JP4406355B2 - Fuel electrode material for solid electrolyte fuel cells - Google Patents
Fuel electrode material for solid electrolyte fuel cells Download PDFInfo
- Publication number
- JP4406355B2 JP4406355B2 JP2004359523A JP2004359523A JP4406355B2 JP 4406355 B2 JP4406355 B2 JP 4406355B2 JP 2004359523 A JP2004359523 A JP 2004359523A JP 2004359523 A JP2004359523 A JP 2004359523A JP 4406355 B2 JP4406355 B2 JP 4406355B2
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- fuel electrode
- particles
- nickel
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 102
- 239000007772 electrode material Substances 0.000 title claims description 44
- 239000007784 solid electrolyte Substances 0.000 title claims description 28
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 125
- 239000002245 particle Substances 0.000 claims description 71
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 65
- 239000011362 coarse particle Substances 0.000 claims description 31
- 229910052759 nickel Inorganic materials 0.000 claims description 27
- 239000010419 fine particle Substances 0.000 claims description 25
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 23
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 8
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 238000010248 power generation Methods 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 14
- 238000002156 mixing Methods 0.000 description 8
- 238000000280 densification Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000003411 electrode reaction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 4
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 239000011195 cermet Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQENXCOZCUHKRE-UHFFFAOYSA-N [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O Chemical compound [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O BQENXCOZCUHKRE-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
本発明は固体電解質燃料電池用燃料極材料に関するものである。詳しく述べると本発明は、固体電解質燃料電池の長寿命化を図ることのできる燃料極の微細構造の改良に関するものである。 The present invention relates to a fuel electrode material for a solid electrolyte fuel cell. More specifically, the present invention relates to an improvement in the microstructure of a fuel electrode that can extend the life of a solid electrolyte fuel cell.
固体電解質燃料電池は、大きく分類して円筒型と平板型との2つの形式がある。例えば、円筒型固体電解質燃料電池の一例として、縦縞円筒型を図12に示す。この縦縞円筒型電解質燃料電池は、円筒型の支持体20の周りに空気極21と固体電解質22と燃料極23とを同心状に形成し、固体電解質22と燃料極23を分断するように空気極21上に形成されたインターコネクタ24によって空気極21側の電流が取出されるようになっている。インターコネクタ24と燃料極23との間には、燃料極23とインターコネクタ24の電気的絶縁のため溝25が設けられている。この縦縞円筒型固体電解質燃料電池においては、空気が支持体20の内側と通って空気極21に供給される。また、燃料ガスは支持体20の外側を通って燃料極23に供給される。この縦縞円筒型固体電解質燃料電池は比較的機械的強度も強いため、平板型のものより開発が先行しており、現在既に5kW級のものの発電に成功しており、25kW級のものの製作に入っている段階である。 Solid electrolyte fuel cells are roughly classified into two types: a cylindrical type and a flat plate type. For example, as an example of a cylindrical solid electrolyte fuel cell, a vertically striped cylindrical type is shown in FIG. In this vertically striped cylindrical electrolyte fuel cell, an air electrode 21, a solid electrolyte 22, and a fuel electrode 23 are formed concentrically around a cylindrical support 20, and the air is formed so as to divide the solid electrolyte 22 and the fuel electrode 23. A current on the air electrode 21 side is taken out by an interconnector 24 formed on the electrode 21. A groove 25 is provided between the interconnector 24 and the fuel electrode 23 for electrical insulation between the fuel electrode 23 and the interconnector 24. In this vertically striped cylindrical solid electrolyte fuel cell, air passes through the inside of the support 20 and is supplied to the air electrode 21. Further, the fuel gas is supplied to the fuel electrode 23 through the outside of the support 20. This vertical-striped cylindrical solid electrolyte fuel cell has relatively high mechanical strength, so it has been developed ahead of the flat plate type, and has already succeeded in generating power of 5 kW class, and has started production of 25 kW class. At this stage.
また、平板型固体電解質燃料電池としては、例えば図13に分解斜視図で一例を示したように、平板の単電池1とセパレータ4をスペーサ2,3を介して交互に積み重ね、単電池1とセパレータ4によって形成される空気供給用空間5と燃料ガス供給用空間6とに燃料ガスと空気が燃料電池ガス供給パイプ7と空気供給パイプ8を介して夫々供給される、さらに、単電池1は固体電解質9の表面側に空気極10と燃料極11を形成して成る。この平板型は現在1kW級の発電に成功している。 Further, as a flat type solid electrolyte fuel cell, for example, as shown in an exploded perspective view in FIG. 13, flat unit cells 1 and separators 4 are alternately stacked via spacers 2 and 3. Fuel gas and air are supplied to an air supply space 5 and a fuel gas supply space 6 formed by the separator 4 via a fuel cell gas supply pipe 7 and an air supply pipe 8, respectively. An air electrode 10 and a fuel electrode 11 are formed on the surface side of the solid electrolyte 9. This flat plate type is currently successfully generating 1kW power.
ところで、これら固体電解質燃料電池の燃料極材料としては、酸化ニッケル(NiO、但し燃料電池作動時には金属ニッケルNi)とジルコニア(ZrO2 )の微粒子を混合して得たニッケル−ジルコニアサーメットが、高い触媒活性(水素の還元能力)を有し、かつ室温から1000℃までの高温でも導電率(電気抵抗の逆数)が高いことから適していると考えられていた。しかしながら、燃料極材料中のニッケルの含有量が多いと、これを燃料極として用いたときに、熱膨脹係数の違いから熱応力が発生し、セル破壊につながる可能性があり、ニッケルの含有量をあまりふやすことができず、反面、ニッケルの量が少ないと、電極特性はあまり良くなく、電流を取り出すことが困難になり、更に、焼結性が高く緻密化しやすいなどの問題があった。そこで、従来、ジルコニアとして8モル%のイットリアで結晶構造を安定化させたジルコニア(以下8YSZと記する。)を用いたものが採用されるようになってきている。 By the way, as a fuel electrode material of these solid electrolyte fuel cells, nickel-zirconia cermet obtained by mixing fine particles of nickel oxide (NiO, but nickel nickel during fuel cell operation) and zirconia (ZrO 2 ) is a high catalyst. It was considered suitable because of its high activity (reduction ability of hydrogen) and high conductivity (reciprocal of electrical resistance) even at high temperatures from room temperature to 1000 ° C. However, if the content of nickel in the fuel electrode material is large, when this is used as the fuel electrode, thermal stress may occur due to the difference in thermal expansion coefficient, which may lead to cell destruction. On the other hand, when the amount of nickel is small, the electrode characteristics are not very good, it is difficult to take out current, and there are problems such as high sinterability and easy densification. Therefore, conventionally, zirconia using zirconia (hereinafter referred to as 8YSZ) whose crystal structure is stabilized with 8 mol% of yttria has been adopted.
このように従来の固体電解質燃料電池用燃料極材料は、細かい粉末のNiOと8YSZを混合して得たものであった。しかしながら、この燃料極材料は初期特性が優れているものの、発電開始後数十時間で劣化し、発電が不可能な状態になる。この原因を解明したところ、電池動作条件下において、燃料極材料の緻密化と体積収縮ならびにNi粒子の凝集が原因であることがわかった(電力中央研究所報告 W93019 平成6年5月)。 Thus, the conventional anode material for a solid electrolyte fuel cell was obtained by mixing fine powder NiO and 8YSZ. However, although this fuel electrode material has excellent initial characteristics, it deteriorates within several tens of hours after the start of power generation, making it impossible to generate power. As a result of elucidating the cause, it was found that the fuel electrode material was densified and volumetric shrinkage and Ni particles were agglomerated under battery operating conditions (Report of Electric Power Research Laboratory W93019, May 1994).
なお、Niの凝集や緻密化については他の報告もある(電気化学協会第60回大会講演要旨集、第269頁、平成5年4月1〜3日)。 There are other reports on the aggregation and densification of Ni (Abstracts of the 60th Annual Meeting of the Electrochemical Society, page 269, April 1-3, 1993).
さらに、Ni(Mg)O−8YSZを用いることによって、Ni粒子の高分散化と燃料極の長寿命化を図ろうとする報告がある(第33回電池検討会講演要旨集、第35〜36頁、平成4年9月16〜18日;電気化学協会第59回大会講演要旨集、第197頁、平成4年4月2〜4日;電気化学協会第60回大会講演要旨集、第270頁、平成5年4月1〜3日)。 Furthermore, there is a report that attempts to increase the dispersion of Ni particles and extend the life of the fuel electrode by using Ni (Mg) O-8YSZ (Abstracts of the 33rd Battery Review Meeting Lecture, pages 35-36) , September 16-18, 1992; Electrochemical Society 59th Conference Abstracts, 197 pages, April 2-4, 1992; Electrochemical Society 60th Conference Abstracts, 270 pages , April 1-3, 1993).
また粒径の大きいNiに粒径の小さいYSZを被覆させて、性能の向上を図ろうとした報告もある(電気化学協会第59回大会講演要旨集、第198頁、平成4年4月2〜4日)。 There is also a report that attempts to improve performance by coating Ni with a large particle size with YSZ with a small particle size (Abstracts of the 59th Annual Meeting of the Electrochemical Society, page 198, April 1992-2). 4th).
さらに金属ルテニウムにYSZを電気化学蒸着した材料(第18回固体イオニクス討論会講演要旨集、第5〜8頁、1992年10月12〜13日)や、金属Niに気相法にてYSZを付着させた材料(電気化学協会第59回大会講演要旨集、第199頁、平成4年4月2〜4日)についても検討されている。 Furthermore, YSZ is deposited on metal ruthenium by electrochemical vapor deposition (Abstracts of 18th Solid State Ionics Discussion Meeting, 5-8 pages, October 12-13, 1992) and YSZ is deposited on metal Ni by vapor phase method. The deposited materials (Abstracts of the 59th Annual Meeting of the Electrochemical Society, page 199, April 2-4, 1992) are also being studied.
しかしながら、上記したような各種の報告は主に発電性能の向上を図ろうとするものであり、長持間の作動データに乏しいものであった。さらにYSZを化学蒸着するあるいは気相法にて付着させる製法は、コスト的に高くなると考えられている(電力中央研究所報告 W92028 平成5年3月)。 However, the various reports as described above are mainly intended to improve the power generation performance, and the operation data for a long period of time is poor. Furthermore, it is thought that the manufacturing method in which YSZ is chemically vapor deposited or deposited by a vapor phase method is costly (Power Central Research Institute report W92028 March 1993).
このように上記従来技術は、特に燃料極材料の性能の向上を目的とするものであり、長持間作動時の劣化についての検討が不十分であるとともに、製造コストに直接影響する製造工程に関する配慮がなされておらず、製造工程の複雑さから製造コストが高価なものになるものであった。 As described above, the above-described prior art is particularly aimed at improving the performance of the anode material , and has not been sufficiently examined for deterioration during long-lasting operation, and considerations regarding the manufacturing process that directly affects the manufacturing cost. However, the manufacturing cost is high due to the complexity of the manufacturing process.
従って本発明は、最適なミクロ構造を有する固体電解質燃料用電池用燃料極材料を、簡便な製造技術を用いて、低コストに大量生産できる製造方法を開発し、さらに固体電解質燃料電池の燃料極に用いた場合において、従来の材料と同等以上の性能を、長持間安定して維持することのできる燃料極材料を提供することを目的とする。 Accordingly, the present invention has developed a manufacturing method capable of mass-producing a fuel electrode material for a solid electrolyte fuel cell having an optimum microstructure at a low cost using a simple manufacturing technique, and further, a fuel electrode for a solid electrolyte fuel cell. When used in the above, an object of the present invention is to provide a fuel electrode material that can stably maintain performance equal to or higher than that of a conventional material for a long period of time.
かかる目的を達成するため、本発明は、ニッケル−ジルコニア系固体電解質燃料電池用燃料極材料であって、ジルコニア粗粒子群と、ジルコニア微粒子群と、酸化ニッケルないしニッケル粒子群との混合物からなり、各粒子群の粒径がジルコニア粗粒子>ニッケルないし酸化ニッケル粒子>ジルコニア微粒子の関係を満たし、ジルコニア粗粒子とニッケルないし酸化ニッケル粒子とジルコニア微粒子との重量比が、7〜4:3〜6:1であり、且つ、焼結によって、ジルコニア粗粒子及びジルコニア微粒子によって骨格が形成され、骨格の隙間にニッケルないし酸化ニッケル粒子が分散されているようにしている。
ここで、請求項2記載の固体電解質燃料電池用燃料極材料のように、ジルコニア粗粒子とニッケルないし酸化ニッケル粒子とジルコニア微粒子との重量比が、7:3:1と6:4:1と4:6:1のいずれか1つであることが好ましい。
In order to achieve such an object, the present invention is a fuel electrode material for a nickel-zirconia-based solid electrolyte fuel cell, comprising a mixture of zirconia coarse particles, zirconia fine particles, and nickel oxide or nickel particles . The particle size of each particle group satisfies the relationship of zirconia coarse particles> nickel or nickel oxide particles> zirconia fine particles, and the weight ratio of zirconia coarse particles to nickel or nickel oxide particles to zirconia fine particles is 7 to 4: 3 to 6: 1, and, by sintering, skeleton is formed by zirconia grit及beauty di zirconia particles, nickel or nickel oxide particles in the gap skeletal are as have been dispersed.
Here, as in the fuel electrode material for a solid electrolyte fuel cell according to claim 2, the weight ratio of zirconia coarse particles to nickel or nickel oxide particles and zirconia fine particles is 7: 3: 1 and 6: 4: 1. 4: 6: it is good preferable is any one of 1.
前記ジルコニアとしては、安定化ジルコニア、特に8モル%のイットリアで安定化させたジルコニア(8YSZ)が好ましい。 The zirconia is preferably stabilized zirconia, particularly zirconia (8YSZ) stabilized with 8 mol% yttria.
また前記各粒子の具体的な粒径としては、ジルコニア粗粒子の粒径が20〜75μm、ジルコニア微粒子の粒径が0.1〜1μm、ニッケルないし酸化ニッケル粒子の粒径が5〜20μmであることが望ましい。 The specific particle size of each of the particles is 20 to 75 [mu] m of zirconia coarse particles, 0.1 to 1 [mu] m of zirconia fine particles, and 5 to 20 [mu] m of nickel or nickel oxide particles. It is desirable.
また、上記固体電解質燃料電池用燃料極材料の製造方法においては、ジルコニア粗粒子とニッケルないし酸化ニッケル粒子とジルコニア微粒子との各粒子をジルコニア粗粒子>ニッケル粒子ないし酸化ニッケル粒子>ジルコニア微粒子の関係に予め粒径制御する工程と、ボールミルを用い、乾式条件にて、まずジルコニア粗粒子群とニッケルないし酸化ニッケル粒子群とを混合し、次いでこの混合物にジルコニア微粒子群を添加してさらに混合する工程とを有するようにしている。 Further, in the method for producing a fuel electrode material for a solid electrolyte fuel cell, the zirconia coarse particles and the nickel or nickel oxide particles and the zirconia fine particles have a relationship of zirconia coarse particles> nickel particles or nickel oxide particles> zirconia fine particles. a step of pre-grain diameter control, using a ball mill, in a dry condition, or by mixing the Zuji zirconia coarse particles and nickel or nickel oxide particle group, then further mixed by addition of di-zirconia particulate group in this mixture And a process of performing.
このように本発明においては、固体電解質燃料電池用燃料極材料に用いられる各原料の粒径を変更し、その微細構造を改良したものである。 Thus, in the present invention, the particle size of each raw material used in the fuel electrode material for a solid electrolyte fuel cell is changed, and the fine structure is improved.
従来のニッケル−ジルコニアサーメット系固体電解質燃料電池用燃料極材料は、細かいNiOと8YSZとの混合粉体であったが、本発明においては、比較的大きな粒径を有するジルコニア粗粒子群と、比較的小さな粒径を有するジルコニア微粒子群と、酸化ニッケル粒子群との混合物としたものである。 Conventional nickel-zirconia cermet-based solid electrolyte fuel cell anode material was a mixed powder of fine NiO and 8YSZ, but in the present invention, it is compared with a zirconia coarse particle group having a relatively large particle size. A mixture of a group of zirconia fine particles having a small particle size and a group of nickel oxide particles.
この燃料極材料を構成する各粒子は、それぞれ次に述べるような粒径に応じた機能を有するものと考えられる。
(1)ジルコニア粗粒子
・燃料極材料の骨格を形成し、電解質との熱膨脹差をなくす。
・粒子同志の隙間(粒間細隙)において気孔を形成し、かつこれを維持する。
・電極作動時のニッケル粒子の凝集を防ぎ、電子伝導経路(以下、電流パスと称する。)の維持を図る。
(2)酸化ニッケル粒子(電極作動時にはニッケル粒子)
・ジルコニア粗粒子表面を被覆し、かつニッケルの凝集にも対応できるように、ジルコニア粗粒子間の隙間にも分散させる。
・電流パスを形成する。
・ジルコニア粒子との界面を多くし、電極反応場を増大させる。
(3)ジルコニア微粒子
・ジルコニア粗粒子同志ならびにジルコニア電解質板との接着を良くする。
・ニッケル粒子の固定化を図り、電流パスの遮断を防ぐ。
Each particle constituting the fuel electrode material is considered to have a function corresponding to the particle size as described below.
(1) Form a framework of zirconia coarse particles and fuel electrode material, and eliminate the difference in thermal expansion from the electrolyte.
• Create and maintain pores in the gaps between the particles (intergranular gaps).
・ Prevents aggregation of nickel particles during electrode operation and maintains an electron conduction path (hereinafter referred to as a current path).
(2) Nickel oxide particles (nickel particles when the electrode is activated)
-Disperse in the gaps between the zirconia coarse particles so as to cover the surface of the zirconia coarse particles and cope with the aggregation of nickel.
-Form a current path.
-Increase the interface with zirconia particles and increase the electrode reaction field.
(3) Improve adhesion between zirconia fine particles, zirconia coarse particles, and zirconia electrolyte plates.
・ Improve nickel particles and prevent current paths from being interrupted.
したがって、これらの粒径の異なる原料が複合化してなる本発明に係る燃料極材料は、従来の材料に比べて、高温・還元雰囲気(電池作動条件に近い雰囲気)下において、気孔率の変化、体積の収縮ともに極めて小さくなり、あわせて電流パスの遮断が生じない。これによって、長持間発電においても、燃料極材料の劣化は起こりにくく、燃料電池の性能を低下させることがなくなる。また電極反応場の増加効果によって、燃料極材料の性能自体も向上させることができる。 Therefore, the fuel electrode material according to the present invention in which the raw materials having different particle diameters are combined has a change in porosity under a high temperature / reducing atmosphere (an atmosphere close to battery operating conditions) as compared with the conventional material. The shrinkage of the volume is extremely small, and the current path is not blocked. Thereby, even in the long-lasting power generation, the deterioration of the fuel electrode material hardly occurs, and the performance of the fuel cell is not deteriorated. In addition, the performance of the fuel electrode material itself can be improved by the effect of increasing the electrode reaction field.
一方、このような燃料極材料の製造方法としての発明は、ボールミルにより乾式混合攪拌を行ない、上記したような各原料の所望粒径を維持し、上記したような所望の性能を有する燃料極材料を作製するものであり、ボールミルという一般的でかつ簡便な装置を使用するため、生産性および製造コストの面で優れたものとなる。 On the other hand, the invention as a method for producing such a fuel electrode material is a fuel electrode material having a desired performance as described above, wherein dry mixing and agitation is performed by a ball mill to maintain the desired particle size of each raw material as described above. Since a general and simple device called a ball mill is used, it is excellent in terms of productivity and manufacturing cost.
本発明の燃料極材料は、空気中ならびに電池動作雰囲気中においても体積収縮や気孔率の減少といった緻密化が生じにくく、また、従来の材料を用いて作製した燃料極に比して、本発明の材料を用いて作製した燃料極は、発電性能も優れており、長持間安定した発電が可能となった。これゆえ、本発明の燃料極材料を用いれば、固体電解質燃料電池の高性能化と長寿命化が可能になる。また、上記燃料極材料の製造方法は、上記したような優れた特性を発揮する燃料極材料を従来からある簡便な装置を用いて作製することができ、生産性及び製造コストの面からも有利である。 The fuel electrode material of the present invention is less susceptible to densification such as volume shrinkage and porosity reduction even in the air and in the battery operating atmosphere, and the present invention is more effective than a fuel electrode manufactured using conventional materials. The fuel electrode made of this material has excellent power generation performance, enabling stable power generation for a long time. Therefore, the use of the fuel electrode material of the present invention makes it possible to improve the performance and life of the solid electrolyte fuel cell. In addition, the method for producing a fuel electrode material can produce a fuel electrode material exhibiting excellent characteristics as described above using a conventional simple apparatus, which is advantageous from the viewpoint of productivity and production cost. It is.
以下、本発明を実施態様に基づきより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on embodiments.
本発明の燃料極材料は、ジルコニア粗粒子群と、ジルコニア微粒子群と、酸化ニッケルないしニッケル粒子群との混合物からなる。図1は、本発明に係る燃料極材料の微細構造を示す概念図であり、図中符号31はジルコニア粗粒子、符号32は酸化ニッケル粒子、符号33はジルコニア微粒子を示す。 The fuel electrode material of the present invention comprises a mixture of zirconia coarse particles, zirconia fine particles, and nickel oxide or nickel particles. Figure 1 is a conceptual diagram illustrating the microstructure of the fuel electrode material charge according to the present invention, reference numeral 31 is zirconia grit, reference numeral 32 is a nickel oxide particle, reference numeral 33 denotes a zirconia fine.
図1に示すように、ジルコニア粗粒子31は、燃料極材料中において骨格をなし、かつ粒子間にできる隙間(粒間細隙)によって気孔34を形成する。これらによって電解質(安定化ジルコニア製)との熱的整合性を図るとともに、燃料極材料を燃料極として用いたときに、焼結の進行による燃料極の収縮ならびに気孔の閉塞を防止する。またジルコニア微粒子33は、粒径の大きいジルコニア粗粒子31同志をより強固に接着したり、燃料極材料を燃料極として用いたときに、電解質と燃料極の密着性をより良好にしたりする。そして大小のジルコニア粒子31,33によって電極全体の焼結性が制御され、ニッケルの凝集防止と電極反応場の増加が図られる。また、酸化ニッケル粒子32は、粒径の大きなジルコニア粗粒子の周囲に分散され、電池作動時にニッケルに変化する。これによって、燃料極材料を燃料極として用いたときに、燃料極の電流パスを形成し、かつジルコニア粒子31,33と気孔との界面において、電極反応を生じる。 As shown in FIG. 1, the zirconia coarse particles 31 form a skeleton in the fuel electrode material and form pores 34 by gaps (intergranular slits) formed between the particles. By these, thermal compatibility with the electrolyte (made of stabilized zirconia) is achieved, and when the fuel electrode material is used as the fuel electrode, the fuel electrode is prevented from contracting and the pores being closed due to the progress of sintering. Further, the zirconia fine particles 33 more firmly adhere the zirconia coarse particles 31 having a large particle diameter, or improve the adhesion between the electrolyte and the fuel electrode when the fuel electrode material is used as the fuel electrode . Then the control is Tsu by the zirconia particles 31 and 33 sinterability of the overall electrode size, it is achieved an increase in aggregation preventing the electrode reaction field of nickel. Further, the nickel oxide particles 32 are dispersed around the zirconia coarse particles having a large particle diameter, and change to nickel during battery operation. As a result, when the fuel electrode material is used as the fuel electrode, a current path of the fuel electrode is formed, and an electrode reaction occurs at the interface between the zirconia particles 31 and 33 and the pores.
このような機能性を付与するために、本発明においては、前記各粒子群の粒径がジルコニア粗粒子>ニッケルないし酸化ニッケル粒子>ジルコニア微粒子の関係となるようにした。より具体的には、例えば、ジルコニア粗粒子の粒径が20〜75μm、より好ましくは45〜75μm、ジルコニア微粒子の粒径が0.1〜1μm、より好ましくは0.1〜0.5μm、ニッケルないし酸化ニッケル粒子の粒径が5〜20μm、より好ましくはジルコニア粗粒子の粒径の10分の1以下としてこれらを組合せるものである。 In order to provide such functionality, in the present invention, the particle size of each particle group is set to have a relationship of zirconia coarse particles> nickel or nickel oxide particles> zirconia fine particles. More specifically, for example, the particle diameter of zirconia coarse particles is 20 to 75 μm, more preferably 45 to 75 μm, and the particle diameter of zirconia fine particles is 0.1 to 1 μm, more preferably 0.1 to 0.5 μm. These particles are combined in such a way that the particle diameter of nickel oxide particles is 5 to 20 μm, more preferably 1/10 or less of the particle diameter of coarse zirconia particles.
なおジルコニアとしては、安定化ジルコニア、特に8YSZが好ましい。この理由としては、前記したように燃料極材料中のニッケルの含有量が多いと、熱膨脹係数の違いから熱応力が発生し、セル破壊につながる可能性があり、ニッケルの含有量をあまりふやすことができず、反面、ニッケルの量が少ないと、電極特性はあまり良くなく、焼結性も高いため、安定化ジルコニアないし8YSZを用いることで至適なニッケル含有量とすることができるためである。 As zirconia, stabilized zirconia, particularly 8YSZ is preferable. The reason for this is that, as described above, if the nickel content in the fuel electrode material is large, thermal stress may occur due to the difference in the thermal expansion coefficient, leading to cell destruction. On the other hand, if the amount of nickel is small, the electrode characteristics are not very good and the sinterability is high, so that the optimum nickel content can be obtained by using stabilized zirconia or 8YSZ. .
本発明の燃料極材料は、前述した図12および13に例示したような各種の形態の固体電解質燃料電池の燃料極の作製に好適に用いることができ、燃料電池、あるいは燃料極の形状等に何ら限定されることなく、いずれの場合であっても、後述するような優れた性能を発揮し得るものとなるのである。 The fuel electrode material of the present invention can be suitably used for production of the fuel electrode of various forms of solid electrolyte fuel cells as exemplified in FIGS. 12 and 13, and the fuel cell or the shape of the fuel electrode can be used. Without being limited in any way, in any case, excellent performance as described later can be exhibited.
本発明の燃料極材料の製造方法としては、特に限定されるものではないが、上記したような各粒子の所定の粒径、殊にジルコニア粗粒子の粒径を維持して、安定に混合することができるように、ボールミルを用い、乾式条件にて攪拌混合することが望ましい。なおボールミルとしては、ポリ軟こう瓶とナイロン製ボールの組合せといった、比較的軟質の表面を有する装置とすることが望まれる。 The method for producing the fuel electrode material of the present invention is not particularly limited, but the predetermined particle size of each particle as described above, in particular, the particle size of zirconia coarse particles is maintained and mixed stably. Therefore, it is desirable to use a ball mill and stir and mix under dry conditions. The ball mill is preferably a device having a relatively soft surface, such as a combination of a poly ointment bottle and a nylon ball.
攪拌混合は、最初に8YSZ粗粒子とNiO粒子とを例えば、48〜60時間程度混合し、次いでこの混合物に8YSZ微粒子群を添加してさらに48時間程度混合することにより行なわれる。 Stirring and mixing is performed by first mixing 8YSZ coarse particles and NiO particles, for example, for about 48 to 60 hours, and then adding 8YSZ fine particle groups to the mixture and further mixing for about 48 hours.
以下、本発明を実施例に基づきより具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
(1)実験に用いた燃料極材料は、表1に示すような混合比の粉末で作製され、以降各粉末は表1中の試料番号にて表記する。材料の作製は、図5に示す流れに基づき作製された。すなわち、まず第1段階として、用いる粉末の粒径調整を行う。8YSZの粗粒子は、予め1400℃で20時間焼成した後、ふるいによって分級することによって得た。一方、8YSZ微粒子およびNiO粒子は、特殊ナイロン樹脂製容器と部分安定化ジルコニアボールとからなる湿式ボールミルにて適当な条件で粉砕することにより得た。次に第2段階としてポリ軟こう瓶とナイロン製ボールとからなるボールミルによって各粉末を乾式混合する。なお、最初に8YSZ粗粒子とNiO粒子とを混合し、次いでこの混合物に8YSZ微粒子群を添加してさらに混合した。 (1) The fuel electrode material used in the experiment is made of powder having a mixing ratio as shown in Table 1, and hereinafter, each powder is indicated by a sample number in Table 1. The material was produced based on the flow shown in FIG. That is, as a first step, the particle size of the powder to be used is adjusted. The coarse particles of 8YSZ were obtained by pre-baking at 1400 ° C. for 20 hours and then classifying with a sieve. On the other hand, 8YSZ fine particles and NiO particles were obtained by pulverization under appropriate conditions in a wet ball mill composed of a special nylon resin container and partially stabilized zirconia balls. Next, as a second step, each powder is dry-mixed by a ball mill composed of a poly ointment bottle and nylon balls. First, 8YSZ coarse particles and NiO particles were mixed, and then the 8YSZ fine particle group was added to this mixture and further mixed.
なお、従来の材料は、還元後のNiが40容量%となるように粒径が数μmのNiOと8YSZとを混合して得たものである。 The conventional material is obtained by mixing NiO having a particle size of several μm and 8YSZ so that Ni after reduction is 40% by volume.
(2)このようにして得た燃料極材料の発電前および発電後の微細構造を電子顕微鏡(EPMA)により観察した。従来の材料(FEM000)は細かい粒径のNiと8YSZとで構成されている(図3)が、本発明に係るFEM461は図4に示すように前記概念図のようなミクロ構造になっていることが観察された。 (2) The microstructure of the fuel electrode material thus obtained was observed with an electron microscope (EPMA) before and after power generation. The conventional material (FEM000) is composed of Ni and 8YSZ having a fine particle size (FIG. 3), but the FEM 461 according to the present invention has a microstructure as shown in the conceptual diagram as shown in FIG. It was observed.
(3)実験に用いるために各材料粉末を空気中にて1400℃で10時間焼成した後の収縮率を調べた。その結果を表2に示す。この結果から、従来の材料に比して、本発明に係る材料は収縮が小さいことが分かる。 (3) The shrinkage after each material powder was baked at 1400 ° C. for 10 hours in air for use in the experiment was examined. The results are shown in Table 2. From this result, it can be seen that the material according to the present invention is less contracted than the conventional material.
(4)上記(3)で得た各材料の焼結体を図6に示すような還元試験用電気炉装置を用いて、1000℃、水素雰囲気にて保持した後の体積収縮の変化、気孔率の変化を調べた。得られた体積収縮の変化結果を図7に、また気孔率の変化結果を図8にそれぞれ示す。図7に示す結果から明らかなように、NiO(試料FEM010)の収縮は極めて大きく、従来の材料(試料FEM000)も300時間後には17%収縮している。これに対して本発明に係る燃料極材料は収縮が小さい。また図8に示されるように気孔率の変化についても同様に本発明に係る燃料極材料では変化が小さいものであった。さらに本発明に係る燃料極材料において、8YSZ粗粒子に対する8YSZ微粒子の混合量が増えるにつれて、空気中で焼成した時の収縮が大きくなる傾向があり、また水素中、1000℃で保持したときの体積収縮と気孔率の変化が小さくなる傾向があることから、大小の8YSZが材料の緻密化を制御していることが分かる。つまり8YSZ微粒子は、材料中の骨格構造をより強固にする作用があり、空気中で焼成して焼結体を得る際には緻密化が起って、材料の体積を若干収縮させる。しかし、この時点で材料の骨格ができあがるために、水素中においては8YSZの緻密化が進行しないので、材料の体積はほとんど変化せず、また気孔率も変化しなくなる。 (4) Change in volume shrinkage and porosity after holding the sintered body of each material obtained in (3) above at 1000 ° C. in a hydrogen atmosphere using an electric furnace apparatus for reduction test as shown in FIG. The change in rate was examined. FIG. 7 shows the obtained volume shrinkage change result, and FIG. 8 shows the porosity change result. As is apparent from the results shown in FIG. 7, the shrinkage of NiO (sample FEM010) is extremely large, and the conventional material (sample FEM000) also shrinks by 17% after 300 hours. In contrast, the fuel electrode material according to the present invention has small shrinkage. Further, as shown in FIG. 8, the change in the porosity was similarly small in the fuel electrode material according to the present invention. Further, in the fuel electrode material according to the present invention, as the amount of 8YSZ fine particles mixed with 8YSZ coarse particles increases, shrinkage tends to increase when fired in air, and the volume when held at 1000 ° C. in hydrogen is increased. Since the shrinkage and the change in porosity tend to be small, it can be seen that the large and small 8YSZ controls the densification of the material. That is, the 8YSZ fine particles have an effect of strengthening the skeleton structure in the material, and when fired in air to obtain a sintered body, densification occurs and slightly shrinks the volume of the material. However, since the skeleton of the material is completed at this point, 8YSZ densification does not proceed in hydrogen, so the volume of the material hardly changes and the porosity does not change.
(5)上記の材料のうち、変化の最も小さかったFEM461を用いて固体電解質燃料電池を作製し、発電試験ならびに燃料極の性能評価を行った。評価には図9に示すような構成の測定装置を用いてカレント・インタープラション法を用いた。また、評価用単電池は、電解質板に燃料極材料をスラリー化したものを塗布した後、1400℃、10時間で焼き付け、空気極にはストロンチウムを添加したランタンマンガナイトをスラリー化したものを塗布した後、1150℃、4時間で焼付け、更に参照極として白金ペーストを焼付けた。 (5) Among the above materials, a solid electrolyte fuel cell was manufactured using FEM461 having the smallest change, and the power generation test and the performance evaluation of the fuel electrode were performed. For the evaluation, a current interpolation method was used using a measuring apparatus having a configuration as shown in FIG. In addition, after applying a slurry of a fuel electrode material on an electrolyte plate, the evaluation unit cell was baked at 1400 ° C. for 10 hours, and a slurry of lanthanum manganite added with strontium was applied to the air electrode. After that, it was baked at 1150 ° C. for 4 hours, and further a platinum paste was baked as a reference electrode.
(6)FEM461についての発電試験において得られた図10に示す結果からして、3000時間の発電が可能となった。なお、図10における2500時間後のセル電圧の低下は、実験中に発生した地震によって空気極の剥離やセル破壊が起ったためであり、燃料極の性能低下は起きていない。これに対し従来の燃料極材料を用いた単セルの寿命は高々十数時間(電力中央研究所報告 W93019、平成6年5月を参照のこと。)であり、著しい性能の安定化が示された。 (6) From the results shown in FIG. 10 obtained in the power generation test for FEM461, power generation for 3000 hours became possible. Note that the decrease in the cell voltage after 2500 hours in FIG. 10 is due to the separation of the air electrode and the cell destruction caused by the earthquake that occurred during the experiment, and the performance of the fuel electrode did not decrease. On the other hand, the lifetime of a single cell using a conventional fuel electrode material is at most a dozen hours (see Central Research Institute report W93019, May 1994), which shows a remarkable stabilization of performance. It was.
(7)カレント・インタープラション法で燃料極の性能評価を行なった結果を図11(a)に示す。初期の性能に対して500時間後の過電圧が顕著に大きくなっているが、これは過電流を流したためであり、500時間以降には大きな劣化は起っていない。再現性を得るために、電流を変化させずに2500時間の連続発電を行ったときには、過電圧に大きな変化が見られなかった(図11(b))。 (7) FIG. 11A shows the result of the performance evaluation of the fuel electrode performed by the current interpolation method. The overvoltage after 500 hours is remarkably increased with respect to the initial performance, but this is because an overcurrent was passed, and no major deterioration has occurred after 500 hours. In order to obtain reproducibility, when 2500 hours of continuous power generation was performed without changing the current, no significant change was observed in the overvoltage (FIG. 11 (b)).
1 単電池
11,23 燃料極
31 ジルコニア粗粒子
32 酸化ニッケル粒子
33 ジルコニア微粒子
1 Cell 11, 23 Fuel Electrode 31 Zirconia Coarse Particle 32 Nickel Oxide Particle 33 Zirconia Fine Particle
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004359523A JP4406355B2 (en) | 2004-12-13 | 2004-12-13 | Fuel electrode material for solid electrolyte fuel cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004359523A JP4406355B2 (en) | 2004-12-13 | 2004-12-13 | Fuel electrode material for solid electrolyte fuel cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7127375A Division JPH08306361A (en) | 1995-04-28 | 1995-04-28 | Fuel electrode material for solid electrolyte fuel cell and its manufacture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009161525A Division JP2009224346A (en) | 2009-07-08 | 2009-07-08 | Fuel electrode material for solid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005108859A JP2005108859A (en) | 2005-04-21 |
JP4406355B2 true JP4406355B2 (en) | 2010-01-27 |
Family
ID=34545342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004359523A Expired - Fee Related JP4406355B2 (en) | 2004-12-13 | 2004-12-13 | Fuel electrode material for solid electrolyte fuel cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4406355B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100648144B1 (en) | 2005-09-15 | 2006-11-24 | 한국과학기술연구원 | High performance anode supported solid oxide fuel cell |
KR101499622B1 (en) | 2005-08-18 | 2015-03-06 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Nickel Oxide Powder Material for Solid Electrolyte Fuel Battery, Production Process thereof, Raw Material Composition for Use in the Same, and Fuel Electrode Material Using the Nickel Oxide Powder Material |
JP5603516B1 (en) * | 2013-08-12 | 2014-10-08 | 日本碍子株式会社 | Solid oxide fuel cell |
-
2004
- 2004-12-13 JP JP2004359523A patent/JP4406355B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005108859A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08306361A (en) | Fuel electrode material for solid electrolyte fuel cell and its manufacture | |
JP5323269B2 (en) | Fuel cell components, especially electrolyte materials for solid oxide fuel cells | |
US10593966B2 (en) | Solid oxide fuel cell and method for manufacturing same | |
Bao et al. | Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell | |
JP2007529852A (en) | Anode-supported solid oxide fuel cell using cermet electrolyte | |
WO2001091218A2 (en) | Electrode-supported solid state electrochemical cell | |
JP2007529852A5 (en) | ||
JP2009224346A (en) | Fuel electrode material for solid electrolyte fuel cell | |
JP2010282772A (en) | Electrode material for solid oxide fuel cell and electrode for solid oxide fuel cell | |
JP4534188B2 (en) | Fuel cell electrode material and solid oxide fuel cell using the same | |
EP2269259A1 (en) | Anode with ceramic additives for molten carbonate fuel cell | |
JP5611249B2 (en) | Solid oxide fuel cell and cathode forming material of the fuel cell | |
JPH11219710A (en) | Electrode of solid electrolyte fuel cell and manufacture thereof | |
JP4406355B2 (en) | Fuel electrode material for solid electrolyte fuel cells | |
JP4201247B2 (en) | Fuel electrode material for solid oxide fuel cells | |
JPH076622A (en) | Crystalline phase stabilized solid electrolyte material | |
JPH0567472A (en) | Fuel electrode for solid eletrolyte fuel cell | |
JP3351865B2 (en) | Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode | |
JP2005019261A (en) | Fuel electrode material for solid oxide fuel cell and fuel electrode for solid oxide fuel cell using this fuel electrode material | |
JP2004273143A (en) | Solid oxide fuel cell and air electrode material for solid oxide fuel cell | |
JP2006244810A (en) | Electrode for solid oxide fuel cell and its manufacturing method | |
JP2016115415A (en) | Electrode material and solid oxide type fuel battery | |
JP2020135928A (en) | Fuel electrode for solid oxide type fuel cell | |
JP2771090B2 (en) | Solid oxide fuel cell | |
JPH09190826A (en) | Solid oxide fuel cell and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070903 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090715 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |