JP4413089B2 - Inspection method for buried pipes - Google Patents
Inspection method for buried pipes Download PDFInfo
- Publication number
- JP4413089B2 JP4413089B2 JP2004182882A JP2004182882A JP4413089B2 JP 4413089 B2 JP4413089 B2 JP 4413089B2 JP 2004182882 A JP2004182882 A JP 2004182882A JP 2004182882 A JP2004182882 A JP 2004182882A JP 4413089 B2 JP4413089 B2 JP 4413089B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- frequency spectrum
- wave
- water
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007689 inspection Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 79
- 238000001228 spectrum Methods 0.000 claims description 61
- 238000012937 correction Methods 0.000 claims description 20
- 230000006866 deterioration Effects 0.000 claims description 18
- 238000003745 diagnosis Methods 0.000 claims description 15
- 230000002950 deficient Effects 0.000 description 18
- 230000035939 shock Effects 0.000 description 15
- 230000007547 defect Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003517 fume Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009527 percussion Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
本発明は衝撃弾性波法により埋設管を検査して劣化診断を行う埋設管の検査方法に関す
るものである。
The present invention relates to a buried pipe inspection method for performing deterioration diagnosis by inspecting a buried pipe by a shock elastic wave method.
近来、下水管路や農水管路においては、埋設管の経年に伴う腐食摩耗や破損により陥没
や漏水等の事故が増加しつつある。このため適切な劣化診断とその診断結果に基づく適切
な修繕・更新が要請されている。
この下水管路や農水管路の劣化診断においては、一般に、修繕・改築工事の順番及び工
事方法を決定するために、調査流域を構成する要素区域間の劣化進行度の順位付けや定量
的な劣化レベルの進行度の把握が必要である。
従来では、目視やTVカメラを用いて外観調査を行い、必要に応じコア抜きにより得た
試料の物性を調査しているが、直視し得る劣化しか捉えることができず、管外周や肉厚内
の劣化が見逃されてしまい、劣化の程度を適切に定量的に把握することが困難である。ま
たは、定量的なデータを収集するには、コアを大量に抜く必要があり、健全管体の強度低
下が余儀なくされ、作業コストの過大化も避けられない。
Recently, in sewage pipes and agricultural water pipes, accidents such as depression and water leakage are increasing due to corrosive wear and breakage of buried pipes over time. For this reason, appropriate deterioration diagnosis and appropriate repair / updating based on the diagnosis result are required.
In this deterioration diagnosis of sewage pipes and agricultural water pipes, in general, in order to determine the order of repair and reconstruction works and the construction method, ranking of the degree of deterioration between the element areas constituting the survey basin and quantitative It is necessary to grasp the progress of the deterioration level.
Conventionally, visual inspection or visual inspection is performed using a TV camera, and the physical properties of the sample obtained by removing the core are investigated as necessary. It is difficult to accurately and quantitatively grasp the degree of deterioration. Or, in order to collect quantitative data, it is necessary to remove a large number of cores, and the strength of the healthy tubular body is inevitably lowered, and the work cost is inevitably increased.
非破壊試験法として、超音波法、打音法、衝撃弾性波法が知られている。
しかしながら、超音波法では、入力波としての超音波が高周波であり、エネルギーも小
さいので、入力波をコンクリート中に伝播させ難く、コンクリート製品の検査には適さな
い。
打音法では、マイクロフォン等の非接触式の音響機器で信号を受信しているために、周
囲の雑音の影響を受け易い、打撃点の裏面側の影響を受け易い、定量的な解析・診断に個
人差が生じ易い等の不都合があり、診断精度に問題がある。
衝撃弾性波法は、被検査体に打撃等の機械的衝撃で弾性波を入力し、被検査体に接触さ
せた振動子が受振した波形の周波数スペクトルを求め、その周波数スペクトルの解析・判
定により劣化診断を行う方法であり、本出願人においては、衝撃弾性波法を利用した埋設
管の診断システムを既に提案している。(例えば、特許文献1、非特許文献1等)
As a nondestructive test method, an ultrasonic method, a percussion method, and a shock elastic wave method are known.
However, in the ultrasonic method, since the ultrasonic wave as an input wave has a high frequency and low energy, it is difficult for the input wave to propagate through the concrete, and it is not suitable for the inspection of concrete products.
In the percussion method, the signal is received by a non-contact acoustic device such as a microphone, so it is easily affected by ambient noise, and is easily affected by the back side of the impact point. Quantitative analysis and diagnosis However, there are problems such as easy individual differences, and there is a problem in diagnostic accuracy.
The shock elastic wave method is a method in which an elastic wave is input to an object to be inspected by mechanical impact such as impact, and a frequency spectrum of a waveform received by a vibrator in contact with the object to be inspected is obtained. The present applicant has already proposed a diagnosis system for buried pipes using the shock elastic wave method. (For example,
この診断システムの基本的構成を説明すれば、次の通りである。
図11の(イ)において、pは地中埋設管、aはインパルスハンマー等により弾性波を
入力させる入力点、bは伝播弾性波を振動センサで受振する受振点(出力点)を示してい
る。
弾性波の伝播は、質量m、バネ定数k、減衰係数c等で論じられ、バネ定数kは作用力
と変位との比で与えられるから、管の場合、バネ定数は管の曲げ剛性EIで評価される。
今、入力点での入力を図11の(ロ)に示すインパルスIとすると、このインパルスI
が管端での反射、クラック等の欠陥箇所での反射・透過を経て受振点に到来し、その到来
波xには、出力点と受振点との相対的位置関係、入力点や出力点と管端との相対的位置関
係、入力点や出力点と欠陥箇所との相対的位置関係、管体の曲げ剛性、減衰係数、管の比
重、経過時間等が関与し、出力点と受振点との相対的位置関係や入力点や出力点と管端と
の相対的位置関係に関する変数をL、入力点や出力点と欠陥箇所との相対的位置関係に関
する変数をL’、管体の曲げ剛性をEI、減衰係数をc、管の比重をm、経過時間tとする
と
The basic configuration of this diagnostic system will be described as follows.
In FIG. 11 (a), p is an underground pipe, a is an input point for inputting an elastic wave by an impulse hammer or the like, and b is a receiving point (output point) for receiving a propagating elastic wave by a vibration sensor. .
The propagation of elastic waves is discussed in terms of mass m, spring constant k, damping coefficient c, etc., and since spring constant k is given by the ratio of acting force and displacement, in the case of a tube, the spring constant is the bending stiffness EI of the tube. Be evaluated.
If the input at the input point is an impulse I shown in FIG.
Arrives at the receiving point through reflection at the tube end, reflection and transmission at a defect such as a crack, and the incoming wave x includes the relative positional relationship between the output point and the receiving point, and the input and output points. Relative positional relationship with the pipe end, relative positional relationship between the input and output points and the defective part, bending rigidity of the tube, damping coefficient, specific gravity of the tube, elapsed time, etc. are involved. L is a variable related to the relative positional relationship between the input point, the output point, and the pipe end, L ′ is a variable related to the relative positional relationship between the input point or the output point, and the defect location, and the bending rigidity of the tube EI, damping coefficient c, pipe specific gravity m, elapsed time t
x=x(EI,c,m,L,L’,t)
で表すことができる。
而して、入力弾性波が図11の(ハ)に示すようにf(t)であるとすると、
出力Xは
と管端との相対的位置関係L、入力点や出力点と欠陥箇所との相対的位置関係L’、管体
の曲げ剛性EI、減衰係数c、管の比重m等によって異なる。
x = x (EI, c, m, L, L ′, t)
Can be expressed as
Thus, if the input elastic wave is f (t) as shown in FIG.
Output X is
図12の(イ)はJISA 5303B型1種の呼び径250mm、長さ2mのコンク
リートヒューム管について入力点と受振点との距離を1950mmとし、入力弾性波を時
間長さ120μsのインパルスハンマーで発生させたときの受振弾性波の波形を示してい
る。図12の(ロ)はその波形を高速フーリエ変換して求めた周波数スペクトルを示し、
固有振動周波数で最大ピークを呈している。
この周波数スペクトルにおいて、健全品と欠陥品とでは次のような差異が生じる(勿論
、入力値、入力点と受振点との相対的位置関係、管内水量等の環境条件は同じとしての対
比である)。
(1)最大ピークのスペクトル強度値
劣化品は健全品に較べ最大ピークのスペクトル強度値(固有振動数におけるスペクトル
強度値)が小さくなる。この理由は、クラック等の欠陥が在ると、弾性波が伝播し難くな
るためと推定される。
(2)固有振動周波数
劣化品は健全品に較べ固有振動周波数が低周波域側にシフトする。この理由は、クラッ
ク等の欠陥が在ると、管体の曲げ剛性が低下するためと推定される。
(3)ピーク本数
特に欠陥が管軸方向クラックである場合、ある強度以上のピーク本数が少なくなる。そ
の理由は、管軸方向クラックにより分割された質量のことなるコンクリート部分が別個に
振動するものの連成振動における相互作用により減衰が顕著になるためと推定される。
これらの(1)〜(3)を判定点として例えば図13に示すフローに従って劣化診断を行
っている。
すなわち、検査しようとする埋設管の区間の各管体の受振波周波数スペクトルを得、各
周波数スペクトルから最大ピークのスペクトル強度値40%以上の値のスペクトル本数を
求め、ピーク本数が2本以下のものでは軸方向クラックと判定し、ピーク本数が3本以上
のもののうち、健全品の受振波周波数スペクトルと比較して最大ピークの強度値が顕著に
減少しているものは周方向クラックと判定し、減少の程度が小さいものは管厚み減少と判
定している。
Fig. 12 (b) shows a
It has a maximum peak at the natural vibration frequency.
In this frequency spectrum, the following difference occurs between the healthy product and defective product (of course, the input value, the relative positional relationship between the input point and the receiving point, and the environmental conditions such as the amount of water in the pipe are the same comparison) ).
(1) Spectral intensity value of maximum peak The deteriorated product has a smaller peak peak spectral intensity value (spectrum intensity value at the natural frequency) than a healthy product. The reason for this is presumed that the presence of defects such as cracks makes it difficult for elastic waves to propagate.
(2) Natural vibration frequency The natural vibration frequency of the deteriorated product shifts to the low frequency side compared to the healthy product. The reason for this is presumably because the bending rigidity of the tubular body decreases when there are defects such as cracks.
(3) Number of peaks Particularly when the defect is a crack in the tube axis direction, the number of peaks having a certain strength or more is reduced. The reason is presumed that although the concrete portion having a mass divided by the crack in the axial direction of the pipe vibrates separately, the attenuation becomes remarkable due to the interaction in the coupled vibration.
With these (1) to (3) as determination points, deterioration diagnosis is performed according to the flow shown in FIG. 13, for example.
That is, the received wave frequency spectrum of each pipe body in the section of the buried pipe to be inspected is obtained, the number of spectra having a maximum peak spectral intensity value of 40% or more is obtained from each frequency spectrum, and the number of peaks is 2 or less. For those with axial cracks, those with 3 or more peaks are marked as circumferential cracks if the maximum peak intensity value is significantly reduced compared to the sound wave frequency spectrum of healthy products. If the degree of decrease is small, it is determined that the tube thickness is reduced.
上記埋設管の劣化診断においては、各管体について同一測定条件、同一環境条件のもと
で受振波の周波数スペクトルを測定する必要がある。
そこで、健全管体と測定条件及び環境条件(管内水量0%)を同じとするために図14
に示すように、検査区間の両側をエアバッグ等Gで止水して検査区間の水を抜き、振動セ
ンサーB及びインパルスハンマーAをそれぞれ上下動可能なように台車上に搭載した検査
ロボット1‘を埋設管の検査区間内に導入し、振動センサーBとインパルスハンマーAと
の相対的位置関係やインパルスハンマーAの入力値を健全管体と同じにして次々と各管体
の受振波の周波数スペクトルを測定している。
管内水量は伝播弾性波を減衰し、管体質量の実質的な増加をもたらすから、前記した振
動波形の基本式〔数1〕から明らかなように、管内水量は受振波形に影響を及ぼし、その
周波数スペクトルに異同をもたらす。
而に、検査区間の水抜きは、管内水量0%を基準にして水量に対する環境条件を揃える
意義を有し、診断精度を高めるのに有効である。
しかしながら、埋設管路のマンホール間の径間は長く、使用中の下水管路や農水管路の
その径間の水量は多く、その水抜き作業は至難である。
In the deterioration diagnosis of the buried pipe, it is necessary to measure the frequency spectrum of the received wave under the same measurement conditions and the same environmental conditions for each pipe body.
Therefore, in order to make the sound pipe body the same as the measurement condition and the environmental condition (
As shown in FIG. 3, the
As the amount of water in the pipe attenuates the propagation elastic wave and causes a substantial increase in the mass of the pipe body, the amount of water in the pipe affects the received waveform, as is apparent from the above-described basic equation [1] of the vibration waveform. It causes differences in the frequency spectrum.
Thus, draining the examination section has the significance of aligning the environmental conditions with respect to the amount of water with reference to 0% of the amount of water in the pipe, and is effective in increasing the diagnostic accuracy.
However, the span between manholes in the buried pipeline is long, and the amount of water between the spans of the sewage pipeline and the agricultural water pipeline in use is large, and the draining operation is extremely difficult.
そこで、本発明者においては、実際の埋設管路において管内水量が前記受振波周波数ス
ペクトルに及ぼす影響を鋭意検討したところ、予想外にも、受振波周波数スペクトルの固
有振動周波数、ピーク本数が殆ど変わらず、スペクトルの強度(波高値)の変化にとどま
ることを知った。
この事実は、管内水量の上昇に比例して管内水中に出力弾性波の一部が放出されること
による受振弾性波の波高値減少が、減衰係数の変化や質量の変化による受振弾性波の変化
よりも強く現れる結果と推定される。
Therefore, the present inventor has intensively studied the influence of the amount of water in the pipe on the received wave frequency spectrum in an actual buried pipe, and unexpectedly, the natural vibration frequency and the number of peaks of the received wave frequency spectrum are almost unchanged. First of all, it was found that the intensity of the spectrum (crest value) only changed.
This fact indicates that the decrease in the peak value of the received elastic wave due to the release of a part of the output elastic wave in the pipe water in proportion to the increase in the amount of water in the pipe, the change in the received elastic wave due to the change in the damping coefficient or mass. It is presumed that the result appears stronger.
本発明の目的は、埋設管路の相互に接続された各管体に対し衝撃弾性波試験を順次に行
い、各試験における受振波の周波数スペクトルを解析・判定して劣化診断を行う場合、管
内水量が在っても、その水量に見合った周波数スペクトルの補正によって統一基準で劣化
診断を行い得るようにし、水抜き作業の省略による作業の容易化を可能にすることにある
。
The purpose of the present invention is to perform a shock elastic wave test sequentially on each pipe connected to each other in the buried pipe, and analyze and determine the frequency spectrum of the received wave in each test to perform a deterioration diagnosis. Even if there is a water amount, it is possible to perform deterioration diagnosis based on a unified standard by correcting the frequency spectrum corresponding to the water amount, and to facilitate the work by omitting the water draining operation.
本発明に係る埋設管の検査方法は、管内に水量が存在する状態の埋設管の所定の内面箇所に弾性波を入力し、その入力箇所から所定の間隔を隔てた管内面箇所で伝播弾性波を受振すると共に管内水位を測定し、この受振波の周波数スペクトルの強度値を予め求めておいた管内水位に対する補正係数で補正してその受振波の基準水位に対する周波数スペクトルを求め、この周波数スペクトルを解析して埋設管の劣化診断を行うことを特徴とする。
In the buried pipe inspection method according to the present invention, an elastic wave is input to a predetermined inner surface portion of the embedded tube in a state where water is present in the tube, and a propagation elastic wave is transmitted from the input portion to the inner surface portion of the tube at a predetermined interval. the tube in the water level measured co Upon geophone obtains a frequency spectrum with respect to a reference level of the geophone wave is corrected by a correction factor for the pipe water level obtained in advance the intensity values of the frequency spectrum of the geophone wave, the frequency It is characterized by analyzing the spectrum and diagnosing deterioration of buried pipes.
管内に水量が在っても、その状態で測定して求めた受振波の周波数スペクトルを一定水
量(例えば、水量0%)のときの周波数スペクトルに補正でき、埋設管の劣化診断を管内
水量の影響を受けることなく行うことができる。従って、埋設管路の検査区間からの水抜
きが不要になり、その検査区間の衝撃弾性波試験の準備作業の簡易化を図ることができる
。
Even if there is water in the pipe, the frequency spectrum of the received wave obtained by measurement in that state can be corrected to the frequency spectrum when the water volume is constant (for example, 0% water), and the deterioration diagnosis of the buried pipe can be performed It can be done without being affected. Accordingly, it is not necessary to drain water from the inspection section of the buried pipeline, and the preparation work for the shock elastic wave test in the inspection section can be simplified.
以下、本発明の実施の形態を図面を参照しつつ説明する。
図1は本発明において使用する衝撃弾性波試験法を説明するための図面である。
図1において、pは管体、Aは管体内面の所定箇所に弾性波を入力するための打撃具、
Bは入力点から所定の距離を隔てた管内面の所定箇所に接触させた振動センサー、Cは振
動センサーの受振波を記録し、高速フーリエ変換により周波数スペクトルを表示するコン
ピュータである。
前記打撃具Aには、常に同じ力・時間長さで打撃できるもの、例えばシュミットハンマ
ーやバネ、ピストン等により一定の力でハンマー、鋼球を打ち出すもの(例えばインパル
スハンマー)、一定の高さから鋼球を落下させるもの等を使用でき、特に入力情報の記録
データを計測し、解析時に反映できるものを使用することが好ましい。
前記振動センサーBには、振動加速度、振動速度、振動変位をピックアップする何れの
方式であってもよく、センサー素子には抵抗線ひずみゲージ、ピエゾ効果を利用した半導
体ゲージ、圧電磁器等の圧電型加速度ピックアップ等を使用でき、AE波検波用のAEセ
ンサーも使用できる。振動センサーの管内面への接触には粘着テープ、接着剤、手での押
え付けで行うこともできるが、後述のアームで振動センサーやハンマーをハンドリングす
る検査ロボットを使用することが好ましい。
振動センサーやハンマーにおいては、水や酸性水や塩基性水に接触されることがあるの
で、耐食金属製、例えばアルミ合金製、SUS製とすることが好ましい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a drawing for explaining a shock elastic wave test method used in the present invention.
In FIG. 1, p is a tubular body, A is an impact tool for inputting an elastic wave to a predetermined location on the inner surface of the tubular body,
B is a vibration sensor brought into contact with a predetermined location on the inner surface of the tube at a predetermined distance from the input point, and C is a computer that records the received wave of the vibration sensor and displays a frequency spectrum by fast Fourier transform.
The hitting tool A can always be hit with the same force and length of time, for example, a hammer or a steel ball that strikes a hammer or steel ball with a constant force (for example, an impulse hammer), from a certain height. What can drop a steel ball can be used, and it is particularly preferable to use one that can measure the recorded data of input information and reflect it at the time of analysis.
The vibration sensor B may be any method of picking up vibration acceleration, vibration speed, and vibration displacement, and the sensor element is a piezoelectric type such as a resistance wire strain gauge, a semiconductor gauge utilizing the piezo effect, and a piezoelectric ceramic. An acceleration pickup or the like can be used, and an AE sensor for AE wave detection can also be used. The vibration sensor can be brought into contact with the inner surface of the tube by using an adhesive tape, an adhesive, or pressing by hand, but it is preferable to use an inspection robot that handles the vibration sensor or hammer with an arm described later.
Since the vibration sensor and the hammer may come into contact with water, acidic water, or basic water, it is preferable to use a corrosion-resistant metal such as an aluminum alloy or SUS.
管体の衝撃弾性波試験を行うには、図1において、打撃具Aにより弾性波を入力し、伝
播されて来る弾性波を振動センサーBで受振し、その受振波をコンピュータCに記録する
と共にその記録波形を高速フーリエ変換して受振波の周波数スペクトルを求める。
入力の持続時間は100〜150μsであるのに対し、受振時間は0〜800×10μ
sとされ、周波数スペクトルの周波数は0〜10kHz、好ましくは0.5〜8kHzと
される。(0.5kHz未満のカットは雑音排除のため)
埋設管路の検査区間における互いに接続された管体を順次に衝撃弾性波試験していくと
きの各管体に対する試験条件を同じにするために入力、入力位置と受振位置との相対的位
置関係は実質的に同じにされる。この場合、入力位置と受振位置との間隔が短いと、出力
位置からの伝播弾性波が管体欠陥箇所を反射して受振位置に至るまでの距離が長くなり、
その伝播中での減衰が大きくなって受振波形に管体の欠陥情報が反映され難くなるので、
入力位置と受振位置との間隔は管体長さの1/4以上とすることが望ましい。
また、入力の大きさ影響を排除するために、受振波/入力波とで求められる伝達関数を
受振情報として使用することが好ましい。
In order to perform a shock elastic wave test of a tubular body, in FIG. 1, an elastic wave is input by a striking tool A, a propagated elastic wave is received by a vibration sensor B, and the received wave is recorded in a computer C. The recorded waveform is subjected to fast Fourier transform to obtain the frequency spectrum of the received wave.
The input duration is 100 to 150 μs, while the vibration receiving time is 0 to 800 × 10 μs.
s, and the frequency of the frequency spectrum is 0 to 10 kHz, preferably 0.5 to 8 kHz. (A cut of less than 0.5 kHz is to eliminate noise)
Relative positional relationship between input, input position and receiving position in order to make the test condition for each pipe body the same when conducting the shock elastic wave test sequentially on the pipes connected to each other in the inspection section of the buried pipe Are made substantially the same. In this case, if the interval between the input position and the vibration receiving position is short, the distance from the propagation elastic wave from the output position to the vibration receiving position by reflecting the tube defect portion becomes long.
Because the attenuation during propagation becomes large and it becomes difficult to reflect the defect information of the tube in the received waveform.
The interval between the input position and the vibration receiving position is preferably ¼ or more of the tube length.
In order to eliminate the influence of the magnitude of the input, it is preferable to use a transfer function obtained by the received wave / input wave as received information.
本発明は、欠陥管体内に水量が在っても、その受振波の固有振動周波数、同受振波の周
波数スペクトルのピーク本数等の欠陥情報が実質的に殆ど変わず、受振波の波高値が実質
的に異なるだけであり、その差異の比は健全管体でのそれに実質的に等しく、従って、健
全管体について管内水量と受振波波高値との関係を求めておけば、水量が存在する欠陥管
体の受振波の周波数スペクトルのスペクト強度を補正して基準水量(通常0%水量)での
周波数スペクトルを求め得るという予想外の知見に基づいている。
In the present invention, even if there is a water amount in the defective pipe, the defect information such as the natural vibration frequency of the received wave, the number of peaks of the frequency spectrum of the received wave is substantially unchanged, and the peak value of the received wave is not changed. It is only substantially different, and the ratio of the difference is substantially equal to that of the healthy pipe. Therefore, if the relationship between the amount of water in the pipe and the peak value of the received wave is obtained for the healthy pipe, the amount of water exists. This is based on an unexpected finding that the frequency spectrum at the reference water amount (usually 0% water amount) can be obtained by correcting the spectral intensity of the frequency spectrum of the received wave of the defective tube.
まず、この基礎的事項を検証する。
(A)健全管体における受振波の管内水量に対する補正式の算出
この補正式は次のようにして算出した。
健全管体試料に、JISA 5303のB型1種に基づく呼び径250mm、長さ2m
のコンクリート製ヒューム管を使用した。
弾性波の入力位置と受振位置とは管内面の頂上で1950mm離れた位置とし、検査装
置には、図2に示すように台車上に第1アーム11aと第2アーム11bとを有し、第1
アーム11aの先端にインパルスハンマーAを支持し、第2アーム11bの先端に振動セ
ンサーBを支持した検査ロボットを使用し、振動センサーにキーエンス社製GH−313
Aを使用し、受信アンプにキーエンス社製GA−245を、データロガーにキーエンス社
製NR−2000をそれぞれ使用し、高速フーリエ変換プログラムに株式会社アブティッ
ク製を使用した。
前記の健全試料を図3の(イ)に示すように厚み200mmの敷土上に設置し、更に図
3の(ロ)に示すように土覆厚み500mmで埋設し、試料内に前記検査ロボットを導入
し(インパクトハンマーの打撃箇所から受振箇所までの距離を1950mmにしてある)
、試料の両端口に上側部分は開いたままとするように堰止板を取付け(アクリル板を接着
剤で固定)、検査ロボットを操作して振動センサーを試料内面に接触させ、管体内水位を
0%、10%、30%、50%とするように水道水を注入し、各水位ごとに衝撃弾性波試
験を行って受振波の波形を記録した。図4の(イ)は水位0%での受振波の波形を示して
いる。
各水位に対する受振波形を絶対値に変換し〔図4の(ロ)は図4の(イ)に示す波形の
絶対値変換を行った波形〕、0〜700×10μsの時間区間で積分し、
積分値の比率y=(水位x%での受振波の積分値)/(水位0%での受振波の積分値)
を算出し、図4の(ハ)に示す、
〔式2〕 y=−0.005x+1
を得た。
この積分値の比率yは(水位x%での受振波のエネルギー)/(水位0%での受振波の
エネルギー)を意味している。
同様にして、水位を変えて受振波の周波数スペクトルを求め(図5の(イ)は水位20
%での受振波の周波数スペクトルを示し、図5の(ロ)は水位50%での受振波の周波数
スペクトルを示している)、周波数0.5〜10kHzの区間で積分し、
積分値の比率y=(水位x%での受振波周波数スペクトルの積分値)/(水位0%での
受振波周波数スペクトルの積分値)
を算出したところ、前記〔式2〕と同じ式を得た。
この補正式から、10%単位で変えた水位に対する補正係数を示せば次の通りである。
(A) Calculation of correction formula for pipe water volume of received wave in healthy pipe This correction formula was calculated as follows.
For a healthy tube sample, a nominal diameter of 250 mm and a length of 2 m based on Type B of JISA 5303
A concrete fume tube was used.
The elastic wave input position and the vibration receiving position are 1950 mm apart on the top of the inner surface of the tube, and the inspection apparatus has a first arm 11a and a second arm 11b on the carriage as shown in FIG. 1
An inspection robot having an impulse hammer A supported at the tip of the arm 11a and a vibration sensor B supported at the tip of the second arm 11b is used, and GH-313 manufactured by Keyence Corporation is used as the vibration sensor.
A, Keyence Corporation GA-245 was used for the receiving amplifier, Keyence Corporation NR-2000 was used for the data logger, and Abu Boutique Co., Ltd. was used for the fast Fourier transform program.
As shown in FIG. 3 (A), the healthy sample is placed on a soil having a thickness of 200 mm, and further embedded in a soil cover thickness of 500mm as shown in FIG. 3 (B). (The distance from the impact hammer impact location to the receiving location is 1950 mm)
Install the weir plate so that the upper part is left open at both ends of the sample (fix the acrylic plate with adhesive), operate the inspection robot to bring the vibration sensor into contact with the inner surface of the sample, and adjust the water level in the tube Tap water was injected so as to be 0%, 10%, 30%, and 50%, and a shock elastic wave test was performed for each water level to record the waveform of the received wave. FIG. 4A shows the waveform of the received wave at a water level of 0%.
The received waveform for each water level is converted into an absolute value ((b) in FIG. 4 is a waveform obtained by converting the absolute value of the waveform shown in (b) in FIG. 4), integrated over a time interval of 0 to 700 × 10 μs,
Integral value ratio y = (integrated value of received wave at water level x%) / (integrated value of received wave at 0% water level)
Is calculated and shown in FIG.
[Formula 2] y = −0.005
Got.
The ratio y of the integral values means (received wave energy at water level x%) / (received wave energy at
Similarly, the frequency spectrum of the received wave is obtained by changing the water level ((a) in FIG.
% (B) shows the frequency spectrum of the received wave at a water level of 50%), and integrates in the frequency range of 0.5 to 10 kHz.
Integral value ratio y = (integrated value of received wave frequency spectrum at water level x%) / (integrated value of received wave frequency spectrum at 0% water level)
As a result, the same formula as [Formula 2] was obtained.
From this correction equation, the correction coefficient for the water level changed in units of 10% is as follows.
(B)補正式yと欠陥管体の受振波周波数スペクトルとの相関性
次のようにして相関性のあることを確認した。
欠陥管体として、前記ヒューム管を図6の(イ)に示すように落下して図6の(ロ)に
示すように管体中央に周方向クラックを巾0.15mm(周方向等間隔5点での平均値)
の寸法でいれたものを使用し、この欠陥管体を前記健全試料と同様にして埋設し、管体両
端に堰止板を固着して所定の水位に注水できるようにした。
この欠陥管体内に水量が存在しても、次のように前記補正式yによりその欠陥管体の受
振波周波数スペクトルのスペクトル強度(波高値)を補正して基準水位(通常0水位)で
の受振波周波数スペクトルを求めることができる。
図7の(イ)の左側図は欠陥管体の管内水位が20%での受振波周波数スペクトルを示
し、右側図は前記補正式に基づく補正係数1.11で補正した補正後受振波周波数スペク
トルを示している。
図7の(ロ)の左側図は欠陥管体の管内水位が50%での受振波周波数スペクトルを示
し、右側図は前記補正式に基づく補正係数1.33で補正した補正後受振波周波数スペク
トルを示している。
図7の(イ)の左側図で示す補正後の受振波周波数スペクトルの最大ピーク値と図7の
(ロ)の左側図で示す補正後の受振波周波数スペクトルの最大ピーク値とは共に8.4で
あって一致しており、最大ピーク値周波数(固有振動周波数)、ピーク本数も実質的に一
致している。
(B) Correlation between the correction equation y and the received wave frequency spectrum of the defective tube body It was confirmed that there was a correlation as follows.
As the defective tube body, the fume tube is dropped as shown in FIG. 6 (a), and a circumferential crack is 0.15 mm wide (equally spaced in the circumferential direction 5) at the center of the tube body as shown in FIG. 6 (b). Average value in points)
The defective tube was embedded in the same manner as the healthy sample, and weir plates were fixed to both ends of the tube so that water could be injected to a predetermined water level.
Even if the amount of water is present in the defective pipe, the spectrum intensity (crest value) of the received wave frequency spectrum of the defective pipe is corrected by the correction equation y as follows, at the reference water level (usually 0 water level). A received wave frequency spectrum can be obtained.
The left view of FIG. 7 (a) shows the received wave frequency spectrum when the in-pipe water level of the defective pipe body is 20%, and the right view shows the corrected received wave frequency spectrum corrected by the correction coefficient 1.11 based on the correction equation. Is shown.
7B shows the received wave frequency spectrum when the in-pipe water level of the defective pipe body is 50%, and the right figure shows the corrected received wave frequency spectrum corrected by the correction coefficient 1.33 based on the correction equation. Is shown.
Both the maximum peak value of the corrected received wave frequency spectrum shown in the left diagram of FIG. 7A and the maximum peak value of the corrected received wave frequency spectrum shown in the left diagram of FIG. 4, the maximum peak value frequency (natural vibration frequency) and the number of peaks substantially match.
従って、欠陥管体内に水量が在っても、その受振波の固有振動周波数、同受振波の周波
数スペクトルのピーク本数等の欠陥情報が実質的に殆ど変わず、受振波の波高値が実質的
に異なるだけであり、その差異の比は健全管体でのそれに実質的に等しく、従って、健全
管体について管内水量と受振波波高値との関係を求めておけば、水量が存在する欠陥管体
の受振波の周波数スペクトルのスペクト強度を補正して基準水量(通常0%水量)での周
波数スペクトルを求め得る。
この理由は、前記した補正係数、すなわち、(水位x%での試料の受振波周波数スペク
トルの積分値)/(水位0%での試料の受振波周波数スペクトルの積分値)の比が、(水
位x%での受振波のエネルギー)と(水位0%での受振波のエネルギー)との比であり、
弾性波出力のエネモルギーが管内水位に比例して管内水に放出され、この放出分だけ受振
波のエネルギーが小さくなることによると推定される。
Therefore, even if there is water in the defective pipe, the defect information such as the natural vibration frequency of the received wave and the number of peaks of the frequency spectrum of the received wave is substantially unchanged, and the peak value of the received wave is substantially unchanged. The ratio of the difference is substantially equal to that of a healthy pipe. Therefore, if the relationship between the amount of water in the pipe and the peak value of the received wave is obtained for the healthy pipe, the defective pipe where the amount of water exists is obtained. The frequency spectrum at the reference water amount (usually 0% water amount) can be obtained by correcting the spectral intensity of the frequency spectrum of the body vibration wave.
The reason for this is that the ratio of the correction coefficient described above, that is, the (integrated value of the received wave frequency spectrum of the sample at the water level x%) / (the integrated value of the received wave frequency spectrum of the sample at the 0% water level) is (water level). is the ratio of the received wave energy at x%) to the received wave energy at 0% water level,
It is estimated that the energy of the elastic wave output is released into the pipe water in proportion to the water level in the pipe, and the energy of the received wave is reduced by this amount.
本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、図2に示す検査ロ
ボットを使用することが好ましい。この検査ロボットは図2の(ロ)に示すように、中折
り可能とし、マンホールから管路に至る間の直角空間に円滑に挿通できるようにしてある
。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, it is preferable to use the inspection robot shown in FIG. As shown in FIG. 2B, this inspection robot can be folded in the middle, and can be smoothly inserted into a right angle space from the manhole to the pipe line.
本発明に係る埋設管の検査方法により埋設管の劣化診断を行うには、例えば図8に示す
検査ロボット1を使用し図9に示すフローに従って進めることができる。この場合、一本
の管体の衝撃弾性波試験を行えば、次の管体内に検査装置を移行させるが、陥没が過酷な
場合は衝撃弾性波試験を行うまでもなく重劣化と判定する。
図8において、3はTVカメラを示し、陥没の程度はTVカメラの監視により行い、管
路内面を監視しつつ検査装置を移行させる。4は制御ユニット、cは操作信号を入力した
り、データ記録、高速フーリエ変換を行うパソコンやTVカメラモニタを示している。T
Vカメラ3または検査ロボット1に水位計5を取付け、その信号をパソコンに入力して受
振波周波数スペクトルの管内水量補正を行いえるようにしてもよい。
In order to perform the deterioration diagnosis of the buried pipe by the buried pipe inspection method according to the present invention, for example, the
In FIG. 8, 3 indicates a TV camera, and the degree of depression is monitored by the TV camera, and the inspection apparatus is shifted while monitoring the inner surface of the pipeline.
The
埋設管の劣化診断を行うには、まず、埋設管路の各管体に対し、検査ロボット1を使用
して衝撃弾性波試験を行い、振動センサーBが受振する入力弾性波をパソコンに保存し、
高速フーリエ変換ソフトによりその入力弾性波をフーリエ変換して周波数スペクトルを求
める。水位計5で管内水位x(%)を測定し、前記の式2により補正係数を算出し、管内
水位による補正を行い、補正された周波数スペクトルを求める。
この補正した周波数スペクトルを解析し、最大ピークのスペクトル強度値40%以上の
ピーク本数を求め、ピーク本数が2本以下であれば〔図10の(ロ)参照〕、軸方向クラ
ック在りと診断し、ピーク本数が3本以上であれば〔図10の(ハ)、図10の(ニ)参
照〕、最大ピークの強度値を解析し、予め求めておいた健全管体の周波数スペクトル〔図
10の(イ)参照〕と比較して最大ピークの強度値が顕著に減少しているもの〔図10の
(ハ)参照〕では周方向クラック在りと診断し、最大ピークの強度値の減少程度が小さな
もの〔図10の(ニ)参照〕では管厚み減少と診断することができる。
In order to diagnose the deterioration of the buried pipe, first, an impact elastic wave test is performed on each pipe body of the buried pipe using the
The input elastic wave is Fourier transformed by fast Fourier transform software to obtain a frequency spectrum. The water level x (%) in the pipe is measured by the
This corrected frequency spectrum is analyzed to obtain the number of peaks having a spectrum intensity value of 40% or more of the maximum peak. If the number of peaks is 2 or less (see (b) in FIG. 10), the presence of an axial crack is diagnosed. If the number of peaks is 3 or more (see (c) in FIG. 10, (d) in FIG. 10), the intensity spectrum of the maximum peak is analyzed and the frequency spectrum of the healthy tube obtained in advance [FIG. (See (b) of FIG. 10), the maximum peak intensity value is significantly reduced (see (c) of FIG. 10), and it is diagnosed that there is a crack in the circumferential direction. A small one (see FIG. 10D) can be diagnosed as a decrease in tube thickness.
A ハンマー
B 振動センサー
p 管体
1 検査ロボット
5 水位計
A Hammer B Vibration
Claims (1)
An elastic wave is input to a predetermined inner surface portion of the buried pipe in a state where the amount of water is present in the tube. corrected by the correction factor for the pipe water level obtained in advance the intensity values of the frequency spectrum of the geophone wave calculated frequency spectrum with respect to a reference level of the geophone wave, performing the deterioration diagnosis of the buried pipe by analyzing the frequency spectrum An inspection method for buried pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004182882A JP4413089B2 (en) | 2004-06-21 | 2004-06-21 | Inspection method for buried pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004182882A JP4413089B2 (en) | 2004-06-21 | 2004-06-21 | Inspection method for buried pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006003319A JP2006003319A (en) | 2006-01-05 |
JP4413089B2 true JP4413089B2 (en) | 2010-02-10 |
Family
ID=35771819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004182882A Expired - Fee Related JP4413089B2 (en) | 2004-06-21 | 2004-06-21 | Inspection method for buried pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4413089B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5519360B2 (en) * | 2010-03-25 | 2014-06-11 | 三井造船株式会社 | Underwater inspection system |
KR102545926B1 (en) * | 2021-04-30 | 2023-06-20 | 한국수력원자력 주식회사 | Pipe evaluating robot and pipe evaluating method |
JP7624872B2 (en) | 2021-05-11 | 2025-01-31 | 株式会社荏原製作所 | Vibration diagnosis method for pump station system piping |
KR102583648B1 (en) * | 2023-03-30 | 2023-09-27 | 주식회사 에코랩스 | Water and sewage inspection system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4162967B2 (en) * | 2001-10-12 | 2008-10-08 | 積水化学工業株式会社 | Inspection method for reinforced concrete pipes |
-
2004
- 2004-06-21 JP JP2004182882A patent/JP4413089B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006003319A (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9127998B1 (en) | Active ultrasonic method of quantifying bolt tightening and loosening | |
US7360462B2 (en) | Method and equipment for inspecting reinforced concrete pipe | |
AU2005265697B2 (en) | Buried pipe examining method | |
JP4162967B2 (en) | Inspection method for reinforced concrete pipes | |
JP4589280B2 (en) | Pipe inspection method using guide wave and pipe inspection apparatus | |
JP4214290B2 (en) | Concrete structure diagnostic apparatus and diagnostic method using the same | |
JP4667228B2 (en) | Pile inspection method and sensor crimping device | |
JP7125712B2 (en) | Non-destructive test equipment for structures and its non-destructive test method | |
CA2783089A1 (en) | Damage detection in pipes and joint systems | |
JP2004150946A (en) | Nondestructive measuring instrument and method for concrete rigidity by ball hammering | |
JP7249145B2 (en) | Conduit health diagnostic method | |
JP2011027571A (en) | Piping thickness reduction inspection apparatus and piping thickness reduction inspection method | |
JP4895383B2 (en) | Filling degree inspection apparatus and filling degree inspection method | |
JP3198840U (en) | Prop road boundary inspection system | |
JP5692783B2 (en) | Piping blockage diagnosis method | |
JP4413089B2 (en) | Inspection method for buried pipes | |
JP4603599B2 (en) | Inspection equipment for reinforced concrete pipes | |
CN111678465A (en) | A method of pipeline bending detection based on ultrasonic guided waves | |
JP4515848B2 (en) | Inspection method for buried pipes | |
JP4413082B2 (en) | Inspection method for buried pipes | |
JP5735369B2 (en) | Inspection method and rehabilitation method for buried pipe | |
JP4756150B2 (en) | Inspection method for buried pipes | |
RU2451932C1 (en) | Method of measuring corrosion of main pipelines | |
JP4598433B2 (en) | Inspection method for buried pipes | |
JP4391875B2 (en) | Inspection method for buried pipes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4413089 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |