[go: up one dir, main page]

JP4413048B2 - Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin - Google Patents

Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin Download PDF

Info

Publication number
JP4413048B2
JP4413048B2 JP2004077444A JP2004077444A JP4413048B2 JP 4413048 B2 JP4413048 B2 JP 4413048B2 JP 2004077444 A JP2004077444 A JP 2004077444A JP 2004077444 A JP2004077444 A JP 2004077444A JP 4413048 B2 JP4413048 B2 JP 4413048B2
Authority
JP
Japan
Prior art keywords
rubber
resin
styrene
weight
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004077444A
Other languages
Japanese (ja)
Other versions
JP2004307841A5 (en
JP2004307841A (en
Inventor
満俊 遠山
哲也 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Japan Corp
Original Assignee
PS Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Japan Corp filed Critical PS Japan Corp
Priority to JP2004077444A priority Critical patent/JP4413048B2/en
Publication of JP2004307841A publication Critical patent/JP2004307841A/en
Publication of JP2004307841A5 publication Critical patent/JP2004307841A5/ja
Application granted granted Critical
Publication of JP4413048B2 publication Critical patent/JP4413048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、耐候性、耐衝撃性に優れたゴム変性スチレン系樹脂とその製造方法及びその樹脂を用いてなる積層体に関するものである。   The present invention relates to a rubber-modified styrenic resin excellent in weather resistance and impact resistance, a method for producing the same, and a laminate using the resin.

耐衝撃性ポリスチレン(HIPS、ハイインパクトポリスチレン)に代表されるゴム変性スチレン系樹脂は、耐衝撃性、成形性、寸法安定性に優れた樹脂であることから、電化製品、家庭製品、食品容器等の成形材料や包装材料として多岐の分野において使用されている。
しかしながら、周知のごとく従来のゴム変性スチレン系樹脂は、連続相中のポリスチレンに分散しているゴム粒子の分子鎖に不飽和二重結合を含有しているため、紫外線や空気中の酸素により劣化し、変色や衝撃性の低下を生じるなど、耐候性が低いという問題を有している。従って、耐候性が必要な用途、例えば屋外用途ではほとんど使用されてこなかった。
Rubber-modified styrene resins represented by impact-resistant polystyrene (HIPS, high-impact polystyrene) are resins with excellent impact resistance, moldability, and dimensional stability. It is used in various fields as molding materials and packaging materials.
However, as is well known, conventional rubber-modified styrenic resins contain unsaturated double bonds in the molecular chains of rubber particles dispersed in polystyrene in the continuous phase, so they are degraded by ultraviolet rays and oxygen in the air. However, there is a problem that the weather resistance is low, such as discoloration and reduction in impact resistance. Therefore, it has hardly been used in applications that require weather resistance, such as outdoor applications.

また、ポリメタクリル酸メチル樹脂またはメタクリル酸メチルを主成分とした樹脂は、透明性、光沢、耐候性に優れることから、自動車部品、電気関係部品、照明器具、ディスプレーなどの幅広い分野において使用されているが、衝撃強度が低く、用途が限定されている。
また、連続相をスチレン、アクリル酸ブチル、メタクリル酸メチルを重合してなる共重合体とし、分散粒子に含まれるゴム状重合体をスチレン−ブタジエンブロック共重合体として、両者の屈折率を事実上一致させる方法が知られているが、ゴム変性スチレン系樹脂と同様にゴム粒子の分子鎖に不飽和二重結合を含有しているため、紫外線や空気中の酸素により劣化し、変色や衝撃性の低下を生じ、耐候性が低いという問題を有している。
Polymethyl methacrylate resins or resins based on methyl methacrylate are excellent in transparency, gloss, and weather resistance, so they are used in a wide range of fields such as automotive parts, electrical parts, lighting equipment, and displays. However, its impact strength is low and its use is limited.
In addition, the continuous phase is a copolymer obtained by polymerizing styrene, butyl acrylate and methyl methacrylate, and the rubbery polymer contained in the dispersed particles is a styrene-butadiene block copolymer. Although the matching method is known, it contains an unsaturated double bond in the molecular chain of the rubber particles like the rubber-modified styrenic resin, so it deteriorates due to ultraviolet rays or oxygen in the air, causing discoloration and impact. This has the problem that the weather resistance is low.

また、エチレン−α−オレフィン系共重合ゴム(EPM、EPDM)、アクリル系ゴムなどをゴム成分として用い、スチレン、アクリロニトリルをグラフト重合した、実質的に不飽和結合を含有しないAES樹脂、ASA樹脂は、ゴム変性スチレン系樹脂に比較し、紫外線、空気中の酸素に対する抵抗性が大きく耐候性が良いことが知られている。
しかしながら、AES樹脂、ASA樹脂は、ゴム変性スチレン系樹脂に比較し、着色性、成形性に劣る欠点を有している。特に着色性においては、ゴム変性スチレン系樹脂に比べ、濃色において深みが不足し、同じ色調に調色するためには、着色剤が多量に必要となる。
特許文献1には、部分水添共役ジエン系ゴムを強靭化剤として含有する耐衝撃性及び剛性に優れた耐衝撃性スチレン系樹脂が開示されているが、効果として耐候性について何ら言及されていない。
In addition, AES resin and ASA resin containing substantially no unsaturated bond, which is obtained by graft polymerization of styrene and acrylonitrile using ethylene-α-olefin copolymer rubber (EPM, EPDM), acrylic rubber, etc. as a rubber component, It is known that the resistance to ultraviolet rays and oxygen in the air is large and the weather resistance is good compared to rubber-modified styrene resins.
However, AES resin and ASA resin have the disadvantage that they are inferior in colorability and moldability as compared with rubber-modified styrene resin. In particular, in terms of colorability, compared to rubber-modified styrenic resins, deep colors are insufficient in depth, and a large amount of colorant is required to achieve the same color tone.
Patent Document 1 discloses an impact-resistant styrenic resin excellent in impact resistance and rigidity containing partially hydrogenated conjugated diene rubber as a toughening agent. However, there is no mention of weather resistance as an effect. Absent.

また、特許文献2には、芳香族ビニルと共役ジエン化合物からなるブロック共重合体を水素添加したゴム状重合体にメタクリル酸メチルを主成分とする単量体をグラフト重合する製造方法が開示されているが、ブロック共重合体の水素添加率が高く、ゴム中の二重結合が減少することによって、著しくゴム成分の架橋反応が進行し難くなってしまうので、たとえ重合過程では所望のゴム粒子が形成されても、押出加工や射出成形の際に受ける機械的な剪断力によって粒子が変形あるいは破壊されて強度低下及び成形品の表面光沢や透明性が劣悪なものになってしまう。特許文献2には、実施例も含めてゴム成分の架橋に関する技術開示は全くされていない。   Patent Document 2 discloses a production method in which a monomer mainly composed of methyl methacrylate is graft polymerized to a rubbery polymer obtained by hydrogenating a block copolymer composed of an aromatic vinyl and a conjugated diene compound. However, since the hydrogenation rate of the block copolymer is high and the number of double bonds in the rubber decreases, the cross-linking reaction of the rubber component becomes extremely difficult to proceed. Even if is formed, the particles are deformed or broken by mechanical shearing force applied during extrusion or injection molding, resulting in a decrease in strength and poor surface gloss and transparency of the molded product. Patent Document 2 does not provide any technical disclosure regarding the crosslinking of rubber components, including the examples.

一方、スチレン系樹脂、塩化ビニル樹脂等の熱可塑性樹脂における耐候性の問題を克服し屋外での使用を可能とする為に、熱可塑性樹脂の表面層側に耐候性に優れる樹脂を積層する方法が行われているが、特にポリスチレン、耐衝撃性ポリスチレンは、耐候性に優れる代表樹脂であるメタクリル樹脂、AAS樹脂、AES樹脂との親和性に乏しく、共押出等の熱融着により、強固に接着した積層体を形成することが不可能であった。
また、特許文献3には、芳香族ビニル化合物と共役ジエンからなるジエン系重合体を水素添加した水添ジエン系重合体存在下に、ラジカル重合可能な単量体成分をグラフト共重合させた、特定範囲のグラフト率及びメチルエチルケトン可溶分の固有粘度のゴム強化樹脂と他の熱可塑性樹脂との積層物及び特許文献4には、共役ジエン系ゴム質重合体の水素化物存在下に芳香族ビニル化合物または芳香族ビニル化合物および芳香族ビニル化合物と共重合可能な他のビニル単量体を重合してなるスチレン系樹脂と他の熱可塑性樹脂の積層体が開示されているが、スチレン系樹脂、塩化ビニル樹脂の両樹脂に接着することが困難であり、特にポリスチレン、耐衝撃性ポリスチレンとの接着性が不十分であり、実用上の接着強度に至っていない。さらに、前途のジエン系重合体の水素添加率が高いことに起因する同様な欠点を有している。
On the other hand, a method of laminating a resin having excellent weather resistance on the surface layer side of the thermoplastic resin in order to overcome the problem of weather resistance in thermoplastic resins such as styrene resin and vinyl chloride resin and enable outdoor use In particular, polystyrene and impact-resistant polystyrene are poor in affinity with methacrylic resin, AAS resin, and AES resin, which are representative resins having excellent weather resistance, and are strongly bonded by thermal fusion such as coextrusion. It was impossible to form a bonded laminate.
In Patent Document 3, a monomer component capable of radical polymerization is graft copolymerized in the presence of a hydrogenated diene polymer obtained by hydrogenating a diene polymer composed of an aromatic vinyl compound and a conjugated diene. A laminate of a rubber-reinforced resin having a specific range of graft ratio and an intrinsic viscosity soluble in methyl ethyl ketone and another thermoplastic resin and Patent Document 4 include aromatic vinyl in the presence of a hydride of a conjugated diene rubber polymer. A laminate of a styrene resin obtained by polymerizing a compound or an aromatic vinyl compound and another vinyl monomer copolymerizable with the aromatic vinyl compound and another thermoplastic resin is disclosed. It is difficult to adhere to both resins of vinyl chloride resin, in particular, the adhesiveness with polystyrene and impact-resistant polystyrene is insufficient, and the practical adhesive strength has not been reached. Furthermore, it has the same fault resulting from the high hydrogenation rate of the diene polymer in the future.

特開昭64−90208号公報JP-A 64-90208 特開平1−163209号公報JP-A-1-163209 特許2946627号公報Japanese Patent No. 2946627 特開平9−76426号公報JP-A-9-76426

本発明は、耐候性、耐衝撃性に優れ、更には従来のゴム変性スチレン系樹脂と同程度の、着色性、加工性を有するゴム変性スチレン系樹脂とその製造方法及びその樹脂を用いてなる耐候性、接着強度に優れた積層体を提供することを目的としたものである。   The present invention uses a rubber-modified styrene resin excellent in weather resistance and impact resistance, and having the same colorability and processability as that of a conventional rubber-modified styrene resin, a method for producing the same, and the resin. The object is to provide a laminate having excellent weather resistance and adhesive strength.

本発明者らは、このような現状の問題点を解決するため、誠意検討した結果、共役ジエン系ゴムが水素添加された部分水素添加ゴムとスチレン系単量体と(メタ)アクリル酸エステル系単量体とを、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率及び該ゲル分のトルエンに対する膨潤指数が特定の範囲内となるように重合させる製造方法により得られるゴム変性スチレン系樹脂及びその樹脂を用いて積層体にすることにより、前記問題点が解決する事を見いだし、本発明を完成するに至った。   As a result of sincerity studies to solve such problems of the present situation, the present inventors have found that a partially hydrogenated rubber in which a conjugated diene rubber has been hydrogenated, a styrene monomer, and a (meth) acrylate ester system. The monomer is subjected to bulk polymerization or solution polymerization with stirring using a radical initiator, and the gel fraction of methyl-ethylketone-insoluble matter in the rubber-modified styrenic resin obtained and the swelling index for toluene within a specific range are within the specified range. The present inventors have found that the above problems can be solved by using a rubber-modified styrenic resin obtained by a production method for polymerization and a laminate using the resin, and completed the present invention.

即ち、本発明は、以下の通りのものである。
1.ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを、(A)+(B)+(C)を100重量部として(A)が3〜16重量部でかつ(B)/(C)の重量比が40/60〜60/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16となるように重合させることを特徴とするゴム変性スチレン系樹脂の製造方法。
2.部分水素添加ゴム(A)の、25℃における5重量%スチレン溶液粘度が20〜150センチポイズである上記1記載の製法。
3.ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が40/60〜60/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が40/60〜60/40重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であることを特徴とするゴム変性スチレン系樹脂。
4.分散ゴム粒子相の重量平均粒子径が0.5〜3.5μmである上記3記載のゴム変性スチレン系樹脂。
5.スチレン系単量体(B)がスチレンであり、かつ(メタ)アクリル酸エステル系単量体(C)がメタクリル酸メチルまたはメタクリル酸メチルとアクリル酸ブチルである上記3又は4記載のゴム変性スチレン系樹脂。
6.ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が40/60〜60/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が40/60〜60/40重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であるゴム変性スチレン系樹脂(I)からなる層と(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層とが、積層された構造を有することを特徴とする積層体。
7.分散ゴム粒子相の重量平均粒子径が0.5〜3.5μmである上記6記載の積層体。
8.(I)と(II)からなる層を熱融着してなる上記6又は7記載の積層体。
9.(II)からなる層において、(I)以外のスチレン系樹脂がポリスチレン、耐衝撃性ポリスチレン、ABS樹脂から選ばれた少なくとも1種である上記6又は7記載の積層体。
10.(II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂である上記6又は7記載の積層体。
11.(II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体である上記6又は7記載の積層体。
12.(II)からなる層が、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂およびそれらの木粉配合樹脂である上記6又は7記載の積層体。
That is, the present invention is as follows.
1. A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). , (A) + (B) + (C) is 100 parts by weight, (A) is 3 to 16 parts by weight, and (B) / (C) has a weight ratio in the range of 40/60 to 60/40. Then, bulk polymerization or solution polymerization is carried out with stirring using a radical initiator, and the resulting rubber-modified styrenic resin has a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight, and a swelling index of the gel content of toluene of 8 A method for producing a rubber-modified styrenic resin, wherein polymerization is performed so as to be ˜16.
2. 2. The process according to 1 above, wherein the partially hydrogenated rubber (A) has a 5 wt% styrene solution viscosity at 25 ° C. of 20 to 150 centipoise.
3. A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). The dispersed rubber particle phase and the resin obtained by polymerizing by bulk polymerization or solution polymerization with stirring using a radical initiator within a range of (B) / (C) weight ratio of 40/60 to 60/40 A rubber-modified styrenic resin comprising a phase, wherein the styrene monomer unit and the (meth) acrylic acid ester monomer unit are 40/60 to 60/40 weight in the copolymer constituting the resin phase. And the rubber-modified styrene resin obtained has a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight and a swelling index of the gel content of toluene of 8 to 16 Styrene-based resin.
4). 4. The rubber-modified styrenic resin as described in 3 above, wherein the weight average particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 μm.
5. 5. The rubber-modified styrene as described in 3 or 4 above, wherein the styrene monomer (B) is styrene and the (meth) acrylic acid ester monomer (C) is methyl methacrylate or methyl methacrylate and butyl acrylate. Resin.
6). A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). The dispersed rubber particle phase and the resin obtained by polymerizing by bulk polymerization or solution polymerization with stirring using a radical initiator within a range of (B) / (C) weight ratio of 40/60 to 60/40 A rubber-modified styrenic resin comprising a phase, wherein the styrene monomer unit and the (meth) acrylic acid ester monomer unit are 40/60 to 60/40 weight in the copolymer constituting the resin phase. A rubber-modified styrene resin having a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight and a swelling index of 8 to 16 with respect to toluene. ) Layer and consisting of (a layer consisting of I) other than the styrene-based resin or vinyl chloride resin (II) is a laminate, characterized in that it has a laminated structure.
7). 7. The laminate according to 6 above, wherein the weight average particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 μm.
8). 8. The laminate according to 6 or 7 above, wherein the layer comprising (I) and (II) is heat-sealed.
9. 8. The laminate according to 6 or 7 above, wherein in the layer comprising (II), the styrene resin other than (I) is at least one selected from polystyrene, impact-resistant polystyrene, and ABS resin.
10. 8. The laminate according to 6 or 7 above, wherein the layer made of (II) is a styrene resin or vinyl chloride resin wood powder-containing resin other than (I).
11. 8. The laminate according to 6 or 7 above, wherein the layer made of (II) is a foam of styrene resin or vinyl chloride resin other than (I).
12 8. The laminate according to 6 or 7 above, wherein the layer made of (II) is recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride resin, and wood powder-containing resin thereof.

本発明の製造方法で得られたゴム変性スチレン系樹脂は、耐候性、耐衝撃性に優れ、且つ成形性、着色性に優れた材料である。本発明のゴム変性スチレン系樹脂及びその積層体は、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野など幅広い用途での使用が可能であり、特に住設・建材分野の屋外製品及び建材として好適に用いることが出来る。   The rubber-modified styrene resin obtained by the production method of the present invention is a material excellent in weather resistance and impact resistance, and excellent in moldability and colorability. The rubber-modified styrenic resin and the laminate thereof of the present invention can be used in a wide range of applications such as automobiles, home appliances / miscellaneous goods, outdoor products such as exteriors, and housing / building materials fields. -It can be suitably used as outdoor products and building materials in the building materials field.

以下、本発明を詳細に説明する。本発明で用いられる部分水素添加ゴムは、公知の方法で得られる共役ジエン系重合体を部分的に水素添加することによって得られる。公知の方法で得られる共役ジエン系重合体とは、通常、ゴム変性スチレン系樹脂の製造に用いられる全てのゴムが含まれる。例えば、ポリブタジエン、スチレン−ブタジエン共重合体(ランダム及びブロックSBR)、ポリイソプレン、ブタジエン−イソプレン共重合体、ブタジエン−イソプレン−スチレン共重合体、天然ゴム等が挙げられる。特に、耐候性、補強効果の観点からポリブタジエンが好適に用いられる。
共役ジエン重合体の水素添加率は、共役ジエン単位のうち7〜70モル%である。好ましくは、9〜60モル%である。より好ましくは、15〜45モル%である。水添率が7モル%未満では、耐候性が向上しない。一方、70モル%を超える場合は、耐衝撃性が劣る。
水素添加方法は、従来公知のいかなる方法を用いても良く、例えば、特開昭52−41890号公報、特開昭59−133203号公報、特開昭60−220147号公報に示される方法を用いることができる。
Hereinafter, the present invention will be described in detail. The partially hydrogenated rubber used in the present invention can be obtained by partially hydrogenating a conjugated diene polymer obtained by a known method. The conjugated diene polymer obtained by a known method usually includes all rubbers used for the production of rubber-modified styrene resins. Examples thereof include polybutadiene, styrene-butadiene copolymer (random and block SBR), polyisoprene, butadiene-isoprene copolymer, butadiene-isoprene-styrene copolymer, and natural rubber. In particular, polybutadiene is preferably used from the viewpoint of weather resistance and reinforcing effect.
The hydrogenation rate of a conjugated diene polymer is 7-70 mol% among conjugated diene units. Preferably, it is 9-60 mol%. More preferably, it is 15 to 45 mol%. When the hydrogenation rate is less than 7 mol%, the weather resistance is not improved. On the other hand, when it exceeds 70 mol%, impact resistance is inferior.
As the hydrogenation method, any conventionally known method may be used. For example, the methods disclosed in JP-A-52-41890, JP-A-59-133203, and JP-A-60-220147 are used. be able to.

また、特に限定されるものではないが、水素添加後の不飽和1,2ビニル結合は、15モル%以下が好ましい。より好ましくは、10モル%以下である。15モル%を超える場合は、耐熱安定性、耐候性に劣る。
また、部分的に水素添加させた後の部分水素添加ゴムの100℃で測定したムーニー粘度(ML1+4 、100℃)は20〜80、25℃における5重量%スチレン溶液粘度(5%SV)は、20〜150センチポイズの範囲にあることが好ましい。より好ましい範囲は30〜120センチポイズである。この範囲内の部分水素添加ゴムを用いると、耐衝撃性に優れ、かつ製造に際してゴム粒子径制御が容易となり好ましい。
本発明のゴム変性スチレン系樹脂を製造する際に用いられる部分水素添加ゴムの含有量は、3〜16重量%である。好ましくは5〜14重量%である。3重量%未満であると、補強効果が充分ではなく、耐衝撃性が不足する。16重量%を超える場合は、耐衝撃性は向上するものの剛性、成形性、耐候性が低下し、使用用途が大きく制約を受けるので好ましくない。
Moreover, although it does not specifically limit, 15 mol% or less of the unsaturated 1,2 vinyl bond after hydrogenation is preferable. More preferably, it is 10 mol% or less. When it exceeds 15 mol%, it is inferior to heat-resistant stability and a weather resistance.
Moreover, the Mooney viscosity (ML1 + 4 , 100 degreeC) measured at 100 degreeC of the partially hydrogenated rubber | gum after making it partially hydrogenate is 20-80, and the 5 weight% styrene solution viscosity (5% SV at 25 degreeC). ) Is preferably in the range of 20 to 150 centipoise. A more preferable range is 30 to 120 centipoise. Use of a partially hydrogenated rubber within this range is preferable because it is excellent in impact resistance and the rubber particle diameter can be easily controlled during production.
The content of the partially hydrogenated rubber used when producing the rubber-modified styrene resin of the present invention is 3 to 16% by weight. Preferably, it is 5 to 14% by weight. If it is less than 3% by weight, the reinforcing effect is not sufficient, and the impact resistance is insufficient. If it exceeds 16% by weight, the impact resistance is improved, but the rigidity, moldability, and weather resistance are lowered, and the usage is greatly restricted.

本発明で用いられるスチレン系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等が挙げられ、単独あるいは二種以上用いても良い。特に、スチレンが好適に用いられる。又、(メタ)アクリル酸エステル系単量体としては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、シクロヘキシルアクリレート等が挙げられる。これらを単独、または混合して用いても良い。特に、メチルメタクリレート、メチルメタクリレートとブチルアクリレートの混合品が好適に用いる事が出来る。メチルメタクリレートとブチルアクリレート混合品を用いる場合、ブチルアクリレートの量は連続相を形成する重合体の10重量%以下が好適な使用範囲である。10重量%を越える場合は、耐熱性が低下し、成形体の実用範囲が狭くなり好ましくない。   Examples of the styrenic monomer used in the present invention include styrene, α-methylstyrene, p-methylstyrene, pt-butylstyrene, and the like. In particular, styrene is preferably used. Examples of the (meth) acrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate and the like. You may use these individually or in mixture. In particular, methyl methacrylate, a mixture of methyl methacrylate and butyl acrylate can be preferably used. When a methyl methacrylate and butyl acrylate mixture is used, the amount of butyl acrylate is preferably 10% by weight or less of the polymer forming the continuous phase. When it exceeds 10% by weight, the heat resistance is lowered, and the practical range of the molded product is narrowed.

スチレン系単量体と(メタ)アクリル酸エステル系単量体の割合は20:80〜82:18(重量比)である。好ましくは、30:70〜70:30である。より好ましくは、40:60〜60:40である。スチレン系単量体の割合が20未満になると耐衝撃性と加工性を同時に満足する樹脂が得られず、更には積層体にした際にポリスチレン、耐衝撃性ポリスチレン等との接着性が低下し好ましくない。一方、スチレン単量体の割合が82を越えると耐候性が低下し、更には積層体にした際に塩化ビニル樹脂、ABS樹脂等との接着性が低下し好ましくない。
本発明のゴム変性スチレン系樹脂を製造する際に必要に応じてその他の共重合可能な単量体(D)を用いても良い。ここで用いるその他の共重合可能な単量体としては、例えばアクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、無水マレイン酸、無水イタコン酸等の無水物基含有単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のジカルボン酸イミド基含有単量体、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基含有単量体、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有単量体、アクリルアミン、アミノエチルメタクリレート、アミノプロピルメタクリレート等のアミノ基含有単量体、2−ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート等のヒドロキシル基含有単量体などが挙げられる。
The ratio of the styrene monomer to the (meth) acrylic acid ester monomer is 20:80 to 82:18 (weight ratio). Preferably, it is 30: 70-70: 30. More preferably, it is 40: 60-60: 40. If the ratio of styrene monomer is less than 20, a resin satisfying both impact resistance and processability cannot be obtained. Furthermore, when it is made into a laminate, the adhesion to polystyrene, impact polystyrene, etc. decreases. It is not preferable. On the other hand, when the ratio of the styrene monomer exceeds 82, the weather resistance is lowered, and further, when it is made into a laminate, the adhesion with a vinyl chloride resin, an ABS resin or the like is lowered, which is not preferable.
When producing the rubber-modified styrenic resin of the present invention, other copolymerizable monomer (D) may be used as necessary. Examples of other copolymerizable monomers used here include vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, anhydride group-containing monomers such as maleic anhydride and itaconic anhydride, maleimide, and N-methyl. Dicarboxylic imide group-containing monomers such as maleimide, N-phenylmaleimide, N-cyclohexylmaleimide, epoxy group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, carboxyl such as acrylic acid, methacrylic acid, maleic acid and itaconic acid Group-containing monomer, amino group-containing monomer such as acrylic amine, aminoethyl methacrylate, aminopropyl methacrylate, etc., hydroxyl group-containing such as 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, etc. Such as the amount thereof and the like.

本発明の樹脂相を形成するスチレン系樹脂の分子量(ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算分子量)は、重量平均分子量で7万〜30万が好ましく、より好ましくは9万〜20万で範囲である。
本発明の分散ゴム粒子相のゴム粒子径は、0.5〜3.5μmの範囲が好ましい。より好ましくは0.7〜3.0μmである。更に好ましくは1.0〜3.0μmである。0.5μm未満であると、補強効果が充分ではなく、耐衝撃性が不足する。3.5μmを超え
る場合は、剛性が低下し好ましくない。
本発明はゴム成分として部分水素添加ゴムを用いる。ゴム自体の光などに対する安定性すなわち耐候性は、水素添加率が高いほど改良されるが、反面化学反応性が水素添加率の上昇に伴い急激に低下する為、グラフト反応とゴムの架橋反応が進行し難くなってしまう。本発明のゴム変性スチレン系樹脂の特徴は、ゴム粒子表面に特定の組成範囲のスチレン系単量体と(メタ)アクリル酸エステル系単量体の共重合体が適度な量グラフトし、かつゴム粒子が適度に架橋していることにより、樹脂部との相溶性が高く、成形加工時の剪断力に対してもゴム粒子の変形を生じないことにより、良好な衝撃強度、耐候性が得られることである。
The molecular weight (polystyrene equivalent molecular weight measured using gel permeation chromatography (GPC)) of the styrenic resin forming the resin phase of the present invention is preferably 70,000 to 300,000, more preferably 90,000 in terms of weight average molecular weight. The range is ~ 200,000.
The rubber particle diameter of the dispersed rubber particle phase of the present invention is preferably in the range of 0.5 to 3.5 μm. More preferably, it is 0.7-3.0 micrometers. More preferably, it is 1.0-3.0 micrometers. If it is less than 0.5 μm, the reinforcing effect is not sufficient and the impact resistance is insufficient. If it exceeds 3.5 μm, the rigidity is undesirably lowered.
The present invention uses partially hydrogenated rubber as the rubber component. The stability of the rubber itself against light, that is, the weather resistance, is improved as the hydrogenation rate increases. On the other hand, since the chemical reactivity decreases rapidly as the hydrogenation rate increases, the grafting reaction and the rubber crosslinking reaction occur. It becomes difficult to progress. The rubber-modified styrenic resin of the present invention is characterized in that an appropriate amount of a copolymer of a styrene monomer having a specific composition range and a (meth) acrylate monomer is grafted on the surface of rubber particles, and the rubber Due to the moderate crosslinking of the particles, the compatibility with the resin part is high, and the rubber particles are not deformed even against the shearing force during the molding process, so that good impact strength and weather resistance can be obtained. That is.

グラフト率及びゴム粒子の架橋程度を直接規定することは実際上簡単ではないが、グラフト率はメチルエチルケトン不溶分ゲル分率、ゴムの架橋程度は該ゲル分のトルエンに対する膨潤指数とで間接的に規定することができる。
本発明のゴム変性スチレン系樹脂のゲル分率(ゴム変性スチレン系樹脂中のメチルエチルケトン不溶部の分率)は、6〜35重量%、好ましくは6〜30重量%で、かつ架橋度の指標となるトルエンに対する膨潤指数(ゴム変性スチレン系樹脂中のトルエン不溶のゲル分を分取し、該ゲル分のトルエンに対する膨潤指数)は、8〜16である。好ましくは、9〜13の範囲である。
ゲル分率が6重量%未満では、耐衝撃性に優れるものが得られず、35重量%を超えるものは、剛性、加工性が低下する。又、膨潤指数が9未満では、ゴム粒子の架橋程度が過大となり耐衝撃性に劣ったものとなり、逆に16を超えるとゴム粒子の架橋程度が不十分で耐衝撃性、表面光沢が低下する。
Directly specifying the graft ratio and the degree of crosslinking of the rubber particles is not easy in practice, but the graft ratio is indirectly defined by the gel fraction insoluble in methyl ethyl ketone, and the degree of crosslinking of the rubber is indirectly determined by the swelling index of the gel to toluene. can do.
The gel fraction of the rubber-modified styrene resin of the present invention (the fraction of the methylethylketone insoluble part in the rubber-modified styrene resin) is 6 to 35% by weight, preferably 6 to 30% by weight, and an index of the degree of crosslinking. The swelling index with respect to toluene (toluene-insoluble gel in the rubber-modified styrene resin is fractionated, and the swelling index with respect to toluene of the gel) is 8 to 16. Preferably, it is the range of 9-13.
If the gel fraction is less than 6% by weight, no excellent impact resistance can be obtained, and if it exceeds 35% by weight, the rigidity and workability are lowered. On the other hand, when the swelling index is less than 9, the degree of crosslinking of the rubber particles becomes excessive and the impact resistance is inferior. On the other hand, when it exceeds 16, the degree of crosslinking of the rubber particles is insufficient and the impact resistance and surface gloss are lowered. .

本発明のゴム変性スチレン系樹脂の製造方法を示す。本発明のゴム変性スチレン系樹脂は、ラジカル開始剤を用い攪拌下で、塊状重合または溶液重合することにより製造されるが、なかでも連続塊状重合または連続溶液重合が生産性と経済性の面で好ましい。即ち、部分水素添加ゴムをスチレン系単量体/(メタ)アクリル酸エステル系単量体、及び必要に応じて重合溶媒、連鎖移動剤、安定剤、鉱油などの添加剤からなる原料溶液に溶解し、通常最後にラジカル開始剤として有機過酸化物が加えられるが、溶解の順序はいずれでもかまわない。有機過酸化物は、原料溶液添加するかもしくは一部または全部を重合途中の重合液に添加しても良い。   The manufacturing method of the rubber modified styrene resin of this invention is shown. The rubber-modified styrenic resin of the present invention is produced by bulk polymerization or solution polymerization with stirring using a radical initiator. Among them, continuous bulk polymerization or continuous solution polymerization is particularly advantageous in terms of productivity and economy. preferable. That is, the partially hydrogenated rubber is dissolved in a raw material solution comprising a styrene monomer / (meth) acrylate monomer and, if necessary, additives such as a polymerization solvent, a chain transfer agent, a stabilizer, and mineral oil. Usually, an organic peroxide is added as a radical initiator at the end, but the order of dissolution may be any. The organic peroxide may be added to the raw material solution, or part or all of the organic peroxide may be added to the polymerization solution during polymerization.

ラジカル開始剤として用いられる有機過酸化物としては、パーオキシケタール類、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、ケトンパーオキサイド類、ハイドロパーオキサイド類などが挙げられる。具体的には、10時間半減期が75〜100℃の有機過酸化物としては、1. 1−ビス(t−ブチルパーオキシ)シクロヘキサン、1.1−ビス(t−ブチルパーオキシ)3.3.5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネートなどが挙げられ、10時間半減期が110〜130℃の有機過酸化物としては、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイドなどが挙げられ、これらの1種または2種以上を用いる。好ましくは、10時間半減期が75〜100℃の有機過酸化物と10時間半減期が110〜130℃の有機過酸化物を併用することが好ましい。調整された原料溶液を攪拌機付き反応機に供給し、重合を行う。重合温度はラジカル開始剤として用いる有機過酸化物の分解温度、生産性、反応機の除熱能力、目的としているゴム変性スチレン系樹脂の流動性等を考慮して、公知の技術を用いて設定することが出来る。分散相を形成するゴム粒子径の調整は公知の技術、例えば攪拌機の回転数を制御する事により行うことが出来る。部分水素添加ゴムの含有量は、目標とする含有量になるように原材料中のゴム状弾性体の含有量や重合率を調整することによって達成することができるが、高濃度のゴム状弾性体を含有するゴム変性スチレン系樹脂を上記方法で作成し、別に作成した、ゴム状弾性体を含有しないスチレン系樹脂と混合するこ
とによっても達成することができる。但し、混合後の樹脂が本発明の構成要件をすべて満たすことは当然である。
Organic peroxides used as radical initiators include peroxyketals, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, ketone peroxides, hydroperoxides, etc. Can be mentioned. Specifically, organic peroxides having a 10-hour half-life of 75 to 100 ° C. include 1.1-bis (t-butylperoxy) cyclohexane, 1.1-bis (t-butylperoxy) 3. Examples include organic peroxides having a 10-hour half-life of 110 to 130 ° C., such as dicumyl peroxide, t-butylcumyl peroxide, and di- t-butyl peroxide etc. are mentioned, These 1 type (s) or 2 or more types are used. Preferably, an organic peroxide having a 10-hour half-life of 75 to 100 ° C. and an organic peroxide having a 10-hour half-life of 110 to 130 ° C. are preferably used in combination. The adjusted raw material solution is supplied to a reactor equipped with a stirrer to perform polymerization. The polymerization temperature is set using a known technique in consideration of the decomposition temperature of organic peroxide used as a radical initiator, productivity, heat removal ability of the reactor, fluidity of the target rubber-modified styrene resin, etc. I can do it. Adjustment of the diameter of the rubber particles forming the dispersed phase can be performed by a known technique, for example, by controlling the rotational speed of the stirrer. The content of the partially hydrogenated rubber can be achieved by adjusting the content of the rubber-like elastic body in the raw material and the polymerization rate so as to reach the target content. It can also be achieved by preparing a rubber-modified styrenic resin containing the above-mentioned method and mixing it with a separately prepared styrenic resin containing no rubber-like elastic body. However, it is natural that the resin after mixing satisfies all the constituent requirements of the present invention.

重合溶媒としては、エチルベンゼン、トルエン、キシレン等を用いることが可能である。重合反応機を出た重合溶液は、回収装置に導かれ加熱脱揮で溶媒と未反応の単量体を除去する。回収装置は、スチレン系樹脂の製造で常用される装置、例えば、フラッシュタンクシステム、多段ベント付き押出機等を用いることができる。脱揮温度は、200〜300℃、好ましくは220〜270℃の範囲である。200℃以下では、ゴム粒子の架橋が不十分となり、逆に300℃を超えるとポリマーの分解、着色が起こって好ましくない。
本発明のゴム変性スチレン系樹脂の製造方法は、重合装置として、完全混合型、プラグフロー型、循環装置を備えたプラグフロー型などいずれも好適に用いることができるが、完全混合型を用いる場合は少なくとも2つ以上の重合装置を直列に連結して使用する必要がある。
As the polymerization solvent, ethylbenzene, toluene, xylene, or the like can be used. The polymerization solution exiting the polymerization reactor is guided to a recovery device, and the solvent and unreacted monomers are removed by heating and devolatilization. As the recovery device, a device commonly used in the production of a styrene resin, for example, a flash tank system, a multistage vented extruder, or the like can be used. The devolatilization temperature is in the range of 200 to 300 ° C, preferably 220 to 270 ° C. If it is 200 ° C. or lower, the rubber particles are not sufficiently crosslinked, and if it exceeds 300 ° C., the polymer is decomposed and colored, which is not preferable.
In the method for producing a rubber-modified styrene resin of the present invention, any of a complete mixing type, a plug flow type, a plug flow type equipped with a circulation device, etc. can be suitably used as a polymerization apparatus. It is necessary to use at least two polymerization apparatuses connected in series.

また、本発明においてゴム変性スチレン系樹脂製造時の回収工程の前後の任意の段階、あるいはゴム変性スチレン系樹脂を押出加工段階、成形加工段階において、スチレン系樹脂に慣用される各種添加剤、例えば、無機充填材、帯電防止剤、熱安定剤、ヒンダートフェノール系、リン系、イオウ系などの酸化防止剤、光安定剤、紫外線吸収剤、加工助剤、分散剤、抗菌剤、核剤、可塑剤、滑剤、難燃剤、染料、顔料、着色剤等を添加できる。
ここで、無機充填剤とは、例えばタルク、マイカ、カオリン、炭酸カルシウム、硫酸バリウム、クレー、ガラスフレーク、ガラスファイバー等が挙げられる。好ましくは、タルク、炭酸カルシウムである。
Further, in the present invention, various additives commonly used for styrenic resins at any stage before or after the recovery step in producing the rubber-modified styrenic resin, or at the extrusion process or molding process stage of the rubber-modified styrenic resin, for example, , Inorganic fillers, antistatic agents, heat stabilizers, hindered phenol-based, phosphorus-based, sulfur-based antioxidants, light stabilizers, UV absorbers, processing aids, dispersants, antibacterial agents, nucleating agents, Plasticizers, lubricants, flame retardants, dyes, pigments, colorants and the like can be added.
Here, examples of the inorganic filler include talc, mica, kaolin, calcium carbonate, barium sulfate, clay, glass flake, and glass fiber. Talc and calcium carbonate are preferable.

また、紫外線吸収剤とは、例えばベンゾトリアゾール系紫外線吸収剤などが挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−t−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−t−オクチルフェニル)ベンゾトリアゾールが挙げられる。好ましくは、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾールである。
また、光安定剤とは、例えばヒンダートアミン系光安定剤などが挙げられる。ヒンダートアミン系光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート、N,N’−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物が挙げられる。好ましくは、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケートである。
Examples of the ultraviolet absorber include benzotriazole-based ultraviolet absorbers. Examples of the benzotriazole ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3 , 5-Di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy- 5'-t-octylphenyl) benzotriazole. 2- (5-methyl-2-hydroxyphenyl) benzotriazole is preferable.
Examples of the light stabilizer include hindered amine light stabilizers. Examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) separate, N, N′-bis (3-aminopropyl) ethylenediamine, 2,4-bis [ N-butyl-N- (1,2,2,6,6-pentamethyl-4piperidyl) amino] -6-chloro-1,3,5-triazine condensate. Bis (2,2,6,6-tetramethyl-4-piperidyl) separate is preferable.

紫外線吸収剤、光安定剤の添加量は、紫外線吸収剤と光安定剤の総量でゴム変性スチレン系樹脂100重量部に対して0.2〜2.0重量部が好ましい。より好ましくは0.4〜1.5重量部である。
また、ポリジメチルシロキサンや鉱油、高級脂肪酸の金属塩、高級脂肪酸のアミド類を添加することにより、衝撃強度を一段と高めることができる。
さらに、テルペン系樹脂、テルペン系水素添加樹脂を添加することにより、成形性、耐熱性、耐衝撃性、剛性バランスや外観特性を高めることもできる。
本発明の積層体は、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層を基材とし、その基材の一部あるいは全体をゴム変性スチレン系樹脂(I)からなる層で被覆してなることを特徴とする積層体である。(I)以外のスチレン系樹脂としては、例えば、ポリスチレン、耐衝撃性ポリスチレン、AS樹脂、ABS樹脂、MS樹脂、透明HIPS樹脂、透明ABS樹脂、スチレン−(メタ)アクリル酸エステル−ブタジ
エンゴム共重合体樹脂、スチレン−(メタ)アクリル酸共重合樹脂、スチレン−無水マレイン酸共重合樹脂等が挙げられ、これらは単独または併用して使用することができる。
The addition amount of the ultraviolet absorber and the light stabilizer is preferably 0.2 to 2.0 parts by weight with respect to 100 parts by weight of the rubber-modified styrene resin as the total amount of the ultraviolet absorber and the light stabilizer. More preferably, it is 0.4-1.5 weight part.
Further, by adding polydimethylsiloxane, mineral oil, metal salt of higher fatty acid, amide of higher fatty acid, impact strength can be further increased.
Furthermore, by adding a terpene resin or a terpene hydrogenated resin, moldability, heat resistance, impact resistance, rigidity balance and appearance characteristics can be improved.
The laminate of the present invention comprises a layer made of styrene resin or vinyl chloride resin (II) other than (I) as a base material, and part or all of the base material is made of rubber-modified styrene resin (I). It is a laminated body characterized by being covered with a layer. Examples of styrene resins other than (I) include polystyrene, impact polystyrene, AS resin, ABS resin, MS resin, transparent HIPS resin, transparent ABS resin, styrene- (meth) acrylic acid ester-butadiene rubber copolymer Examples thereof include a coalesced resin, a styrene- (meth) acrylic acid copolymer resin, and a styrene-maleic anhydride copolymer resin, and these can be used alone or in combination.

本発明の積層体中の(II)からなる層には、ゴム変性スチレン系樹脂(I)と同様に、無機充填材、帯電防止剤、熱安定剤、ヒンダートフェノール系、リン系、イオウ系などの酸化防止剤、光安定剤、紫外線吸収剤、加工助剤、分散剤、抗菌剤、核剤、可塑剤、滑剤、難燃剤、染料、顔料、着色剤等を添加できる。
本発明の積層体中の(II)からなる層には、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂を用いることができる。ここで使用される木粉は、樹木の種類を特に限定するものではないが、例えば桧、トドマツ、カラマツ、杉、栂、ブナ、楓、樅、桜、竹などの木及び住宅等で使用された廃材の粉砕品や製材時のおがくず等があげられる。又、籾殻、果物殻、とうもろこし穂芯、紙、パルプ等の粉砕品も含まれる。これらは通常60メッシュパス以下のものが好適に用いられる。
本発明の積層体中の(II)からなる層には、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体を用いることができる。発泡剤及び発泡方法については、公知の方法で実施することができる。発泡剤としては物理発泡剤または化学発泡剤が使用できる。例えば、物理発泡剤としては、空気、炭酸ガス、窒素ガス等の無機系、ブタン、ペンタン、ヘキサン等の有機系が使用できる。化学発泡剤としては、重炭酸塩、炭酸塩、炭酸ナトリウム+酸などの無機系、アゾ化合物、ヒドラジン誘導体、ニトロソ化合物等が使用できる。
The layer made of (II) in the laminate of the present invention has an inorganic filler, an antistatic agent, a heat stabilizer, a hindered phenol type, a phosphorus type, a sulfur type as in the rubber-modified styrene resin (I). Antioxidants such as, light stabilizers, ultraviolet absorbers, processing aids, dispersants, antibacterial agents, nucleating agents, plasticizers, lubricants, flame retardants, dyes, pigments, colorants and the like can be added.
In the layer made of (II) in the laminate of the present invention, a styrene resin or vinyl chloride resin wood powder blended resin other than (I) can be used. The wood flour used here is not particularly limited in the kind of tree, but is used in trees and houses such as firewood, todomatsu, larch, cedar, firewood, beech, firewood, firewood, cherry, bamboo, etc. Examples include crushed waste materials and sawdust from sawing. Also included are pulverized products such as rice husks, fruit husks, corn ears, paper and pulp. Those having a mesh size of 60 mesh or less are preferably used.
In the layer made of (II) in the laminate of the present invention, a foam of styrene resin or vinyl chloride resin other than (I) can be used. About a foaming agent and the foaming method, it can implement by a well-known method. As the foaming agent, a physical foaming agent or a chemical foaming agent can be used. For example, as the physical foaming agent, inorganic systems such as air, carbon dioxide gas and nitrogen gas, and organic systems such as butane, pentane and hexane can be used. As the chemical foaming agent, an inorganic system such as bicarbonate, carbonate, sodium carbonate + acid, azo compound, hydrazine derivative, nitroso compound and the like can be used.

本発明の積層体中の(II)からなる層には、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂及びそれらの木粉配合樹脂を用いることができる。リサイクルされた材料の形状は、加工時の安定性の確保の観点から、裁断、粉砕されていることが必要である。好ましくは、リサイクル材を混練機にて加工処理した再生樹脂ペレットである。
本発明のゴム変性スチレン系樹脂は、射出成形、プレス成形、シート押出成形、異型押出成形、真空成形、ブロー成形、発泡成形等により成形することが可能である。また、本発明の積層体は、多層共押出成形、2色射出成形、インサート成形、多層中空成形、多層異形押出成形等により成形することが可能である。
Recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride resin, and their wood flour-containing resins can be used for the layer made of (II) in the laminate of the present invention. The shape of the recycled material must be cut and pulverized from the viewpoint of ensuring stability during processing. Preferably, it is a recycled resin pellet obtained by processing a recycled material with a kneader.
The rubber-modified styrenic resin of the present invention can be molded by injection molding, press molding, sheet extrusion molding, profile extrusion molding, vacuum molding, blow molding, foam molding or the like. The laminate of the present invention can be molded by multilayer coextrusion molding, two-color injection molding, insert molding, multilayer hollow molding, multilayer profile extrusion molding, or the like.

本発明によると基材層のとなる(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層と被覆層となるゴム変性スチレン系樹脂(I)からなる層を熱融着するだけで十分な界面接着力が得られる。つまり本発明においては、積層体を得る場合に、通常用いられる接着剤を必要としないのである。このことも本発明の大きな特徴である。
また、本発明のゴム変性スチレン系樹脂及び積層体は、耐候性・耐衝撃性に優れることから、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野などに幅広く使用することができる。特に住宅設備・建材の屋外製品である雨樋、破風、胴差、エアコンダクトカバー、竹垣、フェンス、ラティス、プランター等に好適に用いられる。
According to the present invention, a layer made of a styrene-based resin or vinyl chloride-based resin (II) other than (I) to be a base material layer and a layer made of a rubber-modified styrenic resin (I) to be a coating layer are heat-sealed. A sufficient interfacial adhesive force can be obtained only by this. That is, in the present invention, when a laminated body is obtained, a commonly used adhesive is not required. This is also a major feature of the present invention.
In addition, the rubber-modified styrenic resin and laminate of the present invention are excellent in weather resistance and impact resistance, so that they can be used in the fields of automobiles, home appliances / miscellaneous goods, outdoor products such as exteriors, and construction / construction materials. Can be used widely. In particular, it is suitably used for rain gutters, gusts, body differences, air conditioner duct covers, bamboo fences, fences, lattices, planters, etc., which are outdoor products for housing equipment and building materials.

以下、本発明を実施例で更に詳しく説明する。但し、本発明はこれらの実施例によって何ら限定されるものではない。
部分水素添加ゴムについての測定には、以下の方法を用いた。
(1)5重量%スチレン溶液粘度:スチレンを溶剤とした5重量%溶液を用い、25℃でキャノンフェンスケ型粘度計を用いて測定した。単位は、cpsである。
(2)水添率及びミクロ構造(不飽和1,2ビニル結合):FT−NMRを用いて分析した。(測定の詳細は、特開昭64−90208号公報に記載の手順に従った。)
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
The following method was used for the measurement of partially hydrogenated rubber.
(1) Viscosity of 5 wt% styrene solution: Measured with a Canon Fenceke viscometer at 25 ° C. using a 5 wt% solution containing styrene as a solvent. The unit is cps.
(2) Hydrogenation rate and microstructure (unsaturated 1,2 vinyl bond): analyzed using FT-NMR. (Details of the measurement were in accordance with the procedure described in JP-A No. 64-90208.)

ゴム変性スチレン系樹脂及び積層体についての測定には、以下の方法を用いた。
(1)分散粒子径:四酸化オスミウムで染色したゴム変性スチレン系樹脂から厚さ70nmの超薄切片を作成、電子顕微鏡撮影し、倍率1万倍の写真とした。写真中の分散粒子500〜1000個の粒子径を測定し、次式により重量平均粒子径を算出し、その値を分散粒子径とした。
分散粒子径=ΣniDi4 /ΣniDi3
ここで、niは粒子径Diのゴム状弾性体の粒子の個数、また、粒子径Diは写真中の粒子面積から円相当径としたときの粒子径である。本測定は、画像解析装置IP−1000PC(旭化成(株)製)を用いて測定した。
(2)ゴム状弾性体含有量:重合直後のゴム変性スチレン系樹脂から溶媒、未反応単量体を除去する前の溶液を採取する。230℃−10mmHgの減圧下で乾燥して、重合溶液中の固形分の重量%を求める。この値と、重合前の原料溶液に含まれるゴム状弾性体の重量%から、ゴム変性スチレン系樹脂中に含まれるゴム状弾性体の重量%を求めた。
The following method was used for the measurement of the rubber-modified styrene resin and the laminate.
(1) Dispersion particle size: An ultrathin section having a thickness of 70 nm was prepared from a rubber-modified styrene resin dyed with osmium tetroxide, photographed with an electron microscope, and taken as a photograph with a magnification of 10,000 times. The particle diameter of 500 to 1000 dispersed particles in the photograph was measured, the weight average particle diameter was calculated by the following formula, and the value was taken as the dispersed particle diameter.
Dispersion particle size = ΣniDi 4 / ΣniDi 3
Here, ni is the number of rubber-like elastic particles having a particle diameter Di, and the particle diameter Di is a particle diameter when the equivalent circle diameter is determined from the particle area in the photograph. This measurement was performed using an image analyzer IP-1000PC (Asahi Kasei Co., Ltd.).
(2) Rubber-like elastic body content: A solution before removing the solvent and unreacted monomer from the rubber-modified styrene resin immediately after polymerization is collected. Dry under a reduced pressure of 230 ° C.-10 mmHg to determine the weight percentage of solids in the polymerization solution. From this value and the weight percentage of the rubber-like elastic body contained in the raw material solution before polymerization, the weight percentage of the rubber-like elastic body contained in the rubber-modified styrenic resin was determined.

(3)樹脂相スチレン系樹脂組成:ゴム変性スチレン系樹脂をメタノール10体積%を含むメチルエチルケトンに溶解し、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))で20000rpmで60分間処置したのち、沈殿物と上澄み液を分離し、大量のメタノールに上澄み液を加え、ゴム変性スチレン系樹脂中のスチレン系樹脂部を沈殿させる。この沈殿物を取り出し、50℃ 100mmHgの減圧下で乾燥させる。乾燥後のサンプルを日本分光(株)JNM−G400 FT−NMRを用いて、以下の条件下で1 Hを測定する。
パルス幅=8.4μs、データポイント=16384、繰り返し時間=7.559秒、積算回数=1000、サンプル濃度=10wt%、溶媒=1,1,2,2−テトラクロルエタン(d2 )、サンプル管=5mmφ、測定温度=120℃ スチレン系単量体のフェニル基に由来するピークが6.2〜7.4ppm、アクリル酸エステル系単量体の水素に由来するピークが3.4〜3.8ppmに現れる。またメタクリル酸エステル系単量体のメチル基の水素に由来するピークが0.2〜1.1ppmに現れる。ピーク分離操作を行ってピーク面積比を求め、この値よりスチレン系樹脂部の組成重量比を求めた。この値と上記(2)で求めたゴム状弾性体含有量から、ゴム変性スチレン系樹脂中の各単量体成分の重量%を求めた。
(3) Resin Phase Styrenic Resin Composition: A rubber-modified styrenic resin is dissolved in methyl ethyl ketone containing 10% by volume of methanol and centrifuged at 20000 rpm with a centrifuge (Himac CR-20 (rotor: R20A2) manufactured by Hitachi, Ltd.). After the treatment for 60 minutes, the precipitate and the supernatant are separated, and the supernatant is added to a large amount of methanol to precipitate the styrene resin part in the rubber-modified styrene resin. The precipitate is taken out and dried under reduced pressure at 50 ° C. and 100 mmHg. The dried sample is measured for 1 H under the following conditions using JASCO Corporation JNM-G400 FT-NMR.
Pulse width = 8.4 μs, data point = 16384, repetition time = 7.559 seconds, number of integrations = 1000, sample concentration = 10 wt%, solvent = 1,1,2,2-tetrachloroethane (d 2 ), sample Tube = 5 mmφ, measurement temperature = 120 ° C. The peak derived from the phenyl group of the styrene monomer is 6.2 to 7.4 ppm, and the peak derived from hydrogen of the acrylate ester monomer is 3.4 to 3. Appears at 8 ppm. A peak derived from methyl group hydrogen of the methacrylic acid ester monomer appears at 0.2 to 1.1 ppm. The peak area ratio was determined by performing a peak separation operation, and the composition weight ratio of the styrene resin part was determined from this value. From this value and the content of the rubber-like elastic body obtained in the above (2), the weight percent of each monomer component in the rubber-modified styrenic resin was obtained.

(4)シャルピー衝撃強さ:ISO 179に準じて測定した。
(5)メチルエチルケトン不溶分ゲル分率:ゴム変性スチレン系樹脂1gを精秤し(W1)、メチルエチルケトン20ミリリットルを加え23℃で2時間振とう後、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))にて10℃以下、20000rpmで60分間遠心分離する。上澄み液をデカンテーションして除き、不溶分を得る。引き続き、160℃、20mmHg以下の条件で1時間真空乾燥し、デシケータ内で室温まで冷却後、不溶分の重量を精秤する(W2)。下記式により、メチルエチルケトン不溶分ゲル分率を求める。
メチルエチルケトン不溶分ゲル分率(%)=(W2/W1)×100
(6)トルエンに対する膨潤指数:ゴム変性スチレン系樹脂1gを精秤し(W3)、トルエン20ミリリットルを加え23℃で2時間振とう後、遠心分離機((株)日立製作所製himac CR−20(ローター:R20A2))にて10℃以下、20000rpmで60分間遠心分離する。上澄み液をデカンテーションして除き、トルエンを含んだ不溶分の重量を精秤する(W4)。引き続き、160℃、20mmHg以下の条件で1時間真空乾燥し、デシケータ内で室温まで冷却後、不溶分の重量を精秤する(W5)。下記式により、トルエンに対する膨潤指数を求める。
トルエンに対する膨潤指数=(W4/W5)
(4) Charpy impact strength: measured according to ISO 179.
(5) Methyl ethyl ketone insoluble gel fraction: 1 g of rubber-modified styrene resin was precisely weighed (W1), 20 ml of methyl ethyl ketone was added and shaken at 23 ° C. for 2 hours, and then centrifuged (HIMAC CR manufactured by Hitachi, Ltd.). Centrifuge at −20 (rotor: R20A2) at 10 ° C. or less and 20000 rpm for 60 minutes. Decant the supernatant and remove insolubles. Subsequently, vacuum drying is performed for 1 hour under conditions of 160 ° C. and 20 mmHg or less, and after cooling to room temperature in a desiccator, the weight of insoluble matter is precisely weighed (W2). The methyl ethyl ketone insoluble matter gel fraction is determined by the following formula.
Methyl ethyl ketone insoluble matter gel fraction (%) = (W2 / W1) × 100
(6) Swelling index with respect to toluene: 1 g of rubber-modified styrene resin was precisely weighed (W3), 20 ml of toluene was added, and the mixture was shaken at 23 ° C. for 2 hours, and then centrifuged (HIMAC CR-20 manufactured by Hitachi, Ltd.). (Rotor: R20A2)) and centrifuge at 20000 rpm for 60 minutes at 10 ° C. or less. The supernatant is removed by decantation, and the weight of insoluble matter containing toluene is precisely weighed (W4). Subsequently, it is vacuum-dried for 1 hour under conditions of 160 ° C. and 20 mmHg or less, and after cooling to room temperature in a desiccator, the weight of insoluble matter is precisely weighed (W5). The swelling index with respect to toluene is obtained by the following formula.
Swelling index for toluene = (W4 / W5)

(7)耐候性 色差:
(耐候性試験サンプルの作成)
下記配合処方で混合し、着色剤・耐候剤を押出機にて溶融混練して白着色ペレットを得た。
ゴム変性スチレン系樹脂 100重量部
顔料 酸化チタン 2.4重量部
滑剤 エチレンビスステアロアミド 0.6重量部
耐候剤 2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール(チバ・スペ
シャルティ・ケミカルズ(株)チヌビンP)
0.4重量部
耐候剤 ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパケート(三共(株
)サノール LS−770) 0.8重量部
それをさらに射出成形機にて50×50×2mmの平板を成形、切り出しして耐候性評価用サンプルを得た。下記条件にて耐候性を評価した。
(7) Weather resistance Color difference:
(Creation of weathering test sample)
It mixed by the following compounding prescription, the colorant and the weathering agent were melt-kneaded with an extruder, and the white colored pellet was obtained.
Rubber-modified styrene resin 100 parts by weight Pigment Titanium oxide 2.4 parts by weight Lubricant Ethylene bisstearamide 0.6 parts by weight Weathering agent 2- (5-Methyl-2-hydroxyphenyl) benzotriazole (Ciba Specialty Chemicals) Tinuvin P)
0.4 parts by weight weathering agent Bis (2,2,6,6-tetramethyl-4-piperidyl) separate (Sankyo Corp. Sanol LS-770) 0.8 parts by weight A 50 × 2 mm flat plate was molded and cut out to obtain a sample for weather resistance evaluation. The weather resistance was evaluated under the following conditions.

(耐候性評価条件)
得られた耐候性評価用サンプルをメタルハライドランプ(KF−1フィルター使用)を光源とするメタルウェザー[ダイプラ・ウィンテス(株)製 型式:KU−R5C1−A]に800時間暴露し、色差計にて色差(ΔE*)を測定した。色差測定は、暴露時間200、400、600、800時間毎に実施し、その測定値の最大値を耐候性 色差(ΔE*)の値とした。
メタルウェザー試験条件:
光源のエネルギー強度 75mW/cm2
運転モード (ランプ照射)ブラックパネル温度 63℃、湿度 50RH%
(結露) ブラックパネル温度 30℃、湿度 98RH%
(水噴霧) 結露の前後 30秒
ランプ照射、結露各4時間のサイクルにて試験を実施した。
色差測定条件 C光 2°視野
(Weather resistance evaluation conditions)
The obtained weather resistance evaluation sample was exposed to a metal weather [Daipura Wintes Co., Ltd. Model: KU-R5C1-A] using a metal halide lamp (using a KF-1 filter) as a light source for 800 hours, and a color difference meter. The color difference (ΔE *) was measured. Color difference measurement was carried out every 200, 400, 600, and 800 hours of exposure time, and the maximum value of the measured value was taken as the value of weather resistance color difference (ΔE *).
Metal weather test conditions:
Energy intensity of light source 75mW / cm 2
Operation mode (Lamp irradiation) Black panel temperature 63 ℃, Humidity 50RH%
(Condensation) Black panel temperature 30 ° C, humidity 98RH%
(Water spray) 30 seconds before and after condensation
The test was carried out in a cycle of 4 hours each for lamp irradiation and condensation.
Color difference measurement condition C light 2 ° field of view

(9)積層体接着性評価
各積層体を、23℃、24時間状態調節後、JIS K5400 付着性碁盤目テープ法に準じて、(I)からなる層を貫通して、(II)からなる層に達する切り傷間隔5mmの切り傷をつけ測定を行った。
欠損率30%未満:○ 欠損率30%以上:×
〈ゴム変性スチレン系樹脂製造例〉
[共役ジエン系ゴム及び部分水素添加ゴムA0〜A4の作製]
内容積10リットルの攪拌機付、ジャケット付オートクレーブを反応器として用いて、ブタジエン/n−ヘキサン混合液(ブタジエン濃度20重量%、テトラメチルエチレンジアミン100ppm含有)を20リットル/hrの速度で、n−ブチルリチウム/n−ヘキサン溶液(濃度5重量%)を70ミリリットル/hrで導入、重合温度110℃でブタジエンの連続重合を実施した。得られた活性重合体をメタノールで失活、別の内容積10リットルの攪拌機付、ジャケット付の反応器に重合体溶液8リットルを移し、温度60℃にて、水添触媒としてジ−p−トリルビス(1−シクロペンタジエニル)チタニウム/シクロヘキサン溶液(濃度1ミリモル/リットル)250ミリリットルと、n−ブチルリチウム溶液(濃度5ミリモル/リットル)50ミリリットルとを0℃、2.0Kg/cm2 の水素圧下で混合したものを添加、水素分圧3.0Kg/cm2 にて30分間反応させた。得られた部分水素添加重合体溶液は、安定剤を加え、溶剤を除去した。メタノール失活後にサンプリングを行って安定剤を加え、溶剤を除去して得た部分水素添加前の重合体A0及び部分水素添加重合体A1のゴム状弾性体の分析値を表1に示す。重合体A0と同様にして得られたブタジエン重合体を水素添加反応時間を変えた他は部分水素添加重合体A1と同様の条件で水素添加し、水素添加率の異なる部分水素添加重合体A2〜A4を得た
。これらのゴム状弾性体の分析値も表1に示す。
(9) Laminate Adhesive Evaluation After each layered body was conditioned at 23 ° C. for 24 hours, it passed through the layer consisting of (I) according to JIS K5400 adhesive cross-cut tape method, and consisted of (II) Measurements were made with cuts of 5 mm between the cuts reaching the layer.
Defect rate less than 30%: ○ Defect rate 30% or more: ×
<Examples of rubber-modified styrene resin production>
[Production of Conjugated Diene Rubber and Partially Hydrogenated Rubbers A0 to A4]
Using an autoclave with a stirrer and a jacket with an internal volume of 10 liters as a reactor, n-butyl butadiene / n-hexane mixed solution (butadiene concentration 20% by weight, containing tetramethylethylenediamine 100 ppm) was added at a rate of 20 liters / hr. A lithium / n-hexane solution (concentration of 5% by weight) was introduced at 70 ml / hr, and butadiene was continuously polymerized at a polymerization temperature of 110 ° C. The obtained active polymer was deactivated with methanol, and 8 liters of the polymer solution was transferred to another reactor with an internal volume of 10 liters equipped with a stirrer and a jacket. At a temperature of 60 ° C., di-p- 250 ml of tolylbis (1-cyclopentadienyl) titanium / cyclohexane solution (concentration 1 mmol / liter) and 50 ml of n-butyllithium solution (concentration 5 mmol / liter) were added at 0 ° C. and 2.0 kg / cm 2 . What was mixed under hydrogen pressure was added and reacted at a hydrogen partial pressure of 3.0 kg / cm 2 for 30 minutes. The resulting partially hydrogenated polymer solution was added with a stabilizer and the solvent was removed. Table 1 shows the analytical values of the rubber-like elastic bodies of the polymer A0 and the partially hydrogenated polymer A1 before partial hydrogenation obtained by sampling after methanol deactivation and adding a stabilizer and removing the solvent. The butadiene polymer obtained in the same manner as the polymer A0 was hydrogenated under the same conditions as the partially hydrogenated polymer A1, except that the hydrogenation reaction time was changed, and the partially hydrogenated polymers A2 to A2 having different hydrogenation rates were obtained. A4 was obtained. The analytical values of these rubbery elastic bodies are also shown in Table 1.

(実施例1〜4)
ゴム状弾性体A2 9.6重量部をスチレン39.2重量部、メチルメタクリレート39.2重量部、エチルベンゼン12.0重量部に溶解し、次いで1,1ビス(t−ブチルパーオキシ)シクロヘキサン0.02重量部、連鎖移動剤としてα−メチルスチレンダイマー0.4重量部を加え原料溶液を調整した。原料溶液を、攪拌機を備えた塔式反応機3基(各々の内容積6.2リットル)を直列に連結した重合装置に、3.0リットル/hrで連続的に供給した。重合温度は、第一反応機128℃、第二反応機135℃、第三反応機155℃で重合を実施した。得られた重合溶液を二段ベント付脱揮押出機に連続的に供給し、未反応単量体、溶媒を回収し、ゴム変性スチレン系樹脂を得た。脱揮押出機は温度を200〜260℃、真空度を20torrとした。分散粒子径は、攪拌機の攪拌数、1,1ビス(t−ブチルパーオキシ)シクロヘキサン量、α−メチルスチレンダイマー量で調整した。また、必要に応じて重合温度も調整した。分析、評価結果を表2に示す。
(Examples 1-4)
9.6 parts by weight of rubber-like elastic body A2 is dissolved in 39.2 parts by weight of styrene, 39.2 parts by weight of methyl methacrylate and 12.0 parts by weight of ethylbenzene, and then 1,1 bis (t-butylperoxy) cyclohexane 0 0.02 part by weight and 0.4 part by weight of α-methylstyrene dimer as a chain transfer agent were added to prepare a raw material solution. The raw material solution was continuously supplied at 3.0 liter / hr to a polymerization apparatus in which three tower reactors equipped with a stirrer (each internal volume 6.2 liter) were connected in series. Polymerization was carried out at a first reactor of 128 ° C., a second reactor of 135 ° C., and a third reactor of 155 ° C. The obtained polymerization solution was continuously supplied to a devolatilizing extruder with a two-stage vent, and unreacted monomers and solvents were recovered to obtain a rubber-modified styrene resin. The devolatilizing extruder was set to a temperature of 200 to 260 ° C. and a vacuum degree of 20 torr. The dispersed particle size was adjusted by the number of stirring by the stirrer, the amount of 1,1 bis (t-butylperoxy) cyclohexane, and the amount of α-methylstyrene dimer. In addition, the polymerization temperature was adjusted as necessary. The analysis and evaluation results are shown in Table 2.

(実施例5)
ゴム状弾性体A2 6.4重量部、スチレン40.8重量部、メチルメタクリレート40.8重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
参考実施例6
スチレン63.5重量部、メチルメタクリレート14.9重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
参考実施例7
ゴム状弾性体A1とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例8)
ゴム状弾性体A3とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例9)
スチレン39.2重量部、メチルメタクリレート34.5重量部、ブチルアクリレート4.7重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表2に示す。
(実施例10)
実施例1で得られたゴム変性スチレン系樹脂を耐候性評価サンプル調整時に耐候剤二種類を未添加とした。評価結果を表2に示す。
(Example 5)
The rubbery elastic body A2 was operated in the same manner as in Examples 1 to 4 except that 6.4 parts by weight, 40.8 parts by weight of styrene, 40.8 parts by weight of methyl methacrylate, and 0.3 parts by weight of α-methylstyrene dimer were used. A rubber-modified styrenic resin was obtained. The analysis and evaluation results are shown in Table 2.
( Reference Example 6 )
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4, except that 63.5 parts by weight of styrene, 14.9 parts by weight of methyl methacrylate, and 0.3 parts by weight of α-methylstyrene dimer were used. The analysis and evaluation results are shown in Table 2.
( Reference Example 7 )
A rubber-modified styrenic resin was obtained in the same manner as in Examples 1 to 4 except that the rubber-like elastic body A1 was used. The analysis and evaluation results are shown in Table 2.
(Example 8)
A rubber-modified styrenic resin was obtained in the same manner as in Examples 1 to 4 except that the rubber-like elastic body A3 was used. The analysis and evaluation results are shown in Table 2.
Example 9
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4 except that 39.2 parts by weight of styrene, 34.5 parts by weight of methyl methacrylate, and 4.7 parts by weight of butyl acrylate were used. The analysis and evaluation results are shown in Table 2.
(Example 10)
Two types of weathering agents were not added to the rubber-modified styrenic resin obtained in Example 1 when preparing a weatherability evaluation sample. The evaluation results are shown in Table 2.

(比較例1)
ゴム状弾性体A0 4.8重量部、スチレン83.2重量部、1,1ビス(t−ブチルパーオキシ)シクロヘキサン0.01重量部、α−メチルスチレンダイマー0.1重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例2)
ゴム状弾性体A2 9.6重量部、スチレン78.4重量部、α−メチルスチレンダイマー0.3重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例3)
実施例1で得られたゴム変性スチレン系樹脂に、実施例1と同一のモノマー組成のマトリックス樹脂を押出機にて混合混練し、最終的なゴム状弾性体量を2重量%とした。評価結果を表3に示す。
(比較例4)
ゴム状弾性体A0とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例5)
ゴム状弾性体A4とした以外は、実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(Comparative Example 1)
Except for 4.8 parts by weight of rubber-like elastic material A0, 83.2 parts by weight of styrene, 0.01 parts by weight of 1,1bis (t-butylperoxy) cyclohexane, and 0.1 parts by weight of α-methylstyrene dimer. By operating in the same manner as in Examples 1 to 4, rubber-modified styrene resins were obtained. The analysis and evaluation results are shown in Table 3.
(Comparative Example 2)
The rubber-modified styrenic resin was obtained in the same manner as in Examples 1 to 4 except that 9.6 parts by weight of the rubber-like elastic body A2, 78.4 parts by weight of styrene, and 0.3 parts by weight of α-methylstyrene dimer were used. It was. The analysis and evaluation results are shown in Table 3.
(Comparative Example 3)
The rubber-modified styrenic resin obtained in Example 1 was mixed and kneaded with a matrix resin having the same monomer composition as in Example 1 using an extruder, so that the final amount of rubber-like elastic material was 2% by weight. The evaluation results are shown in Table 3.
(Comparative Example 4)
A rubber-modified styrenic resin was obtained in the same manner as in Examples 1 to 4 except that the rubber-like elastic body A0 was used. The analysis and evaluation results are shown in Table 3.
(Comparative Example 5)
A rubber-modified styrenic resin was obtained in the same manner as in Examples 1 to 4 except that the rubber-like elastic body A4 was used. The analysis and evaluation results are shown in Table 3.

(比較例6)
ゴム状弾性体A2 6.4重量部、スチレン13.9重量部、メチルメタクリレート67.7重量部とした以外は実施例1〜4と同様に操作し、ゴム変性スチレン系樹脂を得た。分析、評価結果を表3に示す。
(比較例7)
比較例1で得られたゴム変性スチレン系樹脂を耐候性評価サンプル調整時に耐候剤二種類を未添加とした。評価結果を表3示す。
(Comparative Example 6)
A rubber-modified styrene resin was obtained in the same manner as in Examples 1 to 4 , except that 6.4 parts by weight of rubber-like elastic body A2, 13.9 parts by weight of styrene, and 67.7 parts by weight of methyl methacrylate were used. The analysis and evaluation results are shown in Table 3.
(Comparative Example 7)
Two types of weathering agents were not added to the rubber-modified styrenic resin obtained in Comparative Example 1 when preparing a weatherability evaluation sample. Table 3 shows the evaluation results.

Figure 0004413048
Figure 0004413048

Figure 0004413048
Figure 0004413048

Figure 0004413048
〈積層体実施例〉
積層体に用いた樹脂は以下の通りである。
(I)
ゴム変性スチレン系樹脂H2、H6、H9、H11、H16を用いた。
(II)
B1:耐衝撃性ポリスチレン PSジャパン(株)製 PSJポリスチレン 475D
B2:ABS樹脂 旭化成ケミカルズ(株)製 スタイラックABS 120B
B3:塩化ビニル樹脂
Figure 0004413048
<Laminated body example>
The resin used for the laminate is as follows.
(I)
Rubber-modified styrene resins H2, H6, H9, H11, and H16 were used.
(II)
B1: Impact resistant polystyrene PSJ polystyrene 475D manufactured by PS Japan Co., Ltd.
B2: ABS resin Asahi Kasei Chemicals Corporation Stylac ABS 120B
B3: Vinyl chloride resin

(実施例11,12、参考実施例13、実施例14,15、比較例8〜12)
耐候性試験サンプルとして着色剤、耐候剤を添加し白着色された(I)の各樹脂を圧縮成形により180×150×0.2mmのシートを各々作成する。(II)の各樹脂を圧縮成形により180×150×3mmのシートを各々作成する。次いで、(I)、(II)の各シートを180×150×3mmの金型に挿入し、200℃で5分間予熱後、2MPaの圧力下で1分間シートの圧着を行い、更に、水冷された冷却プレスで冷却し、積層体を得た。積層体を切り出しし、耐候性評価用サンプルを作成した。(I)からなる層を暴露面とし、耐候性を評価した。又、得られた積層体にて接着性を評価した。評価結果を表4に示す。
(Examples 11 and 12, Reference Example 13, Examples 14, 15 and Comparative Examples 8 to 12)
A 180 × 150 × 0.2 mm sheet is prepared by compression molding the resin (I), which is added with a colorant and a weathering agent as a weather resistance test sample, and is colored white. Sheets of 180 × 150 × 3 mm are prepared by compression molding each resin of (II). Next, each sheet of (I) and (II) is inserted into a 180 × 150 × 3 mm mold, preheated at 200 ° C. for 5 minutes, and then subjected to pressure bonding of the sheet for 1 minute under a pressure of 2 MPa, and further cooled with water. The laminate was cooled with a cooling press. The laminate was cut out to prepare a sample for weather resistance evaluation. The layer consisting of (I) was used as an exposed surface, and the weather resistance was evaluated. Moreover, adhesiveness was evaluated by the obtained laminated body. The evaluation results are shown in Table 4.

Figure 0004413048
Figure 0004413048

本発明の製造方法によって得られたゴム変性スチレン系樹脂は、耐候性、耐衝撃性に優れかつ成形性、着色性に優れた材料である。本発明のゴム変性スチレン系樹脂及びその樹脂を用いた積層体は、自動車分野、家電・雑貨分野、エクステリア等の屋外製品をはじめとした住設・建材分野など幅広い用途での使用が可能であり、特に住設・建材分野の屋外
製品及び建材として好適に利用できる。
The rubber-modified styrenic resin obtained by the production method of the present invention is a material excellent in weather resistance and impact resistance and excellent in moldability and colorability. The rubber-modified styrenic resin of the present invention and a laminate using the resin can be used in a wide range of applications such as automobiles, home appliances / miscellaneous goods, outdoor products such as exteriors, and housing / building materials. In particular, it can be suitably used as outdoor products and building materials in the field of housing and building materials.

Claims (12)

ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを、(A)+(B)+(C)を100重量部として(A)が3〜16重量部でかつ(B)/(C)の重量比が40/6060/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合を行い、得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16となるように重合させることを特徴とするゴム変性スチレン系樹脂の製造方法。 A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). , (A) + (B) + (C) is 100 parts by weight, (A) is 3 to 16 parts by weight, and (B) / (C) has a weight ratio in the range of 40/60 to 60/40. Then, bulk polymerization or solution polymerization is carried out with stirring using a radical initiator, and the resulting rubber-modified styrenic resin has a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight, and a swelling index of the gel content of toluene of 8 A method for producing a rubber-modified styrenic resin, wherein polymerization is performed so as to be ˜16. 部分水素添加ゴム(A)の、25℃における5重量%スチレン溶液粘度が20〜150センチポイズである請求項1記載の製法。   The process according to claim 1, wherein the partially hydrogenated rubber (A) has a 5 wt% styrene solution viscosity at 25 ° C of 20 to 150 centipoise. ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が40/6060/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が40/6060/40重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であることを特徴とするゴム変性スチレン系樹脂。 A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). A dispersed rubber particle phase and a resin obtained by polymerizing by bulk polymerization or solution polymerization under stirring using a radical initiator within a weight ratio of (B) / (C) of 40/60 to 60/40 A rubber-modified styrenic resin comprising a phase, wherein the styrene monomer unit and the (meth) acrylate monomer unit are 40/60 to 60/40 weight in the copolymer constituting the resin phase. And a rubber-modified styrenic resin having a methyl ethyl ketone insoluble gel fraction of 6 to 35% by weight, and a swelling index of the gel to toluene of 8 to 16 Sex styrene resin. 分散ゴム粒子相の重量平均粒子径が0.5〜3.5μmである請求項記載のゴム変性スチレン系樹脂。 The rubber-modified styrene resin according to claim 3, wherein the dispersed rubber particle phase has a weight average particle diameter of 0.5 to 3.5 µm. スチレン系単量体(B)がスチレンであり、かつ(メタ)アクリル酸エステル系単量体(C)がメタクリル酸メチルまたはメタクリル酸メチルとアクリル酸ブチルである請求項3又は4記載のゴム変性スチレン系樹脂。 The rubber-modified rubber according to claim 3 or 4 , wherein the styrene monomer (B) is styrene and the (meth) acrylic acid ester monomer (C) is methyl methacrylate or methyl methacrylate and butyl acrylate. Styrenic resin. ポリブタジエンゴムの不飽和単位のうち15〜70モル%が水素添加された部分水素添加ゴム(A)とスチレン系単量体(B)と(メタ)アクリル酸エステル系単量体(C)とを(B)/(C)の重量比が40/6060/40の範囲内で、ラジカル開始剤を用い攪拌下で塊状重合もしくは溶液重合にて重合させることにより得られる分散ゴム粒子相と樹脂相からなるゴム変性スチレン系樹脂であって、その樹脂相を構成する共重合体において、スチレン系単量体単位と(メタ)アクリル酸エステル系単量体単位が40/6060/40重量比であり、かつ得られるゴム変性スチレン系樹脂のメチルエチルケトン不溶分ゲル分率が6〜35重量%で、かつ該ゲル分のトルエンに対する膨潤指数が8〜16であるゴム変性スチレン系樹脂(I)からなる層と(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂(II)からなる層とが、積層された構造を有することを特徴とする積層体。 A partially hydrogenated rubber (A) in which 15 to 70 mol% of unsaturated units of polybutadiene rubber is hydrogenated, a styrene monomer (B), and a (meth) acrylate monomer (C). A dispersed rubber particle phase and a resin obtained by polymerizing by bulk polymerization or solution polymerization under stirring using a radical initiator within a weight ratio of (B) / (C) of 40/60 to 60/40 A rubber-modified styrenic resin comprising a phase, wherein the styrene monomer unit and the (meth) acrylate monomer unit are 40/60 to 60/40 weight in the copolymer constituting the resin phase. And a rubber-modified styrene-based resin having a methyl-ethylketone-insoluble gel fraction of 6 to 35% by weight and a swelling index of 8 to 16 with respect to toluene. Laminate and a layer comprising a layer and consisting of (I) (I) other than the styrene-based resin or vinyl chloride resin (II) is characterized by having a laminated structure. 分散ゴム粒子相の重量平均粒子径が0.5〜3.5μmである請求項記載の積層体。 The laminate according to claim 6, wherein the weight average particle diameter of the dispersed rubber particle phase is 0.5 to 3.5 µm. (I)と(II)からなる層を熱融着してなる請求項6又は7記載の積層体。 The laminate according to claim 6 or 7, wherein the layer comprising (I) and (II) is heat-sealed. (II)からなる層において、(I)以外のスチレン系樹脂がポリスチレン、耐衝撃性ポリスチレン、ABS樹脂から選ばれた少なくとも1種である請求項6又は7記載の積層体。 The laminate according to claim 6 or 7 , wherein in the layer comprising (II), the styrene resin other than (I) is at least one selected from polystyrene, impact-resistant polystyrene, and ABS resin. (II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の木粉配合樹脂である請求項6又は7記載の積層体。 The layered product according to claim 6 or 7 , wherein the layer made of (II) is a styrene resin or vinyl chloride resin wood powder blended resin other than (I). (II)からなる層が、(I)以外のスチレン系樹脂もしくは塩化ビニル系樹脂の発泡体である請求項6又は7記載の積層体。 The laminate according to claim 6 or 7 , wherein the layer made of (II) is a foam of a styrene resin or a vinyl chloride resin other than (I). (II)からなる層が、リサイクルされたポリスチレン、耐衝撃性ポリスチレン、ABS樹脂、塩化ビニル系樹脂およびそれらの木粉配合樹脂である請求項6又は7記載の積層体。 The laminate according to claim 6 or 7 , wherein the layer made of (II) is recycled polystyrene, impact-resistant polystyrene, ABS resin, vinyl chloride resin, and wood powder-containing resin thereof.
JP2004077444A 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin Expired - Lifetime JP4413048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077444A JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086869 2003-03-27
JP2004077444A JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Publications (3)

Publication Number Publication Date
JP2004307841A JP2004307841A (en) 2004-11-04
JP2004307841A5 JP2004307841A5 (en) 2007-04-19
JP4413048B2 true JP4413048B2 (en) 2010-02-10

Family

ID=33478358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077444A Expired - Lifetime JP4413048B2 (en) 2003-03-27 2004-03-18 Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin

Country Status (1)

Country Link
JP (1) JP4413048B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860406B (en) * 2015-01-20 2018-05-11 中国石油化工股份有限公司 A kind of olefin polymer and its preparation method and application
CN105860407B (en) * 2015-01-20 2018-05-11 中国石油化工股份有限公司 A kind of olefin polymer and its preparation method and application
JP6960287B2 (en) * 2017-09-15 2021-11-05 Psジャパン株式会社 Rubber-modified styrene resin composition and its manufacturing method, sheet and its molded product
JP7145271B1 (en) * 2021-04-20 2022-09-30 デンカ株式会社 Transparent rubber-modified styrenic resin composition

Also Published As

Publication number Publication date
JP2004307841A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4559220B2 (en) Impact modified composition
EP1245598A2 (en) Rubber-reinforced thermoplastic resin and rubber-reinforced thermoplastic resin composition
JP3250682B2 (en) Epoxy-modified block polymer and composition thereof
EP1740632B1 (en) Improved mass polymerized rubber-modified monovinylidene aromatic copolymer composition
JP4413048B2 (en) Rubber-modified styrenic resin excellent in weather resistance and impact resistance, method for producing the same, and laminate comprising the resin
JP3520637B2 (en) Rubber reinforced thermoplastic resin and thermoplastic resin composition
JP3228448B2 (en) Rubber-modified thermoplastic resin and composition thereof
JP2006089557A (en) Rubber-modified styrene resin, its production method and laminate obtained using the resin
JP3472308B2 (en) Impact resistant methacrylic resin
US4814388A (en) Rubber-modified thermoplastic resin composition
US5516842A (en) Polycarbonate resin composition and molded product thereof
JP4404969B2 (en) Thermoplastic resin composition
JPH09221522A (en) Thermoplastic copolymer and thermoplastic resin composition containing the same
JP4401830B2 (en) Thermoplastic resin composition and method for producing the same
JP2003147153A (en) Thermoplastic resin composition
JP4855607B2 (en) Rubber-modified thermoplastic resin composition
JP2002284944A (en) Thermoplastic flexible resin composition
JP4170053B2 (en) Thermoplastic resin composition
JP5214955B2 (en) Thermoplastic resin composition
JPH07252329A (en) Heat-resistant methacrylic resin
JP2780187B2 (en) Rubber-modified thermoplastic resin
JP2658392B2 (en) Method for producing rubber-modified thermoplastic resin
JP4879380B2 (en) SOFT RESIN COMPOSITION, SOFT RESIN MOLDED BODY, AND METHOD FOR PRODUCING SOFT RESIN COMPOSITION
JP2004161933A (en) Matted thermoplastic resin composition
JP2000344842A (en) Rubber-modified thermoplastic resin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term