[go: up one dir, main page]

JP4413715B2 - Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof - Google Patents

Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof Download PDF

Info

Publication number
JP4413715B2
JP4413715B2 JP2004248321A JP2004248321A JP4413715B2 JP 4413715 B2 JP4413715 B2 JP 4413715B2 JP 2004248321 A JP2004248321 A JP 2004248321A JP 2004248321 A JP2004248321 A JP 2004248321A JP 4413715 B2 JP4413715 B2 JP 4413715B2
Authority
JP
Japan
Prior art keywords
glass tube
quartz glass
optical fiber
preform
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248321A
Other languages
Japanese (ja)
Other versions
JP2006062915A (en
Inventor
正則 鈴木
健男 円谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2004248321A priority Critical patent/JP4413715B2/en
Publication of JP2006062915A publication Critical patent/JP2006062915A/en
Application granted granted Critical
Publication of JP4413715B2 publication Critical patent/JP4413715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ、光ファイバ用プリフォーム、それらの製造に使用される石英ガラス管、ならびにそれらの製造方法に関する。 The present invention relates to an optical fiber, a preform for an optical fiber, a quartz glass tube used for manufacturing them, and a manufacturing method thereof.

特に多芯化された光ファイバケーブルの接続作業時に重視される光ファイバの特性として光ファイバの曲がりがあり、この曲がりの指標としてファイバカール( Fiber curl )が用いられている。これは光ファイバに力が加わらない状態での曲がりを曲率半径(m)で表したもので、値が大きいほど良い特性である。
ファイバカールを改善する方法として、特許第3160422号においては光ファイバの線引機の改良によって10mのファイバカールが得られるとされている。
In particular, optical fiber bending is an important characteristic of optical fibers when connecting multi-fiber optical fiber cables, and fiber curl is used as an index of the bending. This is the bend in a state where no force is applied to the optical fiber, expressed by the radius of curvature (m). The larger the value, the better the characteristic.
As a method for improving the fiber curl, Japanese Patent No. 3160422 states that a fiber curl of 10 m can be obtained by improving the optical fiber drawing machine.

また石英ガラス系の光ファイバの主たる製造方法であるVAD法( Vapor phase axial deposition method )またはMCVD法( Modified chemical vapor deposition method ) などにより、コア部のみあるいはクラッドの一部を含むコアロッドを作成し、そのコアロッドを石英ガラス管に挿入して加熱溶融一体化を行うロッドインチューブ法に関して、WO03/080522A1においては、精度の高い機械研削石英ガラス管を使用する事でファイバカールが6m以上の光ファイバが得られるとされており、石英ガラス管の製造方法としてはOVD法( Outer vapor phase deposition method )が好適であるとされている。
特許第3160422号公報
In addition, a core rod including only the core part or a part of the clad is created by the VAD method (Vapor phase axial deposition method) or the MCVD method (Modified chemical vapor deposition method), which is the main manufacturing method of silica glass optical fiber, With respect to the rod-in-tube method in which the core rod is inserted into a quartz glass tube and integrated by heating and melting, in WO03 / 080522A1, an optical fiber having a fiber curl of 6 m or more can be obtained by using a high-precision machine-ground quartz glass tube. It is said that an OVD method (Outer vapor phase deposition method) is suitable as a method for producing a quartz glass tube.
Japanese Patent No. 3160422

しかしながら、OVD法により製造した石英ガラス母材(マザーインゴット)に機械研削を施して作成した石英ガラス管を直接またはこの石英ガラス管を溶融延伸して作成した石英ガラス管を使用して光ファイバを製造すると、いかに石英ガラス管の寸法精度を良くし且つ改良された線引機を使用しても、ファイバカールが小さくなる場合があるという問題点があった。
原因を調査したところ、OVD法によるスート堆積はターゲットを芯とした同心円の層構造を形成し、この層構造はスート体のガラス化後にも脈理として残留するが、図1に示すように、この層状脈理の中心1と研削加工後の石英ガラス管の中心2とのズレが大きい場合にファイバカールが悪化する事が知見された。なお、図1において、細線はマザーインゴットの層状脈理を、太線は研削加工後の石英ガラス管の内外周を示している。
However, an optical fiber can be produced using a quartz glass tube made by mechanically grinding a quartz glass base material (mother ingot) manufactured by the OVD method directly or by melting and stretching this quartz glass tube. When manufactured, there is a problem that even if the dimensional accuracy of the quartz glass tube is improved and an improved drawing machine is used, the fiber curl may be reduced.
When the cause was investigated, soot deposition by the OVD method formed a concentric layered structure centered on the target, and this layered structure remains as a striae after vitrification of the soot body, but as shown in FIG. It has been found that the fiber curl deteriorates when the difference between the center 1 of the layered striae and the center 2 of the quartz glass tube after grinding is large. In FIG. 1, the thin line indicates the layered striae of the mother ingot, and the thick line indicates the inner and outer periphery of the quartz glass tube after grinding.

本発明は、この知見に基づくものであり、上記層構造の脈理の中心と研削加工後の石英ガラス管の中心とのズレを極力小さくできる光ファイバ用石英ガラス管の製造方法およびその製造方法により得られた光ファイバ用石英ガラス管を提供すること、及び、ズレの少ない石英ガラス管を使用する事により得られる、良好なファイバカールの値を持つ光ファイバ用プリフォーム及び光ファイバの製造方法およびその製造方法により得られた光ファイバプリフォームおよび光ファイバを提供する事を課題とする。   The present invention is based on this finding, and a method for manufacturing a quartz glass tube for optical fiber and a method for manufacturing the same, which can minimize the deviation between the center of striae of the layer structure and the center of the quartz glass tube after grinding. An optical fiber preform having a good fiber curl value and a method for producing the optical fiber obtained by using the silica glass tube for optical fiber obtained by the above method Another object is to provide an optical fiber preform and an optical fiber obtained by the manufacturing method.

上記の課題は、下記(1)〜()のいずれかの構成により達成される。
(1)
スート法により作成したスート体を焼結透明ガラス化して作成したマザーインゴットに機械研削を施して作成した石英ガラス管に直接、または該石英ガラス管を溶融延伸加工を行った後に、コア部のみから成るコアロッド、またはクラッドの一部0000を含むコアロッドを挿入し、コアロッドと石英ガラス管を溶融一体化するロッドインチューブ法を用いてのファイバカールが20m以上である光ファイバまたはファイバカールが20m以上である光ファイバ用プリフォームの製造方法において、石英ガラス管の断面に観察される同心円状の層状脈理の中心と石英ガラス管の外径の中心とのズレ量が石英ガラス管の平均外径の1%以下である石英ガラス管を使用する事を特徴とする光ファイバまたは光ファイバ用プリフォームの製造方法。
(2)
コアロッドと石英ガラス管との溶融一体化と同時に目的の光ファイバの外径まで延伸し、直接光ファイバを得る上記(1)記載の光ファイバの製造方法。
(3)
コアロッドと石英ガラス管との溶融一体化のみ、または同時に延伸を行ってプリフォームを作成する上記(1)記載の光ファイバ用プリフォームの製造方法。
(4)
コアロッドと石英ガラス管との溶融一体化のみ、または同時に延伸を行ってプリフォームを作成し、その後該プリフォームから線引機によって光ファイバを製造する上記(1)記載の光ファイバの製造方法。

耐熱性の円筒状または円柱状ターゲットを回転させながら、ターゲットの外周に石英ガラスのスートを堆積させてスート体を作成し、焼結透明ガラス化を行って作成した円筒状石英ガラス製マザーインゴットに機械研削を施し、石英ガラス管を得る光ファイバ用石英ガラス管の製造方法において、最初にマザーインゴットの両端部の形状不良部より内側の形状安定部分の内径を保持して外周を研削し、次に研削済みの外周を保持して内周を研削し、石英ガラス管の断面に観察される同心円状の層状脈理の中心と、研削後の石英ガラス管の外径の中心とのズレ量が研削後の石英ガラス管の平均外径の1%以下である石英ガラス管を得る事を特徴とする光ファイバおよび/または光ファイバ用プリフォーム用石英ガラス管の製造方法。
(6)
前記スート体のOH基除去処理を行う事を特徴とする上記(5)記載の光ファイバおよび/または光ファイバ用プリフォーム用石英ガラス管の製造方法。
(7)
研削後に加熱溶融延伸を行う、上記(5)または(6)に記載の光ファイバおよび/または光ファイバ用プリフォーム用石英ガラス管の製造方法。
Said subject is achieved by the structure in any one of following (1)-( 7 ).
(1)
The soot body made by the soot method is sintered and made into transparent glass. The mother ingot made by mechanical grinding is directly applied to the quartz glass tube made, or after the quartz glass tube is melt-drawn, and only from the core part made core rod or a part of the cladding to insert the core rod containing the 0000, with the core rod and the quartz glass tube fiber curl using rod-in-tube method which melts integrated optical fiber or fiber curl is at least 20m or more 20m, In an optical fiber preform manufacturing method, the amount of deviation between the center of the concentric layered striae observed in the cross section of the quartz glass tube and the center of the outer diameter of the quartz glass tube is equal to the average outer diameter of the quartz glass tube. A method of manufacturing an optical fiber or a preform for optical fiber, wherein a quartz glass tube of 1% or less is used.
(2)
The method for producing an optical fiber according to the above (1), wherein the core rod and the quartz glass tube are melted and integrated and simultaneously drawn to the outer diameter of the target optical fiber to directly obtain the optical fiber.
(3)
The method for producing a preform for an optical fiber according to the above (1), wherein the preform is prepared by performing melt-integration of the core rod and the quartz glass tube only or simultaneously, and drawing.
(4)
The method for producing an optical fiber according to the above (1), wherein a preform is produced by performing melt-integration of the core rod and the quartz glass tube only or simultaneously, and then producing an optical fiber from the preform by a drawing machine.
( 5 )
While rotating a heat-resistant cylindrical or columnar target, a soot body is created by depositing soot of quartz glass on the outer periphery of the target, and a sintered quartz vitrification is applied to the cylindrical quartz glass mother ingot created. In the method for manufacturing a silica glass tube for optical fiber, which is mechanically ground to obtain a silica glass tube, the outer periphery is first ground while maintaining the inner diameter of the shape-stable part inside the defective shape part at both ends of the mother ingot, and then The inner circumference of the quartz glass tube is ground while holding the ground outer circumference, and the amount of deviation between the center of the concentric layered striae observed in the cross section of the quartz glass tube and the center of the outer diameter of the quartz glass tube after grinding is A method for producing a quartz glass tube for optical fiber and / or preform for optical fiber, characterized in that a quartz glass tube having an average outer diameter of 1% or less of the quartz glass tube after grinding is obtained .
(6)
The method for producing a quartz glass tube for an optical fiber and / or optical fiber preform as described in ( 5) above, wherein OH group removal treatment of the soot body is performed.
(7)
The method for producing a quartz glass tube for optical fiber and / or preform for optical fiber according to the above ( 5) or (6) , wherein the melt-drawing is performed after grinding.

焼結ガラス化後のマザーインゴットは、図2(a)のように、外表面はスートの堆積量や密度のバラツキが原因となり、ターゲットに抱き付くようにガラス化される内表面よりも、形状が安定していない。また両端部はスート堆積の不均一などにより、内外表面ともに形状が乱れている。本発明によれば、両端部の形状不良部を避け形状が安定している内径を基準に研削を開始する事により、焼結ガラス化後の中心と研削上がりの中心のズレを最小に押さえながら研削後の寸法精度も良好で、ファイバカールを抑えた光ファイバに好適な石英ガラス管を得る事が出来る。   As shown in Fig. 2 (a), the mother ingot after vitrification is shaped more than the inner surface that is vitrified so as to be hugged by the target due to variations in the soot accumulation amount and density. Is not stable. In addition, both the inner and outer surfaces are disordered due to uneven soot deposition at both ends. According to the present invention, grinding is started on the basis of the inner diameter where the shape is stable while avoiding the defective shape portions at both ends, and the deviation between the center after sintered glass formation and the center after grinding is minimized. A silica glass tube suitable for an optical fiber with excellent dimensional accuracy after grinding and suppressing fiber curling can be obtained.

本発明によれば、外径100〜250mm、内径40〜80mm、長さ1.5〜3.5m程度のOVD法により作成した石英ガラス管において、該ズレ量を1%以下に押さえる事が出来る。また、上記ズレ量が石英ガラス管の外径の1%以下の石英ガラス管を使用して光ファイバを作成すると、20m以上のファイバカールが得られる。
なお、研削後の石英ガラス管に加熱溶融延伸加工を加えた後で使用しても、本発明の効果に変わりはない。
また、VAD法によって作成されたマザーインゴットの場合などであっても、断面に層構造の脈理が残存するため、このマザーインゴットをコアドリル等により穿孔して石英ガラス管を作成する場合にズレを生じると、良好なファイバカールは得られない。
According to the present invention, in a quartz glass tube made by the OVD method having an outer diameter of 100 to 250 mm, an inner diameter of 40 to 80 mm, and a length of about 1.5 to 3.5 m, the deviation can be suppressed to 1% or less. . Further, when an optical fiber is produced using a quartz glass tube having a displacement of 1% or less of the outer diameter of the quartz glass tube, a fiber curl of 20 m or more is obtained.
In addition, even if it uses it, after adding a hot-melt extending | stretching process to the quartz glass tube after grinding, the effect of this invention does not change.
In addition, even in the case of a mother ingot made by the VAD method, the striae of the layer structure remain in the cross section, so there is a gap when drilling this mother ingot with a core drill etc. to make a quartz glass tube. When it occurs, good fiber curl cannot be obtained.

以下、図2以降を参照して、本発明の実施の態様による光ファイバ用石英ガラス管の製造方法について説明する。
先ず、最初に図2(b)のように両端の形状不良部を切り落とす。次に、図2(c)のように両端の内径を拡径型チャック10で保持して回転させながら外表面を回転砥石12等で研削する。なお、両端の形状不良部を切り落とさずに、図3のように内径保持用拡径型チャックを取り付けたシャフト10aを長くして、形状不良部を避けて内径を保持しても良い。次に、図2(d)のように形状の整った部分の外周をチャック14等で保持して、シャフトの先端に取り付けられた回転砥石16等により内表面を研削する。各研削には、一般的な外周研削機やホーニングマシンを使用すれば良いが、本発明は研削装置及び保持治具を規定するものでは無く、十分な研削精度が得られるものであればどのような研削手段を用いても良い。
Hereinafter, with reference to FIG. 2 and subsequent drawings, a method for manufacturing a quartz glass tube for an optical fiber according to an embodiment of the present invention will be described.
First, as shown in FIG. 2B, the shape defect portions at both ends are cut off. Next, as shown in FIG. 2C, the outer surface is ground with a rotating grindstone 12 or the like while rotating with the inner diameters of both ends held by the enlarged chuck 10. Instead of cutting off the defective shape portions at both ends, the shaft 10a to which the enlarged-diameter retaining chuck for maintaining the inner diameter is attached as shown in FIG. 3 may be lengthened to hold the inner diameter while avoiding the defective shape portion. Next, as shown in FIG. 2D, the outer periphery of the well-shaped portion is held by the chuck 14 or the like, and the inner surface is ground by the rotating grindstone 16 or the like attached to the tip of the shaft. For each grinding, a general peripheral grinding machine or honing machine may be used. However, the present invention does not specify a grinding apparatus and a holding jig, and any grinding machine capable of obtaining sufficient grinding accuracy can be used. A simple grinding means may be used.

もしマザーインゴットに曲がりがある場合は、図4のようにグラファイト製等のVミゾ付きの板の上にマザーインゴットを寝かせて、全体を加熱して粘度を下げ、自重によりマザーインゴットがグラファイト板に沿う事を利用して曲がりを修正した後に、機械研削加工を施せば良い。また、曲がりが図5のように一ヶ所で単純な形状であれば、曲がりの変極点で切断し、それぞれに研削加工を施せば良い。また、一本の状態で使用したければ溶接して繋いでやれば良い。   If the mother ingot is bent, lay the mother ingot on a plate made of graphite or other V groove as shown in Fig. 4 and heat the whole to lower the viscosity. What is necessary is just to perform a mechanical grinding process, after correcting bending | flexion using along. Further, if the bend is a simple shape at one place as shown in FIG. 5, it may be cut at the inflection point of the bend and subjected to grinding. Moreover, what is necessary is just to weld and connect if you want to use it in one state.

以上により、断面に観察される同心円状の層状脈理の中心と外径の中心とのズレ量が石英ガラス管の平均外径の1%以下である石英ガラス管が得られる。
この層構造の脈理は、単に偏光フィルタを用いただけのような簡易的な歪み観察装置で石英ガラス管端面を観察すれば、図6のように観察可能である。
図6において、太線は石英ガラス管の外周を表し、細線は層構造の脈理を表している。1は層構造脈理の中心、2は石英ガラス管の外周の中心を示し、3は層構造脈理の中心と石英ガラス管の中心のズレ量である。本特許では、このズレ量を4の石英ガラス管の外径で除算し、百分率表示として外径に対する比率として規定する。
As described above, a quartz glass tube in which the amount of deviation between the center of the concentric layered striae observed in the cross section and the center of the outer diameter is 1% or less of the average outer diameter of the quartz glass tube is obtained.
The striae of this layer structure can be observed as shown in FIG. 6 by observing the end face of the quartz glass tube with a simple strain observation device such as simply using a polarizing filter.
In FIG. 6, the thick line represents the outer periphery of the quartz glass tube, and the thin line represents the striae of the layer structure. 1 is the center of the layer striae, 2 is the center of the outer periphery of the quartz glass tube, and 3 is the amount of deviation between the center of the layer striae and the center of the quartz glass tube. In this patent, this deviation amount is divided by the outer diameter of the quartz glass tube of 4 and defined as a ratio to the outer diameter as a percentage display.

なお、研削後の石英ガラス管を、常法により加熱溶融延伸加工して、管径を小さくしてから使用しても、ズレには影響が無いため問題は無い。
以上のようにして得られたズレ量1%以下の石英ガラス管を用い通常のロッドインチューブ法により光ファイバおよび/または光ファイバ用プリフォームを製造することができ、得られた光ファイバは、20m以上のファイバカールを達成できる。
Even if the quartz glass tube after grinding is heated, melted and stretched by a conventional method to reduce the tube diameter, there is no problem because the displacement is not affected.
An optical fiber and / or an optical fiber preform can be produced by a normal rod-in-tube method using a quartz glass tube having an amount of deviation of 1% or less obtained as described above. A fiber curl of 20 m or more can be achieved.

マルチバーナーのOVD法により外径300mmのスート体を作成し、脱水処理後にゾーンメルト法によりガラス化を行いマザーインゴットを作成した。このマザーインゴットの片端8cm及び反対側は10cmの部分の内径がガラス化時、ターゲットに抱きついていなかったため、その部分を切断除去し、その内径を拡径タイプのコレットチャックで保持し、回転させながらNC旋盤により外周を回転ダイヤモンド砥石に用いて研削した。次に研削された外周の両端部を通常のチャックにより保持し、内周を先端にダイヤモンド砥石を取り付けたシャフトを挿入する事によって研削し、外径180mmで内径45mm、長さ3mの真直な石英ガラス管に仕上げた。この石英ガラス管の両端及び中央付近から計3箇所の輪切りサンプルを採取して、干渉計を用いて層構造の脈理の中心と石英ガラス管の中心のズレ量を求めたところ、ズレ量の最大は0.7mmであった。これは、機械研削後の外径の約0.4%である。   A soot body having an outer diameter of 300 mm was prepared by the multi-burner OVD method, and after dehydration, it was vitrified by the zone melt method to prepare a mother ingot. While the inside diameter of this mother ingot is 8cm and the other side is 10cm, the inner diameter was not hugged to the target when it was vitrified, so that part was cut and removed, and the inner diameter was held with an enlarged collet chuck and rotated. The outer periphery was ground with a rotating diamond grindstone using an NC lathe. Next, both ends of the ground outer periphery are held by a normal chuck, and the inner periphery is ground by inserting a shaft with a diamond grindstone attached to the tip, and a straight quartz having an outer diameter of 180 mm, an inner diameter of 45 mm, and a length of 3 m. Finished into a glass tube. A total of three round samples were taken from both ends and near the center of this quartz glass tube, and when the amount of misalignment between the center of striae of the layer structure and the center of the quartz glass tube was determined using an interferometer, The maximum was 0.7 mm. This is about 0.4% of the outer diameter after mechanical grinding.

サンプリングにより2本となった石英ガラス管を溶接して一本にしたのち、VAD法により作成した外径42mmのコアとクラッドを含むロッドを挿入し、電気炉にてコラプスと同時に外径125μmまで延伸し、シングルモード光ファイバを作成した。得られた光ファイバのファイバカールを測定したところ、最小で83mと良好な値であった。   After welding the quartz glass tube that became two by sampling, the rod with 42mm outer diameter core and clad made by VAD method is inserted, and the outer diameter is 125μm at the same time as the collapse in the electric furnace Stretched to produce a single mode optical fiber. When the fiber curl of the obtained optical fiber was measured, it was a good value of 83 m at the minimum.

シングルバーナーのOVD法により外径200mmのスート体を作成し、脱水処理後にゾーンメルト法によりガラス化を行いマザーインゴットを作成した。このマザーインゴットの片端4cm及び反対側は6cmの部分の内径がガラス化時、ターゲットに抱きついておらず、形状が安定していなかったため、拡径タイプのコレットチャックを両側共に端部から8cmまで挿入した場所で保持し、回転させながらNC旋盤により外周を回転ダイヤモンド砥石に用いて研削した。次に研削された外周の両端部を通常の外周チャックにより保持し、内周を先端にダイヤモンド砥石を取り付けたシャフトを挿入する事によって研削し、外径135mmで内径45mm、長さ1mの真直な石英ガラス管に仕上げた。この石英ガラス管の両端及び中央付近から計3箇所の輪切りサンプルを採取して、干渉計を用いて層構造の脈理の中心と石英ガラス管の中心のズレ量を求めたところ、ズレ量の最大は0.8mmであった。これは、機械研削後の外径の約0.6%である。   A soot body having an outer diameter of 200 mm was prepared by an OVD method using a single burner, and a mother ingot was prepared by vitrification by a zone melt method after dehydration. This mother ingot is 4cm on one end and 6cm on the opposite side. When the vitrification is vitrified, it was not hugging the target and the shape was not stable, so the expanded collet chuck was inserted from both ends to 8cm from both ends. The outer periphery was ground with a rotating diamond grindstone using an NC lathe while being held and rotated. Next, both ends of the ground outer periphery are held by a normal outer peripheral chuck and ground by inserting a shaft with a diamond grindstone attached to the inner periphery at the tip, and straight with an outer diameter of 135 mm, an inner diameter of 45 mm, and a length of 1 m. Finished in a quartz glass tube. A total of three round samples were taken from both ends and near the center of this quartz glass tube, and when the amount of misalignment between the center of striae of the layer structure and the center of the quartz glass tube was determined using an interferometer, The maximum was 0.8 mm. This is about 0.6% of the outer diameter after mechanical grinding.

サンプリングにより2本となった石英ガラス管に、それぞれMCVD法により作成した外径42mmのコアとクラッドを含むロッドを挿入し、電気炉にてコラプスと同時に延伸して外径80mmのプリフォームを得た。このプリフォームを線引機により外径125μmのシングルモード光ファイバを作成し、ファイバカールを測定したところ、最小で54mと良好な値であった。   Insert a rod with 42 mm outer diameter core and clad made by the MCVD method into two quartz glass tubes that have been sampled, and draw simultaneously with collapse in an electric furnace to obtain a preform with an outer diameter of 80 mm. It was. A single mode optical fiber having an outer diameter of 125 μm was prepared from the preform using a wire drawing machine, and the fiber curl was measured.

比較例1Comparative Example 1

実施例1と全く同じ方法で作成したマザーインゴットの両端部から8cmの部分の出来るだけ形状が安定している部分を選んで外周チャックにより保持し、内周を先端にダイヤモンド砥石を取り付けたシャフトを挿入する事によって研削した。次に研削された内周の両端を拡径タイプのコレットチャックを用いて保持し、回転させながらNC旋盤により外周を回転ダイヤモンド砥石に用いて研削し、外径178mmで内径45mm、長さ3.1mの真直な石英ガラス管に仕上げた。この石英ガラス管の両端及び中央付近から計3箇所の輪切りサンプルを採取して、干渉計を用いて層構造の脈理の中心と石英ガラス管の中心のズレ量を求めたところ、ズレ量は最小でも4.3mmであった。これは、機械研削後の外径の約2.4%である。   A shaft in which a portion of 8 cm from the both ends of the mother ingot produced in exactly the same manner as in Example 1 is stable as much as possible is selected and held by an outer chuck, and a shaft with a diamond grindstone attached to the inner periphery at the tip is provided. Grinded by inserting. Next, both ends of the ground inner periphery are held using an expanded diameter type collet chuck, and while rotating, the outer periphery is ground using a rotating diamond grindstone by an NC lathe, and the outer diameter is 178 mm, the inner diameter is 45 mm, and the length is 3. Finished into a 1 m straight quartz glass tube. A total of three round samples were taken from both ends and near the center of this quartz glass tube, and the amount of deviation between the center of striae of the layer structure and the center of the quartz glass tube was obtained using an interferometer. The minimum was 4.3 mm. This is about 2.4% of the outer diameter after mechanical grinding.

2本となった石英ガラス管を溶接して一本にしたのち、VAD法により作成した外径41mmのコアとクラッドを含むロッドを挿入し、電気炉にてコラプスと同時に外径125μmまで延伸し、シングルモード光ファイバを作成し、ファイバカールを測定したところ、最小5.8mとなり良好ではなかった。
以上により本発明の効果が明確である。
After welding the two quartz glass tubes into one, insert a rod with a 41 mm outer diameter core and clad made by the VAD method and stretch to an outer diameter of 125 μm simultaneously with collapse in an electric furnace. When a single mode optical fiber was prepared and the fiber curl was measured, the minimum value was 5.8 m, which was not good.
As described above, the effect of the present invention is clear.

マザーインゴットの層状脈理の中心と研削加工後の中心を説明するための説明図である。It is explanatory drawing for demonstrating the center of the layered striae of a mother ingot, and the center after grinding. 図2(a)〜図2(e)は、本発明の実施の態様による光ファイバ用石英ガラス管の製造方法の一例を説明するための説明図である。FIG. 2A to FIG. 2E are explanatory views for explaining an example of a method for producing a quartz glass tube for optical fiber according to an embodiment of the present invention. 本発明の実施の態様による光ファイバ用石英ガラス管の製造方法の他の例を説明するための説明図である。It is explanatory drawing for demonstrating the other example of the manufacturing method of the quartz glass tube for optical fibers by the embodiment of this invention. 本発明の実施の態様による光ファイバ用石英ガラス管の研削加工前の曲がりの矯正方法を説明するための説明図である。It is explanatory drawing for demonstrating the correction method of the bending before the grinding process of the quartz glass tube for optical fibers by the embodiment of this invention. 本発明の実施の態様による光ファイバ用石英ガラス管の研削加工前の曲がりを避けて研削する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of grinding avoiding the bending before the grinding process of the silica glass tube for optical fibers by the embodiment of this invention. 石英ガラス管端面の脈理等を説明するための図である。It is a figure for demonstrating the striae etc. of a quartz glass tube end surface.

符号の説明Explanation of symbols

1 マザーインゴットの層状脈理の中心
2 研削加工後の中心
3 層構造脈理の中心と石英ガラス管の中心のズレ量
4 石英ガラス管の外径
10 拡径型チャック
12 回転砥石
14 チャック
16 回転砥石
1 Center of layered striae of mother ingot 2 Center after grinding 3 Aberration between center of stratum striae and center of quartz glass tube 4 Outer diameter of quartz glass tube 10 Expanded chuck 12 Rotating wheel 14 Chuck 16 Rotation Whetstone

Claims (6)

スート法により作成したスート体を焼結透明ガラス化して作成したマザーインゴットに機械研削を施して作成した石英ガラス管に直接、または該石英ガラス管を溶融延伸加工を行った後に、コア部のみから成るコアロッド、またはクラッドの一部を含むコアロッドを挿入し、コアロッドと石英ガラス管を溶融一体化するロッドインチューブ法を用いてのファイバカールが20m以上である光ファイバまたはファイバカールが20m以上である光ファイバ用プリフォームの製造方法において、石英ガラス管の断面に観察される同心円状の層状脈理の中心と石英ガラス管の外径の中心とのズレ量が石英ガラス管の平均外径の1%以下である石英ガラス管を使用する事を特徴とする光ファイバまたは光ファイバ用プリフォームの製造方法。 The soot body made by the soot method is sintered and made into transparent glass. The mother ingot made by mechanical grinding is directly applied to the quartz glass tube made, or after the quartz glass tube is melt-drawn, and only from the core part An optical fiber or fiber curl is 20 m or more using a rod-in-tube method in which a core rod or a core rod including a part of a clad is inserted and the core rod and the quartz glass tube are fused and integrated. In the optical fiber preform manufacturing method, the amount of deviation between the center of the concentric layered striae observed in the cross section of the quartz glass tube and the center of the outer diameter of the quartz glass tube is 1 of the average outer diameter of the quartz glass tube. A method for producing an optical fiber or a preform for an optical fiber, characterized by using a quartz glass tube having a percentage of no more than 50%. コアロッドと石英ガラス管との溶融一体化と同時に目的の光ファイバの外径まで延伸し、直接光ファイバを得る請求項1記載の光ファイバの製造方法。   2. The method of manufacturing an optical fiber according to claim 1, wherein the core rod and the quartz glass tube are melted and integrated and simultaneously drawn to the outer diameter of the target optical fiber to obtain a direct optical fiber. コアロッドと石英ガラス管との溶融一体化のみ、または同時に延伸を行ってプリフォームを作成する請求項1記載の光ファイバ用プリフォームの製造方法。   2. The method for producing a preform for an optical fiber according to claim 1, wherein the preform is formed by performing melting and integration of the core rod and the quartz glass tube only or simultaneously. コアロッドと石英ガラス管との溶融一体化のみ、または同時に延伸を行ってプリフォームを作成し、その後該プリフォームから線引機によって光ファイバを製造する請求項1記載の光ファイバの製造方法。   The method for producing an optical fiber according to claim 1, wherein a preform is produced by performing melt-integration of the core rod and the quartz glass tube only or simultaneously, and then producing an optical fiber from the preform by a drawing machine. 耐熱性の円筒状または円柱状ターゲットを回転させながら、ターゲットの外周に石英ガラスのスートを堆積させてスート体を作成し、焼結透明ガラス化を行って作成した円筒状石英ガラス製マザーインゴットに機械研削を施し、石英ガラス管を得る光ファイバ用石英ガラス管の製造方法において、最初にマザーインゴットの両端部の形状不良部より内側の形状安定部分の内径を保持して外周を研削し、次に研削済みの外周を保持して内周を研削し、石英ガラス管の断面に観察される同心円状の層状脈理の中心と、研削後の石英ガラス管の外径の中心とのズレ量が研削後の石英ガラス管の平均外径の1%以下である石英ガラス管を得る事を特徴とする光ファイバおよび/または光ファイバ用プリフォーム用石英ガラス管の製造方法。 While rotating a heat-resistant cylindrical or columnar target, a soot body is created by depositing soot of quartz glass on the outer periphery of the target, and a sintered quartz vitrification is applied to the cylindrical quartz glass mother ingot created. In the method for manufacturing a silica glass tube for optical fiber, which is mechanically ground to obtain a silica glass tube, the outer periphery is first ground while maintaining the inner diameter of the shape-stable part inside the defective shape part at both ends of the mother ingot, and then The inner circumference of the quartz glass tube is ground while holding the ground outer circumference, and the amount of deviation between the center of the concentric layered striae observed in the cross section of the quartz glass tube and the center of the outer diameter of the quartz glass tube after grinding is A method for producing a quartz glass tube for optical fiber and / or preform for optical fiber, characterized in that a quartz glass tube having an average outer diameter of 1% or less of the quartz glass tube after grinding is obtained . 研削後に加熱溶融延伸を行う、請求項に記載の光ファイバおよび/または光ファイバ用プリフォーム用石英ガラス管の製造方法。 The method for producing a quartz glass tube for optical fiber and / or preform for optical fiber according to claim 5 , wherein the melt-drawing is performed after grinding.
JP2004248321A 2004-08-27 2004-08-27 Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof Expired - Fee Related JP4413715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248321A JP4413715B2 (en) 2004-08-27 2004-08-27 Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248321A JP4413715B2 (en) 2004-08-27 2004-08-27 Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006062915A JP2006062915A (en) 2006-03-09
JP4413715B2 true JP4413715B2 (en) 2010-02-10

Family

ID=36109712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248321A Expired - Fee Related JP4413715B2 (en) 2004-08-27 2004-08-27 Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4413715B2 (en)

Also Published As

Publication number Publication date
JP2006062915A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
EP3133426B1 (en) Optical fiber article for handling h igher power and method of fabricating or using it
CN101239778A (en) Optical fiber preform manufacturing method, optical fiber manufacturing method and optical fiber
CN111290073A (en) 60-micron small-diameter panda-type polarization maintaining optical fiber and preparation method thereof
JP6396821B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
JP2010173917A (en) Base material for holey fiber and method for production thereof
US7028508B2 (en) Method for producing an optical fiber and optical fiber
US8689587B2 (en) Polarization controlling optical fiber preform and preform fabrication methods
JP4413715B2 (en) Optical fiber, preform for optical fiber, quartz glass tube used for manufacturing the same, and manufacturing method thereof
CN104876435B (en) A kind of preparation method of chalcogenide glass fiber
US20020069677A1 (en) Optical fiber and method of making optical fiber
JP6010587B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
KR100912863B1 (en) Fiber manufacturing method and fiber
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP2000233937A (en) Production of optical fiber
JP4032226B2 (en) Manufacturing method of optical fiber preform
JP5835823B1 (en) Multi-core optical fiber preform manufacturing method
CN118556034A (en) Method and intermediate product for producing a multicore optical fiber with markings
JP2004091304A (en) Aligning method for optical fiber preform
JP2025502647A (en) METHOD AND SEMI-PRODUCED PRODUCT FOR MANUFACTURING A MULTI-CORE FIBER - Patent application
JP2003095685A (en) Optical fiber preform and manufacturing method
JP3788503B2 (en) Manufacturing method and manufacturing apparatus for glass preform for optical fiber
JP2645717B2 (en) Manufacturing method of base material for optical fiber
JP4413738B2 (en) Quartz glass tube for manufacturing optical fiber, quartz glass tube for manufacturing optical fiber, preform for manufacturing optical fiber, and method for manufacturing optical fiber
JPH0930824A (en) Method of manufacturing polarization maintaining optical fiber and polarization maintaining optical fiber
JP2003327441A (en) Method and apparatus for manufacturing glass pipe for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees