[go: up one dir, main page]

JP4415187B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP4415187B2
JP4415187B2 JP2004225613A JP2004225613A JP4415187B2 JP 4415187 B2 JP4415187 B2 JP 4415187B2 JP 2004225613 A JP2004225613 A JP 2004225613A JP 2004225613 A JP2004225613 A JP 2004225613A JP 4415187 B2 JP4415187 B2 JP 4415187B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic layer
recording medium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225613A
Other languages
Japanese (ja)
Other versions
JP2006048791A5 (en
JP2006048791A (en
Inventor
智男 福田
克紀 前嶋
潤 寺川
晶子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004225613A priority Critical patent/JP4415187B2/en
Publication of JP2006048791A publication Critical patent/JP2006048791A/en
Publication of JP2006048791A5 publication Critical patent/JP2006048791A5/ja
Application granted granted Critical
Publication of JP4415187B2 publication Critical patent/JP4415187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Description

本発明は、重層塗布型の磁気記録媒体に関するものであり、特に極めて薄層の磁気記録層を有する高密度型の磁気記録媒体に関するものである。   The present invention relates to a multilayer coating type magnetic recording medium, and more particularly to a high density type magnetic recording medium having an extremely thin magnetic recording layer.

近年、デジタル記録等の利用により、情報量が増大化してきており、今後においては更なる高密度化、短波長記録化の方向に向かう。
これに伴い、各種磁気記録装置に供される高密度型の磁気記録媒体においては、短波長出力及びS/N特性を向上させるために、磁性層の薄層化、及び磁性層表面の平滑化が図られてきた。
In recent years, the amount of information has increased due to the use of digital recording and the like, and in the future, the direction of further higher density and shorter wavelength recording will be headed.
Accordingly, in high-density magnetic recording media used in various magnetic recording devices, the magnetic layer is thinned and the surface of the magnetic layer is smoothed in order to improve short wavelength output and S / N characteristics. Has been planned.

一方、磁気記録媒体の高記録密度化に対応すべく、磁気抵抗効果型磁気ヘッド(MRヘッド、GMRヘッド等)を適用する磁気記録システムが考案、実用化され始めているが、磁気記録媒体の帯電により磁気ヘッドの静電破壊が起こるという問題があった。
このような問題に対し、磁性層の表面を平滑化しつつ、下層非磁性層中に、カーボンブラックを含有させ、磁性層の表面電気抵抗を低減化させる技術が提案されてきた(例えば、特許文献1、2参照。)。
On the other hand, magnetic recording systems using magnetoresistive heads (MR heads, GMR heads, etc.) have been devised and put into practical use in response to higher recording densities of magnetic recording media. As a result, there is a problem that electrostatic breakdown of the magnetic head occurs.
In order to solve such a problem, a technique has been proposed in which carbon black is contained in the lower nonmagnetic layer while the surface of the magnetic layer is smoothed to reduce the surface electrical resistance of the magnetic layer (for example, Patent Documents). 1 and 2).

一方、上記のように、高密度記録、及び短波長記録に対応するべく磁性層を薄層化が進んでいるが、これを例えば100nm以下もの極めて薄層とすると、電磁変換特性が低下する現象が確認された。
これについて、磁性層の表面を拡大観察したところ、微細なピンホール現象が発生しており、このため、記録抜けが起こり、電磁変換特性の劣化の原因となっていたことが分った。
On the other hand, as described above, the magnetic layer has been made thinner in order to cope with high-density recording and short-wavelength recording. However, if this layer is made extremely thin, for example, 100 nm or less, a phenomenon in which electromagnetic conversion characteristics deteriorate. Was confirmed.
As a result, when the surface of the magnetic layer was observed in an enlarged manner, a fine pinhole phenomenon occurred, and it was found that this caused recording loss and caused deterioration in electromagnetic conversion characteristics.

このような問題に関し、従来においては、塗料特性を検討することにより記録層表面における非磁性部の占める面積比率を特定する等の技術提案がなされてきたが、今後、一層薄層化する磁性層に対応することを考慮すれば、未だ充分に磁性層表面のピンホール現象を抑制する効果が得られないものと考えられる。   Regarding such problems, conventionally, technical proposals such as specifying the area ratio of the nonmagnetic portion on the surface of the recording layer by examining the paint properties have been made, but in the future, the magnetic layer will be made thinner. It is considered that the effect of sufficiently suppressing the pinhole phenomenon on the surface of the magnetic layer cannot be obtained.

特開2000−163739号公報JP 2000-163739 A 特開2002−260214号公報JP 2002-260214 A 特開2001−8220号公報JP 2001-8220 A 特開2001−250219号公報JP 2001-250219 A

そこで本発明においては、上述した従来の問題に鑑み、極めて薄層の磁性層を有する高密度型の磁気記録媒体に関し、表面のピンホール現象を効果的に低減化し、優れた電磁変換特性を実現可能な磁気記録媒体を提供することとした。   In view of the above-described conventional problems, the present invention relates to a high-density magnetic recording medium having an extremely thin magnetic layer, effectively reducing the surface pinhole phenomenon and realizing excellent electromagnetic conversion characteristics. It was decided to provide a possible magnetic recording medium.

本発明の磁気記録媒体は、ポリエチレンテレフタレートからなる非磁性支持体の少なくとも一主面上に、少なくとも酸化鉄及び/又は酸化チタンからなる無機粒子と結合剤とを含有する下層非磁性層と、少なくとも磁性粉末と結合剤とを含有する、膜厚50nm以下の磁性層とがウエットオンウエット方式により重層形成された構成を有し、磁性層の膜厚をd(nm)とし、下層非磁性層に含有されている無機粒子の長軸をa(nm)としたとき、下記の関係を有するものとする。
a≦3.0×d−60・・・(1)
The magnetic recording medium of the present invention comprises, on at least one main surface of a nonmagnetic support made of polyethylene terephthalate , a lower nonmagnetic layer containing at least inorganic particles made of iron oxide and / or titanium oxide and a binder, and at least A magnetic layer containing a magnetic powder and a binder and having a film thickness of 50 nm or less is formed by a wet-on-wet method , the magnetic layer has a film thickness of d (nm), and the lower non-magnetic layer When the major axis of the inorganic particles contained in is defined as a (nm), the following relationship is assumed.
a ≦ 3.0 × d−60 (1)

本発明によれば、磁性層の表面のピンホール現象を効果的に低減化でき、優れた電磁変換特性を実現可能な、高密度記録型の磁気記録媒体が得られた。   According to the present invention, a high-density recording type magnetic recording medium capable of effectively reducing the pinhole phenomenon on the surface of the magnetic layer and realizing excellent electromagnetic conversion characteristics is obtained.

本発明の磁気記録媒体について図を参照しながら詳細に説明するが、本発明は以下の例に限定されるものではなく、従来公知の構成を付け加えたり、材料を変更したり、本発明の要旨を変更しない範囲で、種々の応用が可能である。   The magnetic recording medium of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following examples, and conventionally known configurations are added, materials are changed, and the gist of the present invention is described. Various applications are possible within the range that does not change.

本発明の一例の磁気記録媒体は、図1の概略構成図に示すように非磁性支持体1の一主面上に、下層非磁性層2と磁性層3とが積層形成されてなり、他の主面にバックコート層4が形成された構成を有しているものとする。
以下、これら各層について説明する。
A magnetic recording medium according to an example of the present invention is formed by laminating a lower nonmagnetic layer 2 and a magnetic layer 3 on one main surface of a nonmagnetic support 1 as shown in the schematic configuration diagram of FIG. The back coat layer 4 is formed on the main surface.
Hereinafter, each of these layers will be described.

非磁性支持体1は、従来公知の磁気記録媒体に使用されている材料をいずれも適用できる。
例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、セルローストリアセテート、セルロースダイアセテート、セルロースアセテートブチレート等のセルロース誘導体、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド等のプラスチック、紙、アルミニウム、銅等の金属、アルミニウム合金、チタン合金等の軽合金、セラミックス、単結晶シリコン等が挙げられる。
非磁性支持体1の形態は特に限定されるものではなく、フィルム状、テープ状、シート状、ディスク状、カード状、ドラム状等、最終的に目的とする磁気記録媒体の形状に応じて適宜選定する。
As the nonmagnetic support 1, any material used in conventionally known magnetic recording media can be applied.
For example, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate and cellulose acetate butyrate, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, Examples thereof include plastics such as polycarbonate, polyimide, polyamide and polyamideimide, metals such as paper, aluminum and copper, light alloys such as aluminum alloys and titanium alloys, ceramics and single crystal silicon.
The form of the non-magnetic support 1 is not particularly limited, and may be appropriately selected depending on the final shape of the magnetic recording medium, such as a film, tape, sheet, disk, card, drum, etc. Select.

次に、下層非磁性層2について説明する。
下層非磁性層2は、少なくとも無機粒子、結合剤、及び各種添加剤が含有された構成を有している。下層非磁性層2は、これらの材料を所定の溶剤を用いて混合させた塗料を塗布することにより形成することができる。
Next, the lower nonmagnetic layer 2 will be described.
The lower nonmagnetic layer 2 has a configuration containing at least inorganic particles, a binder, and various additives. The lower nonmagnetic layer 2 can be formed by applying a paint in which these materials are mixed using a predetermined solvent.

下層非磁性層2に含有される無機粒子としては、従来磁気記録媒体の下層非記録層に適用されている各種無機微粒子粉末をいずれも使用可能であり、例えば、アルミナ、酸化鉄、炭化ケイ素、酸化クロム、酸化セリウム、ゲータイト、窒化珪素、チタンカ−バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二硫化モリブデン等が挙げられる。これらは、単独で使用してもよく、あるいは組合せて使用してもよい。無機粒子の形状は、針状、球状、板状、サイコロ状のいずれでもよい。   As the inorganic particles contained in the lower nonmagnetic layer 2, any of various inorganic fine particle powders conventionally applied to the lower nonrecording layer of the magnetic recording medium can be used. For example, alumina, iron oxide, silicon carbide, Chromium oxide, cerium oxide, goethite, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, tin oxide, magnesium oxide, tungsten oxide, zirconium oxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate, disulfide Examples include molybdenum. These may be used alone or in combination. The shape of the inorganic particles may be any of a needle shape, a spherical shape, a plate shape, and a dice shape.

また、下層非磁性層2には、磁気ヘッドの静電破壊を抑制するため導電剤を添加することが好ましい。導電剤は公知のものいずれも使用可能であり、たとえば、カーボンブラックや導電性酸化チタン等が挙げられる。   Further, it is preferable to add a conductive agent to the lower nonmagnetic layer 2 in order to suppress electrostatic breakdown of the magnetic head. Any known conductive agent can be used, and examples thereof include carbon black and conductive titanium oxide.

下層非磁性層2に含有される結合剤としては、従来、塗布型の磁気記録媒体の作製に適用されているバインダー樹脂をいずれも使用することができる。
例えば、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩化ビニル−酢酸ビニル−マレイン酸共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、アクリル酸エステル−アクリロニトリル共重合体、アクリル酸エステル−塩化ビニリデン共重合体、メタクリル酸−塩化ビニリデン共重合体、メタクリル酸エステル−スチレン共重合体、熱可塑性ポリウレタン樹脂、フェノキシ樹脂、ポリフッ化ビニル、塩化ビニリデン−アクリロニトリル共重合体、ブタジエン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−メタクリル酸共重合体、ポリビニルブチラール、セルロース誘導体、スチレン−ブタジエン共重合体、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、熱硬化性ポリウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、尿素−ホルムアルデヒト樹脂、又はこれらの混合物等が挙げられる。
特に、柔軟性を付与するためには、ポリウレタン樹脂、ポリエステル樹脂、アクリロニトリル−ブタジエン共重合体等を適用し、剛性を付与するためには、セルロース誘導体、フェノール樹脂、エポキシ樹脂等を適用することが好ましい。
また、例えばイソシアネート化合物を架橋剤として用いることにより、下層非磁性層2の耐久性を向上させることができる。
As the binder contained in the lower nonmagnetic layer 2, any binder resin that has been conventionally applied to the production of a coating type magnetic recording medium can be used.
For example, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-maleic acid copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer Polymer, acrylic ester-acrylonitrile copolymer, acrylic ester-vinylidene chloride copolymer, methacrylic acid-vinylidene chloride copolymer, methacrylic ester-styrene copolymer, thermoplastic polyurethane resin, phenoxy resin, polyvinyl fluoride , Vinylidene chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, acrylonitrile-butadiene-methacrylic acid copolymer, polyvinyl butyral, cellulose derivative, styrene-butadiene copolymer, polyester resin, phenol Fat, epoxy resins, thermosetting polyurethane resins, urea resins, melamine resins, alkyd resins, urea - formaldehyde resin, or mixtures thereof.
In particular, polyurethane resin, polyester resin, acrylonitrile-butadiene copolymer or the like is applied to impart flexibility, and cellulose derivative, phenol resin, epoxy resin, or the like can be applied to impart rigidity. preferable.
Moreover, durability of the lower nonmagnetic layer 2 can be improved by using, for example, an isocyanate compound as a crosslinking agent.

下層非磁性層2を形成する塗料調整用の溶剤としては、従来、塗布型の磁気記録媒体の作製に適用されている溶剤をいずれも使用することができる。
例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸グリコールモノエチルエステル等のエステル系溶剤、グリコールモノエチルエーテル、ジオキサン等のグリコールエーテル系溶剤、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロロヒドリン、ジクロロベンゼン等の有機塩素化合物系溶剤が挙げられる。
As the solvent for adjusting the coating material for forming the lower nonmagnetic layer 2, any solvent that has hitherto been applied to the production of a coating type magnetic recording medium can be used.
For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ester solvents such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate and glycol acetate monoethyl ester, glycol ethers such as glycol monoethyl ether and dioxane Examples thereof include organic solvents, aromatic hydrocarbon solvents such as benzene, toluene and xylene, and organic chlorine compound solvents such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform, ethylene chlorohydrin and dichlorobenzene.

次に、磁性層3について説明する。
磁性層3は、少なくとも強磁性粉末、結合剤樹脂、各種添加剤を含有した構成を有しており、これらを所定の溶剤を用いて混合させた塗料を塗布することにより形成することができる。
強磁性粉末としては、塗布型の磁気記録媒体用に適用されている公知の材料をいずれも適用可能であり、例えば、強磁性酸化鉄、強磁性二酸化クロム、強磁性合金、窒化鉄等が挙げられる。
磁性層3形成用の結合剤は、塗布型の磁気記録媒体に適用されるバインダーであれば、いずれも適用することができ、上述した下層非磁性層形成用の結合剤をいずれも適用できる。
また磁性層形成用の塗料を調整するための溶剤としては、従来公知の溶剤をいずれも適用でき、上述した下層非磁性層形成用の溶剤をいずれも適用できる。
Next, the magnetic layer 3 will be described.
The magnetic layer 3 has a configuration containing at least a ferromagnetic powder, a binder resin, and various additives, and can be formed by applying a paint in which these are mixed using a predetermined solvent.
As the ferromagnetic powder, any known material that has been applied for coating-type magnetic recording media can be applied. Examples thereof include ferromagnetic iron oxide, ferromagnetic chromium dioxide, ferromagnetic alloy, and iron nitride. It is done.
Any binder can be used as the binder for forming the magnetic layer 3 as long as it is a binder applied to a coating type magnetic recording medium, and any of the binders for forming the lower non-magnetic layer described above can be applied.
Moreover, as a solvent for adjusting the coating material for forming the magnetic layer, any conventionally known solvent can be applied, and any of the above-mentioned solvents for forming the lower non-magnetic layer can be applied.

磁性層の膜厚は、100nm以下であるものとする。100nmを超えると、PW50(孤立再生波のピークの50%でのパルス幅)が大きくなり、高密度記録特性が低下する。
また、MRヘッドを使用したシステムで磁気記録媒体を再生する場合、磁性層が比較的厚く、Brが0.25T以上になると、MRヘッドの諸元(MR素子の飽和磁束密度、膜厚及びSAL膜の飽和磁束密度、膜厚)によってMRヘッドの飽和現象が生じ、C/N特性が低下する。
The film thickness of the magnetic layer shall be 100 nm or less. If it exceeds 100 nm, PW50 (pulse width at 50% of the peak of the isolated reproduction wave) becomes large, and the high-density recording characteristics deteriorate.
When reproducing a magnetic recording medium in a system using an MR head, if the magnetic layer is relatively thick and Br is 0.25 T or more, the specifications of the MR head (the saturation magnetic flux density of the MR element, the film thickness and the SAL) The saturation phenomenon of the MR head occurs depending on the saturation magnetic flux density and film thickness of the film, and the C / N characteristics are degraded.

本発明の磁気記録媒体においては、磁性層3の膜厚をd(nm)とし、上述した下層非磁性層2に含有されている無機粒子の長軸長をa(nm)としたとき、下記式(1)の関係を有するものに特定する。下記式は、電磁変換特性が実用上良好な場合の磁性層の膜厚と、下層非磁性層中の無機粒子の長軸長との関係をプロットし最小二乗法により計算することにより導き出したものである。
a≦3.0×d−60・・・(1)
これにより、極めて薄層の磁性層3の表面のピンホール現象を効果的に低減化でき、優れた電磁変換特性が得られることが確認された。
In the magnetic recording medium of the present invention, when the thickness of the magnetic layer 3 is d (nm) and the major axis length of the inorganic particles contained in the lower nonmagnetic layer 2 is a (nm), It specifies to the thing which has the relationship of Formula (1). The following formula was derived by plotting the relationship between the thickness of the magnetic layer when the electromagnetic conversion characteristics were practically good and the long axis length of the inorganic particles in the lower nonmagnetic layer and calculating by the least square method. It is.
a ≦ 3.0 × d−60 (1)
Thereby, it was confirmed that the pinhole phenomenon on the surface of the extremely thin magnetic layer 3 can be effectively reduced, and excellent electromagnetic conversion characteristics can be obtained.

バックコート層4は、必要に応じて形成するものとし、結合剤、無機粒子、潤滑剤、及び帯電防止剤等の各種添加剤により形成されている。   The back coat layer 4 is formed as necessary, and is formed of various additives such as a binder, inorganic particles, a lubricant, and an antistatic agent.

なお、本発明においては、バックコート層4に代えて、他の主面側にも、上述した下層非磁性層2と磁性層3とを積層形成することにより、両主面に記録層を有する大容量型の磁気記録媒体を得ることもできる。   In the present invention, in place of the backcoat layer 4, the lower nonmagnetic layer 2 and the magnetic layer 3 described above are laminated on the other main surface side to have recording layers on both main surfaces. A large-capacity magnetic recording medium can also be obtained.

次に、磁気記録媒体の作製方法について説明する。
先ず、所定の非磁性支持体1を用意する。次に下層非磁性層2用の塗料、及び磁性層3用の塗料を調整する。
これらの塗料は、上述した各材料を所定の溶剤とともに混練分散して調製する。混練分散の方法は、公知の方法をいずれも適用でき、特に制限されるものではないが、例えば連続二軸混練機(エクストルーダー)、コニーダー、加圧ニーダー等を用いる方法が挙げられる。
下層非磁性層2及び磁性層3は、それぞれの塗料を、例えばグラビアコート、押出コート、エアードクターコート、リバースロールコート等、従来公知の塗布方法を用いて積層形成する。
また、下層非磁性層2上に磁性層3は、それぞれの塗料を順次塗布し、乾燥を行う、いわゆるウエット・オン・ドライ方式により形成してもよく、湿潤状態にある下層非磁性層2上に磁性層3を重層塗布する、いわゆるウエット・オン・ウエット方式により形成してもよい。
Next, a method for producing a magnetic recording medium will be described.
First, a predetermined nonmagnetic support 1 is prepared. Next, the coating material for the lower nonmagnetic layer 2 and the coating material for the magnetic layer 3 are prepared.
These coating materials are prepared by kneading and dispersing the above-described materials together with a predetermined solvent. Any known kneading method can be applied to the kneading dispersion method, and the method is not particularly limited. Examples thereof include a method using a continuous biaxial kneader (extruder), a kneader, a pressure kneader and the like.
The lower nonmagnetic layer 2 and the magnetic layer 3 are formed by laminating the respective paints using a conventionally known coating method such as gravure coating, extrusion coating, air doctor coating, reverse roll coating, and the like.
Further, the magnetic layer 3 may be formed on the lower nonmagnetic layer 2 by a so-called wet-on-dry method in which each paint is sequentially applied and dried. Alternatively, the magnetic layer 3 may be formed by a so-called wet-on-wet method in which multiple layers are applied.

なお、非磁性支持体1の材料、下層非磁性層2に含有する無機粒子、結合剤、その他の添加剤、例えば分散剤、研磨剤、帯電防止剤、防錆剤等、磁性層3に含有する磁性粉末、結合剤、その他の添加剤、更には塗料調整用の溶剤は、従来公知のものをいずれも適用可能であり、何ら限定されるものではない。   In addition, the material of the nonmagnetic support 1, the inorganic particles contained in the lower nonmagnetic layer 2, the binder, and other additives such as a dispersant, an abrasive, an antistatic agent, an antirust agent, etc. As the magnetic powder, binder, other additives, and solvent for adjusting the coating material, any conventionally known one can be applied and is not limited at all.

〔実施例1〜8〕、〔比較例1〜4〕、〔リファレンステープ〕
下記においては、テープ状の磁気記録媒体について各種サンプルを作製した。なお本発明は下記の例に限定されるものではない。サンプルとなる磁気テープは、図1に示すように非磁性支持体1の一主面上に下層非磁性層2と磁性層3とが積層形成されてなり、他の主面上にバックコート層4が形成された構成を有しているものとする。
[Examples 1 to 8], [Comparative Examples 1 to 4], [Reference Tape]
In the following, various samples were prepared for tape-like magnetic recording media. The present invention is not limited to the following examples. As shown in FIG. 1, a sample magnetic tape is formed by laminating a lower nonmagnetic layer 2 and a magnetic layer 3 on one main surface of a nonmagnetic support 1, and a backcoat layer on the other main surface. It is assumed that 4 is formed.

先ず、下記に示す組成の磁性層形成用塗料(磁性塗料)を調整した。
〔磁性塗料組成〕
強磁性粉末:100重量部(鉄−コバルト合金系メタル磁性粉(平均長軸長0.06μm))
第1の結合剤:9重量部(塩化ビニル系共重合体(平均重合度300))
第2の結合剤:9重量部(ポリエステル系ポリウレタン樹脂(量平均分子量41200、Tg40℃)
潤滑剤:ステアリン酸:1重量部
ステアリン酸ブチル:2重量部
溶剤: メチルエチルケトン:20重量部
トルエン:20重量部
シクロヘキサノン:10重量部
First, a magnetic layer forming paint (magnetic paint) having the following composition was prepared.
[Magnetic paint composition]
Ferromagnetic powder: 100 parts by weight (iron-cobalt alloy metal magnetic powder (average major axis length 0.06 μm))
First binder: 9 parts by weight (vinyl chloride copolymer (average polymerization degree 300))
Second binder: 9 parts by weight (polyester polyurethane resin (weight average molecular weight 41200, Tg 40 ° C.)
Lubricant: Stearic acid: 1 part by weight Butyl stearate: 2 parts by weight Solvent: Methyl ethyl ketone: 20 parts by weight Toluene: 20 parts by weight Cyclohexanone: 10 parts by weight

上記組成に従い、ニーダーで混練処理し、さらにメチルエチルケトン、トルエン、シクロヘキサノンで希釈した後、サンドミル分散し磁性層形成用分散液とした。
その後、ポリイソシアネート(日本ポリウレタン製硬化剤「コロネートL」)を4重量部添加し、攪拌して磁性塗料を調整した。
According to the above composition, the mixture was kneaded with a kneader, further diluted with methyl ethyl ketone, toluene, and cyclohexanone, and then dispersed in a sand mill to obtain a dispersion for forming a magnetic layer.
Thereafter, 4 parts by weight of polyisocyanate (Japanese polyurethane curing agent “Coronate L”) was added and stirred to prepare a magnetic coating.

次に、下層非磁性層形成用の塗料を調整した。
先ず、下記表1に示す4種類の第1の無機粒子(長超軸長の異なる針状酸化鉄、球状酸化チタン)を用意した。
Next, a coating material for forming the lower nonmagnetic layer was prepared.
First, four types of first inorganic particles (acicular iron oxide and spherical titanium oxide having different long superaxial lengths) shown in Table 1 below were prepared.

Figure 0004415187
Figure 0004415187

次に、上記表1に示す第1の無機粒子から任意のものを選定して、下記に示す組成に従い、下層非磁性層形成用の分散液を調整した。   Next, an arbitrary particle was selected from the first inorganic particles shown in Table 1 above, and a dispersion for forming the lower nonmagnetic layer was prepared according to the composition shown below.

〔下層非磁性層形成用の分散液組成〕
第1の無機粒子(表1中の無機粒子A〜Dから選定):100重量部
第2の無機粒子:カーボンブラック:24重量部
(粒径20nm、DBP吸油量120ml/100g)
第1の結合剤:塩化ビニル系共重合体(平均重合度300):9重量部
第2の結合剤:ポリエステル系ポリウレタン樹脂:9重量部
(量平均分子量41200、Tg40℃)
潤滑剤:ブチルステアレート:2重量部
ステアリン酸:1重量部
有機溶剤:メチルエチルケトン:20重量部
トルエン:20重量部
シクロヘキサノン:10重量部
[Dispersion composition for forming the lower non-magnetic layer]
First inorganic particles (selected from inorganic particles A to D in Table 1): 100 parts by weight Second inorganic particles: carbon black: 24 parts by weight
(Particle size 20 nm, DBP oil absorption 120 ml / 100 g)
First binder: Vinyl chloride copolymer (average polymerization degree 300): 9 parts by weight Second binder: Polyester polyurethane resin: 9 parts by weight
(Weight average molecular weight 41200, Tg 40 ° C.)
Lubricant: butyl stearate: 2 parts by weight Stearic acid: 1 part by weight Organic solvent: methyl ethyl ketone: 20 parts by weight
Toluene: 20 parts by weight
Cyclohexanone: 10 parts by weight

上記材料を混練処理し、さらに溶剤で希釈した後、サンドミル分散し、下層非磁性層形成用の分散液とした。その後、ポリイソシアネート(日本ポリウレタン製硬化剤「コロネートL」)を3重量部添加し、下層非磁性層形成用の塗料を調整した。   The above materials were kneaded and further diluted with a solvent, and then dispersed in a sand mill to obtain a dispersion for forming the lower nonmagnetic layer. Thereafter, 3 parts by weight of polyisocyanate (Japanese polyurethane curing agent “Coronate L”) was added to prepare a coating material for forming the lower non-magnetic layer.

非磁性支持体1として、膜厚5.0μmのポリエチレンテレフタレートフィルムを用意し、先ず、上述のようにして調整した下層非磁性層形成用の塗料を膜厚1.0μmになるように塗布し、続いて磁性層形成用の塗料を塗布した。
その後、磁場配向処理を行い、乾燥させて巻取りした。さらにカレンダー処理を施し、硬化処理した。
As the nonmagnetic support 1, a 5.0 μm-thick polyethylene terephthalate film is prepared. First, the lower nonmagnetic layer-forming coating material prepared as described above is applied to a thickness of 1.0 μm, Subsequently, a coating for forming the magnetic layer was applied.
Then, the magnetic field orientation process was performed, and it dried and wound up. Further, a calendar process was performed and a curing process was performed.

次に、下記組成に従い、バックコート層形成用分散液を調整し、さらにポリイソシアネート(日本ポリウレタン製硬化剤「コロネートL」)10重量部を添加してバックコート層用塗料を作製した。そしてこの塗料を、磁性層形成面とは反対側の面に塗布して膜厚0.6μmのバックコート層4を形成した。   Next, a backcoat layer-forming dispersion was prepared according to the following composition, and 10 parts by weight of a polyisocyanate (a Japanese polyurethane curing agent “Coronate L”) was added to prepare a backcoat layer coating material. And this coating material was apply | coated to the surface on the opposite side to a magnetic layer formation surface, and the backcoat layer 4 with a film thickness of 0.6 micrometer was formed.

〔バックコート層用分散液組成〕
無機粉末(カーボンブラック):100重量部
(粒径40nm、DBP吸油量112.0ml/100g)
結合剤:ポリエステル系ポリウレタン樹脂:13重量部
(量平均分子量71200)
結合剤:フェノキシ樹脂(平均重合度100):43重量部
結合剤:ニトロセルロース樹脂(平均重合度90):10重量部
溶剤:メチルエチルケトン:500重量部
トルエン:500重量部
[Backcoat layer dispersion composition]
Inorganic powder (carbon black): 100 parts by weight (particle size 40 nm, DBP oil absorption 112.0 ml / 100 g)
Binder: Polyester polyurethane resin: 13 parts by weight (weight average molecular weight 71200)
Binder: Phenoxy resin (average polymerization degree 100): 43 parts by weight Binder: Nitrocellulose resin (average polymerization degree 90): 10 parts by weight Solvent: Methyl ethyl ketone: 500 parts by weight Toluene: 500 parts by weight

上述のようにして広幅の磁気テープを作製し、これを1/2インチ幅にスリットし、さらに1/2インチワンリールカセットに500m組み込み、これをサンプル磁気テープとした。
上記のようにして作製されたサンプル磁気テープについて、磁性層形成面の電子顕微鏡(SEM)による表面観察、及び電磁変換特性の測定を行った。
観察方法、及び測定方法を下記に示す。
A wide magnetic tape was produced as described above, slit into a 1/2 inch width, and further incorporated into a 1/2 inch one reel cassette for 500 m to obtain a sample magnetic tape.
About the sample magnetic tape produced as mentioned above, the surface observation by the electron microscope (SEM) of the magnetic layer formation surface and the measurement of the electromagnetic conversion characteristic were performed.
An observation method and a measurement method are shown below.

〔表面観察〕
電子顕微鏡(SEM)により、磁性層表面を5万倍にて観察し、特定面積(2.1μm×1.7μm=3.57μm2)におけるピンホールの面積を計算し、割合を%表示した。
[Surface observation]
The surface of the magnetic layer was observed with an electron microscope (SEM) at a magnification of 50,000 times, the area of pinholes in a specific area (2.1 μm × 1.7 μm = 3.57 μm 2 ) was calculated, and the ratio was expressed in%.

〔電磁変換特性〕
記録用磁気ヘッド(MIG、ギャップ長0.15μm)を取り付けた固定電特機を用いて、波長0.3μmの信号を記録し、その後、再生用磁気ヘッド(MRヘッド、ギャップ長0.2μm)を用いて信号再生を行った。
各単一周波数の出力及び再生された信号から±2MHzのところをノイズレベルとした際のC/N特性を測定した。
[Electromagnetic conversion characteristics]
Using a fixed electric machine equipped with a recording magnetic head (MIG, gap length 0.15 μm), a signal with a wavelength of 0.3 μm is recorded, and then a reproducing magnetic head (MR head, gap length 0.2 μm) Was used to reproduce the signal.
The C / N characteristics when the noise level was set at ± 2 MHz from the output of each single frequency and the reproduced signal were measured.

下記表2に、実施例1〜8、及び比較例1〜4のサンプル磁気テープの、下層非磁性層2に含有された無機粒子の長軸長、磁性層3の膜厚、上記(1)式の右辺の数値、ピンホールの割合、及び電磁変換特性を示す。   In Table 2 below, the major axis length of the inorganic particles contained in the lower nonmagnetic layer 2 of the sample magnetic tapes of Examples 1 to 8 and Comparative Examples 1 to 4, the film thickness of the magnetic layer 3, and the above (1) The numerical value on the right side of the equation, the pinhole ratio, and the electromagnetic conversion characteristics are shown.

Figure 0004415187
Figure 0004415187

上記表2には、磁性層3の膜厚を100nmとして下層非磁性層2中に無機粒子Aを含有させた構成のリファレンステープを基準とし、これよりも薄層の磁性層3を形成した各サンプルについて評価した結果を示した。
磁性層3の膜厚をd(nm)とし、下層非磁性層2に含有されている無機粒子の長軸長をa(nm)としたとき、a≦3.0×d−60の関係が成立している実施例1〜8においては、いずれもピンホール面積が20%未満と少なく、リファレンステープよりも優れた電磁変換特性が得られた。
一方、上記式の関係が成立しない比較例1〜4においては、いずれもピンホール面積が20%を超えてしまい、リファレンステープよりも電磁変換特性が劣化した。
In Table 2, the thickness of the magnetic layer 3 is set to 100 nm, and the reference tape having the structure in which the inorganic particles A are contained in the lower nonmagnetic layer 2 is used as a reference. The results of evaluating the samples are shown.
When the film thickness of the magnetic layer 3 is d (nm) and the major axis length of the inorganic particles contained in the lower nonmagnetic layer 2 is a (nm), a relationship of a ≦ 3.0 × d−60 is established. In each of Examples 1 to 8, the pinhole area was less than 20%, and electromagnetic conversion characteristics superior to the reference tape were obtained.
On the other hand, in Comparative Examples 1 to 4 in which the relationship of the above formula is not established, the pinhole area exceeded 20%, and the electromagnetic conversion characteristics deteriorated as compared with the reference tape.

上述したように、本発明によれば、磁性層の膜厚d(nm)と、下層非磁性層中に含有される無機粒子の長軸長a(nm)について、所定の関係を満たすものに特定したことにより、磁性層の膜厚が100nm以下もの極めて薄型の磁気記録媒体においても、ピンホール現象が抑制され、優れた電磁変換特性が得られた。   As described above, according to the present invention, the magnetic layer thickness d (nm) and the long axis length a (nm) of the inorganic particles contained in the lower nonmagnetic layer satisfy a predetermined relationship. As a result of the identification, even in an extremely thin magnetic recording medium having a magnetic layer thickness of 100 nm or less, the pinhole phenomenon was suppressed and excellent electromagnetic conversion characteristics were obtained.

本発明の磁気記録媒体の概略断面図を示す。1 is a schematic sectional view of a magnetic recording medium of the present invention.

符号の説明Explanation of symbols

1……非磁性支持体、2……下層非磁性層、3……磁性層、4……バックコート層、10……磁気記録媒体




DESCRIPTION OF SYMBOLS 1 ... Nonmagnetic support body 2 ... Underlayer nonmagnetic layer, 3 ... Magnetic layer, 4 ... Backcoat layer, 10 ... Magnetic recording medium




Claims (1)

ポリエチレンテレフタレートからなる非磁性支持体の少なくとも一主面上に、少なくとも酸化鉄及び/又は酸化チタンからなる無機粒子と結合剤とを含有する下層非磁性層と、少なくとも磁性粉末と結合剤とを含有する、膜厚50nm以下の磁性層とがウエットオンウエット方式により重層形成されてなり
前記磁性層の膜厚をd(nm)とし、前記下層非磁性層に含有されている前記無機粒子の長軸をa(nm)としたとき、下記式(1)の関係を有する磁気記録媒体。
a≦3.0×d−60・・・(1)
Containing at least one main surface of a nonmagnetic support composed of polyethylene terephthalate, a lower nonmagnetic layer containing at least inorganic particles composed of iron oxide and / or titanium oxide and a binder, and at least a magnetic powder and a binder to a film thickness 50 nm or less of the magnetic layer is is overlaid formed by wet-on-wet method,
The thickness of the magnetic layer as d (nm), when the long axis of the inorganic particles contained in the lower non-magnetic layer was changed to a (nm), magnetic that have a relationship of the following formula (1) Care recording medium.
a ≦ 3.0 × d−60 (1)
JP2004225613A 2004-08-02 2004-08-02 Magnetic recording medium Expired - Fee Related JP4415187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225613A JP4415187B2 (en) 2004-08-02 2004-08-02 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225613A JP4415187B2 (en) 2004-08-02 2004-08-02 Magnetic recording medium

Publications (3)

Publication Number Publication Date
JP2006048791A JP2006048791A (en) 2006-02-16
JP2006048791A5 JP2006048791A5 (en) 2007-08-30
JP4415187B2 true JP4415187B2 (en) 2010-02-17

Family

ID=36027154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225613A Expired - Fee Related JP4415187B2 (en) 2004-08-02 2004-08-02 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4415187B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419566B2 (en) * 1994-09-28 2003-06-23 コニカ株式会社 Magnetic recording media
JP2001297423A (en) * 2000-04-10 2001-10-26 Fuji Photo Film Co Ltd Magnetic recording medium
JP2002251710A (en) * 2001-02-22 2002-09-06 Fuji Photo Film Co Ltd Magnetic recording medium and its manufacturing method
JP2004103217A (en) * 2002-08-22 2004-04-02 Hitachi Maxell Ltd Magnetic recording media

Also Published As

Publication number Publication date
JP2006048791A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US7341798B2 (en) Magnetic tape medium
JPWO2019159466A1 (en) Magnetic recording medium
JP3339662B2 (en) Magnetic recording medium and method of manufacturing the same
JP4415187B2 (en) Magnetic recording medium
JPH0935245A (en) Magnetic recording medium
JP2006012281A (en) Magnetic recording medium
JP2006294082A (en) Magnetic recording medium
JP2005310260A (en) Magnetic recording medium
EP0911814A2 (en) Magnetic recording medium
JP5257098B2 (en) Magnetic recording medium, tape cartridge, and tape drive system
JP2005004823A (en) Magnetic recording medium
JP2006209882A (en) Magnetic recording medium and its manufacturing method
JP2005004857A (en) Magnetic recording medium
JPH11339253A (en) Magnetic recording medium and its production
JP2002269727A (en) Magnetic recording medium
JP2005032383A (en) Magnetic recording medium
JPH1173640A (en) Magnetic recording medium
JP2002260214A (en) Magnetic recording medium
JPH06243460A (en) Magnetic recording medium
JP2005004858A (en) Magnetic recording medium
JP2005011452A (en) Magnetic recording medium
JP2002269719A (en) Magnetic recording medium
JP2002279619A (en) Magnetic recording medium and manufacturing method therefor
JPH10308014A (en) Magnetic recording medium
JPH113517A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees