[go: up one dir, main page]

JP4412430B2 - Single-side absorption deoxygenation multilayer - Google Patents

Single-side absorption deoxygenation multilayer Download PDF

Info

Publication number
JP4412430B2
JP4412430B2 JP34640199A JP34640199A JP4412430B2 JP 4412430 B2 JP4412430 B2 JP 4412430B2 JP 34640199 A JP34640199 A JP 34640199A JP 34640199 A JP34640199 A JP 34640199A JP 4412430 B2 JP4412430 B2 JP 4412430B2
Authority
JP
Japan
Prior art keywords
layer
composition
resin
rubber
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34640199A
Other languages
Japanese (ja)
Other versions
JP2001163373A (en
Inventor
公隆 中尾
高宏 関
和弘 大津
紀之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP34640199A priority Critical patent/JP4412430B2/en
Publication of JP2001163373A publication Critical patent/JP2001163373A/en
Application granted granted Critical
Publication of JP4412430B2 publication Critical patent/JP4412430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は脱酸素機能を有するフィルムまたはシートに関する。より詳しくは、食品、医薬品や金属製品などの、酸素の影響を受けて変質し易い各種製品の酸化を防止する目的を持つ脱酸素体または脱酸素性容器を構成するために用いられる、片側吸収型の脱酸素多層体に関する。
【0002】
【従来の技術】
食品や医薬品、金属製品に代表される、酸素の影響を受けて変質し易い各種製品の酸化を防止する目的で、酸素除去を行う脱酸素剤が従来より使用されている。この脱酸素剤として初期に開発され現在も多く使用されている形態は、粒状または粉状の脱酸素組成物を小袋に詰めたものである。これを改良するものとして、より取扱いが容易で適用範囲が広く、誤食などの問題のない安全な脱酸素体として、脱酸素組成物を固定したフィルムまたはシート状のものが考えられている。
【0003】
フィルムまたはシートの形状とするためには、熱可塑性樹脂をマトリックス成分に利用して、粒状または粉状の脱酸素組成物と複合化する方法が簡便である。しかし、この複合化したフィルムまたはシートをそのまま用いると、この脱酸素体と内容物との接触、特に液体との接触により、脱酸素組成物による内容物の汚染を発生させる危険性がある。この対策として、他の遮蔽層または遮蔽用の包装体でこの単層の脱酸素層を覆えばよいことになるが、フィルム又はシートの特性を生かすためには、他の遮蔽層で脱酸素層を密着させて覆う構成が理想的であり、このような構成例として特開平8−72941号公報等がある。さらに、脱酸素層を延伸時に多孔化し、その上面を無孔質層で保護する多層構成とすると、酸素透過速度が大きく、脱酸素剤の露出または溶出のない脱酸素性のフィルムまたはシートを作製することができることが、特開平9−234811号公報及び特開平10−264279号公報に示されている。
【0004】
このような脱酸素性のフィルムまたはシートでは、脱酸素層の反対側に容器外部の酸素の侵入を防ぐ低酸素透過性のバリア層を接着または融着するのが一般的である。しかし、脱酸素層に添加された脱酸素組成物のために、脱酸素層とバリア層との接着性が悪いという問題点があった。この問題を解決するため、特開平9−234842号公報や特開平9−40024号公報では、脱酸素積層体とバリア層との間に平滑化樹脂層を設けることが提案されている。特に脱酸素層が多孔化したフィルムまたはシートでは、脱酸素層の凹凸が多孔化しないものに比べて著しく大きく、単に熱可塑性樹脂層を設けるだけでは、接着性を向上させにくいという問題点があり、特開平9−234811号公報では、多孔化した脱酸素層とバリア層との間に緩衝層と呼ばれる熱可塑性樹脂層を設ける方法が記載されている。
しかしながら、これらの方法では、脱酸素層とバリア層との接着強度が不十分である場合があり、高い接着強度を出すためには、平滑化樹脂層または緩衝層の厚みを増大させる必要が生じる場合がある。特に脱酸素層が多孔化したフィルムまたはシートでは、この問題が顕著であった。本発明の解決すべき課題は、脱酸素層とバリア層との接着が強い片側吸収型脱酸素多層体を提供することである。
【0005】
【課題を解決するための手段】
発明者らは、脱酸素層とバリア層との間に熱可塑性樹脂からなる緩衝層を設け、この緩衝層にゴム系添加剤を加えることで、上記課題を解決できることを見いだし、本発明を完成した。すなわち、本発明の片側吸収型の脱酸素性のフィルムまたはシートは、脱酸素組成物を含む樹脂層(C層)の一方の側に酸素透過性の樹脂層(A層)を配し、C層の他方の側に無孔質の緩衝層(D層)と酸素透過性の低いバリア層(E層)を配してなり、かつE層とD層の接着性を向上させるために、D層にゴム系添加剤を加えることを特徴とする。また、必要に応じてC層とA層の間に難水溶性の無機フィラーを含む隠蔽層(B層)を設けてもよく、さらに、C層またはB層あるいはこれら両方の層を多孔化しても良い。
【0006】
ヒートシール層(A層)は、容器内面側に位置し、他のヒートシール性樹脂をマトリックス成分とする隣接層とともに、脱酸素性容器を形成する層である。酸素吸収速度を高めるには、酸素透過係数が1×10-13[cm3・cm/cm2・sec・Pa]以上、さらに1×10-12[cm3・cm/cm2・sec・Pa]以上であることが好ましい。
【0007】
ヒートシール層を構成する樹脂は、単独のモノマー種から重合された高分子のみでなく、各種の共重合体、樹脂の混合体でもよく、非極性または低極性の高分子が好ましい。さらには、ヒートシール層全体での酸素透過率が前記の範囲を満たしていれば、このヒートシール層そのものを複数の層で構成してもよい。ヒートシール層は無孔質であることが、ヒートシール強度を高く保てるので好ましい。また、ヒートシール層には、隣接する層のマトリックス成分となる樹脂と同じ樹脂を用いることが好ましく、異なる樹脂を用いる場合には、両者の熱融着が可能な程度に相溶性を持っている熱可塑性樹脂が好ましい。
【0008】
ヒートシール層に用いられる具体的な樹脂の例としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどのオレフィン類の単独重合体および共重合体、エチレン−酢酸ビニル共重合体、ポリブタジエン、ポリイソプレン、スチレン−ブタジエン共重合体とその水素添加物、各種シリコン樹脂などがあり、さらにこれらの変成物、グラフト体、混合物などであってもよい。そして、このヒートシール層の厚さの最大値は、酸素透過率で表される脱酸素対象物の要求性能と樹脂の酸素透過係数とにより決定される。ただし、ピンホールなどが発生しないように安定して製造可能で、かつ、通常の使用において内容物との接触などでもピンホールや破れが生じないことが確実であれば、最大値よりもできるだけ薄いことが望ましく、一般的には厚さ5〜50μm程度が好ましい。
【0009】
脱酸素層(C層)に用いる脱酸素組成物としては、公知の脱酸素性組成物が使用できるが、中でも鉄粉、アルミニウム粉、ケイ素粉などの金属粉、第一鉄塩などの無機塩類、アスコルビン酸とその塩類、カテコール、グリセリンなどのアルコールまたはフェノール類を主剤とする脱酸素性組成物が好ましい。
脱酸素組成物の粒径としては、最大粒径が脱酸素層の厚さ未満であればよく、酸化速度を大きくし、他の層を傷つけない(貫通などのない)ためにはより細かいものが望ましい。通常、最大粒径として200μm以下、より好ましくは100μm以下のものから選ばれる。脱酸素組成物のC層に占める量は、10〜60wt%であることが好ましく、30〜55wt%がより好ましい。
脱酸素層は延伸により連続多孔化してもよい。脱酸素層に配合する脱酸素組成物としては、固体状の脱酸素組成物、または、液状の脱酸素組成物を適当な顆粒状物質に担持させた脱酸素組成物が使用できる。また、脱酸素層に水に難溶(不溶を含む)の無機フィラーを多孔化補助剤として加えてもよい。
【0010】
隠蔽層(B層)は、難水溶性の無機フィラーを配合した熱可塑性樹脂からなる層であり、脱酸素層(C層)とヒートシール層(A層)の間に位置して、脱酸素層を外部から隠蔽する層である。隠蔽層(B層)に用いるフィラーは、水に難溶(不溶を含む)の無機フィラーであれば特に制限はない。このようなフィラーとしては、シリカ、アルミナ、珪藻土、チタニア、硫酸バリウムなどが例示できるが、隠蔽性の点ではチタニアを用いるのが最も好ましい。また、隠蔽層を延伸多孔化する場合には、硬度、取り扱い、価格の点から粉砕シリカ、α−アルミナを用いるのが好ましく、これらをチタニアと併用することが最も好ましい。また、隠蔽層はヒートシール層と脱酸素層との間に来るため、フィラーの粒径はヒートシール層を突き抜けないようにできるだけ小さくすることが好ましい。
【0011】
無孔質の緩衝層(D層)を構成する材料としては、脱酸素層のマトリックス成分に用いる樹脂と同じ樹脂またはその樹脂に対して相溶性のある樹脂を使用する。エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどのオレフィン類の単独重合体および共重合体、エチレン−酢酸ビニル共重合体、ポリブタジエン、ポリイソプレン、スチレン−ブタジエン共重合体とその水素添加物、各種シリコン樹脂などが例示される。さらにこれらの変成物、グラフト体、混合物などであってもよい。
【0012】
また、D層に添加するゴム系重合物としては、添加することにより、E層との接着性を向上させることができるものであれば特に制限はない。具体的には、引張り強度40MPa以下、破断点伸び600%以上、JISA硬度90以下の特性を有する樹脂であり、このようなゴム系重合物としては、スチレンブタジエンゴムあるいはその水添物、アクリロニトリルブタジエンゴム、ブチルゴム、クロロプレンゴム、ブタジエンゴム、イソプレンゴム、フッ素ゴム、シリコーンゴム、ウレタンゴム、アクリルゴム、エチレン−αオレフィン共重合体、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−ブテン−αオレフィン共重合体、エチレン−プロピレン−ジエン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−エチレン−ブチレン−スチレン共重合体、あるいはこれらの混合物などが例示できる。特にエチレン−プロピレン共重合体もしくはエチレン−1−ブテン共重合体を添加すると接着強度が向上する。ゴム系重合物の添加量は、D層の10〜90wt%であることが好ましく、30〜70wt%がより好ましい。
D層の厚さは、薄いと接着性向上の効果が得られず、厚いとフィルムの総厚さが厚くなるため好ましくない。好ましい厚さは5〜50μmで、10〜30μmがより好ましい。
【0013】
脱酸素層及び隠蔽層に用いる樹脂としては、鉄粉などの脱酸素組成物や難水溶性の無機フィラーを容易に混合、分散させられるものであれば、特に制限はない。むしろ、ヒートシール層、緩衝層との相溶性のよさ、脱酸素多層フィルムおよびシートの使用温度範囲、などを考慮して選択すればよく、一般的には前述のヒートシール層、緩衝層の樹脂の例に準ずる。A層、B層、C層、D層に用いる樹脂は、同種の樹脂であることが好ましく、隣接層同士が相溶性を有するならば、異なっていてもよい。
【0014】
バリア層(E層)は、ガスバリア性材料からなり、容器外部から酸素が侵入するのを防ぐ働きをする。バリア層(E層)を構成する材料としては、ポリエチレンテレフタレートなどのポリエステル類、ナイロン6、ナイロンMXD6などのポリアミド類、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素含有樹脂、エチレン−ビニルアルコール共重合体などの低酸素透過性の樹脂、それらのコート品;アルミニウムなどの金属箔または金属蒸着樹脂;ケイ素酸化物などの無機化合物蒸着樹脂などの低酸素透過性のものがある。
【0015】
各層を構成する材料には、脱酸素性のフィルムおよびシートの脱酸素速度と脱酸素組成物の溶出の防止とが維持でき、さらに新たな溶出などの問題がなければ、前述の材料以外に種々の物質を加えることが可能である。この添加物としては、例えば、着色または隠蔽のための顔料や染料、酸化防止や分解防止などのための安定化成分、帯電防止成分、吸湿成分、脱臭成分、可塑化成分、難燃化成分などが挙げられる。また、同様に脱酸素性のフィルムおよびシートとしての性能に悪影響を与えない限り、印刷層や易開封層、易剥離層などの層を付加することが可能である。
【0016】
本発明を構成する各層の積層においては、通常の共押出や押出コーティング、押出ラミネートなどの公知の積層方法を用いることが可能である。
連続多孔化された樹脂層とは、樹脂層が多数の空隙を有し、その空隙が互いに連絡することにより樹脂層を貫通するように連続した空隙を有する樹脂層を言い、この連続多孔化の方法としては種々の方法を採用できるが、脱酸素組成物が配合された樹脂層及び難水溶性の無機フィラーが配合された樹脂層を延伸することが生産性の点からも適している。
【0017】
延伸においては、通常知られているように、1軸延伸、2軸同時延伸、2軸逐次延伸のいずれの手法を用いてもよい。また、脱酸素層あるいは難水溶性無機フィラーが充填された隠蔽層あるいはこの両方だけを延伸して、後に各層を接着あるいは融着、蒸着などにより積層しても良いし、ヒートシール層から緩衝層まで、あるいは樹脂性バリア層の場合はヒートシール層からバリア層までを積層した後に延伸しても良い。延伸倍率は2〜20倍とするのが好ましい。
【0018】
低酸素透過性のバリア層を後から加える場合には、同層を熱ラミネート、ドライラミネート、押出コーティングなどの通常の方法により接着または融着して、最終的な多層構造とすることができる。
【0019】
【発明の実施の形態】
本発明の脱酸素性のフィルムおよびシートは、片面がガスバリア性で、他の片面が酸素を吸収することができる脱酸素包装材料として、その特性に応じ、例えば、包装袋や包装容器の一部や全部に種々の形で使用される。例えば、包装用容器のトップシールフィルムや、包装袋に使用することができる。また、内容物は固体だけでなく、液体、または固体と液体の混合物も可能である。
【0020】
【実施例】
以下、実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。
【0021】
実施例1
最大粒径約50μmの鉄粉100重量部に対して塩化カルシウム2重量部を含む水溶液を噴霧し加熱乾燥させてコーティングした脱酸素組成物、及び、ポリプロピレン(日本ポリケム(株)製FW3E、メルトフローレート7.0g/10min)をドライブレンド後、30mm径2軸押出機にて混練、ストランドダイより押し出し、冷却、ペレタイザーで切断して、脱酸素性樹脂組成物のペレットを得た。該脱酸素性樹脂組成物の組成は、脱酸素組成物50wt%、ポリプロピレン50wt%である。
【0022】
難水溶性の無機フィラーとしてチタニア、及びポリプロピレン(日本ポリケム(株)製FW3E、メルトフローレート7.0g/10min)をドライブレンド後、30mm径2軸押出機にて混練、ストランドダイより押し出し、冷却後、ペレタイザーで切断して、白色樹脂組成物のペレットを得た。該白色樹脂組成物の組成は、チタニア10wt%、ポリプロピレン90wt%である。
【0023】
ヒートシール層としてポリプロピレン(日本ポリケム(株)製FW3E、メルトフローレート7.0g/10min)とエチレン−水添ブタジエンゴム(JSR(株)製1320P)の重量比1:1混合物、隠蔽層として前記白色樹脂組成物、脱酸素層として脱酸素性樹脂組成物及び緩衝層としてポリプロピレン(日本ポリケム(株)製FW3E、メルトフローレート7.0g/10min)とエチレン-プロピレン共重合体(三井化学(株)製P0680)の重量比1:1混合物の計4層を、共押出により積層し、4層からなる積層体を得た。この積層体の各層の厚さは、ヒートシール層50μm/隠蔽層50μm/脱酸素層100μm/緩衝層50μmであった。次いで、この緩衝層にバリア層としてアルミ箔をウレタン系接着剤(武田薬品工業(株)製A−515、硬化剤はA−50、混合比10:1)を用いてドライラミネートにより接着し、脱酸素多層フィルムを得た。
【0024】
脱酸素多層フィルムを15mm幅に切り出し、緩衝層とバリア層の間で剥離し、オートグラフ((株)島津製作所製AG-5000B)を用いてT型剥離試験により、ラミネート強度を測定した。ラミネート強度は1.62 kgf/15mmであった。
【0025】
実施例2
ポリプロピレンに代えて直鎖状低密度ポリエチレン(三井化学(株)製SP2040、メルトフローレート4.0g/10min)を用いた以外は実施例1と同様にして脱酸素性樹脂組成物ペレットを作製し、難水溶性の無機フィラーとしてシリカ(平均粒径5μm)、熱可塑性樹脂として直鎖状低密度ポリエチレン(三井化学(株)製SP2040、メルトフローレート4.0g/10min)を用いた以外は、実施例1と同様にして白色樹脂組成物ペレットを得た。該白色樹脂組成物は、シリカ50wt%、ポリプロピレン50wt%からなる。
【0026】
ヒートシール層として脱酸素層と同じ直鎖状低密度ポリエチレンを用い、エチレン−1−ブテン共重合体(JSR(株)製EBM2041P)と重量比1:1で混合し、隠蔽層として前記白色樹脂組成物、脱酸素層として前記脱酸素性樹脂組成物を用い、緩衝層としてヒートシール層と同じ構成である直鎖状低密度ポリエチレン(三井化学(株)製SP2040)とエチレン−1−ブテン共重合体(JSR(株)製2041P)の重量比1:1混合物の計4層を、共押出により積層し、4層からなる積層体を得、次いで一軸方向に4倍延伸した。この積層体の各層の厚さは、ヒートシール層20μm/隠蔽層40μm/脱酸素層50μm/緩衝層10μmであった。さらに、この緩衝層にバリア層としてアルミ箔をウレタン系接着剤(東洋モートン製AD―585、硬化剤CAT−10、混合比10:1)を用いてドライラミネートにより接着し、脱酸素多層フィルムを得た。
【0027】
脱酸素多層フィルムを15mm幅に切り出し、緩衝層とバリア層の間で剥離し、オートグラフ((株)島津製作所製AG-5000B)を用いてT型剥離試験により、ラミネート強度を測定した。ラミネート強度は1.46 kgf/15mmであった。
【0028】
実施例3
緩衝層の組成を、直鎖状低密度ポリエチレン50wt%、エチレン−プロピレン共重合体(三井化学(株)製P0680)50wt%とした他は、実施例2と同様にして脱酸素多層フィルムを得た。得られた脱酸素多層フィルムのラミネート強度を測定したところ、1.11kgf/15mmであった。
【0029】
比較例1
緩衝層の組成を、添加物を含まないポリプロピレン100wt%とした他は、実施例1と同様にした。得られた脱酸素多層フィルムのラミネート強度を測定したところ、0.80 kgf/15mmであった。
【0030】
比較例2
緩衝層の組成を、添加物を含まない直鎖状ポリエチレン100wt%とした他は、実施例2と同様にした。得られた脱酸素多層フィルムのラミネート強度を測定したところ、0.68 kgf/15mmであった。
【0031】
【発明の効果】
脱酸素性のフィルムおよびシートは、一般的に片面が酸素吸収能を持ち、他の片面が酸素透過性の低いガスバリア性のフィルムで構成される。そのため、脱酸素性のフィルムとバリアフィルムのラミネートは必要不可欠であり、ラミネート強度によりフィルムの性能が大きく左右される。本発明は脱酸素多層フィルムとバリアフィルムとのラミネート強度向上に関するものであり、脱酸素性のフィルムの性能を大きく改善する効果がある。
【0032】
本発明によれば、脱酸素層とバリア層との接合強度が向上し、高い接着強度が得られるために、層間の接合力が強い片側吸収型脱酸素多層体が提供される。そのため、平滑化樹脂層もしくは緩衝層の厚みまたは多層体全体の厚みを増大させる必要がない。特に、脱酸素層が多孔化したフィルムまたはシートでは、脱酸素層とバリア層との接合強度が向上する効果が顕著である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film or sheet having a deoxygenating function. More specifically, one-sided absorption used to construct oxygen scavengers or oxygen scavengers with the purpose of preventing the oxidation of various products that are easily affected by the influence of oxygen, such as food, pharmaceuticals and metal products. The present invention relates to a deoxygenated multilayer body.
[0002]
[Prior art]
For the purpose of preventing oxidation of various products that are easily affected by the influence of oxygen, such as foods, pharmaceuticals, and metal products, oxygen scavengers that remove oxygen have been used. The form that was initially developed as the oxygen scavenger and is still widely used is one in which a granular or powder oxygen scavenging composition is packed in a sachet. In order to improve this, a film or sheet having a deoxidized composition fixed thereon is considered as a safe deoxidized substance that is easier to handle, has a wide range of applications, and has no problems such as accidental eating.
[0003]
In order to obtain a film or sheet shape, a method of using a thermoplastic resin as a matrix component and combining it with a granular or powdered deoxygenation composition is simple. However, if this combined film or sheet is used as it is, there is a risk of causing contamination of the content by the deoxidized composition due to contact between the deoxidized body and the content, particularly contact with the liquid. As a countermeasure against this, it is only necessary to cover this single-layer deoxidation layer with another shielding layer or a shielding package. However, in order to take advantage of the characteristics of the film or sheet, the other oxygen-depleting layer is covered with another shielding layer. An ideal configuration is to cover and cover the surface, and an example of such a configuration is disclosed in Japanese Patent Application Laid-Open No. 8-72941. Furthermore, when the oxygen scavenging layer is made porous when stretched and the upper surface is protected by a non-porous layer, a deoxygenating film or sheet having a high oxygen transmission rate and no oxygen scavenger exposure or elution is produced. It is shown in JP-A-9-234811 and JP-A-10-264279 that this can be done.
[0004]
In such a deoxygenating film or sheet, a low oxygen permeable barrier layer that prevents intrusion of oxygen outside the container is generally adhered or fused to the opposite side of the deoxygenating layer. However, due to the deoxidation composition added to the deoxygenation layer, there is a problem in that the adhesion between the deoxygenation layer and the barrier layer is poor. In order to solve this problem, Japanese Patent Application Laid-Open No. 9-234842 and Japanese Patent Application Laid-Open No. 9-40024 propose providing a smoothing resin layer between the deoxidized laminate and the barrier layer. In particular, the film or sheet having a porous oxygen scavenging layer has a problem that the unevenness of the oxygen scavenging layer is remarkably larger than that of the porous film, and it is difficult to improve adhesiveness simply by providing a thermoplastic resin layer. JP-A-9-234811 describes a method of providing a thermoplastic resin layer called a buffer layer between a porous deoxidized layer and a barrier layer.
However, in these methods, the bond strength between the deoxidized layer and the barrier layer may be insufficient, and it is necessary to increase the thickness of the smoothing resin layer or the buffer layer in order to obtain a high bond strength. There is a case. In particular, this problem was remarkable in a film or sheet having a porous oxygen scavenging layer. The problem to be solved by the present invention is to provide a one-side absorption type deoxygenated multilayer body in which the adhesion between the deoxidized layer and the barrier layer is strong.
[0005]
[Means for Solving the Problems]
The inventors have found that the above-mentioned problems can be solved by providing a buffer layer made of a thermoplastic resin between the deoxygenation layer and the barrier layer, and adding a rubber-based additive to the buffer layer, thereby completing the present invention. did. That is, the one-side absorption type deoxygenating film or sheet of the present invention has an oxygen-permeable resin layer (A layer) on one side of a resin layer (C layer) containing a deoxygenating composition, and C In order to improve the adhesion between the E layer and the D layer, a non-porous buffer layer (D layer) and a barrier layer with low oxygen permeability (E layer) are arranged on the other side of the layer. It is characterized by adding a rubber-based additive to the layer. Further, if necessary, a concealing layer (B layer) containing a poorly water-soluble inorganic filler may be provided between the C layer and the A layer, and the C layer or the B layer or both layers may be made porous. Also good.
[0006]
The heat seal layer (A layer) is a layer that is located on the inner surface side of the container and forms a deoxidizing container together with an adjacent layer that uses another heat sealable resin as a matrix component. In order to increase the oxygen absorption rate, the oxygen transmission coefficient is 1 × 10 -13 [cm 3 · cm / cm 2 · sec · Pa] or more, and further 1 × 10 -12 [cm 3 · cm / cm 2 · sec · Pa. It is preferable that it is above.
[0007]
The resin constituting the heat seal layer is not limited to a polymer polymerized from a single monomer species, but may be a mixture of various copolymers or resins, and a nonpolar or low-polar polymer is preferable. Furthermore, as long as the oxygen permeability in the entire heat seal layer satisfies the above range, the heat seal layer itself may be composed of a plurality of layers. The heat seal layer is preferably nonporous because the heat seal strength can be kept high. Further, it is preferable to use the same resin as the matrix component of the adjacent layer for the heat seal layer. When different resins are used, they are compatible to the extent that they can be fused together. Thermoplastic resins are preferred.
[0008]
Specific examples of the resin used for the heat seal layer include homopolymers and copolymers of olefins such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, and ethylene-vinyl acetate copolymers. , Polybutadiene, polyisoprene, styrene-butadiene copolymer and its hydrogenated product, various silicone resins, and the like, and further, modified products, grafts, and mixtures thereof may be used. The maximum value of the thickness of the heat seal layer is determined by the required performance of the object to be deoxidized expressed by the oxygen permeability and the oxygen permeability coefficient of the resin. However, if it can be stably manufactured so as not to cause pinholes and it is certain that pinholes and tears will not occur even in contact with the contents during normal use, it is as thin as possible from the maximum value. In general, a thickness of about 5 to 50 μm is preferable.
[0009]
As the deoxidizing composition used for the deoxidizing layer (C layer), known deoxygenating compositions can be used. Among them, metal powders such as iron powder, aluminum powder and silicon powder, and inorganic salts such as ferrous salt A deoxygenating composition containing ascorbic acid and its salts, alcohols such as catechol and glycerin or phenols as a main ingredient is preferable.
The particle size of the oxygen scavenging composition should be smaller than the thickness of the oxygen scavenging layer, and finer in order to increase the oxidation rate and not damage other layers (no penetration). Is desirable. Usually, the maximum particle size is selected from 200 μm or less, more preferably 100 μm or less. The amount of the deoxidizing composition in the C layer is preferably 10 to 60 wt%, and more preferably 30 to 55 wt%.
The deoxygenated layer may be continuously porous by stretching. As the deoxygenation composition to be blended in the deoxygenation layer, a solid deoxygenation composition or a deoxygenation composition in which a liquid deoxygenation composition is supported on an appropriate granular material can be used. In addition, an inorganic filler that is sparingly soluble (including insoluble) in water may be added to the deoxygenated layer as a porosification aid.
[0010]
The concealing layer (B layer) is a layer made of a thermoplastic resin blended with a poorly water-soluble inorganic filler, and is located between the deoxidizing layer (C layer) and the heat seal layer (A layer). It is a layer which hides a layer from the outside. The filler used for the concealing layer (B layer) is not particularly limited as long as it is an inorganic filler that is hardly soluble (including insoluble) in water. Examples of such a filler include silica, alumina, diatomaceous earth, titania, barium sulfate and the like, but it is most preferable to use titania in terms of concealability. Further, when the concealing layer is stretched and made porous, pulverized silica and α-alumina are preferably used from the viewpoint of hardness, handling, and cost, and these are most preferably used in combination with titania. Moreover, since the concealing layer is located between the heat seal layer and the deoxidation layer, it is preferable that the particle size of the filler be as small as possible so as not to penetrate the heat seal layer.
[0011]
As the material constituting the nonporous buffer layer (D layer), the same resin as the resin used for the matrix component of the deoxidation layer or a resin compatible with the resin is used. Homopolymers and copolymers of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, ethylene-vinyl acetate copolymers, polybutadiene, polyisoprene, styrene-butadiene copolymers and their hydrogen Examples include additives and various silicon resins. Further, these modified products, grafted products, and mixtures may be used.
[0012]
Further, the rubber-based polymer added to the D layer is not particularly limited as long as it can improve the adhesion with the E layer. Specifically, it is a resin having a tensile strength of 40 MPa or less, an elongation at break of 600% or more, and a JISA hardness of 90 or less. Examples of such a rubber-based polymer include styrene butadiene rubber or a hydrogenated product thereof, and acrylonitrile butadiene. Rubber, butyl rubber, chloroprene rubber, butadiene rubber, isoprene rubber, fluorine rubber, silicone rubber, urethane rubber, acrylic rubber, ethylene-α olefin copolymer, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-butene -Α-olefin copolymer, ethylene-propylene-diene copolymer, styrene-isoprene-styrene copolymer, styrene-butadiene-styrene copolymer, styrene-ethylene-butylene-styrene copolymer, or a mixture thereof Can be illustrated. In particular, when an ethylene-propylene copolymer or an ethylene-1-butene copolymer is added, the adhesive strength is improved. The amount of the rubber-based polymer added is preferably 10 to 90 wt% of the D layer, and more preferably 30 to 70 wt%.
If the thickness of the D layer is thin, the effect of improving adhesiveness cannot be obtained, and if it is thick, the total thickness of the film becomes thick, which is not preferable. The preferred thickness is 5 to 50 μm, more preferably 10 to 30 μm.
[0013]
The resin used for the deoxidation layer and the concealment layer is not particularly limited as long as it can be easily mixed and dispersed with a deoxidation composition such as iron powder and a poorly water-soluble inorganic filler. Rather, it may be selected in consideration of the compatibility with the heat seal layer and the buffer layer, the operating temperature range of the deoxidized multilayer film and sheet, etc. According to the example. The resins used for the A layer, the B layer, the C layer, and the D layer are preferably the same type of resin, and may be different as long as the adjacent layers have compatibility.
[0014]
The barrier layer (E layer) is made of a gas barrier material and functions to prevent oxygen from entering from the outside of the container. Materials constituting the barrier layer (E layer) include polyesters such as polyethylene terephthalate, polyamides such as nylon 6 and nylon MXD6, chlorine-containing resins such as polyvinyl chloride and polyvinylidene chloride, and ethylene-vinyl alcohol copolymers. There are low oxygen-permeable resins such as low-oxygen-permeable resins such as metal foils or metal-deposited resins such as aluminum; and inorganic compound-deposited resins such as silicon oxide.
[0015]
There are various materials other than the above-mentioned materials as long as there are no problems such as the elution rate of deoxygenating films and sheets and the prevention of elution of the deoxygenated composition. It is possible to add other substances. Examples of the additives include pigments and dyes for coloring or hiding, stabilizing components for preventing oxidation and decomposition, antistatic components, moisture absorbing components, deodorizing components, plasticizing components, flame retardant components, etc. Is mentioned. Similarly, layers such as a print layer, an easy-open layer, and an easy-release layer can be added as long as the performance as a deoxygenating film and sheet is not adversely affected.
[0016]
In laminating each layer constituting the present invention, a known laminating method such as ordinary coextrusion, extrusion coating, or extrusion laminating can be used.
The continuously porous resin layer refers to a resin layer having a plurality of voids and continuous voids so that the voids communicate with each other and penetrate the resin layer. Various methods can be adopted as the method, but it is also suitable from the viewpoint of productivity to stretch the resin layer containing the deoxidizing composition and the resin layer containing the poorly water-soluble inorganic filler.
[0017]
In stretching, as is generally known, any method of uniaxial stretching, biaxial simultaneous stretching, and biaxial sequential stretching may be used. Alternatively, a deoxidation layer or a concealing layer filled with a poorly water-soluble inorganic filler or both of them may be stretched, and then each layer may be laminated by adhesion, fusion, vapor deposition or the like. Or in the case of a resinous barrier layer, it may be stretched after laminating from the heat seal layer to the barrier layer. The draw ratio is preferably 2 to 20 times.
[0018]
When a low oxygen-permeable barrier layer is added later, the layer can be bonded or fused by a usual method such as thermal lamination, dry lamination, extrusion coating, or the like, to obtain a final multilayer structure.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The deoxygenating film and sheet of the present invention have a gas barrier property on one side and a deoxygenating packaging material that can absorb oxygen on the other side. And all in various forms. For example, it can be used for a top seal film of a packaging container or a packaging bag. The contents can be not only solid but also liquid or a mixture of solid and liquid.
[0020]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited by this.
[0021]
Example 1
Deoxygenated composition coated with sprayed aqueous solution containing 2 parts by weight of calcium chloride to 100 parts by weight of iron powder having a maximum particle size of about 50 μm and heated and dried, and polypropylene (FW3E manufactured by Nippon Polychem Co., Ltd. After dry blending at a rate of 7.0 g / 10 min), the mixture was kneaded with a 30 mm diameter twin screw extruder, extruded from a strand die, cooled, and cut with a pelletizer to obtain pellets of a deoxidizing resin composition. The composition of the deoxidizing resin composition is 50% by weight of the deoxidizing composition and 50% by weight of polypropylene.
[0022]
After dry blending titania and polypropylene (FW3E manufactured by Nippon Polychem Co., Ltd., melt flow rate 7.0 g / 10 min) as a poorly water-soluble inorganic filler, kneading with a 30 mm diameter twin screw extruder, extrusion from a strand die, and cooling The pellet was cut with a pelletizer to obtain a white resin composition pellet. The composition of the white resin composition is 10% by weight of titania and 90% by weight of polypropylene.
[0023]
A 1: 1 weight ratio mixture of polypropylene (FW3E manufactured by Nippon Polychem Co., Ltd., melt flow rate 7.0 g / 10 min) and ethylene-hydrogenated butadiene rubber (1320P manufactured by JSR Corporation) as the heat seal layer, and the white color as the concealment layer Resin composition, deoxygenating resin composition as deoxidizing layer, and polypropylene (FW3E manufactured by Nippon Polychem Co., Ltd., melt flow rate 7.0 g / 10 min) and ethylene-propylene copolymer (manufactured by Mitsui Chemicals, Inc.) as buffer layer A total of 4 layers of a 1: 1 mixture by weight ratio of P0680) were laminated by coextrusion to obtain a laminate comprising 4 layers. The thickness of each layer of the laminate was 50 μm heat seal layer / 50 μm concealment layer / 100 μm deoxygenation layer / 50 μm buffer layer. Next, an aluminum foil is bonded to the buffer layer as a barrier layer by dry lamination using a urethane-based adhesive (A-515, Takeda Pharmaceutical Co., Ltd., curing agent is A-50, mixing ratio 10: 1), A deoxygenated multilayer film was obtained.
[0024]
The deoxidized multilayer film was cut out to a width of 15 mm, peeled between the buffer layer and the barrier layer, and the laminate strength was measured by a T-type peel test using an autograph (AG-5000B, manufactured by Shimadzu Corporation). The laminate strength was 1.62 kgf / 15mm.
[0025]
Example 2
A deoxygenating resin composition pellet was prepared in the same manner as in Example 1 except that linear low density polyethylene (SP2040 manufactured by Mitsui Chemicals, Inc., melt flow rate 4.0 g / 10 min) was used instead of polypropylene. Example except that silica (average particle size 5 μm) was used as the poorly water-soluble inorganic filler, and linear low density polyethylene (SP2040 manufactured by Mitsui Chemicals, Inc., melt flow rate 4.0 g / 10 min) was used as the thermoplastic resin. In the same manner as in Example 1, white resin composition pellets were obtained. The white resin composition is composed of 50 wt% silica and 50 wt% polypropylene.
[0026]
The same linear low density polyethylene as the deoxygenated layer is used as the heat seal layer, mixed with ethylene-1-butene copolymer (EBM2041P manufactured by JSR Corporation) at a weight ratio of 1: 1, and the white resin as the concealing layer. Using the above-mentioned deoxidizing resin composition as a composition and deoxidizing layer, a linear low density polyethylene (SP2040 manufactured by Mitsui Chemicals, Inc.) and ethylene-1-butene having the same structure as the heat seal layer as a buffer layer A total of 4 layers of a 1: 1 mixture by weight of a polymer (2041P manufactured by JSR Corporation) were laminated by coextrusion to obtain a laminate composed of 4 layers, and then stretched 4 times in a uniaxial direction. The thickness of each layer of this laminate was 20 μm for heat seal layer / 40 μm for concealment layer / 50 μm for deoxygenation layer / 10 μm for buffer layer. Furthermore, an aluminum foil was bonded to this buffer layer as a barrier layer by dry lamination using urethane adhesive (AD-585 manufactured by Toyo Morton, curing agent CAT-10, mixing ratio 10: 1), and a deoxygenated multilayer film was formed. Obtained.
[0027]
The deoxidized multilayer film was cut out to a width of 15 mm, peeled between the buffer layer and the barrier layer, and the laminate strength was measured by a T-type peel test using an autograph (AG-5000B, manufactured by Shimadzu Corporation). The laminate strength was 1.46 kgf / 15mm.
[0028]
Example 3
A deoxygenated multilayer film was obtained in the same manner as in Example 2 except that the composition of the buffer layer was 50 wt% linear low density polyethylene and 50 wt% ethylene-propylene copolymer (P0680 manufactured by Mitsui Chemicals, Inc.). It was. The laminate strength of the obtained deoxidized multilayer film was measured and found to be 1.11 kgf / 15 mm.
[0029]
Comparative Example 1
The composition of the buffer layer was the same as that of Example 1 except that the additive-free polypropylene was 100 wt%. The laminate strength of the obtained deoxidized multilayer film was measured and found to be 0.80 kgf / 15 mm.
[0030]
Comparative Example 2
The composition of the buffer layer was the same as in Example 2 except that the linear polyethylene containing no additive was 100 wt%. The laminate strength of the obtained deoxidized multilayer film was measured and found to be 0.68 kgf / 15 mm.
[0031]
【The invention's effect】
The deoxygenating film and sheet are generally composed of a gas barrier film having one side having oxygen absorbing ability and the other side having low oxygen permeability. Therefore, a laminate of a deoxidizing film and a barrier film is indispensable, and the film performance is greatly influenced by the laminate strength. The present invention relates to an improvement in laminate strength between a deoxygenated multilayer film and a barrier film, and has the effect of greatly improving the performance of a deoxygenating film.
[0032]
ADVANTAGE OF THE INVENTION According to this invention, since the joining strength of a deoxidation layer and a barrier layer improves and high adhesive strength is obtained, the one side absorption type deoxidation multilayer body with a strong joining force between layers is provided. Therefore, it is not necessary to increase the thickness of the smoothing resin layer or the buffer layer or the thickness of the entire multilayer body. In particular, in a film or sheet having a porous oxygen scavenging layer, the effect of improving the bonding strength between the oxygen scavenging layer and the barrier layer is remarkable.

Claims (5)

脱酸素組成物が配合された熱可塑性樹脂からなる連続多孔化された脱酸素層(C層)、並びに、C層の一方の側には酸素透過性の熱可塑性樹脂からなるヒートシール層(A層)を配し、C層の他方の側には、ゴム系の重合物を添加した無孔質の熱可塑性樹脂からなる厚さ10〜30μmの緩衝層(D層)及びガスバリア性材料からなるバリア層(E層)を、この順に配してなる片側吸収型脱酸素多層体であって、該ゴム系重合物の添加量がD層の30〜70wt%である片側吸収型脱酸素多層体。A continuous porous deoxygenated layer (C layer) made of a thermoplastic resin containing a deoxygenated composition, and a heat seal layer (A) made of an oxygen-permeable thermoplastic resin on one side of the C layer Layer), and the other side of the C layer is composed of a buffer layer (D layer) having a thickness of 10 to 30 μm made of a nonporous thermoplastic resin to which a rubber-based polymer is added and a gas barrier material. A one-side absorption type deoxygenated multilayer body in which barrier layers (E layers) are arranged in this order, wherein the addition amount of the rubber-based polymer is 30 to 70 wt% of the D layer . 脱酸素層(C層)とヒートシール層(A層)の間に、難水溶性の無機フィラーを配合した熱可塑性樹脂からなる隠蔽層(B層)を配してなる請求項1記載の多層体。The multilayer according to claim 1, wherein a concealing layer (B layer) made of a thermoplastic resin blended with a poorly water-soluble inorganic filler is disposed between the deoxidized layer (C layer) and the heat seal layer (A layer). body. 緩衝層(D層)に添加されたゴム系の重合物が、エチレン−プロピレン共重合体又はエチレン−1−ブテン共重合体である請求項1記載の多層体。The multilayer body according to claim 1, wherein the rubber-based polymer added to the buffer layer (D layer) is an ethylene-propylene copolymer or an ethylene-1-butene copolymer. 隠蔽層(B層)が連続多孔質樹脂組成物からなる請求項2記載の多層体。The multilayer body according to claim 2, wherein the concealing layer (B layer) comprises a continuous porous resin composition. 脱酸素層(C層)又は隠蔽層(B層)が、2〜20倍に延伸された連続多孔質樹脂層である請求項又は記載の多層体。The multilayer body according to claim 1 or 4, wherein the deoxidation layer (C layer) or the concealing layer (B layer) is a continuous porous resin layer stretched 2 to 20 times.
JP34640199A 1999-12-06 1999-12-06 Single-side absorption deoxygenation multilayer Expired - Fee Related JP4412430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34640199A JP4412430B2 (en) 1999-12-06 1999-12-06 Single-side absorption deoxygenation multilayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34640199A JP4412430B2 (en) 1999-12-06 1999-12-06 Single-side absorption deoxygenation multilayer

Publications (2)

Publication Number Publication Date
JP2001163373A JP2001163373A (en) 2001-06-19
JP4412430B2 true JP4412430B2 (en) 2010-02-10

Family

ID=18383183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34640199A Expired - Fee Related JP4412430B2 (en) 1999-12-06 1999-12-06 Single-side absorption deoxygenation multilayer

Country Status (1)

Country Link
JP (1) JP4412430B2 (en)

Also Published As

Publication number Publication date
JP2001163373A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
KR100461284B1 (en) Oxygen-absorbing resin, deoxygenated multilayer structure and packaging container using the resin
KR19990007487A (en) Deoxygen component, deoxidant package and deoxygenated multilayer body comprising same
BRPI0615386A2 (en) laminated packaging material
JP2004315035A (en) Deoxidative lid material and deoxidative sealing container
JPH09234811A (en) Film-like or sheet-like deoxidizing multilayer body and its manufacture
JP3687720B2 (en) Oxygen absorbing multilayer film and oxygen absorbing packaging container
JP3460789B2 (en) Deoxidizing multilayer film
WO2014045964A1 (en) Drug packaging sheet and drug-packaged product
JP4412430B2 (en) Single-side absorption deoxygenation multilayer
JPH09176499A (en) Oxygen-absorptive resin composition and oxygen-absoprtive laminated body
JP2001121652A (en) Oxygen absorbing multi layer film and deoxygenating container
JP2002052655A (en) Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same
JP3545089B2 (en) Method for producing oxygen-absorbing container and oxygen-absorbing container obtained by this method
JP4178333B2 (en) Deoxygenating monolayers and multilayers
JP4120735B2 (en) Oxygen-absorbing multilayer body, production method and packaging container
JP4548566B2 (en) Deoxygenated multilayer body
JP2000273328A (en) Oxygen-absorbing resin composition and deoxygenating multilayer body
US20030180519A1 (en) Multilayered deoxidizer and production process
JP4433111B2 (en) Method for producing stretched deoxygenated multilayer body
JP6727025B2 (en) Heat seal laminate
JP3724526B2 (en) Storage method and package for cooked rice
JP2002144508A (en) One side absorption type deoxidation multilayer laminate
JP2000255008A (en) Oxygen absorbable multilayered object
JP4029239B2 (en) Oxygen-absorbing multilayer film
JP2000318091A (en) Deoxidative multilayer sheet and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4412430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees