[go: up one dir, main page]

JP4411734B2 - Hot ultrasonic thickness gauge and thickness measurement method - Google Patents

Hot ultrasonic thickness gauge and thickness measurement method Download PDF

Info

Publication number
JP4411734B2
JP4411734B2 JP2000082736A JP2000082736A JP4411734B2 JP 4411734 B2 JP4411734 B2 JP 4411734B2 JP 2000082736 A JP2000082736 A JP 2000082736A JP 2000082736 A JP2000082736 A JP 2000082736A JP 4411734 B2 JP4411734 B2 JP 4411734B2
Authority
JP
Japan
Prior art keywords
thickness
inspected
temperature
ultrasonic
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000082736A
Other languages
Japanese (ja)
Other versions
JP2001272220A5 (en
JP2001272220A (en
Inventor
達也 橋本
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000082736A priority Critical patent/JP4411734B2/en
Publication of JP2001272220A publication Critical patent/JP2001272220A/en
Publication of JP2001272220A5 publication Critical patent/JP2001272220A5/ja
Application granted granted Critical
Publication of JP4411734B2 publication Critical patent/JP4411734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルスレーザと電磁超音波センサーを用いた熱間超音波厚さ計及び厚さ計測方法に関する。
【0002】
【従来の技術】
近年、鉄鋼製品の高品質化に伴って、鉄板の厚さや鉄管の肉厚において保証精度の高いものが要求されている。従って、製造工程において、圧延直後に厚さを測定し、この測定結果を製造ラインに反映させることが望まれる。このような要望からγ線厚さ計等が発明されており、このγ線厚さ計が厚板等の製造ラインに据付けられている。しかし、γ線厚さ計は、非常に高価なものであるため、付加価値の小さい製品を製造するラインには普及されていない。また、鉄管の厚さを測定するには、特開平6−160068に開示されているような高度な測定方法が必要とされる。従って、γ線厚さ計は限られた製造ラインでしか使われていない。
【0003】
そこで、安価に熱間で厚さを測定する方法として、特開昭60−53806に開示されるように、超音波で被検査体の厚さを測定する方法が発明された。この超音波を用いた測定方法は、鋼管の厚さ計測にも適用でき、さらに、γ線厚さ計のように設備が高価でないという利点がある。
【0004】
しかしながら、上記のような超音波を用いた被検査体の厚さを測定する方法には以下の問題がある。
【0005】
まず、第1の問題として、超音波の送受信手段として電磁超音波センサーを用いており、非常に感度が悪い。一般に、電磁超音波による超音波の送信は、圧電素子を用いた方法と比較して、1/100〜1/1000程度感度が悪い。さらに、電磁超音波による超音波の送受信では、上述した感度の悪さの自乗で感度低下を招く。従って、被検査体とセンサーの距離(以下、リフトオフという)を2mm以下にする必要があるため、電磁超音波センサーは非常に扱いづらい。一方、鉄鋼製品の圧延ラインでは、5mm程度のパスライン変動は避けられないものであるため、リフトオフが2mm程度の非接触の超音波送受信技術において電磁超音波センサーは使い物にならない。そこで、電磁超音波センサーの感度の問題を回避するために、数キロボルトの送信電圧を用いて電磁超音波の送信出力を向上させる試みがなされている。さらに、1Tもの直流磁場が発生する磁化器を用いて電磁超音波の送受信感度を向上させる試みもなされている。しかし、これらの試みによる感度向上では不十分であった。このため、電磁超音波を使用した厚さ計は、一部の冷間において接触に近い状態で用いられる場合を除いては、実動されていないのが現状である。
【0006】
また、第2の問題として、超音波を用いて被検査体の厚さを測定する場合、温度によって音速が変化してしまう。熱間で超音波を伝播させて被検査体の厚さを測る方法では、熱間の超音波伝播時間から被検査体の厚さを測定する。このため、予め熱間での被検査体の音速を測定しておくことは当然必要であるが、熱間での音速を用いて算出される被検査体の厚さは、熱間における被検査体の厚さである。それゆえ、特開昭60−53806に開示される方法では、材料の線膨張係数αを用いて、熱間での被検査体の厚さから冷間での被検査体の厚さを算出している。しかしながら、線膨張係数αは温度に依存して変化するため、予め熱間で線膨張係数αを測定しておく必要がある。即ち、従来の方法では、熱間の各温度Tにおける音速V(T)及び熱膨張率α(T)を予め測定しておく必要があるため、被検査体の厚さ測定に手間がかかる。さらに、実際の測定では、熱間での被検査体の厚さから冷間での被検査体の厚さを算出しなければならないため、2段階のステップで冷間の厚さを算出する。従って、熱間での被検査体の厚さから冷間での被検査体の厚さを算出する際に誤差が入ってしまう等の問題がある。
【0007】
【発明が解決しようとする課題】
本発明は上記課題を解決するためになされたものであり、その目的とするところは、安価な装置構成であり、非接触かつ高感度で超音波を送受信することが可能である熱間超音波厚さ計を提供することにある。また、熱間での超音波伝播時間から、簡便かつ精度よく冷間における被検査体の厚さを測定できる厚さ計測方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、前記目的を達成するために以下に示す手段を用いている。
【0009】
本発明の熱間超音波厚さ計は、被検査体に超音波を発生させる超音波発生手段と、前記被検査体内を伝播した超音波を受信する超音波受信手段と、前記受信した超音波の波形から、超音波の伝播時間を算出する伝播時間算出手段と、前記被検査体の測定部の温度T(ここで、T>T)を推定する温度推定手段と、前記推定された温度Tにおける被検査体の見かけの音速を、見かけの音速の温度特性に基づいて、算出する音速算出手段と、前記伝播時間と前記見かけの音速とを乗算して前記被検査体の温度Tにおける厚さを算出する厚さ算出手段とを具備した被検査体の温度Tにおける被検査体の厚さを測定する超音波厚さ計であって、前記見かけの音速の温度特性は、温度Tで厚さWTの前記被検査体と同じ材料の試験片について、温度Tより高温の複数の温度において前記試験片の超音波伝播時間を測定し、前記厚さWTを前記測定した複数温度での各伝播時間で除算して、定められる。
【0010】
上述する本発明の熱間超音波厚さ計において、前記超音波発生手段はパルスレーザであり、前記超音波受信手段は電磁超音波センサーである。
上述する本発明の熱間超音波厚さ計において、前記電磁超音波センサーは、パルスレーザ光を通過させる貫通穴を有していてもよい。
【0011】
本発明の厚さ計測方法は、被検査体に超音波を発生させ、前記被検査体内を伝播した超音波を受信し、この受信した超音波の波形から超音波の伝播時間を算出し、温度推定手段により前記被検査体の測定部の温度T(ここで、T>T )を推定し、前記推定された温度Tにおける前記被検査体の見かけの音速を、見かけの音速の温度特性に基づいて算出し、前記見かけの音速と前記被検査体内の超音波伝播時間とを乗算して前記被検査体の温度Tにおける前記被検査体の厚さを求める厚さ計測方法であって、前記見かけの音速の温度特性は、温度Tでの厚さWTの前記被検査体と同じ材料の試験片について、温度Tより高温の複数の温度において前記試験片の超音波伝播時間を測定し、前記厚さWTを前記測定した複数の温度での各伝播時間で除算して定められる。
【0012】
【発明の実施の形態】
本発明の実施の形態を以下に図面を参照して説明する。
【0013】
[第1の実施形態]
本発明の第1の実施形態は、透過型の熱間超音波厚さ計を用いて、熱間における被検査体の厚みを超音波で計測し、熱膨張係数を用いることなく、冷間における被検査体の厚さを算出することに特徴がある。
【0014】
まず、線膨張係数を用いることなく、冷間における被検査体の厚さが測定できる原理について説明する。
【0015】
冷間温度T0で厚さL(T0)の試験片は、熱間温度Tで長さL(T)となり、この関係は式(1)で表される。ここで、αは線膨張係数であり、線膨張係数αは式(2)で表される。
【0016】
L(T)=L(T0)+L(T0)×α×(T−T0)…(1)
α=1/L×dL/dT…(2)
一方、温度Tで超音波の伝播時間がΔt(T)のとき、音速V(T)は、(厚さ/伝播時間)で定義される。このため、音速V(T)は式(3)で表される。
【0017】
V(T)=L(T)/Δt(T)…(3)
しかし、熱間における試験片の熱膨張を無視して、冷間温度T0での厚さL(T0)を使った音速V’(T)は、式(4)で表される。
【0018】
V’(T)=L(T0)/Δt(T)…(4)
従って、式(1)、(3)、(4)より、音速V(T)と音速V’(T)の違いは、式(5)で表される。
【0019】
V(T)=V’(T)×{1+α×(T−T0)}…(5)
今、ある被検査対象を測定したところ、温度がT、片道の超音波の伝播時間がΔt’であったとする。従って、この被検査対象の厚さWT(T)は、式(3)の音速を用いて、式(6)のように表される。
【0020】
WT(T)=V(T)×Δt’…(6)
この厚さWT(T)は、温度Tでの厚さであるため、冷間温度T0での厚さWT(T0)は線膨張係数αを用いて計算する必要がある。従って、冷間温度T0での厚さWT(T0)は、式(7)で表される。
【0021】
WT(T0)=WT(T)/{1+α×(T−T0)}…(7)
この式(7)を書き換えると、式(8)になる。
【0022】
WT(T0)=V(T)×Δt’/{1+α×(T−T0)}
=V’(T)×{1+α×(T−T0)}×Δt’/{1+α×(T−T0)}
=V’(T)×Δt’…(8)
即ち、予め測定に必要な温度Tでの見かけの音速V’(T)と超音波の伝播時間Δt’を調べておけば、線膨張係数を用いずに、冷間の厚さWT(T0)を測定することができる。
【0023】
次に、超音波により被検査体の厚さを測定するための熱間超音波厚さ計について説明する。
【0024】
図1(a)は熱間超音波厚さ計の構成図を示す。図1(b)は、図1(a)の温度推定部13に放射温度計7を適用した構成図を示す。尚、温度推定の方法は放射温度計7を使用することに限定されず、伝熱計算や接触式の温度計による測定でも、被検査体の温度が推定できれば何でもよい。
【0025】
図1(a)、図1(b)において、1は被検査体、2はパルスレーザ、3aは電磁超音波センサーを示す。また、第1の実施形態は、透過法で超音波を受信するため、電磁超音波センサー3aが、被検査体1を挟んで、パルスレーザ2の反対側に配置してある。また、図1(b)に示す放射温度計7は、ファイバー6により被検査体1とつながれている。
【0026】
このような熱間超音波厚さ計を用いる場合、被検査体の厚さはレーザ超音波法により測定される。このレーザ超音波法では、パルスレーザ光や変調された光を被検査体に照射することにより、被検査体の表面が溶発の反作用若しくは熱応力を受けて、超音波を発生する。この超音波の発生強度は、照射するパルスレーザ光の条件次第で任意に変えることができる。従って、超音波の発生強度は、圧電素子で発生できる通常の強度の10倍程度にすることも可能である。このような強度な超音波を電磁超音波センサーで受信すると、従来の電磁超音波による送受信法に比べ、1000〜10000倍の感度で超音波が受信できる。
【0027】
以下、上述したレーザ超音波法により、被検査体の厚さを測定する方法について詳細に説明する。
【0028】
まず、パルスレーザ2より光密度10MW/cm2以上のパルスレーザ光5が発射される。ここで、パルスレーザ光5は、パルスエネルギーが例えば200mJ、パルス幅が例えば5nsである。このパルスレーザ光5を例えば2mmに集光させて鋼板のような被検査体1に照射させる。その結果、被検査体1の表面1bがアブレーションを起こし、このアブレーションの反作用で超音波4が発生する。この超音波4は、被検査体1の裏面1a又は表面1bで反射され、被検査体1内を複数回往復する。ここで、被検査体1の裏面1aに電磁超音波センサー3aが配置されている。このため、超音波4が電磁超音波センサー3a側の被検査体1の裏面1aに到達するたびに、電磁超音波センサー3aから超音波4が検出される。この電磁超音波センサー3aは、磁束密度が例えば3500ガウスの磁石と例えば10ターンのコイルで構成されている。
【0029】
次に、電磁超音波センサー3aで検出された超音波4の信号は、広帯域アンプ8により、40〜80dBに増幅される。この増幅された信号のうち、材料を透過する超音波の周波数帯域のみが、バンドパスフィルター9により通過される。その後、A/D変換部10により、図2に示すような超音波の多重反射波形が得られる。この際、電磁超音波センサー3aのリフトオフは例えば8mm、広帯域アンプ8のゲインは例えば80dB、バンドパスフィルター9の帯域は例えば1〜5MHzである。
【0030】
図2に示す多重反射波形は、透過法の配置で得られたものであるため、図中の最初のエコーピークP1は、電磁超音波センサー3aに超音波4が最初に到達した際のピークである。2番目のエコーピークP2は、最初のエコーピークP1から1往復したものである。3番目のエコーピークP3は、2番目のエコーピークP2からさらに1往復したものである。ここで、2番目のエコーピークP2と3番目のエコーピークP3の時間間隔Δtを測定すると、Δt=7.744μsであった。また、図2に示す多重反射波形が得られた時、温度推定部13として用いた放射温度計7(図1(b)に示す)の指示値は872℃であった。
【0031】
また、図3に被検査体1と同じ材料の被検査体の音速と温度の関係を示す。図3によれば、温度が高くなるにつれて音速が下がっているように、音速は温度に依存していることがわかる。尚、図3についての詳細な説明は後述する。この図3のグラフを用いて音速を求めると、温度が872℃のときの音速は4970m/sである。
【0032】
従って、式(9)より、Δt=7.744μs、音速V=4970m/sのとき、冷間における被検査体の厚さWTは19.24mmである。
【0033】
WT=Δt×V÷2…(9)
このようにして、厚さ算出部11において冷間における被検査体の厚さWTが算出され、この結果が表示部12により表示される。
【0034】
尚、同様な実験を多数回行い、マイクロメーターによる測定と比較した。その結果、マイクロメーターにより測定した厚さと上述する方法で算出した厚さWTとの差は全て10μm未満であった。
【0035】
ところで、本来熱間で超音波の伝播時間を測定し、熱間音速を用いて被検査体の厚さを計算すると、熱間での被検査体の厚さ、即ち、熱膨張した被検査体の厚さがわかることになる。しかし、本発明では、直接常温での被検査体の厚さを算出している。これは、図3に示す音速が真の音速ではないからである。
【0036】
図3に示すような温度と音速との関係は、次のようにして導いた。まず、マイクロメーターを用いて、音速を知りたい材料の常温T0℃での厚さWT0を測定する。次に、熱間の超音波送受信法により、超音波の伝播時間Δt0を測定する。この厚さWT0と伝播時間Δt0から、常温T0℃での音速V0を求める。次に、材料を順次加熱しながら、各温度T1、T2、T3、…で、伝播時間Δt1、Δt2、Δt3、…を測定し、材料の音速を求める。ここで、音速算出に用いる厚さは、熱間での熱膨張した厚さではなく、常温T0℃での厚さWT0を用いる。このようにして、図3に示すような音速と温度の関係が導かれる。従って、図3による音速と熱間の伝播時間とを用いれば、即、常温の厚さを算出することができる。
【0037】
尚、第1の実施形態は、図3のグラフを用いて音速を直接算出し、常温での厚さを測定しているが、これに限定されない。任意の温度での厚さを用いて、上記のような手法で音速と温度の関係を導き出せば、温度域の異なる材料の伝播時間の測定から熱膨張の補正なしで、いかなる温度における厚さも算出することができる。
【0038】
また、第1の実施形態は、被検査体1の表面温度から音速を求めている。これは、被検査体1を放冷した時、表面温度と内部温度とに生じる温度差が約10℃未満であったため、温度分布による厚さ算出誤差が0.2%以上になり得ない。従って、被検査体1の表面温度を材料の温度として代表させている。
【0039】
また、被検査体1の表面1bをパルスレーザ光5でアブレーションさせているが、一回のアブレーションで表面が溶ける量は、深さ1μm程度であり、製品の品質を落とす程度ではない。
【0040】
上記第1の実施形態による熱間超音波厚さ計よれば、被検査体の厚さを測定する手段として、超音波を使用している。このため、γ線を用いたものより、安全かつ安価な熱間超音波厚さ計を提供できる。
【0041】
また、超音波を使用して厚さを測定しているため、従来の電磁超音波による送受信法に比べ、1000〜10000倍の感度で、超音波4が受信できる。従って、高感度で超音波を送受信できるため、電磁超音波センサー3aのリフトオフを10mm以上離してもS/N比が2以上で受信できる。このように、リフトオフが大きく取れれば、電磁超音波センサー3aに冷却機構を設けることも容易になるため、輻射熱の影響を低減できる。さらに、リフトオフが大きく取れれば、被検査対象のライン変動の追従にも余裕ができ、常に一定のリフトオフを保つ必要がなくなる。従って、熱間の被検査対象に対し、超音波の送受信が容易に安定して行うことができる。
【0042】
上記第1の実施形態による厚さ計測方法によれば、熱膨張係数を用いることなく、熱間での伝播時間から、常温での被検査体の厚さを知ることができる。従って、簡便かつ精度よく被検査体の厚さを測定できる。
【0043】
[第2の実施形態]
本発明の第2の実施形態は、反射型の熱間超音波厚さ計を用いて、熱間における被検査体の厚みを超音波で計測し、熱膨張係数を用いることなく、冷間における被検査体の厚さを算出することに特徴がある。尚、第2の実施形態では、上記第1の実施形態と同様の構造については説明を省略し、異なる構造のみ説明する。
【0044】
図4(a)は熱間超音波厚さ計の構成図を示す。図4(b)は、図4(a)の温度推定部13に放射温度計7を適用した構成図を示す。
【0045】
図4(a)、図4(b)において、1は被検査体、2はパルスレーザ、3bは電磁超音波センサーを示す。また、第2の実施形態は、反射法で超音波を受信するため、電磁超音波センサー3bが、被検査体1に対してパルスレーザ2と同じ側に配置してある。また、電磁超音波センサー3bの中心をパルスレーザ光5が通過できるように、電磁超音波センサー3bの中心に貫通穴14が空けてある。図1(b)に示す放射温度計7は、ファイバー6により被検査体1とつながれている。
【0046】
以下、上述した熱間超音波厚さ計を用いて、被検査体の厚さを測定する方法について説明する。
【0047】
まず、第1の実施形態と同様に、パルスレーザ2より光密度10MW/cm2以上のパルスレーザ光5が発射される。このパルスレーザ光5を例えば2mmに集光させ、貫通穴14を通過して鋼板のような被検査体1に照射させる。これにより、被検査体1の表面1bがアブレーションを起こし、このアブレーションの反作用で超音波4が発生する。この超音波4は、被検査体1の裏面1a又は表面1bで反射され、被検査体1内を複数回往復する。ここで、被検査体1の表面1bに電磁超音波センサー3bが配置されている。このため、超音波4が電磁超音波センサー3b側の被検査体1の表面1bに到達するたびに、電磁超音波センサー3bから超音波4が検出される。以下は、第1の実施形態と同様であるため、説明は省略する。
【0048】
上記第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。さらに、第2の実施形態は、パルスレーザ光5を通すことができるように、電磁超音波センサー3bの中心に貫通穴14を設けている。このため、γ線のような透過法だけでなく、反射法での超音波送受信を可能にしている。従って、第2の実施形態による熱間超音波厚さ計は、鋼管のような被検査体にも適用できる。
【0049】
その他、本発明は、その要旨を逸脱しない範囲で、種々変形して実施することが可能である。
【0050】
【発明の効果】
以上説明したように本発明によれば、安価な装置構成であり、非接触かつ高感度で超音波を送受信することが可能である熱間超音波厚さ計を提供できる。また、熱間での超音波伝播時間から、簡便かつ精度よく冷間における被検査体の厚さを測定できる厚さ計測方法を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる透過法を用いた熱間超音波厚さ計の構成図を示す。
【図2】本発明の第1の実施形態に係わる熱間超音波厚さ計によって得られた多重反射波形の例を示す図である。
【図3】本発明の第1の実施形態で用いた被検査体の音速と温度の関係を示すグラフである。
【図4】本発明の第2の実施形態に係わる反射法を用いた熱間超音波厚さ計の構成図を示す。
【符号の説明】
1…被検査体、
1a…被検査体の裏面、
1b…被検査体の表面、
2…パルスレーザ、
3a、3b…電磁超音波センサー、
4…超音波、
5…レーザ光、
6…ファイバー、
7…放射温度計、
8…広帯域アンプ、
9…バンドパスフィルター、
10…A/D変換部、
11…厚さ算出部、
12…表示部、
13…温度推定部、
14…貫通穴。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot ultrasonic thickness meter and a thickness measuring method using a pulse laser and an electromagnetic ultrasonic sensor.
[0002]
[Prior art]
In recent years, with the improvement in quality of steel products, high guarantee accuracy is required for the thickness of the iron plate and the thickness of the iron pipe. Therefore, in the manufacturing process, it is desired to measure the thickness immediately after rolling and reflect the measurement result on the manufacturing line. From such a demand, a γ-ray thickness meter has been invented, and this γ-ray thickness meter is installed in a production line such as a thick plate. However, since the γ-ray thickness meter is very expensive, it is not widely used in a line for manufacturing a product with a small added value. Further, in order to measure the thickness of the iron pipe, an advanced measuring method as disclosed in JP-A-6-160068 is required. Therefore, the γ-ray thickness meter is used only on a limited production line.
[0003]
Therefore, as a method for measuring the thickness hot at a low cost, a method for measuring the thickness of an object to be inspected with ultrasonic waves has been invented as disclosed in JP-A-60-53806. This measurement method using ultrasonic waves can be applied to the measurement of the thickness of a steel pipe, and further has an advantage that the equipment is not expensive like a γ-ray thickness gauge.
[0004]
However, the method of measuring the thickness of the object to be inspected using the ultrasonic waves as described above has the following problems.
[0005]
First, as a first problem, an electromagnetic ultrasonic sensor is used as an ultrasonic transmission / reception means, and the sensitivity is very low. In general, the transmission of ultrasonic waves by electromagnetic ultrasonic waves is inferior in sensitivity by about 1/100 to 1/1000 compared with a method using a piezoelectric element. Furthermore, in the transmission / reception of ultrasonic waves by electromagnetic ultrasonic waves, the sensitivity is lowered due to the square of the above-described poor sensitivity. Therefore, since the distance between the object to be inspected and the sensor (hereinafter referred to as lift-off) needs to be 2 mm or less, the electromagnetic ultrasonic sensor is very difficult to handle. On the other hand, in a rolling line for steel products, a pass line fluctuation of about 5 mm is unavoidable, so an electromagnetic ultrasonic sensor is not useful in a non-contact ultrasonic transmission / reception technology with a lift-off of about 2 mm. Therefore, in order to avoid the problem of sensitivity of the electromagnetic ultrasonic sensor, an attempt has been made to improve the transmission output of the electromagnetic ultrasonic wave by using a transmission voltage of several kilovolts. In addition, attempts have been made to improve the transmission / reception sensitivity of electromagnetic ultrasonic waves using a magnetizer that generates a 1 T DC magnetic field. However, the sensitivity improvement by these attempts has been insufficient. For this reason, the thickness meter using electromagnetic ultrasonic waves is not actually operated except when it is used in a state close to contact in a part of cold.
[0006]
As a second problem, when measuring the thickness of an object to be inspected using ultrasonic waves, the speed of sound changes depending on the temperature. In the method of measuring the thickness of an object to be inspected by propagating ultrasonic waves between heat, the thickness of the object to be inspected is measured from the ultrasonic wave propagation time between heats. For this reason, it is naturally necessary to measure the sound speed of the object to be inspected hot in advance, but the thickness of the object to be inspected calculated using the sound speed of hot is the object to be inspected in the hot state. It is the thickness of the body. Therefore, in the method disclosed in JP-A-60-53806, the thickness of the object to be inspected in the cold is calculated from the thickness of the object to be inspected in the hot using the linear expansion coefficient α of the material. ing. However, since the linear expansion coefficient α changes depending on the temperature, it is necessary to measure the linear expansion coefficient α in advance during the heat. That is, in the conventional method, it is necessary to measure in advance the sound velocity V (T) and the coefficient of thermal expansion α (T) at each temperature T during the heat, so that it takes time to measure the thickness of the object to be inspected. Furthermore, in actual measurement, since the thickness of the object to be inspected in the cold must be calculated from the thickness of the object to be inspected in the hot, the cold thickness is calculated in two steps. Therefore, there is a problem that an error occurs when calculating the thickness of the object to be inspected cold from the thickness of the object to be inspected hot.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and an object of the present invention is a hot ultrasonic wave that is an inexpensive apparatus configuration and can transmit and receive ultrasonic waves in a non-contact and highly sensitive manner. It is to provide a thickness gauge. Another object of the present invention is to provide a thickness measuring method that can easily and accurately measure the thickness of an object to be inspected from the ultrasonic propagation time in the hot.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses the following means.
[0009]
The hot ultrasonic thickness meter according to the present invention includes an ultrasonic wave generating means for generating an ultrasonic wave in an object to be inspected, an ultrasonic wave receiving means for receiving an ultrasonic wave propagated through the object to be inspected, and the received ultrasonic wave. Propagation time calculation means for calculating the propagation time of the ultrasonic wave from the waveform, temperature estimation means for estimating the temperature T (where T> T 0 ) of the measurement part of the object to be inspected, and the estimated temperature The apparent sound speed of the object to be inspected at T is calculated based on the sound speed calculation means based on the temperature characteristic of the apparent sound speed, and the propagation time and the apparent sound speed are multiplied by the temperature T 0 of the object to be inspected. An ultrasonic thickness meter that measures the thickness of an object to be inspected at a temperature T 0 of the object to be inspected provided with a thickness calculating means for calculating the thickness, wherein the temperature characteristic of the apparent sound velocity is expressed by a temperature T specimens of the same material as the object to be inspected with a thickness of WT 0 0 Nitsu Te measures the ultrasonic wave propagation time of the test piece from the plurality of temperature of the hot temperature T 0, the thickness WT 0 is divided by the propagation time of a plurality temperatures the measured, it is determined.
[0010]
In the above-described hot ultrasonic thickness gauge of the present invention, the ultrasonic wave generating means is a pulse laser, and the ultrasonic wave receiving means is an electromagnetic ultrasonic sensor.
In the above-described hot ultrasonic thickness meter of the present invention, the electromagnetic ultrasonic sensor may have a through hole through which pulsed laser light passes.
[0011]
In the thickness measurement method of the present invention, an ultrasonic wave is generated in an object to be inspected , an ultrasonic wave propagated in the object to be inspected is received, a propagation time of the ultrasonic wave is calculated from a waveform of the received ultrasonic wave, and a temperature is measured. The estimation means estimates the temperature T (here, T> T 0 ) of the measurement part of the object to be inspected, and the apparent sound speed of the object to be inspected at the estimated temperature T is converted into the temperature characteristic of the apparent sound speed. based calculated, the a thickness measuring method for determining the thickness of the object to be inspected at a temperature T 0 of the object to be inspected by multiplying the propagation time of the ultrasonic wave of the test subject and the acoustic velocity of the apparent , the temperature characteristic of the acoustic velocity of the apparent, the test piece of the same material as the object to be inspected in the thickness WT 0 at the temperature T 0, ultrasonic wave propagation time of the test piece from the plurality of temperature of the hot temperature T 0 And measuring the thickness WT 0 by measuring the plurality of temperatures It is determined by dividing by each propagation time in degrees.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
[First Embodiment]
The first embodiment of the present invention uses a transmission-type hot ultrasonic thickness meter to measure the thickness of an object to be inspected with ultrasonic waves, and without using a thermal expansion coefficient, It is characterized in that the thickness of the object to be inspected is calculated.
[0014]
First, the principle by which the thickness of the object to be inspected can be measured without using the linear expansion coefficient will be described.
[0015]
A test piece having a thickness L (T 0 ) at a cold temperature T 0 has a length L (T) at a hot temperature T, and this relationship is expressed by Expression (1). Here, α is a linear expansion coefficient, and the linear expansion coefficient α is expressed by Expression (2).
[0016]
L (T) = L (T 0 ) + L (T 0 ) × α × (T−T 0 ) (1)
α = 1 / L × dL / dT (2)
On the other hand, when the ultrasonic wave propagation time is Δt (T) at the temperature T, the sound velocity V (T) is defined by (thickness / propagation time). For this reason, the sound velocity V (T) is expressed by the equation (3).
[0017]
V (T) = L (T) / Δt (T) (3)
However, the sonic velocity V ′ (T) using the thickness L (T 0 ) at the cold temperature T 0 is ignored by ignoring the thermal expansion of the test piece in the hot state, and is expressed by the equation (4).
[0018]
V ′ (T) = L (T 0 ) / Δt (T) (4)
Therefore, the difference between the sound speed V (T) and the sound speed V ′ (T) is expressed by the expression (5) from the expressions (1), (3), and (4).
[0019]
V (T) = V ′ (T) × {1 + α × (T−T 0 )} (5)
Now, when a certain object to be inspected is measured, it is assumed that the temperature is T and the propagation time of the one-way ultrasonic wave is Δt ′. Accordingly, the thickness WT (T) of the inspection target is expressed as in Equation (6) using the sound velocity in Equation (3).
[0020]
WT (T) = V (T) × Δt ′ (6)
Since the thickness WT (T) is the thickness at the temperature T, the thickness WT (T 0 ) at the cold temperature T 0 needs to be calculated using the linear expansion coefficient α. Accordingly, the thickness WT (T 0 ) at the cold temperature T 0 is expressed by the equation (7).
[0021]
WT (T 0 ) = WT (T) / {1 + α × (T−T 0 )} (7)
When this equation (7) is rewritten, equation (8) is obtained.
[0022]
WT (T 0 ) = V (T) × Δt ′ / {1 + α × (T−T 0 )}
= V ′ (T) × {1 + α × (T−T 0 )} × Δt ′ / {1 + α × (T−T 0 )}
= V ′ (T) × Δt ′ (8)
That is, if the apparent sound speed V ′ (T) and the ultrasonic propagation time Δt ′ at the temperature T necessary for the measurement are examined in advance, the cold thickness WT (T 0) without using the linear expansion coefficient. ) Can be measured.
[0023]
Next, a hot ultrasonic thickness meter for measuring the thickness of an object to be inspected by ultrasonic waves will be described.
[0024]
Fig.1 (a) shows the block diagram of a hot ultrasonic thickness meter. FIG.1 (b) shows the block diagram which applied the radiation thermometer 7 to the temperature estimation part 13 of Fig.1 (a). Note that the temperature estimation method is not limited to using the radiation thermometer 7, and any method can be used as long as the temperature of the object to be inspected can be estimated by heat transfer calculation or measurement using a contact-type thermometer.
[0025]
1 (a) and 1 (b), 1 denotes an object to be inspected, 2 denotes a pulse laser, and 3a denotes an electromagnetic ultrasonic sensor. In the first embodiment, since the ultrasonic wave is received by the transmission method, the electromagnetic ultrasonic sensor 3a is arranged on the opposite side of the pulse laser 2 with the object 1 to be inspected in between. Moreover, the radiation thermometer 7 shown in FIG. 1 (b) is connected to the device under test 1 by a fiber 6.
[0026]
When such a hot ultrasonic thickness meter is used, the thickness of the object to be inspected is measured by a laser ultrasonic method. In this laser ultrasonic method, an object to be inspected is irradiated with pulsed laser light or modulated light, and the surface of the object to be inspected is subjected to a reaction of ablation or thermal stress to generate ultrasonic waves. The generation intensity of this ultrasonic wave can be arbitrarily changed depending on the conditions of the pulse laser beam to be irradiated. Therefore, the generation intensity of the ultrasonic wave can be about 10 times the normal intensity that can be generated by the piezoelectric element. When such an ultrasonic wave is received by an electromagnetic ultrasonic sensor, the ultrasonic wave can be received with a sensitivity 1000 to 10,000 times higher than that of a conventional electromagnetic ultrasonic wave transmission / reception method.
[0027]
Hereinafter, a method for measuring the thickness of the object to be inspected by the above-described laser ultrasonic method will be described in detail.
[0028]
First, a pulse laser beam 5 having a light density of 10 MW / cm 2 or more is emitted from the pulse laser 2 . Here, the pulse laser beam 5 has a pulse energy of, for example, 200 mJ and a pulse width of, for example, 5 ns. The pulse laser beam 5 is condensed to 2 mm, for example, and irradiated on the object 1 to be inspected such as a steel plate. As a result, the surface 1b of the inspection object 1 is ablated, and ultrasonic waves 4 are generated by the reaction of this ablation. The ultrasonic wave 4 is reflected by the back surface 1a or the front surface 1b of the inspection object 1 and reciprocates a plurality of times within the inspection object 1. Here, an electromagnetic ultrasonic sensor 3 a is disposed on the back surface 1 a of the inspection object 1. For this reason, every time the ultrasonic wave 4 reaches the back surface 1a of the inspection object 1 on the electromagnetic ultrasonic sensor 3a side, the ultrasonic wave 4 is detected from the electromagnetic ultrasonic sensor 3a. The electromagnetic ultrasonic sensor 3a includes a magnet having a magnetic flux density of, for example, 3500 gauss and a coil having, for example, 10 turns.
[0029]
Next, the signal of the ultrasonic wave 4 detected by the electromagnetic ultrasonic sensor 3 a is amplified to 40 to 80 dB by the broadband amplifier 8. Of the amplified signal, only the frequency band of the ultrasonic wave that passes through the material is passed through the band-pass filter 9. Thereafter, the A / D converter 10 obtains an ultrasonic multiple reflection waveform as shown in FIG. At this time, the lift-off of the electromagnetic ultrasonic sensor 3a is, for example, 8 mm, the gain of the broadband amplifier 8 is, for example, 80 dB, and the band of the band-pass filter 9 is, for example, 1 to 5 MHz.
[0030]
Since the multiple reflection waveform shown in FIG. 2 is obtained by the arrangement of the transmission method, the first echo peak P1 in the figure is a peak when the ultrasonic wave 4 first reaches the electromagnetic ultrasonic sensor 3a. is there. The second echo peak P2 is one round trip from the first echo peak P1. The third echo peak P3 is one round trip from the second echo peak P2. Here, when the time interval Δt between the second echo peak P2 and the third echo peak P3 was measured, Δt = 7.744 μs. When the multiple reflection waveform shown in FIG. 2 was obtained, the indicated value of the radiation thermometer 7 (shown in FIG. 1B) used as the temperature estimation unit 13 was 872 ° C.
[0031]
FIG. 3 shows the relationship between the speed of sound and the temperature of an inspection object made of the same material as the inspection object 1. According to FIG. 3, it can be seen that the sound speed depends on the temperature so that the sound speed decreases as the temperature increases. A detailed description of FIG. 3 will be described later. When the sound speed is obtained using the graph of FIG. 3, the sound speed when the temperature is 872 ° C. is 4970 m / s.
[0032]
Therefore, from the equation (9), when Δt = 7.744 μs and the sound velocity V = 4970 m / s, the thickness WT of the object to be inspected in the cold is 19.24 mm.
[0033]
WT = Δt × V ÷ 2 (9)
In this way, the thickness WT of the object to be inspected in the cold is calculated in the thickness calculation unit 11, and the result is displayed on the display unit 12.
[0034]
In addition, the same experiment was performed many times and compared with the measurement by a micrometer. As a result, the difference between the thickness measured by the micrometer and the thickness WT calculated by the method described above was all less than 10 μm.
[0035]
By the way, when the propagation time of ultrasonic waves is originally measured and the thickness of the object to be inspected is calculated using the hot sound speed, the thickness of the object to be inspected in the hot state, that is, the inspected object that has been thermally expanded. You will know the thickness. However, in the present invention, the thickness of the object to be inspected is directly calculated at normal temperature. This is because the speed of sound shown in FIG. 3 is not true.
[0036]
The relationship between temperature and sound speed as shown in FIG. 3 was derived as follows. First, using a micrometer, the thickness WT 0 at a normal temperature T 0 ° C. of the material whose sound speed is desired is measured. Next, the ultrasonic propagation time Δt 0 is measured by a hot ultrasonic transmission / reception method. From the thickness WT 0 and the propagation time Δt 0 , the sound velocity V 0 at room temperature T 0 ° C. is obtained. Next, while sequentially heating the material, the propagation times Δt 1 , Δt 2 , Δt 3 ,... Are measured at the temperatures T 1 , T 2 , T 3 ,. Here, the thickness used for the calculation of the sound velocity is not the thickness that has been thermally expanded, but the thickness WT 0 at room temperature T 0 ° C. In this way, the relationship between the sound speed and temperature as shown in FIG. 3 is derived. Therefore, if the speed of sound and the propagation time between heats according to FIG. 3 are used, the thickness at normal temperature can be calculated immediately.
[0037]
In the first embodiment, the sound velocity is directly calculated using the graph of FIG. 3 and the thickness at normal temperature is measured, but the present invention is not limited to this. If the relationship between the speed of sound and temperature is derived using the method described above using the thickness at any temperature, the thickness at any temperature can be calculated from the measurement of the propagation time of materials in different temperature ranges without correcting for thermal expansion. can do.
[0038]
In the first embodiment, the sound velocity is obtained from the surface temperature of the device under test 1. This is because when the object to be inspected 1 is allowed to cool, the temperature difference generated between the surface temperature and the internal temperature is less than about 10 ° C., so the thickness calculation error due to the temperature distribution cannot be 0.2% or more. Accordingly, the surface temperature of the device under test 1 is represented as the material temperature.
[0039]
Further, the surface 1b of the inspection object 1 is ablated with the pulsed laser beam 5, but the amount of the surface melting by one ablation is about 1 μm in depth, and does not deteriorate the quality of the product.
[0040]
According to the hot ultrasonic thickness meter according to the first embodiment, ultrasonic waves are used as means for measuring the thickness of the object to be inspected. For this reason, it is possible to provide a hot ultrasonic thickness meter that is safer and less expensive than that using γ rays.
[0041]
Moreover, since the thickness is measured using ultrasonic waves, the ultrasonic waves 4 can be received with a sensitivity 1000 to 10,000 times higher than that of a conventional transmission / reception method using electromagnetic ultrasonic waves. Therefore, since ultrasonic waves can be transmitted and received with high sensitivity, even if the lift-off of the electromagnetic ultrasonic sensor 3a is separated by 10 mm or more, it can be received with an S / N ratio of 2 or more. In this way, if the lift-off can be made large, it becomes easy to provide a cooling mechanism in the electromagnetic ultrasonic sensor 3a, so that the influence of radiant heat can be reduced. Furthermore, if the lift-off can be made large, it is possible to afford to follow the line fluctuation of the inspection target, and there is no need to always maintain a constant lift-off. Therefore, transmission / reception of ultrasonic waves can be easily and stably performed on a hot test object.
[0042]
According to the thickness measurement method according to the first embodiment, the thickness of the object to be inspected at room temperature can be known from the propagation time between heats without using the thermal expansion coefficient. Therefore, the thickness of the object to be inspected can be measured easily and accurately.
[0043]
[Second Embodiment]
The second embodiment of the present invention uses a reflection-type hot ultrasonic thickness meter to measure the thickness of an object to be inspected with ultrasonic waves, and without using a thermal expansion coefficient, It is characterized in that the thickness of the object to be inspected is calculated. In the second embodiment, the description of the same structure as that of the first embodiment is omitted, and only a different structure will be described.
[0044]
Fig.4 (a) shows the block diagram of a hot ultrasonic thickness meter. FIG. 4B shows a configuration diagram in which the radiation thermometer 7 is applied to the temperature estimation unit 13 of FIG.
[0045]
4 (a) and 4 (b), 1 denotes an object to be inspected, 2 denotes a pulse laser, and 3b denotes an electromagnetic ultrasonic sensor. In the second embodiment, since the ultrasonic wave is received by the reflection method, the electromagnetic ultrasonic sensor 3b is arranged on the same side as the pulse laser 2 with respect to the object 1 to be inspected. Further, a through hole 14 is formed at the center of the electromagnetic ultrasonic sensor 3b so that the pulse laser beam 5 can pass through the center of the electromagnetic ultrasonic sensor 3b. A radiation thermometer 7 shown in FIG. 1 (b) is connected to the device under test 1 by a fiber 6.
[0046]
Hereinafter, a method for measuring the thickness of the object to be inspected using the above-described hot ultrasonic thickness meter will be described.
[0047]
First, as in the first embodiment, a pulse laser beam 5 having a light density of 10 MW / cm 2 or more is emitted from the pulse laser 2 . The pulse laser beam 5 is condensed to 2 mm, for example, and passes through the through hole 14 to irradiate the inspection object 1 such as a steel plate. As a result, the surface 1b of the inspection object 1 is ablated, and ultrasonic waves 4 are generated by the reaction of this ablation. The ultrasonic wave 4 is reflected by the back surface 1a or the front surface 1b of the inspection object 1 and reciprocates a plurality of times within the inspection object 1. Here, an electromagnetic ultrasonic sensor 3 b is disposed on the surface 1 b of the inspection object 1. For this reason, whenever the ultrasonic wave 4 reaches | attains the surface 1b of the to-be-inspected object 1 by the side of the electromagnetic ultrasonic sensor 3b, the ultrasonic wave 4 is detected from the electromagnetic ultrasonic sensor 3b. Since the following is the same as that of the first embodiment, description thereof is omitted.
[0048]
According to the second embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, in the second embodiment, a through hole 14 is provided at the center of the electromagnetic ultrasonic sensor 3b so that the pulse laser beam 5 can pass therethrough. For this reason, it is possible to transmit and receive ultrasonic waves not only by a transmission method such as γ-rays but also by a reflection method. Therefore, the hot ultrasonic thickness meter according to the second embodiment can be applied to an object to be inspected such as a steel pipe.
[0049]
In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0050]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a hot ultrasonic thickness meter that has an inexpensive apparatus configuration and can transmit and receive ultrasonic waves in a non-contact and high sensitivity. Further, it is possible to provide a thickness measuring method that can easily and accurately measure the thickness of the object to be inspected from the ultrasonic propagation time in the hot.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a hot ultrasonic thickness meter using a transmission method according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an example of a multiple reflection waveform obtained by a hot ultrasonic thickness meter according to the first embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the speed of sound and temperature of an object to be inspected used in the first embodiment of the present invention.
FIG. 4 is a configuration diagram of a hot ultrasonic thickness meter using a reflection method according to a second embodiment of the present invention.
[Explanation of symbols]
1 ... Inspected object,
1a: back side of the object to be inspected
1b: surface of the object to be inspected,
2 ... pulse laser,
3a, 3b ... electromagnetic ultrasonic sensors,
4 ... Ultrasound,
5 ... Laser light,
6 ... Fiber,
7 ... Radiation thermometer,
8 ... Broadband amplifier,
9 ... Bandpass filter,
10: A / D conversion unit,
11 ... thickness calculation part,
12 ... display part,
13 ... temperature estimation part,
14 ... through hole.

Claims (4)

被検査体に超音波を発生させる超音波発生手段と、
前記被検査体内を伝播した超音波を受信する超音波受信手段と、
前記受信した超音波の波形から、超音波の伝播時間を算出する伝播時間算出手段と、
前記被検査体の測定部の温度T(ここで、T>T)を推定する温度推定手段と、
前記推定された温度Tにおける被検査体の見かけの音速を、見かけの音速の温度特性に基づいて、算出する音速算出手段と、
前記伝播時間と前記見かけの音速とを乗算して前記被検査体の温度Tにおける厚さを算出する厚さ算出手段とを具備した被検査体の温度Tにおける被検査体の厚さを測定する超音波厚さ計であって、
前記見かけの音速の温度特性は、温度Tで厚さWTの前記被検査体と同じ材料の試験片について、温度Tより高温の複数の温度において前記試験片の超音波伝播時間を測定し、前記厚さWTを前記測定した複数温度での各伝播時間で除算して、定められることを特徴とする熱間超音波厚さ計。
Ultrasonic generation means for generating ultrasonic waves on the object to be inspected;
Ultrasonic receiving means for receiving ultrasonic waves propagated through the body to be examined;
Propagation time calculation means for calculating the propagation time of the ultrasonic wave from the received ultrasonic waveform;
Temperature estimation means for estimating the temperature T (where T> T 0 ) of the measurement part of the object to be inspected;
A sound speed calculating means for calculating an apparent sound speed of the object to be inspected at the estimated temperature T based on a temperature characteristic of the apparent sound speed;
The thickness of the object to be inspected at the temperature T 0 of the object to be inspected is provided with thickness calculation means for calculating the thickness of the object to be inspected at the temperature T 0 by multiplying the propagation time and the apparent sound speed. An ultrasonic thickness meter to measure,
The temperature characteristic of the apparent sound velocity is that the ultrasonic propagation time of the test piece is measured at a plurality of temperatures higher than the temperature T 0 for a test piece of the same material as the object to be inspected at the temperature T 0 and the thickness WT 0. A hot ultrasonic thickness meter, wherein the thickness WT 0 is determined by dividing the thickness WT 0 by each propagation time at the measured plural temperatures.
前記超音波発生手段はパルスレーザであり、前記超音波受信手段は電磁超音波センサーであることを特徴とする請求項1記載の熱間超音波厚さ計。  The hot ultrasonic thickness meter according to claim 1, wherein the ultrasonic wave generating means is a pulse laser, and the ultrasonic wave receiving means is an electromagnetic ultrasonic sensor. 前記電磁超音波センサーは、パルスレーザ光を通過させる貫通穴を有していることを特徴とする請求項2記載の熱間超音波厚さ計。  The hot ultrasonic thickness meter according to claim 2, wherein the electromagnetic ultrasonic sensor has a through hole through which a pulse laser beam passes. 被検査体に超音波を発生させ、前記被検査体内を伝播した超音波を受信し、この受信した超音波の波形から超音波の伝播時間を算出し、
温度推定手段により前記被検査体の測定部の温度T(ここで、T>T )を推定し、
前記推定された温度Tにおける前記被検査体の見かけの音速を、見かけの音速の温度特性に基づいて算出し
前記見かけの音速と前記被検査体内の超音波伝播時間とを乗算して前記被検査体の温度Tにおける前記被検査体の厚さを求める厚さ計測方法であって、
前記見かけの音速の温度特性は、温度Tでの厚さWTの前記被検査体と同じ材料の試験片について、温度Tより高温の複数の温度において前記試験片の超音波伝播時間を測定し、前記厚さWTを前記測定した複数の温度での各伝播時間で除算して定められたことを特徴とする厚さ計測方法。
Generate ultrasonic waves in the object to be inspected, receive the ultrasonic waves propagated in the inspected body, calculate the propagation time of the ultrasonic waves from the waveform of the received ultrasonic waves,
Estimating the temperature T (here, T> T 0 ) of the measurement part of the object to be inspected by the temperature estimation means ,
An apparent sound speed of the object to be inspected at the estimated temperature T is calculated based on a temperature characteristic of the apparent sound speed ,
A thickness measurement method for obtaining the thickness of the object to be inspected at a temperature T 0 of the object to be inspected by multiplying the apparent sound speed and the propagation time of the ultrasonic wave in the object to be inspected,
Temperature characteristics of the acoustic velocity of the apparent, the test piece of the same material as the object to be inspected in the thickness WT 0 at the temperature T 0, the ultrasonic wave propagation time of the test piece at a plurality of temperatures of the high temperature than the temperature T 0 A thickness measurement method characterized in that it is determined by measuring and dividing the thickness WT 0 by each propagation time at the plurality of measured temperatures.
JP2000082736A 2000-03-23 2000-03-23 Hot ultrasonic thickness gauge and thickness measurement method Expired - Lifetime JP4411734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082736A JP4411734B2 (en) 2000-03-23 2000-03-23 Hot ultrasonic thickness gauge and thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082736A JP4411734B2 (en) 2000-03-23 2000-03-23 Hot ultrasonic thickness gauge and thickness measurement method

Publications (3)

Publication Number Publication Date
JP2001272220A JP2001272220A (en) 2001-10-05
JP2001272220A5 JP2001272220A5 (en) 2007-02-22
JP4411734B2 true JP4411734B2 (en) 2010-02-10

Family

ID=18599499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082736A Expired - Lifetime JP4411734B2 (en) 2000-03-23 2000-03-23 Hot ultrasonic thickness gauge and thickness measurement method

Country Status (1)

Country Link
JP (1) JP4411734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635697B1 (en) 2004-07-29 2006-10-17 한국표준과학연구원 Ultrasonic Thickness Measurement Method
JP5314280B2 (en) * 2007-12-26 2013-10-16 学校法人金沢工業大学 Measuring method and apparatus
JP5157610B2 (en) * 2008-04-17 2013-03-06 Jfeスチール株式会社 Method for measuring the thickness of thin steel pipes

Also Published As

Publication number Publication date
JP2001272220A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4321190B2 (en) Material thickness measuring method and apparatus
Lunn et al. High temperature EMAT design for scanning or fixed point operation on magnetite coated steel
Wadley et al. Ultrasonic measurement of internal temperature distribution
CN103499599A (en) Memory alloy phase-change temperature measuring method and measuring system for implementing same
JPH0643945B2 (en) Non-contact online paper pattern strength measuring device
KR101053415B1 (en) Laser Ultrasonic Measuring Device and Measuring Method
JP4843790B2 (en) Temperature measurement method using ultrasonic waves
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
Ihara et al. New ultrasonic thermometry and its applications to temperature profiling of heated materials
JP4534309B2 (en) Method for measuring thickness resonance spectrum of metal thin plate and method for measuring electromagnetic ultrasonic wave of metal thin plate
JP2697508B2 (en) Ultrasonic thickness measurement method of furnace wall
Ettini et al. Analytical, simulation, and experimental verification of ultrasonic thermometry technique
JP2001311615A (en) Method and apparatus for non-contact ultrasonic thickness measuring
Boyd et al. Noncontact temperature measurements of hot steel bodies using an electromagnetic acoustic transducer (EMAT)
JP5058196B2 (en) Apparatus and method for measuring phase transformation rate of material
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JPH0777465A (en) Surface layer average temperature and thickness direction temperature distribution measurement method
Ihara et al. Ultrasonic thermometry for temperature profiling of heated materials
JP3770522B2 (en) Method and apparatus for measuring internal temperature of steel material
Wang et al. Laser ultrasonic system for metal pipe wall thickness measurement: Differential signal processing and geometric compensation calculation model
JPH1038862A (en) Iron loss value evaluation method and apparatus
CN115389046B (en) Temperature measurement method and device
JPH08285704A (en) Internal temperature measuring device
JPH05215617A (en) Method for measuring average temperature on cross-section of object
JPS6035231A (en) Method for measuring temperature distribution inside a substance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4411734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term