[go: up one dir, main page]

JP4420445B2 - Hydrogen storage alloy container - Google Patents

Hydrogen storage alloy container Download PDF

Info

Publication number
JP4420445B2
JP4420445B2 JP2004161106A JP2004161106A JP4420445B2 JP 4420445 B2 JP4420445 B2 JP 4420445B2 JP 2004161106 A JP2004161106 A JP 2004161106A JP 2004161106 A JP2004161106 A JP 2004161106A JP 4420445 B2 JP4420445 B2 JP 4420445B2
Authority
JP
Japan
Prior art keywords
container
alloy
hydrogen storage
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004161106A
Other languages
Japanese (ja)
Other versions
JP2005336040A (en
Inventor
博文 多田
芳徳 河原崎
晴信 竹田
泰 吉永
寿文 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2004161106A priority Critical patent/JP4420445B2/en
Publication of JP2005336040A publication Critical patent/JP2005336040A/en
Application granted granted Critical
Publication of JP4420445B2 publication Critical patent/JP4420445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素吸蔵合金容器に関し、特に、収納容器に挿入される各水素吸蔵合金ユニットの間に膨張緩衝材を設けて水素吸蔵合金の膨張時の破損等を防止し、信頼性を向上させるための新規な改良に関する。   The present invention relates to a hydrogen storage alloy container, and in particular, an expansion buffer material is provided between each hydrogen storage alloy unit inserted in a storage container to prevent damage or the like during expansion of the hydrogen storage alloy and improve reliability. For new improvements.

従来、この種の水素吸蔵合金容器としては、例えば、図9及び図10に示される特許文献1に開示された構成、及び、図11から図13に示された構成を挙げることができる。
すなわち、図9において符号1で示されるものは全体形状が容器形をなす冷温水ジャケットであり、この冷温水ジャケット1内にはチューブ2に支持された多数のプレートフィンが設けられ、この各プレートフィン3b間に図示しない水素吸蔵合金が設けられる構成である。
Conventionally, examples of this type of hydrogen storage alloy container include the configuration disclosed in Patent Document 1 shown in FIGS. 9 and 10 and the configuration shown in FIGS. 11 to 13.
That is, what is indicated by reference numeral 1 in FIG. 9 is a cold / hot water jacket whose overall shape forms a container shape, and a plurality of plate fins supported by a tube 2 are provided in the cold / hot water jacket 1. A hydrogen storage alloy (not shown) is provided between the fins 3b.

図10において符号1で示されるものは容器本体4の外周に設けられた熱媒配管であり、この容器本体4内にはチューブ2とプレートフィン3bが組み合わされて内設されている。   In FIG. 10, reference numeral 1 denotes a heat medium pipe provided on the outer periphery of the container body 4, and the tube 2 and the plate fins 3 b are combined in the container body 4.

また、図11から図13において全体形状が長手の容器本体4内には、その長手方向Aに沿って複数の水素吸蔵合金ユニット7が直列状に挿入して設けられている。
前記各水素吸蔵合金ユニット7にはチューブを介して複数のフィン3aが取付けられている。
前記各水素吸蔵合金ユニット7の外周位置には、熱媒配管1を有する筒状の伝熱ユニット8が設けられている。
In addition, in FIG. 11 to FIG. 13, a plurality of hydrogen storage alloy units 7 are inserted in series along the longitudinal direction A in the container body 4 whose overall shape is long.
Each of the hydrogen storage alloy units 7 is provided with a plurality of fins 3a via tubes.
A cylindrical heat transfer unit 8 having a heat medium pipe 1 is provided at the outer peripheral position of each hydrogen storage alloy unit 7.

前述の図9から図13で示される従来構成の場合、何れの構成においても、フィン3a及びプレートフィン3bの間に水素吸蔵合金5を充填し、チューブ2を介して水素の導入と放出を行うために熱媒配管1による加熱/冷却を行っている。   9 to 13, the hydrogen storage alloy 5 is filled between the fins 3a and the plate fins 3b, and hydrogen is introduced and released through the tube 2 in any configuration. Therefore, heating / cooling is performed by the heat medium pipe 1.

特開2003−130292号公報JP 2003-130292 A

従来の水素吸蔵合金容器は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、容器内に充填する合金の種類により、合金の膨張量が異なることから、合金粉体の充填率を合金の種類に合わせて変えたり、容器内部の膨張吸収構造などを採用したりして、合金の膨張による充填する容器に合金の膨張による負荷がかからない様に設計し充填している。この場合、合金の充填率が大きく取れないこと、容器内部への構造部材の追加などにより、容器体積や重量が大きくなるなどの問題から、移動体への搭載時において課題となっていた。
また、合金充填率を高くしたり、内部構造材を省略した場合、合金の膨張や合金粉体の偏在による合金充填率の不均一が発生し、高密度になった部分から容器の局部変形がおき、繰り返し使用による変形の進行が起こり、容器の使用期間中にこの変形による破損などが起きることなどから、高密度に充填することが出来なかった。
Since the conventional hydrogen storage alloy container is configured as described above, the following problems exist.
That is, the amount of expansion of the alloy varies depending on the type of alloy filled in the container, so the filling rate of the alloy powder can be changed according to the type of alloy, or an expansion absorption structure inside the container can be adopted. The container filled with the expansion of the alloy is designed and filled so as not to be loaded by the expansion of the alloy. In this case, it has been a problem at the time of mounting on the moving body due to the problem that the filling rate of the alloy cannot be increased and the volume and weight of the container increase due to the addition of a structural member inside the container.
In addition, when the alloy filling rate is increased or the internal structure material is omitted, the alloy filling rate is uneven due to the expansion of the alloy or the uneven distribution of the alloy powder, and the local deformation of the container from the portion where the density is increased. In addition, the progress of the deformation due to repeated use occurred, and the damage due to the deformation occurred during the use period of the container.

本発明による水素吸蔵合金容器は、容器状をなす収納容器内に長手方向に沿って設けられ塑性変形可能な合金充填部であると共に水素吸蔵合金が充填された複数の水素吸蔵合金ユニットと、前記各水素吸蔵合金ユニットを貫通して設けられた水素導入放出配管と、前記各水素吸蔵合金ユニット間に位置する膨張緩衝材と、前記収納容器の外周に設けられた伝熱ユニットとを備え、前記水素吸蔵合金ユニットの内部に前記水素吸蔵合金を充填した後、前記各水素吸蔵合金ユニットを前記収納容器内に挿入し、前記水素吸蔵合金ユニットに設けられた前記水素吸蔵合金の膨張を前記膨張緩衝材で吸収するようにした水素吸蔵合金容器において、前記膨張緩衝材は、アルミニウムを使用したハニカム材料又はNiの発泡材よりなり、前記水素吸蔵合金ユニットの外周にスリット又は切込みによる加工が形成され、前記伝熱ユニットのユニット内面は前記収納容器の外周に接し、前記収納容器の板厚と容器径の比(t/D)は0.01〜0.2とした構成であり、また、前記伝熱ユニットの外側に位置し前記収納容器を収納するための外殻容器を備えた構成である。 The hydrogen storage alloy container according to the present invention, a multiple of the hydrogen storage alloy unit the hydrogen storage alloy is filled with a et Re plastically deformable alloy filling portion provided along the longitudinal direction in a container forming a vessel shape A hydrogen introduction / discharge pipe provided through each of the hydrogen storage alloy units; an expansion buffer located between the hydrogen storage alloy units; and a heat transfer unit provided on the outer periphery of the storage container. , after filling the hydrogen storage alloy inside the hydrogen storage alloy unit, it said insert each hydrogen storage alloy unit to the storage container, expansion of the pre-Symbol hydrogen storage alloy unit the hydrogen absorbing alloy provided in the hydrogen absorbing alloy container which is adapted to absorb the expansion buffer material, the expandable cushioning material is made of foam material of the honeycomb material or Ni using aluminum, the hydrogen storage case Processing by slits or cuts on the outer periphery of the unit is formed, the unit inner surface of the heat transfer unit is in contact with the outer periphery of the container, wherein a ratio of the plate thickness and the container diameter of the container (t / D) is 0.01 0.2 and the construction, also, a configuration in which an outer shell container for located outside the front Kiden'netsu unit housing the container.

本発明による水素吸蔵合金容器は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、収納容器内に設けられる各水素吸蔵合金ユニット間に膨張緩衝材が設けられているため、容器内に充填する合金の種類によって合金の膨張率が変化した場合でも十分に吸収することができ、合金の充填率を大きく取ることができ、容器の設計製作時および運用時の安全性や信頼性が大幅に向上する。また、変形などが制御されることにより水素貯蔵容器のシステムへの装着などにおける制度や安全性や信頼性も向上する。
また、製造時に収納容器による初期水素吸蔵処理が可能であるため、製造時の不具合や装填するときの作業性など向上するなどの効果がある。また、水素吸蔵合金に対する伝熱性能の確保なども従来の高密度充填容器に比べ向上する。
また、収納容器の伝熱ユニットの外側に外殻容器が設けられているため、収納容器に対する安全性を大幅に向上させることができる。
Since the hydrogen storage alloy container according to the present invention is configured as described above, the following effects can be obtained.
In other words, since an expansion buffer material is provided between each hydrogen storage alloy unit provided in the storage container, even if the expansion coefficient of the alloy changes depending on the type of alloy filled in the container, it can be sufficiently absorbed. The filling rate of the alloy can be greatly increased, and the safety and reliability at the time of designing and manufacturing the container and at the time of operation are greatly improved. In addition, by controlling the deformation and the like, the system, safety, and reliability in mounting the hydrogen storage container on the system are improved.
In addition, since the initial hydrogen storage process by the storage container is possible at the time of manufacture, there are effects such as improvement in trouble during manufacture and workability at the time of loading. In addition, securing heat transfer performance for the hydrogen storage alloy is improved as compared with the conventional high-density filled container.
Further, since the outer shell container is provided outside the heat transfer unit of the storage container, the safety for the storage container can be greatly improved.

本発明は、収納容器に挿入される各水素吸蔵合金ユニットの間に膨張緩衝材を設けて水素吸蔵合金の膨張時の破損等を防止し、信頼性を向上させることを目的とする。   An object of the present invention is to provide an expansion buffer material between each hydrogen storage alloy unit inserted into a storage container to prevent damage or the like during expansion of the hydrogen storage alloy and improve reliability.

以下、図面と共に、本発明による水素吸蔵合金容器の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分については同一符号を用いて説明する。
図1において、符号4で示されるものは全体形状が長手状をなす収納容器であり、この収納容器4内には複数のフィン3aを有する複数の水素吸蔵合金ユニット7が長手方向Aに沿って挿入されている。
Hereinafter, preferred embodiments of a hydrogen storage alloy container according to the present invention will be described with reference to the drawings.
Note that the same or equivalent parts as in the conventional example will be described using the same reference numerals.
In FIG. 1, what is indicated by reference numeral 4 is a storage container having a longitudinal shape as a whole, and a plurality of hydrogen storage alloy units 7 having a plurality of fins 3 a are arranged along the longitudinal direction A in the storage container 4. Has been inserted.

前記各水素吸蔵合金ユニット7間には、膨張緩衝材20が配設されており、この膨張緩衝材20及び各水素吸蔵合金ユニット7の内孔7aを貫通するように水素導入放出配管2が設けられている。
また、前記膨張緩衝材20は、例えば、アルミニウムを使用したハニカム材料やNiの発泡材などが使用される。
前記水素導入放出配管2の先端2aは前記収納容器4の内部に向けて開口しており、収納容器4内に水素を導入すると共に、内部の水素を放出することができるように構成されている。
An expansion buffer material 20 is disposed between the hydrogen storage alloy units 7, and a hydrogen introduction / discharge pipe 2 is provided so as to penetrate the expansion buffer material 20 and the inner hole 7 a of each hydrogen storage alloy unit 7. It has been.
The expansion buffer material 20 is made of, for example, a honeycomb material using aluminum or a Ni foam material.
The distal end 2a of the hydrogen introduction / discharge pipe 2 is open toward the inside of the storage container 4, and is configured to introduce hydrogen into the storage container 4 and to release the internal hydrogen. .

次に、図2は図1で示した収納容器4を実際に外殻容器21内に装着する場合を示している。
すなわち、収納容器4内に各水素吸蔵合金ユニット7を挿入する。水素吸蔵合金ユニット7は、収納容器4と密着性を確保するため、外周にスリットや切込み等の加工した構造を有するもの等が採用される。又、場合によっては、スポット等による溶接が行われる。このため、各水素吸蔵合金ユニット7と収納容器4とが一体状に接続される。
Next, FIG. 2 shows a case where the storage container 4 shown in FIG. 1 is actually mounted in the outer shell container 21.
That is, each hydrogen storage alloy unit 7 is inserted into the storage container 4. As the hydrogen storage alloy unit 7, in order to ensure adhesion with the storage container 4, a unit having a processed structure such as a slit or a cut is adopted on the outer periphery. In some cases, spot welding or the like is performed. For this reason, each hydrogen storage alloy unit 7 and the storage container 4 are integrally connected.

前述の溶接の完了した収納容器4は、その外周4aに熱媒配管1を有する伝熱ユニット8が設けられており、この収納容器4は外殻容器21内に装着され、接続部22がボルト23によって締結されている。又、フランジを有しない外殻容器21内に装着された後、溶接によってフタを取り付けることも可能である。従って、前記伝熱ユニット8のユニット内面8aは、前記収納容器4の外周4aに接している。 Container 4 has completed welding of the foregoing, the which heat transfer unit 8 having a heating medium pipe 1 outside periphery 4a is provided, this container 4 is mounted to the outer shell container 21, connection 22 is Fastened with bolts 23. It is also possible to attach the lid by welding after mounting in the outer shell container 21 having no flange . Accordingly, the unit inner surface 8 a of the heat transfer unit 8 is in contact with the outer periphery 4 a of the storage container 4.

図3及び図4は、合金の種類や充填率などにより合金の膨張量が大きくなると想定される場合等は、収納容器4を密閉可能な構造とすることにより、収納容器4の各水素吸蔵合金ユニット7に合金を充填した合金充填状態で、外殻容器21に挿入する前に合金に最初の水素を吸蔵させ合金の膨張により収納容器4を膨張させた状態を示すものである。この収納容器4に装填した状態で処理することを可能とすることにより、収納容器4の破損による不具合や伝熱ユニット8の膨張による破損や伝熱性の減少などを防止することが可能となる。尚、膨張させた状態は図3及び図4の点線で示している。   3 and 4 show the case where the expansion amount of the alloy is assumed to be large depending on the type and filling rate of the alloy, etc. This shows a state in which the unit 7 is filled with an alloy and the storage container 4 is expanded by the expansion of the alloy by first storing hydrogen in the alloy before being inserted into the outer shell container 21. By making it possible to perform the processing in the state of being loaded in the storage container 4, it is possible to prevent problems due to damage of the storage container 4, damage due to expansion of the heat transfer unit 8, and reduction in heat transfer. The expanded state is indicated by a dotted line in FIGS.

図5〜図7は、収納容器4内に装填される合金の合金充填率を大きくするのに伴い、水素吸蔵処理時の容器の塑性変形を伴う膨張量が大きくなることを実験的に調査した時の結果の例を概念的に示したものである。
また、その実験結果は図8に示すように、容器4の形状(t/D=板厚/容器径)と合金充填率に伴う合金収納容器膨張量の関係が得られることから、合金の充填率を向上させた合金充填容器の設計製作が可能となる。すなわち、容器4の許容される膨張量は、容器4の使用材料における許容塑性変形量により設定される。また、実験でt/D=0.1程度のアルミニウム容器に、BCC合金を充填率を約45%〜55%程度充填することにより、容器の膨張率は、数%〜約10%程度破損することなく膨張し、使用可能なことが確認され、本特許の有効性が確認されている。尚、この収納容器4の材質としては強度及び伸びの大きい材料が適しており、例えば、SUS304、AL6000シリーズ等を挙げることができる。
5 to 7 experimentally investigated that the amount of expansion accompanying the plastic deformation of the container during the hydrogen storage process increases as the alloy filling rate of the alloy loaded in the storage container 4 increases. An example of the result of time is shown conceptually.
Further, as shown in FIG. 8, the experimental result shows that the relationship between the shape of the container 4 (t / D = plate thickness / container diameter) and the amount of expansion of the alloy storage container with the alloy filling rate is obtained. It becomes possible to design and manufacture an alloy-filled container with an improved rate. That is, the allowable expansion amount of the container 4 is set by the allowable plastic deformation amount of the material used for the container 4. In addition, by filling an aluminum container having a t / D of about 0.1 in an experiment with a filling rate of about 45% to 55% with a BCC alloy, the expansion rate of the container is broken about several to about 10%. It has been confirmed that it can be used without swelling, and the validity of this patent has been confirmed. As the material of the storage container 4, a material having high strength and elongation is suitable, and examples thereof include SUS304 and AL6000 series.

本発明は、種種実験の結果、実用的容器寸法であるt/D=0.01〜0.2、長さは、〜数十メートルの範囲で有効である。
また、容器構造材、合金系に対し図8に示すように、容器の形状(t/D=板厚/容器径)合金充填率に伴う合金収納容器膨張量の関係を求めればよいことから、合金及び容器材料による制約なく有効である。
また、収納容器4に装着する伝熱ユニット8は、水素吸蔵合金ユニット7内に充填される水素吸蔵合金は水素吸蔵時の膨張と水素放出時に収縮すること、また水素吸蔵合金の種類や充填率などの条件により、水素吸蔵の回数に伴い合金充填部及び装着された収納容器4はこの水素吸蔵合金の膨張収縮や微粉化挙動に伴い、回数と共に膨張するか収縮する挙動が起きると考えられ、伝熱ユニット8の機能として伝熱媒体の供給ばかりではなく、この膨張収縮挙動に追従する最適な材料または装置を具備したものとなっている。
次に作用について説明する。本発明による収納容器4は、各水素吸蔵合金ユニット7間の膨張緩衝材20の採用及び板厚と容器径の比の設定により、合金の種類や合金の充填率に伴う膨張量を前述のように制御可能な構造とすることにより、水素吸蔵合金に水素ガスを付加し水素吸蔵放出する時に発生する合金膨張を収納容器4の塑性変形を伴う拘束を付加することにより収納容器4の膨張を制御可能な量まで減少させ、収納容器4や伝熱ユニット8の変形による構造の信頼性や安全性を向上させるものである。
As a result of various experiments, the present invention is effective in the range of t / D = 0.01 to 0.2, which is a practical container size, and a length of ˜tens of meters.
Further, as shown in FIG. 8 for the container structural material and the alloy system, it is only necessary to obtain the relationship of the amount of expansion of the container containing the container with the shape of the container (t / D = plate thickness / container diameter) alloy filling rate. It is effective without restriction by alloy and container material.
The heat transfer unit 8 attached to the storage container 4 is such that the hydrogen storage alloy filled in the hydrogen storage alloy unit 7 expands and contracts during hydrogen storage, and the type and filling rate of the hydrogen storage alloy. Under such conditions, the alloy filling part and the storage container 4 attached with the number of times of hydrogen storage are considered to expand or contract with the number of times according to the expansion / contraction and pulverization behavior of this hydrogen storage alloy, As a function of the heat transfer unit 8, not only the supply of the heat transfer medium but also an optimal material or device that follows this expansion / contraction behavior is provided.
Next, the operation will be described. The storage container 4 according to the present invention uses the expansion buffer material 20 between the hydrogen storage alloy units 7 and sets the ratio between the plate thickness and the container diameter, so that the amount of expansion associated with the type of alloy and the filling rate of the alloy is as described above. By controlling the expansion of the storage container 4 by adding a restraint accompanied by plastic deformation of the storage container 4, the expansion of the alloy that occurs when hydrogen gas is added to the hydrogen storage alloy and hydrogen storage and release is added. The amount is reduced to a possible amount, and the reliability and safety of the structure due to deformation of the storage container 4 and the heat transfer unit 8 are improved.

従って、塑性変形を可能とした合金充填部である各水素吸蔵合金ユニット7の内部に高密度に水素吸蔵合金を充填した後、複数のこの水素吸蔵合金ユニット7を収納容器4内に直接挿入する。次に、この収納容器4の外部に水素吸蔵放出に伴う発熱や吸熱に伴う熱の供給に必要となる伝熱ユニット8を装着する。この伝熱ユニット8の装填された収納容器4を外部及び内部の圧力や温度などの環境に対応可能とした外殻容器21に挿入する。次に、この水素吸蔵合金ユニット7が挿入された収納容器4内部に水素ガスを封入し水素吸蔵合金に水素を収蔵させ、水素を合金に貯蔵放出可能な状態とする。この時水素ガスを吸蔵した水素吸蔵合金が膨張するため、水素吸蔵合金ユニット7を挿入した収納容器4及び収納容器4に装填された伝熱ユニット8は合金膨張と共に収納容器4により制御された状態で膨張するため、水素吸蔵合金ユニット7や伝熱ユニット8と収納する外殻容器21が使用期間中に破損することはなくなるので、水素吸蔵合金の種類や合金充填率を多くでき、安全でかつ信頼性の高い運用が可能となる。
従って、合金の種類や充填率により、合金の膨張量が大きい場合等は、収納容器4により合金の膨張の制御に加え水素吸蔵合金ユニット7が膨張するような構造をとることや膨張可能な膨張緩衝材20を配置することなどを行うことにより、最適な膨張制御を行うことが可能となる。
Therefore, after each hydrogen storage alloy unit 7, which is an alloy filling portion capable of plastic deformation, is filled with hydrogen storage alloy at a high density, a plurality of these hydrogen storage alloy units 7 are directly inserted into the storage container 4. . Next, the heat transfer unit 8 necessary for heat generation accompanying hydrogen storage / release and heat supply accompanying heat absorption is mounted outside the storage container 4. The storage container 4 loaded with the heat transfer unit 8 is inserted into an outer shell container 21 that can cope with the environment such as external and internal pressure and temperature. Next, hydrogen gas is sealed inside the storage container 4 in which the hydrogen storage alloy unit 7 is inserted, and hydrogen is stored in the hydrogen storage alloy so that hydrogen can be stored and released in the alloy. At this time, since the hydrogen storage alloy storing the hydrogen gas expands, the storage container 4 in which the hydrogen storage alloy unit 7 is inserted and the heat transfer unit 8 loaded in the storage container 4 are controlled by the storage container 4 together with the alloy expansion. Therefore, the outer shell container 21 that accommodates the hydrogen storage alloy unit 7 and the heat transfer unit 8 will not be damaged during the period of use, so that the types of hydrogen storage alloys and the alloy filling rate can be increased, Highly reliable operation is possible.
Accordingly, when the amount of expansion of the alloy is large due to the type and filling rate of the alloy, the storage container 4 can take a structure in which the hydrogen storage alloy unit 7 expands in addition to the control of the expansion of the alloy, and the expandable expansion. Optimal expansion control can be performed by arranging the buffer material 20 and the like.

本発明は、水素吸蔵合金容器に限ることなく、多ブロック型の空気室又は水室を有する船体等に対しても適用可能である。   The present invention is not limited to hydrogen storage alloy containers but can be applied to a hull having a multi-block type air chamber or water chamber.

本発明による水素吸蔵合金容器の水素吸蔵合金ユニットを示す断面図である。It is sectional drawing which shows the hydrogen storage alloy unit of the hydrogen storage alloy container by this invention. 図1の水素吸蔵合金容器を外殻容器に装着する工程(A〜C)を示す工程図である。It is process drawing which shows the process (AC) of mounting | wearing an outer shell container with the hydrogen storage alloy container of FIG. 図1の収納容器の膨張状態を示す側断面図である。It is a sectional side view which shows the expansion state of the storage container of FIG. 図1の収納容器の膨張状態を示す正面断面図である。It is front sectional drawing which shows the expansion state of the storage container of FIG. 図1の収納容器の合金充填率Aの場合の膨張状態を示す説明図である。It is explanatory drawing which shows the expansion | swelling state in the case of the alloy filling rate A of the storage container of FIG. 図1の収納容器の合金充填率Bの場合の膨張状態を示す説明図である。It is explanatory drawing which shows the expansion | swelling state in the case of the alloy filling rate B of the storage container of FIG. 図1の収納容器の合金充填率Cの場合の膨張状態を示す説明図である。It is explanatory drawing which shows the expansion | swelling state in the case of the alloy filling rate C of the storage container of FIG. 図5から図7の収納容器の合金充填率A、B、Cの膨張量を示す特性図である。It is a characteristic view which shows the amount of expansion | swelling of the alloy filling rates A, B, and C of the storage container of FIGS. 従来の水素吸蔵合金容器を示す断面図である。It is sectional drawing which shows the conventional hydrogen storage alloy container. 従来の水素吸蔵合金容器の他の形態を示す断面図である。It is sectional drawing which shows the other form of the conventional hydrogen storage alloy container. 従来の水素吸蔵合金容器の他の形態を示す断面図である。It is sectional drawing which shows the other form of the conventional hydrogen storage alloy container. 図11の要部を示す拡大構成図である。It is an enlarged block diagram which shows the principal part of FIG. 図12の水素吸蔵合金ユニットの側面図である。It is a side view of the hydrogen storage alloy unit of FIG.

2 水素導入放出配管
3a フィン
3b プレートフィン
4 収納容器
4a 外周
5 水素吸蔵合金
7 水素吸蔵合金ユニット
8 伝熱ユニット
8a ユニット内面
10 水素吸蔵合金容器
20 膨張緩衝材
2 Hydrogen introduction / discharge piping 3a Fin 3b Plate fin 4 Storage container
4a outer circumference 5 hydrogen storage alloy 7 hydrogen storage alloy unit 8 heat transfer unit
8a unit inner surface 10 hydrogen storage alloy container 20 expansion buffer material

Claims (2)

容器状をなす収納容器(4)内に長手方向(A)に沿って設けられ塑性変形可能な合金充填部であると共に水素吸蔵合金(5)が充填された複数の水素吸蔵合金ユニット(7)と、前記各水素吸蔵合金ユニット(7)を貫通して設けられた水素導入放出配管(2)と、前記各水素吸蔵合金ユニット(7)間に位置する膨張緩衝材(20)と、前記収納容器(4)の外周に設けられた伝熱ユニット(8)とを備え、前記水素吸蔵合金ユニット(7)の内部に前記水素吸蔵合金(5)を充填した後、前記各水素吸蔵合金ユニット(7)を前記収納容器(4)内に挿入し、前記水素吸蔵合金ユニット(7)に設けられた前記水素吸蔵合金の膨張を前記膨張緩衝材(20)で吸収するように構成した水素吸蔵合金容器において、前記膨張緩衝材(20)は、アルミニウムを使用したハニカム材料又はNiの発泡材よりなり、前記水素吸蔵合金ユニット(7)の外周にスリット又は切込みによる加工が形成され、前記伝熱ユニット(8)のユニット内面(8a)は前記収納容器(4)の外周(4a)に接し、前記収納容器(4)の板厚(t)と容器径(D)の比(t/D)は0.01〜0.2であることを特徴とする水素吸蔵合金容器。 Container (4) longitudinal direction (A) is filled with hydrogen absorbing alloy (5) with a provided et Re plastically deformable alloy filling portion along the multiple hydrogen storage alloy units in forming a container-like ( 7), a hydrogen introduction / discharge pipe (2) provided through each of the hydrogen storage alloy units (7), and an expansion buffer (20) positioned between the hydrogen storage alloy units (7), A heat transfer unit (8) provided on the outer periphery of the storage container (4), and after filling the hydrogen storage alloy unit (7) with the hydrogen storage alloy (5), each of the hydrogen storage alloys unit (7) is inserted into said container (4) in the configuration of the expansion of the hydrogen-absorbing alloy which is provided in front Symbol hydrogen storage alloy unit (7) to absorb the by inflation absorbing material (20) in the hydrogen absorbing alloy container, the inflation absorbing material (20) is made of foam material of the honeycomb material or Ni using aluminum, the water Processing by the outer periphery to the slits or notches of the storage alloy unit (7) is formed, the unit inner surface (8a) of the heat transfer unit (8) is in contact with the outer periphery (4a) of the container (4), the receiving container ( the ratio of the thickness (t) and container diameter (D) of 4) (t / D) is hydrogen absorbing alloy container you characterized in that 0.01 to 0.2. 前記伝熱ユニット(8)の外側に位置し前記収納容器(4)を収納するための外殻容器(21)を備えたことを特徴とする請求項1記載の水素吸蔵合金容器。   2. The hydrogen storage alloy container according to claim 1, further comprising an outer shell container (21) positioned outside the heat transfer unit (8) for storing the storage container (4).
JP2004161106A 2004-05-31 2004-05-31 Hydrogen storage alloy container Expired - Fee Related JP4420445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161106A JP4420445B2 (en) 2004-05-31 2004-05-31 Hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161106A JP4420445B2 (en) 2004-05-31 2004-05-31 Hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JP2005336040A JP2005336040A (en) 2005-12-08
JP4420445B2 true JP4420445B2 (en) 2010-02-24

Family

ID=35490007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161106A Expired - Fee Related JP4420445B2 (en) 2004-05-31 2004-05-31 Hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP4420445B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020394B4 (en) * 2006-04-28 2010-07-22 Daimler Ag Hydrogen storage and method for filling a hydrogen storage
JP2008190627A (en) * 2007-02-05 2008-08-21 Iwatani Internatl Corp Hydrogen storage alloy container and its manufacturing method
TWI429569B (en) 2010-12-23 2014-03-11 Asia Pacific Fuel Cell Tech Storage tank with compartment structure
CN102569846B (en) * 2010-12-30 2016-07-06 亚太燃料电池科技股份有限公司 storage tank with compartment structure
KR101966455B1 (en) * 2013-08-20 2019-04-05 현대자동차주식회사 Structure for absorbing expansion of hydrogen storage tank
US20180023518A1 (en) * 2015-02-10 2018-01-25 Alternative Fuel Containers, Llc Fuel gas fueling system and method
KR101806290B1 (en) 2016-01-18 2017-12-07 삼성전자주식회사 Magnetic resonance imaging apparatus and method for detecting error of magnetic resonance imaging apparatus
CN109516438A (en) * 2019-01-22 2019-03-26 内蒙古科技大学 The separating-purifying recovery process of hydrogen in a kind of industrial waste gas
CN114508695B (en) * 2022-01-19 2024-05-24 中国科学院上海微系统与信息技术研究所 Internal heat type expansion-resistant metal hydrogen storage device
CN117685499B (en) * 2023-11-21 2024-08-23 惠州市华达通气体制造股份有限公司 Hydrogen production equipment based on solid hydrogen storage material

Also Published As

Publication number Publication date
JP2005336040A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4420445B2 (en) Hydrogen storage alloy container
US5579828A (en) Flexible insert for heat pipe freeze protection
US7651554B2 (en) Hydrogen storage system
US7225860B2 (en) Compact heat battery
Visaria et al. Coiled-tube heat exchanger for High-Pressure Metal Hydride hydrogen storage systems–Part 1. Experimental study
US20050145378A1 (en) Hydrogen-storage container and method of occluding hydrogen
US4756163A (en) Containers for storing and/or transporting fluids
JP2005009549A (en) Capsule container and hydrogen storage tank
PT1454875E (en) Apparatus for hydrogen storage and process for its production
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
JP2008196575A (en) Hydrogen storage tank
JP2008045648A (en) High pressure hydrogen storage container
JP2695615B2 (en) Heat exchanger
JP2007298131A (en) Hydrogen storing container
JP4575107B2 (en) Pressure vessel
JP4953194B2 (en) Hydrogen storage tank
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JP3046975B2 (en) Hydrogen storage container
JP4213512B2 (en) Pressure vessel
US11466814B2 (en) Solid hydrogen storage device
JP3032998B2 (en) Hydrogen storage alloy holding container
JPS6366761B2 (en)
JPS62118199A (en) Vessel for storing and transporting fluid
JPS62119393A (en) Heat exchanger for metal hydride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees