[go: up one dir, main page]

JP4413438B2 - 地下計器パッケージとのデータ通信を行うための方法および装置 - Google Patents

地下計器パッケージとのデータ通信を行うための方法および装置 Download PDF

Info

Publication number
JP4413438B2
JP4413438B2 JP2000610154A JP2000610154A JP4413438B2 JP 4413438 B2 JP4413438 B2 JP 4413438B2 JP 2000610154 A JP2000610154 A JP 2000610154A JP 2000610154 A JP2000610154 A JP 2000610154A JP 4413438 B2 JP4413438 B2 JP 4413438B2
Authority
JP
Japan
Prior art keywords
data communication
instrument package
drilling device
communication system
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000610154A
Other languages
English (en)
Other versions
JP2002541721A5 (ja
JP2002541721A (ja
Inventor
ロバーツ,ジョージ
フレイザー,エドワード
アーネスト,フレッド
Original Assignee
ハネウエル・インターナショナル・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハネウエル・インターナショナル・インコーポレーテッド filed Critical ハネウエル・インターナショナル・インコーポレーテッド
Publication of JP2002541721A publication Critical patent/JP2002541721A/ja
Publication of JP2002541721A5 publication Critical patent/JP2002541721A5/ja
Application granted granted Critical
Publication of JP4413438B2 publication Critical patent/JP4413438B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/125Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Communication Control (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【0001】
(発明の背景)
(発明の分野)
本発明は、一般に、地下作業でのデータ送受信に関し、より具体的に言えば、地表の送信機/受信機と、地下ドリリング機器の位置および状況を検出するためのセンサなどの地下の電子計器との間でのデータ通信に関する。
【0002】
ダウンホール坑井では、ドリル・ストリングに、動作時にドリリング機器の地下部分の位置および状態を監視するための、ドリル・ビット端近くの計器パッケージが含まれる場合がある。計器パッケージによって生成されたデータは、オペレータが使用するために地表に伝送される。
【0003】
(従来技術の説明)
地下装置からデータを伝送するための方法には、知られているものがいくつかある。いわゆるワイヤライン構成では、計器パッケージからのデータは、計器パッケージからドリル・ストリングを経由して地表の受信機に至る、電線を介して伝送される。ワイヤは、ドリル・ストリングをリターン・パスまたは同軸ケーブルなどの2芯ワイヤとして使用する単一の導体であってよい。ワイヤは、地表の電源から計器パッケージに電力を供給するのに使用することができる。典型的には、少なくとも約1200bps(1秒当たりのビット数)のデータ速度が達成できる。
【0004】
ただし、ワイヤライン構成が特に電線の接続障害を受けやすいという欠点がある。ドリリング機器の導入時および操作時には、ワイヤがからまったり切れたりしないように、取扱いに注意しなければならない。またワイヤは、ドリリング機器の動作に関連付けられたトルク、振動、繰り返される曲げやねじれ、および他の機械的な力により、損傷を受けやすい場合がある。さらにワイヤライン構成は、信頼性を低下させる傾向のある回転式電気接続を必要とする場合がある。
【0005】
他の従来の方法であるマッド・パルス遠隔観測は、ドリリング機器を介した泥流の調節に依拠するものである。ドリリング動作時には、泥、すなわち掘削泥水が抗井内を循環する。ドリル・ストリングの端部近くに位置した機構が、開口を開閉することによって泥流を調節する。泥流の調節は、地表にある機械的なセンサによって検出される。
【0006】
マッド・パルス遠隔観測は、計器パッケージと受信機との間をドリル・ストリングを介して有線接続する必要がないため、ワイヤライン構成に関連付けられた問題の多くが回避される。ただし、マッド・パルス遠隔観測では、データ速度が1〜2bpsしか出ない。さらにこの技法は部品を機械的に移動させる必要があり、これによって信頼性が低下する。
【0007】
他の従来の方法では、無線、あるいはダウンホール計器パッケージからのデータが電磁信号またはパルスとして伝送される電磁(EM)構成を使用する。計器パッケージには、絶縁ギャップの両端間に電圧を印加する電源が含まれており、これによって電磁界を生成する。ギャップの幅は典型的には数1000分の1インチであり、たとえばドリル・ストリングの2つのセクション間にある接続の踏面を絶縁被覆することによって形成することができる。EMパルスは、ドリリング機器を取り囲んでいる抵抗性の土壌を介して伝送され、地表にある受信機によって受信される。
【0008】
マッド・パルス遠隔観測のようなEM構成は、計器パッケージと受信機との間をドリル・ストリングを介して有線接続する必要がないため、ワイヤライン構成に関連付けられた問題の多くが回避される。ただし、EM構成に関連付けられたいくつかの欠点がある。
【0009】
たとえば、EMパルスの生成に電力を供給するのに使用されるバッテリ電源が、ドリリング機器の地表部分ではなく地下部分に配置されるため、充電または交換が容易ではない。さらに、電源用バッテリがあるために、計器パッケージのサイズや重量が増加する。
【0010】
さらに、土壌を介してEMパルスを伝送する場合、通常はより多くの電力が必要であり、電線を介した伝送よりもデータ速度がかなり遅くなる。EM構成を使用しているシステムでは、典型的には約5〜20bpsのデータ速度しか達成されない。これは実際的に考えると、具体的には電源に加えられるサイズおよび重量の制限という点から見て不利である。
【0011】
したがって、地下作業からのデータを伝送するための改良型システムが必要である。
【0012】
(発明の概要)
本発明の全般的な目的は、従来のワイヤラインおよび電磁システムの欠点を克服する、地下電子デバイスと通信するためのデータ通信システムを提供することである。
【0013】
本発明の他の目的は、ドリリング機器とからまったり切れたりする場合や、ドリリング機器の動作に関連付けられた機械的な力により損傷を受けやすい場合のある有線接続を必要としない、データ通信システムを提供することである。
【0014】
本発明の他の目的は、充電または交換のために容易にアクセスできるように、また地下電子デバイスのサイズおよび重量を増やすことのないように、通信電源がドリリング機器の地下部分ではなく地表部分に配置されている、データ通信システムを提供することである。
【0015】
本発明の他の目的は、従来のワイヤライン・システムのデータ速度に匹敵するか、またはそれを超えるデータ速度を有する、データ通信システムを提供することである。
【0016】
上記の目的に従い、本発明の一態様では、ドリリング装置上に配置された地下計器パッケージと通信するためのデータ通信システムを提供する。ドリリング装置は、第1と第2の導電セクション間に、絶縁セクションを有する。データ通信システムには、ドリリング装置の第1の導電セクションとグラウンドとに接続された電源が含まれる。電源を流れる電流を測定するために、受信機が接続される。ドリリング装置の第1と第2の導電セクション間に、電気経路が設けられる。スイッチが、計器パッケージによって生成されるデータに応答して電気経路を開閉する。
【0017】
本発明の他の態様では、地下電子デバイスと通信するためのデータ通信システムを提供する。このデータ通信システムには、第1の導電セクション、地下に配置され電子デバイスと電気的に接続された第2の導電セクション、第1と第2の導電セクション間に配置されこれらを連結する絶縁セクションが含まれる。電源は第1の導電セクションとグラウンドとに接続される。受信機が、電源を介して流れる電流を測定する。スイッチが、第1と第2の導電セクション間にある電気経路内に設けられる。このスイッチが、電子デバイスによって生成されるデータに応答して電気経路を開閉する。
【0018】
本発明の他の態様では、ドリリング装置上に配置された地下計器パッケージと通信するためのデータ通信方法を提供する。ドリリング装置は、第1と第2の導電セクション間に絶縁セクションを有する。本データ通信方法は、電源をドリリング装置の第1の導電セクションとグラウンドとに接続するステップを含む。電源を流れる電流は、受信機を使用して測定される。ドリリング装置の第1と第2の導電セクション間の電気経路内に設けられたスイッチは、計器パッケージによって生成されるデータに応答して開閉する。
【0019】
本発明の態様は、以下の1つまたは複数の特徴を含む。
【0020】
スイッチには、電界効果トランジスタなどのトランジスタが含まれる。スイッチは、電気経路内の電流に周波数偏移変調を加えることができる。
【0021】
計器パッケージの内部電源は、スイッチによって電気経路が開いている間にドリリング装置の第1と第2の導電セクション間で形成される電圧によって充電することができる。
【0022】
電気経路は、ドリリング装置の絶縁セクションを通るワイヤを含むことができる。ワイヤの端部は、ドリリング装置の第1の導電セクションに接続することができる。
【0023】
スイッチを計器パッケージの導電ハウジングに電気的に接続し、この計器パッケージのハウジングをドリリング装置の第2の導電セクションに電気的に接続することができる。
【0024】
電源は、地下計器パッケージより上のグラウンドに挿入されたワイヤを介して、グラウンドに接続することができる。計器パッケージは、ドリリング装置の状況を検出するためのセンサを含むことができる。
【0025】
データ通信システムは、電源によって生成される電流の上に、計器パッケージを制御するための制御信号を重ねるための制御送信機を含むこともできる。計器パッケージ内の制御受信機は、制御信号を受け取り、制御信号に応答して制御データを生成することができる。制御送信機は、周波数偏移変調を使用することができる。
【0026】
計器パッケージは、電源のスイッチ・オフに応答して、内部電源の低消費電力モードを起動させることができる。計器パッケージは、制御データに応答して、内部電源の低消費電力モードを起動させることができる。
【0027】
(詳細な説明)
本発明に従った図1に示されるように、ドリリング・リグ105は、ダウンホール抗井内に配置されたドリル・ストリング110を使用して地下ドリリングを実行する。ドリル・ストリング110には一連のドリル・パイプ115が含まれ、その終端にドリル・ビット・アセンブリ120を有する。ドリル・ストリング110には、ドリル・ビット120端の最も近くに計器パッケージ125が含まれる。
【0028】
計器パッケージ125は、ドリル・ビット120の位置および向きを検出するためのセンサなどの様々な電子デバイスを含むことができる。センサは、たとえばドリル・ビット・アセンブリの温度など、ドリリング機器の状況および状態を検出することもできる。地質試験機器や油井監視機器などの他の種類の電子デバイスが、計器パッケージ内に設けられる場合もある。本発明は、計器パッケージ125が地下にある間の、計器パッケージ内にある電子デバイスとのデータ通信を提供するものである。
【0029】
本発明が、図1に示された水平ドリリングの応用例に加えて、垂直ドリリングなどの他の応用例でも使用することができるのはもちろんのことである。さらに、本発明は、油井またはガス井などの産出井監視機器との通信にも使用することができる。
【0030】
ドリル・ストリング110は、本発明について説明する目的で、3つのセクションに分けることができる。計器パッケージ125は、ドリル・ストリング110の導電下部セクション130に取り付けられる。下部セクション130は、絶縁セクション140によってドリル・ストリング110の上部導電セクション135から分離される。
【0031】
地表電源145は、ドリル・ストリング110の上部導電セクション135とグラウンド150とに接続される。電源145とドリル・ストリング110との間は、ワイヤ155を介して接続することができる。地下計器パッケージ125のほぼ真上の地点でグラウンド150に挿入されたワイヤ160を介してグラウンド接続を実行するかは、またはワイヤ160をグラウンド150に挿入されたプローブ165に接続することができる。以下で詳細に論じるように、プローブ165の挿入地点は受信される信号レベルに影響を与えるが、効果的な位置をシステムの設置時に容易に決定することができる。
【0032】
ドリル・ストリング110の導電セクション135および130、ならびに地表電源145に接続されたワイヤ155および160が、通信回路の一部を形成する。通信回路の残り部分は、電流が土壌を流れる2つの回路部分で形成される。これらのうち第1の回路部分が、ドリル・ストリング110の上部導電セクション135と下部導電セクション130との間のギャップである。電流は、絶縁セクション140を取り囲む土壌を通って、これらセクションの間を流れる。他方の回路部分は、ドリル・ストリング110の下部導電セクション130と電源グラウンド・プローブ165との間のギャップである。同様に電流は、ドリル・ストリング110の下部セクション130の上にある土壌を通って、これらの地点間を流れる。
【0033】
地表電源145は、通信回路内の電流を生成する。電源145は計器パッケージ125内ではなく地表に配置されているため、特定の設置要件に応じて調整や異なる電源との交換が容易に実行できる。たとえば、土壌の抵抗性がかなり高い場合や、計器パッケージが地中深くに配置される場合などの設置では、電源レベルが上がる可能性がある。
【0034】
以下で詳細に論じるように、計器パッケージ125は、通信回路を流れる電流を変調することによって地表にデータを伝送する。受信機170は、たとえば抵抗器172の両端間の電圧を測定することによって、電流を測定し復調してデータを再生する。同様に、送信機175を使用して、電源145によって生成された電流に制御信号を重ねることによって、制御データを計器パッケージ125に送信することができる。
【0035】
図2は、上部導電セクション135、絶縁セクション140、下部導電セクション130、計器パッケージ125、およびドリル・ビット・アセンブリ120を含む、ドリル・ストリング110の一部を示す図である。計器パッケージ125は、下部導電セクション130内に設置された加圧金属ハウジング205に格納されている。
【0036】
ワイヤ210は、計器パッケージ125から絶縁セクション140を介して延び、上部導電セクション135に接続している。ワイヤ210は、絶縁セクション140を取り囲む土壌を介して電流経路を短絡させるのに使用することができる。言い換えれば、比較的抵抗の低いワイヤ210を通って、または比較的抵抗の高い絶縁セクション140を取り囲む土壌を通って流れるように、電流を送ることができる。所与の地表電源電圧では、土壌を通過する高抵抗経路を介して電流を送ることによって電流レベルが低くなり、低抵抗ワイヤ210を介して電流を送ることによって電流レベルが高くなる。したがって、計器パッケージ125は、電流をこれらの電流経路間で交番させることにより、変調することができる。
【0037】
図3に示されるように、ワイヤ210は計器パッケージ125の制御サブシステム300に接続される。制御サブシステム300は、計器パッケージ125の金属ハウジング205にも接続されている。したがって制御サブシステム300は、ワイヤ210と、下部導電セクション130に接触した金属ハウジング205とを接続することが可能であり、それによって、上部導電セクション135と下部導電セクション130との間に電気的な接続が作成される。あるいは、制御サブシステム300が下部導電セクション135に直接接続されてもよい。
【0038】
計器パッケージ125には、ドリル・ビット・アセンブリ120の向きおよび計器状況などのパラメータであるが、これらに限定されていないパラメータを測定するためのセンサ305が含まれる。センサ305の出力はデータ収集サブシステム310によって受け取られ、これがセンサ305の出力をデジタル・データに変換し、このデータを伝送用にフォーマット化する。伝送されるデータは制御サブシステム300に渡され、これが符号化データに応答して電流を変調する。計器パッケージ125には、センサ305、制御サブシステム300、およびデータ収集サブシステム310に電力を供給するための、内部電源315も含まれる。
【0039】
図4は、制御サブシステム300の構成要素を示す図である。スイッチ400は、前述のようにドリル・ストリング110を介した電流経路を制御する。スイッチ400が閉じると、電流は上部導電セクション135と下部導電セクション130とを接続しているワイヤ210を流れる。スイッチ400が開くと、電流は、絶縁セクション130を取り囲む土壌を介して迂回することによって、上部セクション135と下部セクション130との間を流れる。スイッチ400は、たとえば電界効果トランジスタ(FET)などのトランジスタによって実施することができる。あるいは、他のスイッチング機構を使用することもできる。
【0040】
スイッチ400は、データ収集サブシステム310からセンサ・データを受け取る、マイクロプロセッサ405によって制御される。マイクロプロセッサ405は、変調技法に従って受け取ったデータに基づいて、スイッチ400を制御する。周波数偏移変調(FSK)などの、いくつかの異なる変調技法を使用することができる。
【0041】
たとえばマイクロプロセッサ405は、FSKを使用して、論理ゼロを表すために2400Hzの周波数を使用し、論理1を表すために4000Hzの周波数を使用して、スイッチ400を開閉することができる。この変調技法を使用すると、約1200bpsのデータ速度を達成することができるが、これは典型的な無線EMシステムのおよそ100倍の速さである。
【0042】
前述のように、通信回路を流れる電流に、制御信号を重ねることができる。制御信号は制御受信機410によって検出され、これが制御信号をマイクロプロセッサ405に出力する。
【0043】
制御データを使用すると、センサ305が不要な期間中は、内部電源315のスイッチをオフにするように電力制御415に指示することができる。あるいは、電力制御415が、マイクロプロセッサ405などの計器パッケージ125の主要な構成要素だけに電力を供給するような、低消費電力モードを起動することができる。電力制御415は、地表電源145がオフにされるのに応答して、内部電源315を自動的にオフにするように構成することもできる。さらに内部電源315は、オフになるかまたは低消費電力モードになっている間、絶縁セクション140の両端間に形成される電圧を使用して、細流充電することができる。したがって、内部電源315の寿命が延長され、そのサイズおよび重量も少なくすることができる。
【0044】
前述のように、計器パッケージ125は、絶縁セクション140を取り囲む土壌を介した高抵抗電流経路と、上部導電セクション135と下部導電セクション130とを接続する低抵抗ワイヤ210との間で切り替えることによって、通信回路内の電流を変調する。これら2つの経路を切り替えることで通信回路の全抵抗が変化し、これによって、所与の電源電圧についての電流の強さが変化する。
【0045】
電流の強さの変化は、変調が受信機によって十分検出されるだけの大きなものでなければならない。したがって、切替え動作の結果として生じる電流の強さの変化を決定するために、絶縁セクションを取り囲む土壌の抵抗を推定する分析が実行された。
【0046】
この分析では、絶縁セクションは6メートル(20フィート)長さになると推定された。また、等電位線の軌跡および電流の磁束等高線が、絶縁セクションの中間点に配置された垂直面を中心にして左右対称であることも想定された。等電位線および磁束等高線の正確な解は複雑であるため、より簡単な関数を使用して、同程度の結果を得るためにこれらの関数が概算された。
【0047】
絶縁セクションの両端間に加えられた全電圧を、中間点の垂直面を横切る電流で割ることにより、絶縁セクションを取り囲む土壌を介した抵抗を推定することができる。この電流は、以下のように推定することができる。
【0048】
(1)中間点面の対称軸上にある円柱の抵抗を算出する。円柱の半径は0.1m、長さは0.1mである。
【数1】
Figure 0004413438
【0049】
2)両端間の電圧Vに対して、この円柱を通過する電流を算出する。電圧は、中間点での勾配と円柱体長さとを掛けた積として算出することができる。
【0050】
均一な電界の場合、勾配は全電圧Vを絶縁セクションの長さで割ったものに等しい。ただし、上部および下部の導電セクションが絶縁セクションの各端に薄い電極を形成する結果、絶縁セクションの両端では勾配が大きく、中間点で最小勾配となる。中間点電圧勾配は、ほぼ0.2から0.5の間の値に均一な勾配を掛けたものとなる。したがって、電流密度の計算では、電圧勾配は0.5Vを6.0mで割ったものと推定され、これは0.083V/mに等しい。
【0051】
電流(I)および中心線電流密度(J0)は、以下の式によって得られる。
【数2】
Figure 0004413438
【0052】
(3)中心線電流密度は、半径の増加と共に滑らかに減衰する。全中間面電流は、電流密度が半径1.5mまでその中心線での値のままであり(半径がセクション長さの1/3の円柱)、その後、1.5mの電界折りたたみ長さにより指数関数的に減衰すると想定して概算される。これらの想定により、電流密度に関する以下の式が得られる。
【数3】
Figure 0004413438
【0053】
(4)全電流を、電流密度と中心線から無限半径まで延在する中間面面積とを掛けた積分として、以下のように算出する。
【数4】
Figure 0004413438
【0054】
(5)全電圧Vを全電流Itで割ることにより、以下のように見掛け抵抗を得る。
【数5】
Figure 0004413438
【0055】
(6)図5に示されるように、絶縁セクションが短絡されたときの電流の変動を決定するために、スイッチング回路およびワイヤが0.5オームの抵抗を有し、絶縁セクションの算出見掛け抵抗Rと並列であると想定することができる。回路の残り部分、すなわちドリル・ストリングの導電セクション、電源ワイヤ、および下部導電セクションと電源グラウンド接続との間の土壌経路は、抵抗Rrを有すると想定することができる。
【0056】
回路の全抵抗Rtは、短絡(スイッチ閉)および非短絡(スイッチ開)状態について、回路の残り部分の抵抗の関数として算出することができる。この計算は、以下の表に示されるように、いくつかの地層比抵抗値について実行された。短絡の全抵抗と非短絡の全抵抗との比を、電流の強さの変化を決定するために使用することができる。
【表1】
Figure 0004413438
【0057】
1.0オームメータよりも大きい地層比抵抗の場合、絶縁セクションが短絡されると、電流の強さは25%またはそれ以上変化する。地層比抵抗が最低の0.1オームであっても、3%の電流変化をもたらし、これは全電流が1Aの場合、30mAの変化に相当する。このような強さの変化は、受信機によって容易に検出できる。
【0058】
前述の分析に加え、図6に示された試験装置を使用して試験が実行された。土壌を介した電気信号の伝送をシミュレートするために、試験装置には、500ppmのNaClを加えた約2インチ(約5cm)の水が入った4フィート×8フィート(約122cm×244cm)の水槽605が含まれる。ドリル・ストリングは、以下のように構成された1/4インチ×1/4インチ(約6.3mm×6.3mm)のステンレス・スチール・ロッドを使用してシミュレートした。上部導電セクションは、5フィート(約152cm)長さのロッド610、絶縁セクションは1フィート(約30cm)のギャップ615、下部導電セクションは別の1フィート(約30cm)長さのロッド620を使用してシミュレートした。
【0059】
100オーム抵抗器630の両端に接続された電圧計625は受信機を表し、かつ回路を通る電流を測定する。電源635を抵抗器630と直列に接続し、#18マグネット・ワイヤ660を使用してロッドの5フィート・セクション610に接続した。電源グラウンド接続を表すプローブ640を、抵抗器630の他方の端に接続した。プローブ640を、水槽605に3インチ(約7.6cm)間隔で設けられた一連の測定位置645に接触させることで、測定回路が完成した。
【0060】
ドリル・ストリングの絶縁セクションを短絡するのに使用される電気経路を表すために、5フィート・セクション610と1フィート・セクション620との間に、絶縁ワイヤ650およびスイッチ655を接続した。各測定位置645でスイッチ655を開閉しながら、抵抗器630の両端間の電圧を測定した。
【0061】
以下の表は、5ボルトのDC電源を使用し、スイッチを開けた場合と閉めた場合に、それぞれの測定位置で100オーム抵抗器の両端間で測定した電圧を示している。
【表2】
Figure 0004413438
【0062】
以下の表は、AC電源を4.781VAC、100Hzに設定し、100オーム抵抗器の両端間で測定した電圧を示す図である。各位置で、(スイッチを開けた場合と閉めた場合の)3セット測定を実行した。
【表3】
Figure 0004413438
【0063】
以下の表は、AC電源を4.789VAC、300Hzに設定し、100オーム抵抗器の両端間で測定した電圧を示す。
【表4】
Figure 0004413438
【0064】
以下の表は、AC電源を4.792VAC、1kHzに設定し、100オーム抵抗器の両端間で測定した電圧を示す。
【表5】
Figure 0004413438
【0065】
以下の表は、AC電源を4.788VAC、3kHzに設定し、100オーム抵抗器の両端間で測定した電圧を示す。
【表6】
Figure 0004413438
【0066】
以下の表は、AC電源を4.779VAC、10kHzに設定し、100オーム抵抗器の両端間で測定した電圧を示す。
【表7】
Figure 0004413438
【0067】
データが示すように、電圧差は測定位置によって過度に変化するものではない。したがって、電源グラウンド・プローブ165(図1)に対応する測定プローブ640を、必ずしも計器パッケージ125の真上に配置する必要はない。測定される信号レベルを改善するために、必要に応じてグラウンド接続を位置変更することができる。プローブ165の表面積が大きいほど、信号レベルが上がることもわかった。
【0068】
さらに試験を実行し、ステアリング・ツール(すなわち計器パッケージ)およびステアリング・ツール受信機を試験装置に接続した。スイッチとしてFETを使用し、ステアリング・ツールによって生成される周波数偏移変調(FSK)信号によって制御した。この受信機は、ワイヤライン通信システムに匹敵する性能でデータを首尾良く検出した。
【0069】
以上、本発明特有の実施形態について詳細に説明してきたが、この説明が単に例示的なものに過ぎないことを理解されよう。当分野の技術者であれば、前述の内容に加え、特許請求の範囲で定義された本発明の精神を逸脱することなく、開示された好ましい実施形態の態様に対応する様々な修正および等価な構造体を実行することが可能であり、特許請求の範囲は、こうした修正および等価な構造体を包含するような最も広義な解釈が与えられるものである。
【図面の簡単な説明】
【図1】 本発明に従ったデータ通信システムを備えたドリリング装置を示す構成図である。
【図2】 本発明に従ったドリル・ストリングの断面を示す構成図である。
【図3】 本発明に従った計器パッケージの構成図である。
【図4】 本発明に従った制御サブシステムの構成図である。
【図5】 本発明に従った通信回路の回路図である。
【図6】 通信システム試験装置の構成図である。

Claims (26)

  1. 第1(135)と第2(130)の導電セクション間に絶縁セクション(140)を有するドリリング装置(110)に配置された地下計器パッケージ(125)との通信を行うためのデータ通信システムであって;このデータ通信システムは、
    ドリリング装置の第1の導電セクションとグラウンド(150)とに接続可能な電源(145)と、
    前記電源を流れる電流を測定するために接続された受信機(170)と、
    ドリリング装置の第1と第2の導電セクション間にある電気経路(210)と、
    計器パッケージによって生成されるデータに応答して前記電気経路を開閉する、前記電気経路内に設けられたスイッチ(400)とから構成されると共に、
    前記スイッチによって前記電気経路が開いている間に、ドリリング装置の第1と第2の導電セクション間に形成される電圧を用いて計器パッケージの内部電源(315)を充電する手段を更に具備したことを特徴とするデータ通信システム
  2. 前記スイッチ(400)がトランジスタを備える請求項1に記載のデータ通信システム。
  3. 前記トランジスタが電界効果トランジスタである請求項2に記載のデータ通信システム。
  4. 前記スイッチ(400)が、前記電気経路内の電流に周波数偏移変調を加える請求項1に記載のデータ通信システム。
  5. 前記電気経路(210)が、ドリリング装置の絶縁セクション(140)を通るワイヤを備える請求項1に記載のデータ通信システム。
  6. 前記ワイヤ(210)の一端が、ドリリング装置の第1の導電セクションに接続可能な請求項5に記載のデータ通信システム。
  7. 前記スイッチ(400)が計器パッケージ(125)の導電ハウジングに電気的に接続され、計器パッケージのハウジングがドリリング装置の第2の導電セクション(130)に電気的に接続可能な請求項1に記載のデータ通信システム。
  8. 前記電源(145)が、地下計器パッケージ(125)より上のグラウンド(150)に挿入されたワイヤ(160)を介してグラウンドに接続された請求項1に記載のデータ通信システム。
  9. 計器パッケージ(125)が、ドリリング装置(110)の状況を検出するためのセンサを備える請求項1に記載のデータ通信システム。
  10. 前記電源(145)によって生成される電流に、計器パッケージ(125)を制御するための制御信号を重ねるための制御送信機と、
    計器パッケージ内に配置された制御受信機とをさらに備え、前記制御受信機が、制御信号を受信し、制御信号に応答して制御データを生成するために接続された請求項1に記載のデータ通信システム。
  11. 前記制御送信機が周波数偏移変調を使用する請求項10に記載のデータ通信システム。
  12. 前記電源(145)のスイッチ・オフに応答して、計器パッケージ(125)が内部電源の低消費電力モードを起動させる請求項10に記載のデータ通信システム。
  13. 制御データに応答して、計器パッケージ(125)が内部電源の低消費電力モードを起動させる請求項10に記載のデータ通信システム。
  14. 第1導電セクション(135)と第2導電セクション(130)間に絶縁セクション(140)を有するドリリング装置(110)に配置された地下計器パッケージ(125)との通信を行うデータ通信方法であって、この方法は、
    ドリリング装置の第1の導電セクションとグラウンド(150)とに電源(145)を接続するステップと、
    受信機(170)を使用して電源を流れる電流を測定するステップと、
    計器パッケージによって生成されるデータに応答して、ドリリング装置の第1と第2の導電セクション間にある電気経路(210)内に設けられたスイッチ(400)を開閉するステップと、
    計器パッケージの内部電源を、スイッチによって電気経路が開いている間に、ドリリング装置の第1と第2の導電セクション間に形成される電圧によって充電するステップとから構成されることを特徴とするデータ通信方法。
  15. スイッチ(400)がトランジスタを備える請求項14に記載のデータ通信方法。
  16. トランジスタが電界効果トランジスタである請求項15に記載のデータ通信方法。
  17. 電気経路内の電流に周波数偏移変調を加えるためにスイッチ(400)を使用するステップをさらに含む請求項14に記載のデータ通信方法。
  18. 電気経路が、ドリリング装置(110)の絶縁セクション(140)を通るワイヤを備える請求項14に記載のデータ通信方法。
  19. ワイヤ(210)の一端が、ドリリング装置(110)の第1(135)の導電セクションに接続されている請求項18に記載のデータ通信方法。
  20. スイッチ(400)を、計器パッケージ(125)の導電ハウジングに電気的に接続するステップと、
    計器パッケージのハウジングを、ドリリング装置(110)の第2の導電セクション(130)に電気的に接続するステップとをさらに含む請求項14に記載のデータ通信方法。
  21. 電源(145)を、地下計器パッケージ(125)より上のグラウンド(150)に挿入されたワイヤ(160)を介してグラウンドに接続するステップをさらに含む請求項14に記載のデータ通信方法。
  22. 計器パッケージ(125)が、ドリリング装置(110)の状況を検出するためのセンサを備える請求項14に記載のデータ通信方法。
  23. 制御送信機を使用して、前記電源によって生成される電流に、計器パッケージ(125)を制御するための制御信号を重ねるステップと、
    計器パッケージ内に配置された制御受信機を使用して制御信号を受信し、制御信号に応答して制御データを生成するステップとをさらに含む請求項14に記載のデータ通信方法。
  24. 制御送信機が周波数偏移変調を使用する請求項23に記載のデータ通信方法。
  25. 電源(145)のスイッチ・オフに応答して、計器パッケージ(125)が内部電源の低消費電力モードを起動させる請求項23に記載のデータ通信方法。
  26. 制御データに応答して、計器パッケージ(125)が内部電源の低消費電力モードを起動させる請求項23に記載のデータ通信方法。
JP2000610154A 1999-04-08 2000-04-07 地下計器パッケージとのデータ通信を行うための方法および装置 Expired - Fee Related JP4413438B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12837499P 1999-04-08 1999-04-08
US60/128,374 1999-04-08
PCT/US2000/009660 WO2000060777A1 (en) 1999-04-08 2000-04-07 Method and apparatus for data communication with an underground instrument package

Publications (3)

Publication Number Publication Date
JP2002541721A JP2002541721A (ja) 2002-12-03
JP2002541721A5 JP2002541721A5 (ja) 2007-09-06
JP4413438B2 true JP4413438B2 (ja) 2010-02-10

Family

ID=22435049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000610154A Expired - Fee Related JP4413438B2 (ja) 1999-04-08 2000-04-07 地下計器パッケージとのデータ通信を行うための方法および装置

Country Status (10)

Country Link
US (1) US6556144B1 (ja)
EP (1) EP1166476B1 (ja)
JP (1) JP4413438B2 (ja)
CN (2) CN101818641B (ja)
AT (1) ATE333727T1 (ja)
AU (1) AU4340200A (ja)
BR (1) BRPI0009633B1 (ja)
DE (1) DE60029432T2 (ja)
IL (1) IL145818A0 (ja)
WO (1) WO2000060777A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158049B2 (en) * 2003-03-24 2007-01-02 Schlumberger Technology Corporation Wireless communication circuit
CN100474788C (zh) * 2003-08-28 2009-04-01 西安长庆科技工程有限责任公司 一种管道通信系统
US7999695B2 (en) * 2004-03-03 2011-08-16 Halliburton Energy Services, Inc. Surface real-time processing of downhole data
FR2909500B1 (fr) * 2006-12-05 2009-02-06 Sercel Sa Procede et systeme de transmission multi-porteuses dans un environnement difficile avec optimisation de la puissance d'emission
US8284073B2 (en) * 2008-04-17 2012-10-09 Schlumberger Technology Corporation Downlink while pumps are off
CN101737035A (zh) * 2009-12-14 2010-06-16 中国石油集团川庆钻探工程有限公司 连续油管作业井底无线数据传输方法及装置
US8710963B2 (en) 2011-03-14 2014-04-29 Infineon Technologies Ag Receiver and transmitter receiver system
US9148709B2 (en) * 2011-08-03 2015-09-29 Infineon Technologies Ag Sensor interface with variable control coefficients
US8994526B2 (en) 2011-08-18 2015-03-31 Infineon Technologies Ag Sensor interface making use of virtual resistor techniques
US9274243B2 (en) 2012-01-05 2016-03-01 Merlin Technology, Inc. Advanced drill string communication system, components and methods
US8849520B2 (en) 2012-03-26 2014-09-30 Infineon Technologies Ag Sensor interface transceiver
US9664027B2 (en) 2012-07-20 2017-05-30 Merlin Technology, Inc. Advanced inground operations, system and associated apparatus
US9292409B2 (en) 2013-06-03 2016-03-22 Infineon Technologies Ag Sensor interfaces
US10041346B2 (en) 2015-12-03 2018-08-07 Baker Hughes, A Ge Company, Llc Communication using electrical signals transmitted through earth formations between boreholes
US10669817B2 (en) * 2017-07-21 2020-06-02 The Charles Stark Draper Laboratory, Inc. Downhole sensor system using resonant source
CN109450558B (zh) * 2018-12-14 2021-07-30 常州艾控智能仪表有限公司 一种井下地面抗干扰远距离通信方法
GB201901925D0 (en) * 2019-02-12 2019-04-03 Expro North Sea Ltd Communication methods and systems
US11473418B1 (en) 2020-01-22 2022-10-18 Vermeer Manufacturing Company Horizontal directional drilling system and method
CN111396035B (zh) * 2020-03-04 2020-11-27 中国地质大学(武汉) 基于电磁随钻测量信号识别煤层与围岩界面及电阻率方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363137A (en) 1979-07-23 1982-12-07 Occidental Research Corporation Wireless telemetry with magnetic induction field
US4739325A (en) 1982-09-30 1988-04-19 Macleod Laboratories, Inc. Apparatus and method for down-hole EM telemetry while drilling
US4821035A (en) * 1984-05-01 1989-04-11 Comdisco Resources, Inc. Method and apparatus using a well casing for transmitting data up a well
FR2613159B1 (fr) * 1987-03-27 1989-07-21 Inst Francais Du Petrole Systeme de transmission de signaux entre un ensemble de reception descendu dans un puits et un laboratoire central de commande et d'enregistrement
US4864293A (en) * 1988-04-29 1989-09-05 Flowmole Corporation Inground boring technique including real time transducer
US5091725A (en) 1989-08-18 1992-02-25 Atlantic Richfield Company Well logging tool and system having a switched mode power amplifier
CN2161759Y (zh) * 1993-07-10 1994-04-13 靳惠生 潜水泵液面自动控制器
US5467083A (en) 1993-08-26 1995-11-14 Electric Power Research Institute Wireless downhole electromagnetic data transmission system and method
US5883516A (en) * 1996-07-31 1999-03-16 Scientific Drilling International Apparatus and method for electric field telemetry employing component upper and lower housings in a well pipestring
AUPO382696A0 (en) 1996-11-26 1996-12-19 HARDCASTLE, Philip Julian Borehole data transmission system
GB9801010D0 (en) * 1998-01-16 1998-03-18 Flight Refueling Ltd Data transmission systems

Also Published As

Publication number Publication date
DE60029432T2 (de) 2007-03-15
WO2000060777A1 (en) 2000-10-12
CN1365552A (zh) 2002-08-21
BR0009633A (pt) 2002-12-17
CN101818641A (zh) 2010-09-01
EP1166476A1 (en) 2002-01-02
BRPI0009633B1 (pt) 2015-12-29
IL145818A0 (en) 2002-07-25
ATE333727T1 (de) 2006-08-15
EP1166476B1 (en) 2006-07-19
CN101818641B (zh) 2013-08-14
JP2002541721A (ja) 2002-12-03
US6556144B1 (en) 2003-04-29
DE60029432D1 (de) 2006-08-31
AU4340200A (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP4413438B2 (ja) 地下計器パッケージとのデータ通信を行うための方法および装置
CA2261686C (en) Combined electric-field telemetry and formation evaluation method and apparatus
CA1210062A (en) Apparatus and method for logging wells while drilling
US6188223B1 (en) Electric field borehole telemetry
CA2300029C (en) Combined electric field telemetry and formation evaluation method and apparatus
CA2318485C (en) Bore hole transmission system using impedance modulation
CA2594606C (en) Method and apparatus for locating faults in wired drill pipe
US6392561B1 (en) Short hop telemetry system and method
WO2014134741A1 (en) Detection of downhole data telemetry signals
BRPI0614908A2 (pt) método de recepção e/ou transmissão de informações em um poço perfurado em uma formação geológica entre uma primeira localização e uma segunda localização, aparelho para recepção e/ou transmissão de informações em um poço perfurado na formação geológica entre uma primeira localização e uma segunda localização, método para determinação do perfil de condutividade de uma formação de um poço entre uma primeira localização em uma superfìcie e uma segunda localização em um furo perfurado, e aparelho para determinação do perfil de condutividade de uma formação de um poço entre uma primeira localização em uma superfìcie e uma segunda localização em um furo perfurado
US20090066334A1 (en) Short Normal Electrical Measurement Using an EM-Transmitter
WO2009129027A2 (en) Downlink while pumps are off
CA2339556A1 (en) Drill string telemetry with insulator between receiver and transmitter
CN115680632A (zh) 一种井下微电流信号无线上传方法及装置
RU2513432C1 (ru) Устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи
MXPA01010121A (en) Method and apparatus for data communication with an underground instrument package
CN218767108U (zh) 矿用煤层气抽采定向千米钻机钻孔孔壁松散度测量传感器
CN115825561A (zh) 矿用煤层气抽采定向千米钻机钻孔孔壁松散度测量传感器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees