[go: up one dir, main page]

JP4415176B2 - Induction motor having a ring-shaped stator coil - Google Patents

Induction motor having a ring-shaped stator coil Download PDF

Info

Publication number
JP4415176B2
JP4415176B2 JP2003385925A JP2003385925A JP4415176B2 JP 4415176 B2 JP4415176 B2 JP 4415176B2 JP 2003385925 A JP2003385925 A JP 2003385925A JP 2003385925 A JP2003385925 A JP 2003385925A JP 4415176 B2 JP4415176 B2 JP 4415176B2
Authority
JP
Japan
Prior art keywords
magnetic pole
coil
stator core
phase
tooth portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003385925A
Other languages
Japanese (ja)
Other versions
JP2005124378A (en
Inventor
義光 大川
Original Assignee
義光 大川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義光 大川 filed Critical 義光 大川
Priority to JP2003385925A priority Critical patent/JP4415176B2/en
Publication of JP2005124378A publication Critical patent/JP2005124378A/en
Application granted granted Critical
Publication of JP4415176B2 publication Critical patent/JP4415176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

発明の詳細な説明Detailed Description of the Invention

この発明は、単相交流電源にて運転されるコンデンサモータ・コンデンサ始動モータ・分相始動モータ等の単相誘導電動機、及び三相交流電源にて運転される三相誘導電動機に関し、特に巻線方式及び固定子鉄心構造に関する。  The present invention relates to a single-phase induction motor such as a capacitor motor, a capacitor start motor, and a split phase start motor operated by a single-phase AC power source, and a three-phase induction motor operated by a three-phase AC power source. The present invention relates to a system and a stator core structure.

従来、この種の電動機としては、例えば三相誘導電動機を例にとると、図10に示すような構造が一般的に採用されている。図10(a)は軸方向半断面側面図であり、固定子鉄心120には、U・V・W相のコイル110が、図10(b)の巻線展開図に示すように専用機等により巻装された後、巻線相互間の結線及びリード線接続等の端末処置を行っている。  Conventionally, as this type of electric motor, for example, when a three-phase induction motor is taken as an example, a structure as shown in FIG. 10 is generally adopted. FIG. 10 (a) is an axial half sectional side view, and a U / V / W phase coil 110 is provided on the stator core 120 as shown in FIG. 10 (b). After being wound, the terminal treatment such as connection between windings and lead wire connection is performed.

発明が解決しようとする課題Problems to be solved by the invention

上述のような従来の三相誘導電動機においては、U・V・W相のコイル110を周方向に分布して巻線を行なうため、固定子鉄心120の軸方向端面から突出したコイルエンドの長さhが大きくなり巻線量増加と銅損増加により、小形・軽量・高効率化、及びコストダウンが困難であるという問題がある。単相誘導電動機においても、固定子鉄心に主巻線と補助巻線を周方向に分布して巻線を行なうため、同様の問題がある。  In the conventional three-phase induction motor as described above, since the U / V / W-phase coils 110 are distributed in the circumferential direction and wound, the length of the coil end protruding from the axial end surface of the stator core 120 is long. There is a problem that the size h, the weight, the efficiency, and the cost reduction are difficult due to the increase in the length h and the increase in the winding amount and the copper loss. A single-phase induction motor also has the same problem because the main and auxiliary windings are distributed around the stator core in the circumferential direction.

この発明は、上述のような問題点を解消するためになされたものであり、コイルエンドが存在しないため小形・軽量・高効率であり、更に巻線の端末処理が容易でローコストな誘導電動機の巻線方法と固定子鉄心構造を得ることを目的としている。  The present invention has been made to solve the above-mentioned problems, and since there is no coil end, it is small, light, and highly efficient. Further, it is an induction motor that is easy to process at the end of the winding and is low-cost. The purpose is to obtain winding method and stator core structure.

課題を解決するための手段Means for solving the problem

上述の目的を達成するために、この発明による誘導電動機は、固定子に軸方向に分割してリング状に複数のコイルを巻装し、各コイルのリングの中心と回転軸の中心が概ね一致するように配置して、各コイルの外周側と軸方向両端側に夫々磁気回路を構成する固定子鉄心を設け、この内周側に磁極歯部が当該コイルを挟んで回転軸の周方向に互いに電気角でπ(rad)ずれた位置に交互に形成され、更に、各磁極歯部には磁極片を備え、磁極片と磁極歯部で形成される極間が磁極片及び磁極歯部と同一の材料で形成されたブリッジ部分で連結され、各コイルの磁極歯部を回転軸の周方向に所定の角度ずらして軸方向に重ね合わせたように構成されているものである。In order to achieve the above-described object, an induction motor according to the present invention is formed by axially dividing a stator and winding a plurality of coils in a ring shape, and the center of the ring of each coil and the center of the rotating shaft substantially coincide. The stator cores that constitute the magnetic circuit are provided on the outer peripheral side and both axial end sides of each coil, and the magnetic pole teeth are arranged on the inner peripheral side in the circumferential direction of the rotating shaft with the coil interposed therebetween. They are alternately formed at positions shifted by π (rad) in electrical angle with each other, and each magnetic pole tooth part is provided with a magnetic pole piece, and a gap between the magnetic pole piece and the magnetic pole tooth part is formed between the magnetic pole piece and the magnetic pole tooth part. They are connected by a bridge portion formed of the same material, and are configured such that the magnetic pole teeth of each coil are shifted in the circumferential direction of the rotation axis by a predetermined angle and overlapped in the axial direction.

以下に添付の図を参照にして、この発明にかかる誘導電動機の実施の形態を詳細に説明する。  Embodiments of an induction motor according to the present invention will be described below in detail with reference to the accompanying drawings.

実施の形態1.
図1〜図4は、この発明による誘導電動機の実施の形態1として、軸方向に分割された2種類の固定子巻線を有する4極の単相誘導電動機として、コンデンサモータに適用した例を示す。図1は、軸方向半断面側面図であり、A相・B相のコイル10・11とリード線13、及び固定子20、カゴ形回転子80、回転軸90、軸受部材91、ブラケット92、フレーム93等で構成されている。なお、この実施の形態においては、A相コイルは主巻線を、B相コイルは補助巻線を形成する。
Embodiment 1 FIG.
1 to 4 show an example in which the present invention is applied to a capacitor motor as a four-pole single-phase induction motor having two types of stator windings divided in the axial direction as Embodiment 1 of the induction motor according to the present invention. Show. FIG. 1 is a side view of a half cross-section in the axial direction. A phase / B phase coils 10 and 11 and lead wires 13 and a stator 20, a cage rotor 80, a rotating shaft 90, a bearing member 91, a bracket 92, It consists of a frame 93 and the like. In this embodiment, the A phase coil forms the main winding, and the B phase coil forms the auxiliary winding.

A相・B相のコイル10・11は、回転軸90の軸方向に分割して、各コイル10・11のリングの中心と回転軸90の中心が概ね一致するように巻装され、適切な絶縁処理が施されて、リード線13により図2に示すようにコンデンサ14とともに単相交流電源15に接続されている。  The A-phase and B-phase coils 10 and 11 are divided in the axial direction of the rotary shaft 90 and wound so that the centers of the rings of the coils 10 and 11 and the centers of the rotary shafts 90 substantially coincide with each other. The insulation process is performed, and the lead wire 13 is connected to the single-phase AC power supply 15 together with the capacitor 14 as shown in FIG.

固定子20は、コイル10・11とこれの外周側の背面固定子鉄心21・22及び、各コイル10・11の軸方向両端側の側面固定子鉄心24〜27で構成されており、A相の背面固定子鉄心21と側面固定子鉄心24・25は夫々磁気的につながっており、更に側面固定子鉄心24・25の内周側には磁極片40・41を備えた磁極歯部30・31が夫々形成されている。B相の固定子鉄心も同様に構成されており、内周側に磁極片42・43を備えた磁極歯部32・33が形成されている。  The stator 20 includes coils 10 and 11, rear stator cores 21 and 22 on the outer peripheral side of the coils 10 and 11, and side surface stator cores 24 to 27 on both ends in the axial direction of the coils 10 and 11. The back stator core 21 and the side stator cores 24, 25 are magnetically connected to each other, and the magnetic pole teeth 30, provided with magnetic pole pieces 40, 41 on the inner peripheral side of the side stator cores 24, 25, respectively. 31 is formed. The B-phase stator core is configured in the same manner, and magnetic pole teeth 32 and 33 having magnetic pole pieces 42 and 43 are formed on the inner peripheral side.

カゴ形回転子80は、軸方向の両端側で短絡環により短絡された二次導体81を備え、A相・B相のコイル10・11の磁極歯部30〜33及び磁極片40〜43と所定のエヤーギャップを介して回転軸90、軸受部材91により回転可能に支持されている。  The cage rotor 80 includes a secondary conductor 81 that is short-circuited by a short-circuit ring at both ends in the axial direction, and includes magnetic pole teeth 30 to 33 and magnetic pole pieces 40 to 43 of the A-phase / B-phase coils 10 and 11. The rotary shaft 90 and the bearing member 91 are rotatably supported by a predetermined air gap.

図3(a)〜図3(d)は、側面固定子鉄心24〜27と、これの内周側に形成された凸形の磁極歯部30〜33の構成を、図1の反負荷側から負荷側(軸端側)へ透かして見た図であり、他の構成部品は図中省略している。図3(a)は、A相コイル10の反負荷側の側面固定子鉄心24であり、磁極歯部30は、その周方向の中心が、マッチマーク36の位置と合わせて時計の12時と、電気角で2π(rad)ずれた時計の6時の位置となるように2箇所に形成されている。図3(b)は、A相コイル10の負荷側の側面固定子鉄心25であり、磁極歯部31は、その周方向の中心が、反負荷側の側面固定子鉄心24に形成された磁極歯部30の中心に対し、電気角でπ(rad)ずれた位置に形成されている。この結果、背面固定子鉄心21(図中省略)を通して4極の磁極が、A相コイル10を挟んで側面固定子鉄心24・25の磁極歯部30と磁極片40、及び磁極歯部31と磁極片41により内周側の周方向に交互に形成される。  3 (a) to 3 (d) show the configurations of the side stator cores 24 to 27 and the convex magnetic pole tooth portions 30 to 33 formed on the inner peripheral side of the side stator cores 24 to 27, as shown in FIG. 3 is a view seen through from the load side (shaft end side), and other components are omitted in the figure. FIG. 3A is a side stator core 24 on the side opposite to the load of the A-phase coil 10, and the magnetic pole tooth portion 30 has its circumferential center aligned with the position of the match mark 36 at 12 o'clock. The watch is formed at two locations so as to be at the 6 o'clock position of the timepiece shifted by 2π (rad) in electrical angle. FIG. 3B shows the load-side side stator core 25 of the A-phase coil 10, and the magnetic pole tooth portion 31 has a center in the circumferential direction formed on the anti-load-side side stator core 24. It is formed at a position shifted by π (rad) in electrical angle with respect to the center of the tooth portion 30. As a result, the four-pole magnetic poles pass through the back stator core 21 (not shown), and the magnetic pole teeth 30 and the magnetic pole pieces 40 and the magnetic pole teeth 31 of the side stator cores 24 and 25 sandwich the A-phase coil 10. The pole pieces 41 are alternately formed in the circumferential direction on the inner circumferential side.

図3(c)は、B相コイル11の反負荷側の側面固定子鉄心26であり、磁極歯部32は、その周方向の中心が、A相コイル10の反負荷側の側面固定子鉄心24に形成された磁極歯部30の中心に対し、電気角でπ/2(rad)ずらして構成されている。図3(d)は、B相コイル11の負荷側の側面固定子鉄心27であり、磁極歯部33は、その周方向の中心が、反負荷側の側面固定子鉄心26に形成された磁極歯部32の中心に対し、電気角でπ(rad)ずれた位置に形成されている。この結果、A相コイル10の磁極歯部30・31に対し、電気角でπ/2(rad)離れた位置に、背面固定子鉄心22(図中省略)を通して4極の磁極が、B相コイル11を挟んで側面固定子鉄心26・27の磁極歯部32と磁極片42、及び磁極歯部33と磁極片43により、内周側の周方向に交互に形成される。  FIG. 3C shows a side stator core 26 on the side opposite to the load side of the B-phase coil 11, and the pole tooth portion 32 has a center in the circumferential direction on the side stator core on the side opposite to the load side of the A-phase coil 10. The electrical angle is shifted by π / 2 (rad) with respect to the center of the magnetic pole tooth portion 30 formed at 24. FIG. 3D shows a load side side stator core 27 of the B-phase coil 11, and the magnetic pole tooth portion 33 has a magnetic center formed on the side stator core 26 on the side opposite to the load in the circumferential direction. It is formed at a position shifted by π (rad) in electrical angle with respect to the center of the tooth portion 32. As a result, the four-pole magnetic pole passes through the rear stator core 22 (not shown) at a position away from the magnetic pole teeth 30 and 31 of the A-phase coil 10 by an electrical angle of π / 2 (rad). The magnetic pole teeth 32 and the magnetic pole pieces 42 of the side stator cores 26 and 27 and the magnetic pole teeth 33 and the magnetic pole pieces 43 are alternately formed in the circumferential direction on the inner peripheral side with the coil 11 interposed therebetween.

図4(a)〜図4(f)は、側面固定子鉄心の構成を示し、図4(a)・図4(c)は、A相コイル10(図中省略)の側面固定子鉄心24・25を上述と同様に、図1の反負荷側から負荷側(軸端側)へ透かして見た図であり、図4(b)は図4(a)の断面AA、図4(d)は図4(c)の断面BBを示す。反負荷側の側面固定子鉄心24の磁極歯部30には、これと対をなす負荷側の側面固定子鉄心25の方向に,磁極歯部30と同一内径寸法の磁極片40を,コイル10の内径側に備えている。負荷側の側面固定子鉄心25の磁極歯部31には、磁極片40と逆向きに,反負荷側の側面固定子鉄心24の方向に,磁極歯部31と同一内径寸法の磁極片41を備えている。  4 (a) to 4 (f) show the configuration of the side stator core, and FIGS. 4 (a) and 4 (c) show the side stator core 24 of the A-phase coil 10 (not shown). 25 is a view seen through the load side (shaft end side) from the non-load side in FIG. 1 in the same manner as described above, and FIG. 4B is a cross-sectional view along the line AA in FIG. ) Shows a cross section BB of FIG. A magnetic pole piece 40 having the same inner diameter as that of the magnetic pole tooth portion 30 is provided on the magnetic pole tooth portion 30 of the side stator core 24 on the side opposite to the load in the direction of the side stator core 25 on the load side. Is provided on the inner diameter side. A magnetic pole piece 41 having the same inner diameter as that of the magnetic pole tooth portion 31 is provided on the magnetic pole tooth portion 31 of the side stator core 25 on the load side in the direction opposite to the magnetic pole piece 40 and in the direction of the side stator core 24 on the antiload side. I have.

図4(e)は、磁極片40・41を備えた側面固定子鉄心24と25を組み立てた状態を示し、図4(f)は、図4(e)の断面CCを示す。側面固定子鉄心24に形成された磁極片40は、側面固定子鉄心25の軸方向端面より,所定の寸法aだけ短く構成されており、側面固定子鉄心25に形成された磁極片41も同様に、側面固定子鉄心24の軸方向端面より、所定の寸法aだけ短く構成されている。そして、側面固定子鉄心24の磁極歯部30と磁極片40、及び、周方向の隣極となる側面固定子鉄心25の磁極歯部31と磁極片41とで巾tの極間部分が形成されている。 FIG. 4E shows a state in which the side stator cores 24 and 25 having the pole pieces 40 and 41 are assembled, and FIG. 4F shows a cross section CC of FIG. The pole piece 40 formed on the side stator core 24 is configured to be shorter than the axial end face of the side stator core 25 by a predetermined dimension a, and the pole piece 41 formed on the side stator core 25 is the same. In addition, it is configured to be shorter than the axial end surface of the side stator core 24 by a predetermined dimension a. Then, the magnetic pole tooth portion 30 and the magnetic pole piece 40 of the side stator core 24 and the magnetic pole tooth portion 31 and the magnetic pole piece 41 of the side stator iron core 25 that are adjacent poles in the circumferential direction form an inter-polar portion of width t. Has been.

図5は、図4(e)の極間部分の巾t=0とし、周方向の互いに隣接する磁極片と磁極歯部、及び磁極片どうしが薄肉のブリッジ部分で連結されたものである。FIG. 5 shows a case where the width t = 0 of the inter-pole portion of FIG. 4 (e) and the magnetic pole pieces adjacent to each other in the circumferential direction, the magnetic pole tooth portions, and the magnetic pole pieces are connected by a thin bridge portion.

図5(a)は、U相コイル10(図中省略)の側面固定子鉄心24・25を図4(e)と同様に組み立てた状態を示す。側面固定子鉄心24の磁極歯部30と磁極片40は、周方向に互いに隣接する側面固定子鉄心25の磁極歯部31及び磁極片41に、カゴ形回転子80(図中省略)に対向する内周側において、ブリッジ部分Eにより連結している。図5(b)は、図5(a)のブリッジ部分Eの拡大図であり、sはブリッジ部分Eの径方向の厚さを示す。図5(c)は、図5(a)の断面CCを示し、カゴ形回転子80に対向する内周側は、寸法aの部分を除いて連続した円筒形状となっている。他のコイルの固定子鉄心も同様に構成されている。Fig.5 (a) shows the state which assembled the side stator iron cores 24 and 25 of the U-phase coil 10 (illustration omitted) similarly to FIG.4 (e). The magnetic pole tooth portion 30 and the magnetic pole piece 40 of the side stator core 24 are opposed to the cage rotor 80 (not shown in the drawing) to the magnetic pole tooth portion 31 and the magnetic pole piece 41 of the side stator iron core 25 adjacent to each other in the circumferential direction. Are connected by a bridge portion E on the inner peripheral side. 5B is an enlarged view of the bridge portion E of FIG. 5A, and s indicates the thickness of the bridge portion E in the radial direction. FIG. 5C shows a cross-section CC of FIG. 5A, and the inner peripheral side facing the cage rotor 80 has a continuous cylindrical shape excluding the portion of the dimension a. The stator cores of other coils are similarly configured.

固定子20は、上述のA相・B相の各コイル10・11と、外周側の背面固定子鉄心21・22、及び各コイルの側面固定子鉄心24〜27を、上述の位置関係を維持しながら軸方向に重ね合わせたように構成されている。  The stator 20 maintains the above-described positional relationship between the A-phase and B-phase coils 10 and 11, the outer-side back stator cores 21 and 22 and the side stator cores 24-27 of each coil. However, it is configured to overlap in the axial direction.

この実施の形態のものにおいては、例えば、A相コイル10により発生した磁束は、外周側の背面固定子鉄心21→側面固定子鉄心24→磁極歯部30及び磁極片40→所定のエヤーギャップ→カゴ形回転子80→所定のエヤーギャップ→磁極歯部31及び磁極片41→側面固定子鉄心25→背面固定子鉄心21と巡る磁路を構成し、リング状のコイル10に鎖交して軸方向に発生した磁束の変化を、回転方向の磁束の変化に変えることができる。B相コイル11により発生した磁束も同様に作用させることができ、電源との間に接続されたコンデンサ14による位相差に対応して、磁極歯部32を周方向に電気角でπ/2(rad)ずらしているため、コイル10・11により回転軸90を中心とする二相の回転(移動)磁界が発生し、電磁誘導作用により二次導体81に流れる電流が回転磁界と作用してトルクを発生し、カゴ形回転子80を回転駆動させることができる。更に、コンデンサ14の接続位置を変更する等により、従来のコンデンサモータと同様に回転軸90を逆回転させることができる。  In this embodiment, for example, the magnetic flux generated by the A-phase coil 10 is generated from the outer peripheral side rear stator core 21 → side stator core 24 → magnetic pole tooth portion 30 and magnetic pole piece 40 → predetermined air gap → A magnetic path surrounding the cage rotor 80 → predetermined air gap → magnetic pole tooth portion 31 and magnetic pole piece 41 → side stator core 25 → back stator core 21 is formed, and is linked to the ring-shaped coil 10 to be connected to the axis. The change in the magnetic flux generated in the direction can be changed to the change in the magnetic flux in the rotation direction. The magnetic flux generated by the B-phase coil 11 can be caused to act in the same manner, and the magnetic pole tooth portion 32 is moved in the circumferential direction by an electrical angle of π / 2 (corresponding to the phase difference caused by the capacitor 14 connected to the power source. rad), the coils 10 and 11 generate a two-phase rotating (moving) magnetic field around the rotating shaft 90, and the current flowing in the secondary conductor 81 due to electromagnetic induction acts on the rotating magnetic field to generate torque. And the cage rotor 80 can be driven to rotate. Further, by changing the connection position of the capacitor 14 or the like, the rotating shaft 90 can be rotated in reverse as in the conventional capacitor motor.

上述のような構成によれば、コイルエンドに相当する部分が存在しないため、コイルの銅線使用量を減らして銅損を低減することができ、単相誘導電動機の効率が向上し、コストダウンや小形・軽量化を実現することができる。また、各相のコイル数は最小限各1個で済むため、コイルの巻線作業及び端末処理を大幅に簡略化することができ生産性の向上に寄与することができる。更に、極間のブリッジ部分により磁極片の剛性を向上させることにより振動・騒音の発生を抑制することができる。According to the configuration as described above, since there is no portion corresponding to the coil end, it is possible to reduce the copper loss by reducing the amount of copper wire used in the coil, improving the efficiency of the single-phase induction motor and reducing the cost. And small size and light weight can be realized. Further, since the number of coils in each phase is at least one each, the coil winding work and terminal processing can be greatly simplified, which can contribute to the improvement of productivity. Furthermore, the occurrence of vibration and noise can be suppressed by improving the rigidity of the pole piece by the bridge portion between the poles.

実施の形態2.
図6〜図8は、この発明による誘導電動機の実施の形態2として、軸方向に分割された3種類の固定子巻線を有する4極の三相誘導電動機に適用した例を示す。図6は、軸方向半断面側面図であり、U・V・W相のコイル10〜12とリード線13、及び固定子20、カゴ形回転子80、回転軸90、軸受部材91、ブラケット92、フレーム93等で構成されている。
Embodiment 2. FIG.
6 to 8 show an example in which the induction motor according to Embodiment 2 of the present invention is applied to a four-pole three-phase induction motor having three types of stator windings divided in the axial direction. FIG. 6 is a side view of a half cross section in the axial direction, and U, V, and W phase coils 10 to 12 and lead wires 13, a stator 20, a cage rotor 80, a rotating shaft 90, a bearing member 91, and a bracket 92. , Frame 93 and the like.

U・V・W相のコイル10〜12は、回転軸90の軸方向に分割して、各コイル10〜12のリングの中心と回転軸90の中心が概ね一致するように、回転軸90に対し同一方向に巻装されている。各コイルは、適切な絶縁処理が施されてY字形に結線された後、リード線13により図7に示すように三相交流電源16に接続されている。  The coils 10 to 12 of the U, V, and W phases are divided in the axial direction of the rotating shaft 90, so that the center of the ring of each coil 10 to 12 and the center of the rotating shaft 90 substantially coincide with each other. On the other hand, it is wound in the same direction. Each coil is appropriately insulated and connected in a Y shape, and then connected to a three-phase AC power supply 16 by a lead wire 13 as shown in FIG.

固定子20は、コイル10〜12と、これの外周側の背面固定子鉄心21〜23、及び各コイル10〜12の軸方向両端側の側面固定子鉄心24〜29で構成されており、U相の背面固定子鉄心21と側面固定子鉄心24・25は、夫々磁気的につながっており、更に側面固定子鉄心24・25の内周側には、磁極片40・41を備えた磁極歯部30・31が夫々形成されている。V・W相の固定子鉄心も同様に構成されており、内周側には磁極片42〜45を備えた磁極歯部32〜35が形成されている。  The stator 20 is composed of coils 10 to 12, rear stator cores 21 to 23 on the outer peripheral side thereof, and side surface stator cores 24 to 29 on both axial sides of the coils 10 to 12. The phase back stator core 21 and the side stator cores 24 and 25 are magnetically connected to each other, and magnetic pole teeth provided with pole pieces 40 and 41 on the inner peripheral side of the side stator cores 24 and 25, respectively. Portions 30 and 31 are formed respectively. The V / W-phase stator cores are also configured in the same manner, and magnetic pole teeth 32 to 35 having magnetic pole pieces 42 to 45 are formed on the inner peripheral side.

カゴ形回転子80は、軸方向の両端で短絡環により短絡された二次導体81を備え、U・V・W相の各コイル10〜12の磁極歯部30〜35、及び磁極片40〜45と所定のエヤーギャップを介して回転軸90、軸受部材91により回転可能に支持されている。  The cage rotor 80 includes a secondary conductor 81 that is short-circuited by a short-circuit ring at both ends in the axial direction, and includes magnetic pole tooth portions 30 to 35 of the respective U, V, and W phase coils 10 to 12, and magnetic pole pieces 40 to 40. 45 and a predetermined air gap, and are rotatably supported by a rotating shaft 90 and a bearing member 91.

図8(a)〜図8(f)は、側面固定子鉄心24〜29とこれの内周側に形成された凸形の磁極歯部30〜35と磁極片40〜45の構成を、図6の反負荷側から負荷側(軸端側)へ透かして見た図であり、他の構成部品は図中省略している。図8(a)は、U相コイル10の反負荷側の側面固定子鉄心24であり、磁極歯部30は、その周方向の中心がマッチマーク36の位置と合わせて時計の12時と、電気角で2π(rad)ずれた時計の6時の位置となるように2個所に形成されている。図8(b)は、U相コイル10の負荷側の側面固定子鉄心25であり、磁極歯部31は、その周方向の中心が、反負荷側の側面固定子鉄心24に形成された磁極歯部30の中心に対し、電気角でπ(rad)ずれた位置に形成されている。この結果、背面固定子鉄心21(図中省略)を通して4極の磁極が、U相コイル10を挟んで側面固定子鉄心24・25の磁極歯部30と磁極片40及び磁極歯部31と磁極片41により、内周側の周方向に交互に形成される。  8 (a) to 8 (f) are diagrams showing the configuration of the side stator cores 24 to 29, the convex magnetic pole tooth portions 30 to 35 formed on the inner peripheral side thereof, and the magnetic pole pieces 40 to 45, respectively. 6 is a view seen through from the opposite load side to the load side (shaft end side), and other components are omitted in the drawing. FIG. 8A shows the side stator core 24 on the opposite side of the U-phase coil 10 and the magnetic pole tooth portion 30 has its circumferential center aligned with the position of the match mark 36 at 12:00 on the watch, It is formed in two places so as to be at the 6 o'clock position of the timepiece shifted by 2π (rad) in electrical angle. FIG. 8B is a side stator core 25 on the load side of the U-phase coil 10, and the magnetic pole tooth portion 31 has a magnetic pole formed at the center in the circumferential direction on the side stator core 24 on the anti-load side. It is formed at a position shifted by π (rad) in electrical angle with respect to the center of the tooth portion 30. As a result, the four-pole magnetic poles pass through the rear stator core 21 (not shown), and the magnetic pole teeth 30 and the magnetic pole pieces 40 and the magnetic pole teeth 31 and 31 of the side stator iron cores 24 and 25 sandwich the U-phase coil 10. The pieces 41 are alternately formed in the circumferential direction on the inner circumferential side.

図8(c)は、V相コイル11の反負荷側の側面固定子鉄心26であり、磁極歯部32は、その周方向の中心が、U相コイル10の反負荷側の側面固定子鉄心24に形成された磁極歯部30の中心に対し、電気角で2π/3(rad)ずらして構成されている。図8(d)は、V相コイル11の負荷側の側面固定子鉄心27であり、磁極歯部33は、その周方向の中心が、反負荷側の側面固定子鉄心26に形成された磁極歯部32の中心に対し、電気角でπ(rad)ずれた位置に形成されている。この結果、U相コイル10の場合と同様に、背面固定子鉄心22(図中省略)を通して4極の磁極が、V相コイル11を挟んで側面固定子鉄心26・27の磁極歯部32と磁極片42及び磁極歯部33と磁極片43により、内周側の周方向に交互に形成される。  FIG. 8C shows the side stator core 26 on the side opposite to the load side of the V-phase coil 11, and the pole tooth portion 32 is centered in the circumferential direction on the side stator core on the side opposite to the load side of the U-phase coil 10. The electrical angle is shifted by 2π / 3 (rad) with respect to the center of the magnetic pole tooth portion 30 formed at 24. FIG. 8D is a side stator core 27 on the load side of the V-phase coil 11, and the magnetic pole tooth portion 33 has a center in the circumferential direction formed on the side stator core 26 on the anti-load side. It is formed at a position shifted by π (rad) in electrical angle with respect to the center of the tooth portion 32. As a result, as in the case of the U-phase coil 10, the four-pole magnetic pole passes through the back stator core 22 (not shown), and the magnetic pole teeth 32 of the side stator cores 26 and 27 sandwich the V-phase coil 11. The magnetic pole pieces 42, the magnetic pole tooth portions 33 and the magnetic pole pieces 43 are alternately formed in the circumferential direction on the inner peripheral side.

図8(e)は、W相コイル12の反負荷側の側面固定子鉄心28であり、磁極歯部34は、その周方向の中心が、U相コイル10の反負荷側の側面固定子鉄心24に形成された磁極歯部30の中心に対し、電気角で4π/3(rad)ずらして構成されている。図8(f)は、W相コイル12の負荷側の側面固定子鉄心29であり、磁極歯部35は、その周方向の中心が、反負荷側の側面固定子鉄心28に形成された磁極歯部34の中心に対し、電気角でπ(rad)ずれた位置に形成されている。この結果、U・V相の場合と同様に、背面固定子鉄心23(図中省略)を通して4極の磁極が、W相コイル12を挟んで側面固定子鉄心28・29の磁極歯部34と磁極片44及び磁極歯部35と磁極片45により、内周側の周方向に交互に形成される。  FIG. 8E shows a side stator core 28 on the side opposite to the load side of the W-phase coil 12, and the pole tooth portion 34 is centered in the circumferential direction on the side stator core on the side opposite to the load side of the U-phase coil 10. The electrical angle is shifted by 4π / 3 (rad) with respect to the center of the magnetic pole tooth portion 30 formed at 24. FIG. 8 (f) is a load side side stator core 29 of the W-phase coil 12, and the magnetic pole tooth portion 35 has a circumferential center formed on the antiload side side stator core 28. It is formed at a position shifted by π (rad) in electrical angle with respect to the center of the tooth portion 34. As a result, as in the case of the U / V phase, the 4-pole magnetic pole passes through the back stator core 23 (not shown), and the magnetic pole teeth 34 of the side stator cores 28 and 29 sandwich the W-phase coil 12. The magnetic pole pieces 44, the magnetic pole tooth portions 35, and the magnetic pole pieces 45 are alternately formed in the circumferential direction on the inner peripheral side.

U相コイル10の側面固定子鉄心24の磁極歯部30と磁極片40は、実施の形態1の図4(a)〜図4(f)と同じように、周方向の隣極となる側面固定子鉄心25の磁極歯部31及び磁極片41とで巾tの極間部分を形成するが、実施の形態1の図5と同様にこの極間部分の巾t=0として薄肉のブリッジ部分で連結されている。他のコイルの固定子鉄心も同様に構成されている。The magnetic pole tooth portion 30 and the magnetic pole piece 40 of the side stator core 24 of the U-phase coil 10 are side surfaces that are adjacent to each other in the circumferential direction as in FIGS. 4 (a) to 4 (f) of the first embodiment. The magnetic pole tooth portion 31 and the magnetic pole piece 41 of the stator core 25 form an inter-electrode portion with a width t. As in FIG. 5 of the first embodiment, the inter-electrode portion width t = 0 and a thin bridge portion. It is connected with. The stator cores of other coils are similarly configured.

固定子20は、上述のU・V・W相の各コイル10〜12と、外周側の背面固定子鉄心21〜23、及び各コイルの側面固定子鉄心24〜29を、上述の位置関係を維持しながら軸方向に重ね合わせたように構成されている。  The stator 20 has the above-described positional relationship between the U, V, and W phase coils 10 to 12, the outer side rear stator cores 21 to 23, and the side stator cores 24 to 29 of the coils. It is configured to be superposed in the axial direction while maintaining.

この実施の形態のものにおいては、例えば、U相コイル10により発生した磁束は、外周側の背面固定子鉄心21→側面固定子鉄心24→磁極歯部30及び磁極片40→所定のエヤーギャップ→カゴ形回転子80→所定のエヤーギャップ→磁極歯部31及び磁極片41→側面固定子鉄心25→背面固定子鉄心21と巡る磁路を構成し、リング状のコイル10に鎖交して軸方向に発生した磁束の変化を、回転方向の磁束の変化に変えることができる。V・W相コイル11・12により発生した磁束も同様に作用させることができ、電源の位相差に対応して磁極歯部32・34を周方向に電気角で2π/3(rad)ずつずらしているため、コイル10〜12に三相交流電源を供給することにより、回転軸90を中心とする三相の回転磁界が発生し、電磁誘導作用により二次導体81に流れる電流が回転磁界と作用してトルクを発生して、カゴ形回転子80を回転駆動させることができる。更に、従来の三相誘導電動機と同様に、U・V・W相のコイルのうち、任意の2つのコイルを電源に対して入れ替え、逆接続とすることにより相回転の順序が反対となるため、カゴ形回転子80に働くトルクの方向が逆向きとなり、回転軸90を逆回転させることができる。また、コイル10〜12の巻き方向が同一でない場合は、当該磁極歯部を、回転軸の周方向に電気角でπ(rad)ずらす等により、同様に作用させることができる。  In this embodiment, for example, the magnetic flux generated by the U-phase coil 10 is generated from the outer side rear stator core 21 → side stator core 24 → magnetic pole tooth portion 30 and magnetic pole piece 40 → predetermined air gap → A magnetic path surrounding the cage rotor 80 → predetermined air gap → magnetic pole tooth portion 31 and magnetic pole piece 41 → side stator core 25 → back stator core 21 is formed, and is linked to the ring-shaped coil 10 to be connected to the axis. The change in the magnetic flux generated in the direction can be changed to the change in the magnetic flux in the rotation direction. The magnetic flux generated by the V / W phase coils 11 and 12 can be similarly actuated, and the magnetic pole teeth 32 and 34 are shifted by 2π / 3 (rad) in electrical direction in the circumferential direction corresponding to the phase difference of the power source. Therefore, by supplying a three-phase AC power source to the coils 10 to 12, a three-phase rotating magnetic field around the rotating shaft 90 is generated, and the current flowing in the secondary conductor 81 due to the electromagnetic induction action becomes a rotating magnetic field. Acting to generate torque, the cage rotor 80 can be driven to rotate. Furthermore, as with conventional three-phase induction motors, the phase rotation order is reversed by replacing any two of the U, V, and W phase coils with the power supply and making reverse connections. The direction of the torque acting on the cage rotor 80 is reversed, and the rotating shaft 90 can be rotated in the reverse direction. In addition, when the winding directions of the coils 10 to 12 are not the same, the magnetic pole teeth can be similarly actuated by, for example, shifting the magnetic pole teeth by π (rad) by an electrical angle in the circumferential direction of the rotating shaft.

上述のような構成によれば、コイルエンドに相当する部分が存在しないため、コイルの銅線使用量を減らして銅損を低減することができ、三相誘導電動機の効率が向上し、コストダウンや小形・軽量化を実現することができる。また、各相のコイル数は最小限各1個で済むため、コイルの巻線作業及び端末処理を大幅に簡略化することができ生産性の向上に寄与することができ、更に、側面固定子鉄心と磁極片の内周側の寸法精度を向上させることができ、ブリッジ部分の寸法、形状を最適化することにより、漏れ磁束によるギャップ磁束密度の低下を抑制しながら、磁極片の剛性を向上させることにより振動・騒音の発生を低減することができる。 According to the configuration as described above, since there is no portion corresponding to the coil end, it is possible to reduce the copper loss by reducing the amount of copper wire used in the coil, improve the efficiency of the three-phase induction motor, and reduce the cost. And small size and light weight can be realized. Further, since the number of phases of the coils requires only one each minimum, can contribute the windings of the coil working and terminal treatment greatly can simplified improvement of productivity, further, side stator Dimensional accuracy on the inner circumference side of the iron core and pole piece can be improved, and by optimizing the dimensions and shape of the bridge part, the rigidity of the pole piece is improved while suppressing a decrease in gap magnetic flux density due to leakage flux Therefore, the generation of vibration and noise can be reduced.

実施の形態3.
図9は、この発明による誘導電動機の実施の形態を示している。実施の形態では、上述のような実施の形態の構成を実現する手段として、固定子鉄心の一部を、板状磁性部材を用いて積層一体化するものである。
Embodiment 3 FIG.
FIG. 9 shows Embodiment 3 of the induction motor according to the present invention. In the third embodiment, as a means for realizing the configuration of the above-described embodiment, a part of the stator core is laminated and integrated using a plate-like magnetic member.

図9は、コイル10(図中省略)の側面固定子鉄心24・25を実施の形態1あるいは実施の形態2と同様に、図1あるいは図6の反負荷側から負荷側(軸端側)へ透かして見た図を示す。図9(a)の側面固定子鉄心24には磁極歯部30が形成されており、図9(b)の側面固定子鉄心24には磁極歯部30に隣接して磁極片41が、ブリッジ部分Eにより連結されて一体に形成されている。図9(d)の側面固定子鉄心25にも同様に、磁極歯部31に隣接して磁極片40が、ブリッジ部分Eにより連結されて一体に形成され、図9(e)の側面固定子鉄心25には磁極歯部31が形成されている。図9(c)は、磁極片40と磁極片41が、ブリッジ部分Eにより連結されて一体に形成されたものであり、側面固定子鉄心24と25の間に挟むようにして支持されるものである。  9 shows the side stator cores 24 and 25 of the coil 10 (omitted in the drawing) from the anti-load side to the load side (shaft end side) in FIG. 1 or FIG. 6 as in the first or second embodiment. The figure seen through is shown. A magnetic pole tooth portion 30 is formed on the side stator core 24 of FIG. 9A, and a magnetic pole piece 41 is adjacent to the magnetic pole tooth portion 30 on the side stator core 24 of FIG. They are connected by the part E and formed integrally. Similarly, in the side stator core 25 of FIG. 9 (d), the pole piece 40 adjacent to the magnetic pole tooth portion 31 is integrally connected by the bridge portion E, and the side stator of FIG. 9 (e) is formed. A magnetic pole tooth portion 31 is formed on the iron core 25. In FIG. 9C, the pole piece 40 and the pole piece 41 are integrally formed by being connected by the bridge portion E, and are supported so as to be sandwiched between the side stator cores 24 and 25. .

図9(a)〜図9(e)の夫々の部品は、板状磁性部材をプレス加工により製作し、同時にヌキカシメ47により所要枚数を夫々積層し密着固定されるものであり、ヌキカシメの他にカシメピン・ネジ止め・溶接等により固着することもできる。他のコイルの固定子鉄心も同様に構成されており、適切な絶縁処理を施して各相のコイルを巻装後、円筒状の背面固定子鉄心21等に焼き嵌め、圧入等を行うものである。なお、背面固定子鉄心21等も板状磁性部材を用いて積層一体化して構成することができる。  Each of the parts shown in FIGS. 9A to 9E is obtained by manufacturing a plate-like magnetic member by pressing, and simultaneously laminating and fixing the required number of pieces by means of a squeeze 47. It can also be fixed by caulking pins, screwing, welding or the like. The stator cores of the other coils have the same structure, and after applying appropriate insulation treatment and winding the coils of each phase, they are shrink-fitted into the cylindrical back stator core 21 and the like and press-fitted. is there. Note that the back stator core 21 and the like can also be configured by being laminated and integrated using a plate-like magnetic member.

上述のような製法によれば、高精度な固定子鉄心を安価で容易に製作することができるため、誘導電動機の特性と生産性が向上し、コストダウンを実現することができる。なお、上述の製法とは別に、圧粉磁心を用いて固定子鉄心を製作することもできる。  According to the manufacturing method as described above, since a highly accurate stator core can be easily manufactured at low cost, the characteristics and productivity of the induction motor can be improved, and the cost can be reduced. In addition to the above-described manufacturing method, a stator core can be manufactured using a dust core.

実施の形態1〜実施の形態3は、単相・三相誘導電動機の極数が4極の場合をこの発明に適用したが、この発明による誘導電動機は、これ以外の極数を有する場合に対しても有効である。そして、この発明による誘導電動機は、従来の誘導電動機のように固定子の内径寸法・スロット数等に左右されることなく、最適な極数の電動機を容易に得ることができる。また、この発明による誘導電動機は、コイル部分が露出しないためビルトイン型にも適しており、更に各コイルが独立して巻装されるため、低電圧機種においてはワニス処理等が不要となり対環境性に優れ、高電圧機種においても絶縁処理を容易に行うことができ、廃却時には材料の分離・再利用が容易である。更にまた、この発明による誘導電動機は、従来の誘導電動機と同様にインバータ駆動等により可変速運転を行うことも可能である。Although the first to third embodiments are applied to the present invention when the number of poles of the single-phase / three-phase induction motor is four, the induction motor according to the present invention has a different number of poles. Also effective. The induction motor according to the present invention can easily obtain an electric motor having the optimum number of poles without being influenced by the inner diameter dimension of the stator, the number of slots, and the like, unlike the conventional induction motor. In addition, the induction motor according to the present invention is suitable for a built-in type because the coil portion is not exposed, and furthermore, since each coil is wound independently, varnish processing or the like is not required in low-voltage models. It can be easily insulated even in high-voltage models and can be easily separated and reused when discarded. Furthermore, the induction motor according to the present invention can be operated at a variable speed by an inverter drive or the like as in the case of a conventional induction motor.

発明の効果The invention's effect

以上の説明から理解される如く、この発明による誘導電動機によれば、固定子に軸方向に分割してリング状に複数のコイルを巻装し、各コイルの外周側と軸方向両端側に夫々磁気回路を構成する固定子鉄心を設け、この内周側に、磁極片を備えた磁極歯部を回転軸の周方向に所定の角度ずらして、極間をブリッジ部分で連結し軸方向に重ね合わせたように構成することにより、コイルエンドに相当する部分が存在しないため、コイルの銅線使用量が減少し、銅損も低減することができるため、誘導電動機の効率が向上し、コストダウンや小形・軽量化を実現することができる。また、固定子鉄心の寸法精度と剛性が向上し、振動・騒音を低減することができる。 As can be understood from the above description, according to the induction motor according to the present invention, the stator is axially divided and wound with a plurality of coils in a ring shape, and each coil is provided on the outer peripheral side and the axially opposite ends. A stator core that constitutes the magnetic circuit is provided, and on the inner circumference side, the magnetic pole tooth portion provided with the magnetic pole piece is shifted by a predetermined angle in the circumferential direction of the rotating shaft, and the poles are connected by a bridge portion and overlapped in the axial direction. By combining them together, there is no portion corresponding to the coil end, so the amount of copper wire used in the coil can be reduced and copper loss can be reduced, improving the efficiency of the induction motor and reducing costs. And small size and light weight can be realized. In addition, the dimensional accuracy and rigidity of the stator core can be improved, and vibration and noise can be reduced.

実施の形態1における単相誘導電動機の軸方向半断面側面図である。FIG. 3 is a side view of a half cross section in the axial direction of the single-phase induction motor in the first embodiment. 実施の形態1における単相誘導電動機の接続図である。FIG. 2 is a connection diagram of a single-phase induction motor in the first embodiment. 実施の形態1における側面固定子鉄心の磁極歯部の構成を、反負荷側から負荷側へ透かして見た図である。It is the figure which looked at the structure of the magnetic pole tooth part of the side stator iron core in Embodiment 1 through the load side from the non-load side. 実施の形態1における側面固定子鉄心と磁極片の構成を示す。The structure of the side stator core and the pole piece in the first embodiment is shown. 実施の形態1及び実施の形態2における側面固定子鉄心と磁極片の構成を示す。The structure of the side stator core and the pole piece in the first embodiment and the second embodiment is shown. 実施の形態2における三相誘導電動機の軸方向半断面側面図である。 FIG. 5 is a side view of a half cross section in the axial direction of a three-phase induction motor in a second embodiment. 実施の形態2における三相誘導電動機の接続図である。 FIG. 5 is a connection diagram of a three-phase induction motor in a second embodiment. 実施の形態における側面固定子鉄心の磁極歯部の構成を、反負荷側から負荷側へ透かして見た図である。 It is the figure which saw through the structure of the magnetic pole tooth part of the side stator iron core in Embodiment 2 from the anti-load side to the load side. 実施の形態における側面固定子鉄心と磁極片の構成を、反負荷側から負荷側へ透かして見た図である。It is the figure which looked at the structure of the side stator iron core and pole piece in Embodiment 3 through the load side from the non-load side. 従来例の三相誘導電動機を示し、(a)は軸方向半断面側面図、(b)は巻線展開図である。The three-phase induction motor of a prior art example is shown, (a) is an axial direction half cross-sectional side view, (b) is a winding development view.

10〜12 固定子コイル、 13 リード線、 14 コンデンサ、 15 単相電源、 16 三相電源、 20 固定子、 21〜23 背面固定子鉄心、 24〜29 側面固定子鉄心、 30〜35 磁極歯部、 36 マッチマーク、 40〜45 磁極片、 47 ヌキカシメのカシメ位置、 80 カゴ形回転子、 81 二次導体、 90 回転軸、 91 軸受部材、 92 ブラケット、 93 フレーム、 110 従来のコイル、 120 従来の固定子鉄心、 a 所定の隙間・寸法、 E ブリッジ部分、 h コイルエンドの長さ、 s ブリッジ部分の径方向の厚さ、 t 極間部分の巾10-12 Stator coil, 13 Lead wire, 14 Capacitor, 15 Single-phase power supply, 16 Three-phase power supply, 20 Stator, 21-23 Rear stator core, 24-29 Side stator core, 30-35 Magnetic pole teeth , 36 Match mark, 40-45 pole piece, 47 Crushing position of scooping, 80 cage rotor, 81 secondary conductor, 90 rotating shaft, 91 bearing member, 92 bracket, 93 frame, 110 conventional coil, 120 conventional coil Stator core, a Predetermined gap / dimension, E bridge part, h coil end length, s bridge part radial thickness, t inter-pole width

Claims (1)

回転子の外側に、所定のエヤーギャップを介して対向する磁極歯部を備えた固定子を配置したインナーロータ形の誘導電動機において、前記固定子に、軸方向に分割してリング状に複数のコイルを巻装し、前記各コイルのリングの中心と回転軸の中心が概ね一致するように配置して、前記各コイルの外周側と軸方向両端側に夫々磁気回路を構成する固定子鉄心を設け前記固定子鉄心の内周側には、前記磁極歯部が当該コイルを挟んで回転軸の周方向に電気角でπ(rad)ずれた位置に交互に形成されており、更に前記各磁極歯部には磁極片を備え、前記磁極片と前記磁極歯部で形成される極間が前記磁極片及び前記磁極歯部と同一の材料で形成されたブリッジ部分で連結され、前記各コイルの前記磁極歯部を回転軸の周方向に所定の角度ずらして、軸方向に重ね合わせたように構成されていることを特徴とする誘導電動機。In an inner rotor type induction motor in which a stator having magnetic pole teeth facing each other through a predetermined air gap is disposed outside a rotor, the stator is divided into a plurality of rings in the form of rings divided in the axial direction. The stator cores that wrap the coils and are arranged so that the center of the ring of each coil and the center of the rotating shaft substantially coincide with each other, and that constitute the magnetic circuit on each of the outer peripheral side and the both axial ends of each coil. provided, wherein the inner peripheral side of the stator core, the magnetic pole teeth are formed alternately at positions displaced [pi (rad) in electrical angle in the circumferential direction of the rotary shaft across the coil, further wherein each The magnetic pole tooth portion includes a magnetic pole piece, and the poles formed by the magnetic pole piece and the magnetic pole tooth portion are connected by a bridge portion formed of the same material as the magnetic pole piece and the magnetic pole tooth portion, and each coil The magnetic pole tooth portion of the rotary shaft has a predetermined angle in the circumferential direction of the rotating shaft Rashi, the induction motor which is characterized by being configured as superimposed in the axial direction.
JP2003385925A 2003-10-12 2003-10-12 Induction motor having a ring-shaped stator coil Expired - Fee Related JP4415176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385925A JP4415176B2 (en) 2003-10-12 2003-10-12 Induction motor having a ring-shaped stator coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385925A JP4415176B2 (en) 2003-10-12 2003-10-12 Induction motor having a ring-shaped stator coil

Publications (2)

Publication Number Publication Date
JP2005124378A JP2005124378A (en) 2005-05-12
JP4415176B2 true JP4415176B2 (en) 2010-02-17

Family

ID=34616120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385925A Expired - Fee Related JP4415176B2 (en) 2003-10-12 2003-10-12 Induction motor having a ring-shaped stator coil

Country Status (1)

Country Link
JP (1) JP4415176B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072854A (en) * 2006-09-15 2008-03-27 Hitachi Industrial Equipment Systems Co Ltd Multiphase claw pole type motor
JP4881708B2 (en) * 2006-12-07 2012-02-22 日立オートモティブシステムズ株式会社 Vehicle alternator and rotating electric machine
JP4868290B2 (en) * 2007-06-07 2012-02-01 トヨタ車体株式会社 Double stator in-wheel motor
JP2009159738A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Permanent magnet synchronous motor
JP5161195B2 (en) * 2009-11-25 2013-03-13 日本電産サンキョー株式会社 motor
CN102931791B (en) * 2012-11-08 2015-05-27 浙江西子富沃德电机有限公司 Lifting electrical motor for electrical forklift
JP6251109B2 (en) * 2014-04-03 2017-12-20 アスモ株式会社 Rotor and motor
JP7122831B2 (en) * 2018-02-07 2022-08-22 株式会社日立産機システム Outer rotor type rotary electric machine
CN112615448B (en) * 2020-12-23 2025-03-18 汉纬尔机械(上海)有限公司 An asymmetric main rotor with an inclined surface

Also Published As

Publication number Publication date
JP2005124378A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4158024B2 (en) Induction motor
JP4926107B2 (en) Rotating electric machine
US6867525B2 (en) Brushless permanent magnet machine with axial modules of rotor magnetization skew and method of producing the same
US6064132A (en) Armature structure of a radial rib winding type rotating electric machine
US10298084B2 (en) Rotating electric machine for vehicle
JP2002262528A5 (en)
WO2015104893A1 (en) Axial gap type motor
JP2002369467A (en) Dynamo-electric machine and pulley drive device using the dynamo-electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP7359597B2 (en) Coils, stators, and motors
JP7292418B2 (en) Rotating electric machine stator and rotating electric machine
JP4415176B2 (en) Induction motor having a ring-shaped stator coil
JP2005151785A (en) Synchronous generator having annular armature coil
JP2001309625A (en) Motor of permanent-magnet type
JP2004015998A (en) Permanent magnet version rotating machine with three-phase stator winding divided in axial direction
JP4482918B2 (en) Permanent magnet type electric motor having ring-shaped stator coil
JP2007202333A (en) Rotating electric machine
JP2003333811A (en) Induction motor having a plurality of axially divided stator windings
JP2009027849A (en) Permanent magnet type rotary electric machine
CN113615041A (en) Rotary motor
RU2246167C1 (en) Face-type electrical machine
WO2015195800A1 (en) High speed induction machine with fractional-slot tooth-coil winding
CN114552836A (en) Rotating electrical machine
JP2005253280A (en) Outer rotor type brushless dc motor and ac servo motor having annular stator coil
RU2246168C1 (en) Face-type electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

R150 Certificate of patent or registration of utility model

Ref document number: 4415176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees