method of the present invention uses the catalyst to reduce NO in exhaust gas.2DXNs are oxidized and decomposed by NO, and NO at the catalyst layer outlet.2NH added for denitration reaction to existThreeIt is preferable to operate in such a manner that the injection amount is limited and the denitration rate does not become 100%.
[0027]
No more than DXNs2If there is excess, NO2The oxidative decomposition reaction of DXNs by the above (reaction of the above formula (3)) proceeds in preference to the thermal decomposition reaction and the oxidative decomposition reaction of oxygen (the above formulas (1) and (2)). NO contained in exhaust gas2Or newly added NO2Plays a role in preventing the resynthesis reaction of DXNs due to the reverse reaction of the above formulas (1) and (2).
[0028]
In the present invention, when the NOx concentration in the exhaust gas is lower than the concentration of DXNs, the above-described apparatus of FIG.2It is preferable to process while adding. On the other hand, when the concentration of NOx in the exhaust gas is higher than the concentration of DXNs, it is preferable to perform the oxidative decomposition of DXNs and the decomposition of NOx simultaneously or sequentially using the apparatus of FIG. 2 or FIG. .
[0029]
The denitration activity is easily affected by the presence of SOx, and the decrease in activity at a low temperature is large.2The decomposition reaction of DXNs by is less susceptible to SOx. Therefore, in the present invention, if the denitration activity is monitored, there is an advantage that the discharge of highly toxic dioxins can be prevented.
[0030]
【Example】
Hereinafter, specific examples of the present invention will be described.
Example 1
Water was added to titanium oxide powder, ammonium metavanadate and ammonium molybdate, and kneaded with a kneader to prepare a catalyst paste having an atomic ratio of Ti / Mo / V = 88/5/7. On the other hand, a mesh of 1400 E-glass fibers with a fiber diameter of 9 μm made into a plain weave with a roughness of 10 / 25.4 mm is impregnated with a slurry of titania, silica sol, and polyvinyl alcohol to give rigidity and a catalyst base. A material was used. A plate catalyst having a thickness of 1.0 mm was prepared by placing the above catalyst paste between two obtained catalyst bases, and air-driing a material passed through a rolling roller for 12 hours in the air, followed by firing at 500 ° C. for 2 hours. Got.
[0031]
The obtained catalyst was cut into a 20 mm × 100 mm strip and filled into a reaction tube. As shown in Table 1, 8 ppm of dichlorobenzene, NO2A simulated exhaust gas containing 200 ppm was brought into contact at a reaction temperature of 180 ° C. and an area velocity of 10 m / h, and the decomposition rate was determined from the concentration of dichlorobenzene at the catalyst layer inlet and outlet, and found to be 87%.
[0032]
[Table 1]
Figure 0004426680
[0033]
Comparative Example 1
The exhaust gas composition is NO as shown in Table 2.2A dichlorobenzene decomposition test was conducted in the same manner using the same catalyst as in Example 1 except that oxygen content was 10%, and the decomposition rate of dichlorobenzene with oxygen was found to be 45%. there were.
[0034]
[Table 2]
Figure 0004426680
[0035]
Comparative Example 2
The exhaust gas composition is NO as shown in Table 3.2Using the same catalyst as in Example 1 except that neither oxygen nor oxygen was allowed to coexist, the decomposition test of dichlorobenzene was conducted in the same manner, and the decomposition rate by thermal decomposition of dichlorobenzene was found to be 11%. .
[0036]
[Table 3]
Figure 0004426680
[0037]
Example 2
As shown in Table 4, the exhaust gas composition was dichlorobenzene: 8 ppm, NO2: 200 ppm, O2: 10%, H2O: The same catalyst as in Example 1 except that 10% coexisted was used, and the decomposition rate of dichlorobenzene was measured in the same manner. As a result, it was 85%. In accordance with this, CO at the catalyst layer outlet2, CO, NO2And the NO concentration is measured, and from these values, the oxygen balance and the carbon balance expressed by the above-described formulas (1) to (3) are calculated, and the above (1) to (3 When the reaction ratio of the formula (1) was calculated, the reaction of the formula (1) was 0.5%, the reaction of the formula (2) was 3%, and the reaction of the formula (3) was 96.5%.
[0038]
[Table 4]
Figure 0004426680
[0039]
Examples 3 and 4
The catalyst test pieces (100 × 100 mm) used in Example 1 and Example 2 were2Is exposed to a gas oil combustion exhaust gas to which 50 ppm is added for 500 hours, and the exposed test piece is cut into a 20 mm × 100 mm strip, and this SO2When the decomposition rate of dichlorobenzene was determined in the same manner as in Examples 1 and 2 except that the exposed catalyst was used, they were 83% and 82%, respectively.
In addition, about Example 4, when the reaction ratio of the formulas (1) to (3) described above was calculated in the same manner as in Example 2, the reaction of the formula (1) was 0.1% or less, and (2) The reaction of the formula was 2%, and the reaction of the formula (3) was 98% or more.
[0040]
Comparative Examples 3 and 4
The catalyst test pieces (100 × 100 mm) used in Comparative Example 1 and Comparative Example 2 were SO2Is exposed to a gas oil combustion exhaust gas to which 50 ppm is added for 500 hours, and the exposed test piece is cut into a 20 mm × 100 mm strip, and this SO2When the decomposition rate of dichlorobenzene was determined in the same manner as in Comparative Examples 1 and 2 except that the exposed catalyst was used, they were 14% and 3%, respectively.
The dichlorobenzene decomposition rates of Examples 1 to 4 and Comparative Examples 1 to 4 are collectively shown in Table 5.
[0041]
[Table 5]
Figure 0004426680
[0042]
As is clear from Table 5, as in Examples 1 and 2, NO2It can be seen that extremely high dichlorobenzene degrading activity can be obtained in the system in which is present. On the other hand, NO2Instead of O2In the system (Comparative Example 1) in which benzene was present, the dichlorobenzene decomposition performance was extremely low, and NO2Also O2The dichlorobenzene decomposition performance of the system (Comparative Example 2) in which only the thermal decomposition activity was examined without being present was almost zero.
Therefore, as in the method of the present invention, NO2It can be seen that the oxidative decomposition reaction (formula (3)) of DXNs proceeds efficiently regardless of the presence or absence of oxygen.
[0043]
In addition, SO in Table 52Looking at the dichlorobenzene decomposition rate after the exposure test, the decomposition rate of dichlorobenzene by the oxidation reaction by oxygen of Comparative Example 3 and the thermal decomposition reaction of Comparative Example 4 was significantly reduced, but the decomposition in Examples 3 and 4 The rate has hardly decreased, and the catalyst of the present invention is NO.2It can be seen that this is an excellent decomposition catalyst for DXNs.
Table 6 shows the reaction ratios of the above formulas (1) to (3) generated in Examples 2 and 4.
[0044]
[Table 6]
Figure 0004426680
[0045]
As is apparent from Table 6, even in a system in which 10% oxygen is present, several hundred ppm of NO is present.2If benzene is present, dichlorobenzene is NO2It can be seen that preferentially oxidative decomposition occurs. This trend is SO2In the case of using the catalyst exposed to the contained gas (Example 4), it appears remarkably, and the ratios of thermal decomposition and oxidative decomposition by oxygen are both smaller than in Example 2. Therefore, the catalyst of the present invention is NO in exhaust gas including SOx as well as dioxins such as waste incinerator exhaust gas.2It can be seen that it is extremely advantageous for the oxidative degradation of DXNs.
[0046]
Examples 5-14
In order to examine the influence of the catalyst composition of the catalyst used in Example 1, Ti / Mo / V = (95−α) / 5 / α (where α = 0.5, 4, 7, 10, 15) and Ti / Catalysts of Mo / V = (95−β) / β / 4 (where β = 0.5, 4, 7, 10, 15) were prepared.
Comparative Example 5
In the catalyst of Example 1, the catalyst was prepared without adding Mo.
[0047]
Comparative Examples 6-8
Instead of ammonium molybdate in Example 10, manganese nitrate (Mn (NOThree)2), Cerium nitrate (Ce (NOThree)2), And copper nitrate (Cu (NOThree)2) Was prepared in equimolar amounts with the molybdenum.
[0048]
In the same manner as in Example 4 except that the catalysts of Examples 5-14 and Comparative Examples 5-8 were used as they were, SO2For the gas exposed to the contained gas for 500 hours, the decomposition rate of the chlorobenzene was measured under the same conditions as in Example 4 except that dichlorobenzene was replaced with chlorobenzene among the conditions shown in Table 4. The results obtained are shown in Table 7.
[0049]
[Table 7]
Figure 0004426680
[0050]
In Table 7, when the performances of the example catalyst and the comparative example catalyst are compared, the performance of the example catalyst is remarkably high, and the SO2It can be seen that the deterioration due to is extremely small. NO from this2It can be seen that the decomposition of DXNs due to the above has been achieved by combining the three of Ti-Mo-V. In addition, SO2It can be seen that the Mo content is remarkably improved when the Mo content is in the range of 5 to 15 atomic%, and a V content of about 4 to 15% is suitable for obtaining a high decomposition rate of DXNs.
[0051]
Examples 15 and 16
The reaction temperature in Examples 2 and 4 was changed in the range of 120 to 400 ° C., and the change in the decomposition rate of dichlorobenzene was determined.
Comparative Examples 9 and 10
The reaction temperature in Comparative Examples 3 and 4 was changed in the range of 120 to 400 ° C., and the change in the decomposition rate of dichlorobenzene was determined.
[0052]
The results obtained in Examples 15 and 16 and Comparative Examples 9 and 10 are collectively shown in FIG.
As is clear from FIG. 4, the catalyst of the present invention is SO.2It can be seen that it is extremely highly active from low temperatures without being poisoned, and is suitable for the decomposition of dioxins contained in exhaust gas from a garbage incinerator or the like.
[0053]
Example 17
Using the catalyst of Example 1, DXNs NO2Oxidative decomposition reaction and NOx NHThreeIn order to simulate the case where the reductive decomposition reaction is performed simultaneously, the catalyst of Example 1 cut into a 20 mm × 100 mm strip was packed into a reaction tube and, as shown in Table 8, dichlorobenzene: 1 ppm, NO2: 20 ppm, NO: 180 ppm, NHThree: 190 ppm, O2: 10%, H2When the pseudo exhaust gas containing O: 10% was brought into contact under the conditions of a reaction temperature of 230 ° C. and an area speed of 6 m / h, the decomposition rate of dichlorobenzene was 98% and the denitration rate was 94%. At this time, NHThreeThe / NOx ratio was 0.95.
[0054]
[Table 8]
Figure 0004426680
[0055]
Comparative Example 11
NH of Example 17ThreeInjection amount is NHThree/ NOx ratio is selected to be 1.2, and the NOx concentration at the reaction tube outlet is extremely small, for example, 1 ppm or less, for example, the decomposition rate and denitration rate of dichlorobenzene in the same manner as in Example 17. As a result, the decomposition rate of dichlorobenzene was 23% and the denitration rate was 99.5%.
The results obtained in Example 17 and Comparative Example 11 are shown in Table 9.
[0056]
[Table 9]
Figure 0004426680
[0057]
In Table 9, Example 17 is NHThree/ NOx ratio was set to 0.95 so that NOx remained at the outlet of the reaction tube.ThreeIt can be seen that a higher DXNs decomposition activity was obtained as compared with Comparative Example 11 in which NO was excessively added and almost no NOx remained at the outlet of the reaction tube.
[0058]
Example 18
A catalyst unit was prepared by laminating the catalyst of Example 1 at intervals of 6 mm, and the waste incinerator exhaust gas was circulated through the catalyst unit so that the space velocity was 6 m / h, and was operated at 230 ° C. for 2000 hours. The exhaust gas at the inlet and outlet of the catalyst unit at the initial stage and after 2000 hours of this test was sampled to determine the decomposition rate of DXNs. As a result, a high dioxin decomposition rate of 95% or more was obtained at the initial stage and after 2000 hours.
[0059]
In this example, the treatment at a temperature lower than the recombination temperature range of DXNs did not cause the inconvenience seen in the prior art that the catalyst layer became a DXNs generator.
[0060]
Comparative Example 12
A catalyst was prepared in the same manner as in Example 1 except that ammonium molybdate was replaced with ammonium paratungstate. The obtained catalyst was laminated at intervals of 6 mm as in Example 18 to form a catalyst unit. When the decomposition rate of dioxin was determined in the same manner as described above, the initial dioxin decomposition rate was as high as 85% or more, but decreased to 40% or less after 2000 hours.
[0061]
【The invention's effect】
According to the invention described in claim 1 of the present application, harmful chlorine-containing organic substances (DXNs) contained in waste incinerator exhaust gas etc.SO 2 Even in the presence ofNO2Therefore, it is possible to efficiently oxidatively decompose from a lower temperature with a small amount of catalyst, and to avoid resynthesis of DXNs.
[0064]
Claims of the present application2 and 3According to the invention described inSO 2 Without reducing the catalytic activity even in the presence ofDXNs and NOx in the exhaust gas can be efficiently decomposed and removed, respectively. Claims of the present application4According to the invention described in the above, the combined action of the three components of Ti—Mo—V2Thus, a catalyst excellent in the decomposition activity of DXNs can be obtained. Therefore, the reaction temperature can be further lowered, and the required amount of catalyst can be reduced. Moreover, it is excellent in resistance to SOx, and can stably exhibit DXNs decomposition activity for a long period of time.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the present invention.
FIG. 2 is an apparatus system diagram showing another embodiment of the present invention.
FIG. 3 is a system diagram showing another embodiment of the present invention.
FIG. 4 is a diagram comparing the decomposition activity of chlorine-containing organic compounds between the present invention and the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas generation source, 2 ... DXNs containing gas, 3 ... Exhaust gas flue, 4 ... Catalyst reactor, 5 ... Catalyst of this invention, 6 ... Process gas, 7 ... Denitration catalyst.

Claims (4)

硫黄酸化物を含む排ガス中に含まれる含塩素有機化合物を板状触媒の存在下100〜450℃で酸化分解させる方法であって、該酸化分解を酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にある触媒の存在下に二酸化窒素によって行い、かつ該二酸化窒素による酸化分解が、含塩素有機化合物の酸素による分解反応及び熱分解反応よりも優先して進行するように、該二酸化窒素を排ガス中の含塩素有機化合物よりも過剰に存在させるとともに、反応後の排ガス中に二酸化窒素が残留するようにしたことを特徴とする排ガス中の含塩素有機化合物の分解方法。A method of oxidatively decomposing a chlorine-containing organic compound contained in exhaust gas containing sulfur oxide at 100 to 450 ° C. in the presence of a plate catalyst, wherein the oxidative decomposition is mainly composed of titanium oxide, molybdenum oxide and vanadium oxide. , With nitrogen dioxide in the presence of a catalyst in which the content of titanium (Ti), molybdenum (Mo) and vanadium (V) is in the range of 99-70 / 0.5-15 / 0.5-15 by atomic ratio In addition, the nitrogen dioxide is present in excess of the chlorine-containing organic compound in the exhaust gas so that the oxidative decomposition by the nitrogen dioxide proceeds in preference to the oxygen decomposition reaction and thermal decomposition reaction of the chlorine-containing organic compound. In addition, a method for decomposing a chlorine-containing organic compound in exhaust gas, characterized in that nitrogen dioxide remains in the exhaust gas after reaction. 含塩素有機化合物、窒素酸化物および硫黄酸化物を含有する排ガス中にアンモニアを注入した後、100〜450℃で酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にある板状触媒と接触させ、酸化分解させる方法であって、該酸化分解を二酸化窒素によって行い、かつ二酸化窒素による酸化分解が、含塩素有機化合物の酸素による分解反応および熱分解反応よりも優先して進行するように、該二酸化窒素を排ガス中の含塩素有機化合物よりも過剰に存在させるとともに、反応後の排ガス中に二酸化窒素が残留するようにしたことを特徴とする排ガス中の含塩素有機化合物の分解方法。After injecting ammonia into the exhaust gas containing a chlorine-containing organic compound, nitrogen oxide and sulfur oxide, titanium oxide, molybdenum oxide and vanadium oxide are the main components at 100 to 450 ° C., and titanium (Ti) and molybdenum (Mo ) And vanadium (V) are brought into contact with a plate catalyst having an atomic ratio in the range of 99 to 70 / 0.5 to 15 / 0.5 to 15, and oxidatively decomposed. The nitrogen dioxide over the chlorine-containing organic compound in the exhaust gas so that the oxidative decomposition by the nitrogen dioxide proceeds in preference to the oxygen decomposition reaction and thermal decomposition reaction of the chlorine-containing organic compound. A method for decomposing a chlorine-containing organic compound in an exhaust gas, characterized in that it is present in excess and nitrogen dioxide remains in the exhaust gas after the reaction. 前記排ガスを前記板状触媒と接触させる前に、あらかじめ窒素酸化物のアンモニアによる分解反応の一部を進行させておくことを特徴とする請求項2に記載の方法。3. The method according to claim 2, wherein a part of the decomposition reaction of nitrogen oxides by ammonia is allowed to proceed in advance before contacting the exhaust gas with the plate catalyst. 酸化チタン、酸化モリブデンおよび酸化バナジウムを主成分とし、チタン(Ti)とモリブデン(Mo)とバナジウム(V)の含有率が原子比で99〜70/0.5〜15/0.5〜15の範囲にあることを特徴とする請求項1に記載の方法に用いる板状触媒。The main component is titanium oxide, molybdenum oxide and vanadium oxide, and the content ratio of titanium (Ti), molybdenum (Mo) and vanadium (V) is 99 to 70 / 0.5 to 15 / 0.5 to 15 in atomic ratio. The plate catalyst used in the method according to claim 1, wherein the plate catalyst is in a range.
JP32304399A 1999-11-12 1999-11-12 Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method Expired - Lifetime JP4426680B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP32304399A JP4426680B2 (en) 1999-11-12 1999-11-12 Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method
AT00974909T ATE374647T1 (en) 1999-11-12 2000-11-10 METHOD FOR THE DECOMPOSITION OF ORGANIC CHLORINE COMPOUNDS IN EXHAUST GASES
US10/130,155 US6759565B1 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound contained in exhaust gas and catalyst for use in the method
EP00974909A EP1236498B1 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compounds in exhaust gas
PCT/JP2000/007935 WO2001036070A1 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
PL356182A PL206072B1 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine−containing organic compound in exhaust gas and catalyst for use in the method
TW089123877A TW555590B (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound contained in exhaust gas and catalyst used for the method
DE60036637T DE60036637T2 (en) 1999-11-12 2000-11-10 PROCESS FOR THE DECOMPOSITION OF CHLORINE-ORGANIC COMPOUNDS IN EXHAUST GASES
SK661-2002A SK287089B6 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
CA002389853A CA2389853C (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound contained in exhaust gas and catalyst used for the method
CZ20021592A CZ302209B6 (en) 1999-11-12 2000-11-10 Decomposition method of chlorine-containing organic compound comprised in combustion products and catalyst used in this method
DK00974909T DK1236498T3 (en) 1999-11-12 2000-11-10 Process for Degradation of Chlorine-Organic Compounds in Exhaust Gas
KR1020027006103A KR100850060B1 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
HU0204194A HUP0204194A3 (en) 1999-11-12 2000-11-10 Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32304399A JP4426680B2 (en) 1999-11-12 1999-11-12 Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method

Publications (2)

Publication Number Publication Date
JP2001137664A JP2001137664A (en) 2001-05-22
JP4426680B2 true JP4426680B2 (en) 2010-03-03

Family

ID=18150483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32304399A Expired - Lifetime JP4426680B2 (en) 1999-11-12 1999-11-12 Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method

Country Status (1)

Country Link
JP (1) JP4426680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940471B1 (en) * 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration

Also Published As

Publication number Publication date
JP2001137664A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CA2662593C (en) Catalyst for oxidation of metal mercury
JP3480596B2 (en) Dry desulfurization denitrification process
KR950004139B1 (en) Removing method and filter of nitrogen oxide and organic chlorine compound from fuel gas
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
JP4182325B2 (en) Low temperature denitration catalyst and exhaust gas low temperature denitration method
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
JP3021420B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP4426680B2 (en) Method for decomposing chlorine-containing organic compounds in exhaust gas and catalyst used in the method
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
KR100850060B1 (en) Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method
JPH0587291B2 (en)
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3944149B2 (en) Catalyst for removing aromatic halogen compounds, carbon monoxide and nitrogen oxides including dioxins
JP3510541B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP2000126601A (en) Decomposition catalyst for organic halogen compound and decomposition method
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JP2000300959A (en) Method and apparatus for decomposing halogen- containing organic compound
JP3785558B2 (en) Organochlorine compound removal catalyst and organochlorine compound removal method
JPH05337336A (en) Method for purifying exhaust gas
JP2007032400A (en) Method for processing particulate in diesel engine exhaust gas
KR100423413B1 (en) A chromia/titania catalyst for removing dioxins and a method of removing dioxins by usint the same
KR20000039143A (en) Method for simultaneously eliminating nitrogen oxides and dioxin compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070409

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4426680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term