[go: up one dir, main page]

JP4404322B2 - Secondary battery and electrolyte and electrode active material used for the secondary battery - Google Patents

Secondary battery and electrolyte and electrode active material used for the secondary battery Download PDF

Info

Publication number
JP4404322B2
JP4404322B2 JP09743597A JP9743597A JP4404322B2 JP 4404322 B2 JP4404322 B2 JP 4404322B2 JP 09743597 A JP09743597 A JP 09743597A JP 9743597 A JP9743597 A JP 9743597A JP 4404322 B2 JP4404322 B2 JP 4404322B2
Authority
JP
Japan
Prior art keywords
proton
compound
secondary battery
polymer
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09743597A
Other languages
Japanese (ja)
Other versions
JPH10289617A (en
Inventor
正隆 武内
隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09743597A priority Critical patent/JP4404322B2/en
Publication of JPH10289617A publication Critical patent/JPH10289617A/en
Application granted granted Critical
Publication of JP4404322B2 publication Critical patent/JP4404322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Secondary Cells (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロトン挿入放出による充放電反応を行なう正極活物質及び/または負極活物質、プロトン伝導性高分子固体電解質を用いる、安全性、信頼性にすぐれ、取り出し電流が大きく、サイクル寿命に優れた二次電池に関する。
【0002】
【従来の技術】
アイオニクス分野でのダウンサイジング、全固体化という流れの中で、従来の電解質溶液にかわる新しいイオン伝導体として、全固体一次電池や二次電池及び電気二重層コンデンサへの固体電解質の応用が盛んに試みられている。現在の電解質溶液を用いた電池では、部品外部への液漏れあるいは電極物質の溶出などが発生しやすいために長期信頼性に問題がある。それに対して、固体電解質を用いた製品はそのような問題がなく、また薄型化することも容易である。さらに固体電解質は耐熱性にも優れており、電池などの製品の作製工程においても有利である。
現在の電解質溶液を用いた電池の中でリチウム一次電池やリチウム(イオン)二次電池はその高エネルギー密度という特徴から最近急速に小型携帯機器に搭載され、急激な伸びを示している。例えば、LiCoO2 、LiNiO2 、LiMnO2 、MoS2 等の金属酸化物、金属硫化物を正極に用い、リチウム、リチウム合金、リチウムイオンを吸蔵放出できる炭素材料や無機化合物を負極に用い、有機電解液を用いたリチウム二次電池が多く研究されている。「ジャーナル・オブ・エレクトロケミカル・ソサイエティ (J. Electrochem. Soc.) 、第138巻(No.3)、665頁、1991年」には、MnO2 あるいはNiO2 を正極とするリチウム電池が報告されている。
【0003】
また、導電性高分子を電極活物質として用いる電池についての報告も多く、例えば、ポリアニリン類を正極に用いたリチウム二次電池は、例えば「第27回電池討論会、3A05L及び3A06L、1986年」で報告されているように、ブリヂストン社及びセイコー社により、バックアップ電源用途のコイン型電池として既に上市されている。またポリアニリンは、高容量で柔軟性の優れた正極活物質として注目されている。また、ポリアニリンはプロトンによる酸化還元も可能で、酸性水溶液を用いる電池の正極活物質として適用可能であることも提言されている(Bull.Chem.Soc.Jpn.57,2254ページ、1984年) 。
しかしながら、これらリチウム系電池は水分や空気に活性で酸化されやすいリチウム及び/またはリチウム系化合物を用いているため、短絡、高温、液もれ、開封時等の安全性、信頼性が心配され、セパレータの工夫、PTC素子の組み込み、封止法等種々の方法で安全対策が講じられている。これら安全性や信頼性改善を目的として、有機電解液をリチウムイオン伝導性高分子固体電解質に変える検討が最近盛んに試みられ、一部、上市されている。高分子を主成分とした固体電解質を使用したものは、無機物に比較して、電池の柔軟性が増し、種々の形状に加工できるというメリットもある。しかしながら、これまで検討されてきたものは、高分子固体電解質のリチウムイオン伝導度が低いため、取り出し電流が小さいという問題を残していた。
【0004】
これら高分子固体電解質の例として、「ブリティッシュ・ポリマー・ジャーナル(Br. Polym. J. ),第319巻、137頁、1975年」には、ポリエチレンオキサイドと無機アルカリ金属塩との複合物がイオン伝導性を示すことが記載されているが、その室温でのイオン伝導度は10-7S/cmと低い。
最近、オリゴオキシエチレンを側鎖に導入した櫛型高分子が、イオン伝導性を担っているオキシエチレン鎖の熱運動性を高め、イオン伝導性が改良されることが多数報告されている。例えば、「ジャーナル・オブ・フィジカル・ケミストリイ(J. Phys. Chem.)、第89巻、987頁、1984年」には、ポリメタクリル酸の側鎖にオリゴオキシエチレンを付加したものにアルカリ金属塩を複合化した例が記載されている。
米国特許4357401号には、ヘテロ原子を含有する架橋ポリマーとイオン化可能な塩からなる高分子固体電解質が結晶性が低下し、ガラス転移点が低く、イオン伝導度が改善されることが記載されているが、10-5S/cm程度とまだ不十分であった。
【0005】
一般的に検討されているリチウムイオン伝導性高分子固体電解質のイオン伝導度は、室温における値で10-4〜10-5S/cm位まで改善されたものの、液体系イオン伝導性物質に比較するとなお二桁以上低いレベルである。また、0℃以下の低温になると、一層極端にイオン伝導性が低下する。
J.Appl.Electrochem.,No.5,63〜69ページ(1975年)に記載されているように、ポリアクリロニトリルやポリフッ化ビニリデンゲル等の熱可塑性高分子及び/または架橋高分子に溶媒及び電解質を加えたいわゆるリチウムイオン伝導性高分子ゲル電解質は高イオン伝導度となることが報告されている。また、特公昭58−36828号には、ポリメタクリル酸アルキルエステルに溶媒及び電解質を加えた同様の高分子ゲル電解質は高イオン伝導度となることが報告されている。しかしながらこれら高分子ゲル電解質は高イオン伝導度であるが、流動性を付与することとなるため、完全な固体としては取り扱えず、膜強度や成膜性に劣り、電池に応用すると短絡が起こり易いうえ、液体系イオン伝導性物質同様に封止上の問題が発生する。
【0006】
一方、米国特許4792504号において、ポリ酸化エチレンの連続ネットワーク中に金属塩及び非プロトン性溶剤からなる電解液が含浸された架橋系高分子固体電解質を用いることにより、イオン伝導度が改善されることが提案されている。また、米国特許4830939号や特開昭58−82477号、特開昭63−94563号においても(メタ)アクリレート系モノマー、スチレン誘導体等のビニル化合物と有機電解液の混合物を適当な開始剤の存在下で活性光線で重合して高分子固体電解質とすることが報告されている。しかしながらこれら高分子固体電解質は溶剤が添加されているが、イオン伝導度は10-4S/cmとまだ不十分で溶剤が多量に添加されたため、膜強度がさらに低下するという問題が生じた。
【0007】
これらの問題を解決するために、本発明者らはウレタン結合を有するオキシアルキレン基を含有する(メタ)アクリレートモノマー混合物を用いた重合体及び電解質からなる複合体を用いたイオン伝導性の高分子固体電解質(特開平6−187822号)を提案した。この高分子固体電解質のイオン伝導度は、溶媒未添加で10-4S/cm(室温)であり高いレベルであるが、さらに溶媒を添加すると、室温またはそれより低温であっても10-3S/cm以上となり、また膜質も自立膜として得られる程度に改善された。また、このモノマーは重合性が良好で、電池や電気二重層コンデンサに応用する場合、モノマー状態で電池や電気二重層コンデンサに組込んだ後に加熱や活性光線で重合固体化し、電極との密着性の良好な高分子固体電解質ができるという加工上のメリットもあった。
しかしながらこれらリチウムイオン伝導性高分子固体電解質を用いた電池はイオン伝導性がまだ不十分で取り出し電流が低い。また、固体化したとはいえ、リチウム及び/またはリチウム系化合物を用いている為、上述した安全性、信頼性はまだ充分とは言えない。
【0008】
【発明が解決しようとする課題】
本発明は、安全性、信頼性、電流特性に優れ、長寿命で高容量のプロトン系固体二次電池を提供することを目的とする。また、該二次電池に適用した場合に、優れた特性を有するプロトン伝導性高分子固体電解質及び電極を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは上記課題に鑑み、鋭意検討した結果、電極活物質として、スルホン酸側鎖を有する高分子及び/またはポリピリジン骨格を有する高分子及び/またはポリピリミジン骨格を有する高分子及び/またはポリキノン骨格を有する高分子及び/またはマンガン酸化物がプロトンの挿入、放出反応容量が大きく、これらとプロトン伝導性高分子固体電解質とから得られるプロトン系固体二次電池が安全性、信頼性、電流特性に優れ、長寿命、高容量で薄型化、チップ化等が可能な形状自由性のある二次電池であることを見出した。
また本発明者らは特定の熱及び活性光線重合性にすぐれた化合物を重合することによって得られる高分子を含むプロトン伝導性高分子固体電解質が加工性、機械的強度にすぐれ、高イオン伝導度で耐久性が良好であり、本発明のプロトン系固体二次電池に適していることを見出した。
さらに本発明者らは該熱及び活性光線重合性にすぐれた化合物を重合することによって得られる高分子を含むプロトン伝導性高分子固体電解質とスルホン酸側鎖を有する高分子及び/またはポリピリジン骨格を有する高分子及び/またはポリピリミジン骨格を有する高分子及び/またはポリキノン骨格を有する高分子及び/またはマンガン酸化物から選ばれる電極活物質とを複合することにより、高容量、長寿命で加工性に優れた電極が得られることを見出した。
【0010】
即ち本発明は以下のものを開発することにより、上記目的を達成した。
[1] 正極活物質及び/または負極活物質がプロトン挿入放出による充放電反応を行う、スルホン酸側鎖を有する導電性高分子、ポリピリジン骨格及び/またはポリピリミジン骨格を有する導電性高分子、及びポリキノン骨格を有する導電性高分子からなる群から選ばれる少なくとも一種の材料であり、電解質がプロトン伝導性高分子固体電解質であることを特徴とするプロトン二次電池。
【0011】
[2] プロトン伝導性高分子固体電解質が、一般式(1)または一般式(2)
【化3】

Figure 0004404322
【化4】
Figure 0004404322
[式中、R、Rは水素またはアルキル基を表し、Rは炭素数10以下の2価の基を表す。該2価の基はヘテロ原子を含んでいてもよく、直鎖状、分岐状、環状構造のいずれからなるものでもよい。xは0または1〜10の数値を示す。但し、同一分子中の複数個の上記一般式(1)または(2)で表される重合性官能基中のR、R、R及びxの値は、それぞれ独立であり、同じである必要はない。]
で表される重合性官能基を有する熱及び/または活性光線重合性化合物を重合することによって得られる少なくとも一種の導電性高分子、少なくとも一種のプロトン酸を含むことを特徴とする前記[1]に記載のプロトン二次電池。
【0012】
[3] プロトン酸が、有機スルホン酸系化合物及び/またはリン酸系化合物及び/またはホウ酸系化合物であることを特徴とする上記[2]に記載のプロトン二次電池。
[4] 極性溶媒をさらに含むことを特徴とする上記[2]または[3]に記載のプロトン二次電池。
[5] 極性溶媒がヘテロ原子含有有極性有機溶媒である上記[4]に記載のプロトン二次電池。
【0013】
[6] 電解質に、少なくとも一種の無機微粒子を含むことを特徴とする上記[1]〜[5]に記載のプロトン二次電池。
[7] 無機微粒子がBET比表面積10m2 /g以上、結晶粒子径1μm以下のシリカ、アルミナ、チタニア、もしくはマグネシア、またはこれらの複合酸化物であり、その含有量が1〜50wt%であることを特徴とする上記[6]に記載のプロトン二次電池。
【0014】
以下に本発明を詳細に説明する。
本発明のプロトン伝導性高分子固体電解質の主要構成成分である高分子は非電子伝導性で各種極性溶媒を吸収、保持できるものでなければならない。そのような高分子としては、Nafion(登録商標)、フッ素化ポリエーテル、ポリフッ化ビニリデン、ポリアルキレンオキシド、ポリアルキレンイミン、ポリアクリロニトリル、ポリ(メタ)アクリル酸エステル、ポリフォスファゼン、ポリウレタン、ポリアミド、ポリエステル、ポリシロキサン等のヘテロ原子を有する極性の熱可塑性高分子や架橋高分子が挙げられる。特に架橋高分子が溶媒吸収後の強度が高く、溶媒の保持力も高く、さらに粘弾性体であることから、本発明の複合電解質用高分子として適している。ここで表す架橋には、架橋鎖が共有結合で形成されている以外に、側鎖がイオン結合や水素結合で架橋されているもの、各種添加物を介して物理架橋されているものも含んでいる。
上記高分子の中では安定性の面から、Nafion(登録商標)、フッ素化ポリエーテル、ポリフッ化ビニリデン等のフルオロカーボン基を分子構造内に有するものが好ましい。また、ポリアルキレンオキシド、ポリウレタン等のオキシアルキレンやウレタン構造を分子構造内に含むものも、各種極性溶媒との相溶性が良好で、電気化学的安定性が良好であり好ましい。
【0015】
また、上記高分子の中で、一般式(1)または(2)で表わされる重合性官能基
【化5】
Figure 0004404322
【化6】
Figure 0004404322
[式中、R1 、R2 は水素またはアルキル基を表し、R3 は炭素数10以下の2価の基を表わす。該2価の基はヘテロ原子を含んでいてもよく、直鎖状、分岐状、環状構造のいずれからなるものでもよい。xは0または1〜10の数値を示す。但し、同一分子中の複数個の上記一般式(1)または(2)で表される重合性官能基中のR1 、R2 、R3 及びxの値は、それぞれ独立であり、同じである必要はない。]
を有する少なくとも一種の重合性化合物を加熱及び/または活性光線照射により硬化させて得られる高分子が、溶媒を含んだ状態で成膜しやすく、膜強度が良好であり好ましい。
【0016】
その中でも、下記一般式(3)または(4)
【化7】
Figure 0004404322
【化8】
Figure 0004404322
[式中、R1 、R2 、R3 、xは、一般式(1)または(2)と同じ。R4 、R5 は、オキシアルキレン基及び/またはフルオロカーボン、オキシフルオロカーボンを含む2価の基である。]
で表される重合性官能基を有する少なくとも一種の重合性化合物を加熱及び/または活性光線照射により硬化させて得られる高分子が特に好ましい。
【0017】
本発明のプロトン伝導性高分子固体電解質に用いられる一般式(1)で表される官能基を有する化合物を合成する方法に特に限定はないが、例えば、酸クロライドと末端にヒドロキシル基を有する化合物、例えばオリゴオキシアルキレンオールとを反応させることにより容易に得られる。
例えば、一般式(1)で表される官能基を1つ有する化合物は、酸クロライドとモノアルキルオリゴオキシアルキレングリコールとを以下の様な反応式で、1:1のモル比で反応させることにより、容易に得られる。
CH2 =C(R1 )COCl + HO( CH2 CH( R6)O)m7
→ CH2 =C(R1 )COO( CH2 CH( R6)O)m7
[ただし、式中R1 は一般式(1)と同じ。R6 はH、または炭素数10以下のアルキル基。R7 は炭素数10以下のアルキル基。]
【0018】
例えば、一般式(1)で表わされる官能基を2つ有する化合物は、酸クロライドとオリゴオキシアルキレングリコールとを以下の様な反応式で、2:1のモル比で反応させることにより、容易に得られる。
2CH2 =C(R1 )COCl + HO( CH2 CH( R6)O)m
→CH2 =C(R1 )COO( CH2 CH( R6)O)mCO(R1 )C=CH2
[ただし、式中R1 は一般式(1)と同じ。R6 はH、または炭素数10以下のアルキル基。]
【0019】
本発明のプロトン伝導性高分子固体電解質に用いられる一般式(2)で表される重合性官能基を有する化合物を合成する方法には特に限定はないが、例えば、CH2=C(R2 )CO[OR3x NCOとオリゴアルキレングリコールとの反応により得ることができる(ただし、式中R2 、R3 、xはそれぞれ一般式(2)と同じ。)。
具体的方法として一つのエチレン性不飽和基を有する化合物は、例えば、メタクリロイルイソシアナート系化合物(以下MI類と略記する。)あるいはアクリロイルイソシアナート系化合物(以下AI類と略記する。)とモノアルキルオリゴアルキレングリコールとを、下記の反応式
CH2 =C(R2 )CO[OR3x NCO+HO( CH2 CH( R6)O)m7
→CH2 =C(R2 )CO[OR3x NHCOO( CH2 CH( R6)O)m7
[ただし、式中R2 、R3 、xは一般式(2)と同じ。R6 はH、または炭素数10以下のアルキル基、R7 は炭素数10以下のアルキル基である。]
のようにして1:1のモル比で反応させることにより、容易に得られる。
【0020】
また二つのエチレン性不飽和基を有する化合物は、例えば、MI類あるいはAI類とオリゴアルキレングリコールとを、2:1のモル比で反応させることにより、容易に得られる。
また、三つのエチレン性不飽和基を有する化合物は、例えばMI類及び/またはAI類と、グリセリン等の3価アルコールにアルキレンオキサイドを付加重合させたトリオールとを、3:1のモル比で反応させることにより、容易に得られる。
また、四つのエチレン性不飽和基を有する化合物は、例えばMI類及び/またはAI類と、ペンタエリスリトール等の4価アルコールにアルキレンオキサイドを付加重合させたテトラオールとを4:1のモル比で反応させることにより、容易に得られる。
【0021】
また、五つのエチレン性不飽和基を有する化合物は、例えばMI類及び/またはAI類と、α−D−グルコピラノースにアルキレンオキサイドを付加重合させたペンタオールとを、5:1のモル比で反応させることにより、容易に得られる。
また、六つのエチレン性不飽和基を有する化合物は、例えばMI類及び/またはAI類と、マンニットにアルキレンオキサイドを付加重合させたヘキサオールとを6:1のモル比で反応させることにより、容易に得られる。
フルオロカーボン基及び/またはオキシフルオロカーボン基を有する一般式(1)及び/または(2)で表される重合性官能基を有する化合物を合成する方法に特に限定はないが、例えば、具体的方法として重合性官能基を一つ有する化合物は、MI類あるいはAI類と2,2,3,3,4,4,4-ヘプタフルオロ-1- ブタノールのようなモノオールとを以下の様な反応式で1:1のモル比で反応させることにより、容易に得られる。
CH2=C(R1 )COO( CH2)2 NCO + CF3(CF2)2 CH2 OH
→ CH2=C(R1 )COO( CH2)2 NHCOOCH2(CF2)2 CF3
【0022】
また重合性官能基を2つ有する化合物は、例えば、MI類あるいはAI類と2,2,3,3-テトラフルオロ-1,4- ブタンジオールのようなジオールとを以下の様な反応式で、2:1のモル比で反応させることにより、容易に得られる。
2CH2=C(R1 )COO( CH2)2 NCO+HOCH2(CF2)2 CH2 OH
→ {CH2=C(R1 )COO( CH2)2 NHCOOCH2 CF2 −}2
【0023】
一般式(1)あるいは(2)で表される重合性官能基を1つしか有さない化合物を重合してできる高分子は、架橋構造を有しておらず、膜強度不足のため、薄膜にすると短絡する危険が大きく、単独では用いない方がよい。従って、一般式(1)あるいは(2)で表される重合性官能基を2つ以上有する化合物と共重合し、架橋させた方が好ましい。
プロトン伝導性高分子固体電解質の薄膜強度を考慮すると、1分子中に含まれる一般式(1)あるいは(2)で表される重合性官能基の数は、3つ以上がより好ましい。
また前記一般式(1)で表される重合性官能基を有する化合物の中で、一般式(2)で表される重合性官能基を有する化合物から得られる高分子がウレタン基を含んでおり、重合性が良好で、薄膜にしたときの膜強度も大きいので好ましい。
【0024】
本発明のプロトン伝導性高分子固体電解質の構成成分として好ましい高分子は、一般式(1)または一般式(2)で表される重合性官能基を有する化合物の少なくとも一種を重合し、あるいは該化合物を共重合成分として重合することにより得られる。
本発明のプロトン伝導性高分子固体電解質に用いる高分子は、前記一般式(1)または一般式(2)で表される重合性官能基を有する化合物の単独重合体であっても、該カテゴリーに属する2種以上の共重合体であっても、あるいは該化合物の少なくとも一種と他の重合性化合物との共重合体であってもよい。
【0025】
前記一般式(1)または一般式(2)で表される重合性官能基を有する化合物と共重合可能な他の重合性化合物としては、特に制限はない。例えば、アクリルアミド、メタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、アクリロイルモルホリン、メタクリロイルモルホリン、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド系化合物、スチレン、α−メチルスチレン等のスチレン系化合物、N−ビニルアセトアミド、N−ビニルホルムアミド等のN−ビニルアミド系化合物、エチルビニルエーテル等のアルキルビニルエーテルを挙げることができる。重合は、重合性化合物中のアクリロイル基もしくはメタクリロイル基の重合性を利用した一般的な方法を採用することができる。即ち、これらモノマー単独、あるいはこれらモノマーと他の前記の共重合可能な重合性化合物の混合物に、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド等のラジカル重合触媒、CF3 COOH等のプロトン酸、BF3 、AlCl3 等のルイス酸等のカチオン重合触媒、あるいはブチルリチウム、ナトリウムナフタレン、リチウムアルコキシド等のアニオン重合触媒を用いて、ラジカル重合、カチオン重合あるいはアニオン重合させることができる。また、重合性化合物によっては無酸素状態で、加熱のみでラジカル重合することもできる。
【0026】
本発明のプロトン伝導性高分子固体電解質に用いられる高分子はオキシアルキレン、オキシフルオロカーボン構造を含んでいるものが好ましいが、その場合のオキシアルキレン鎖数、オキシフルオロカーボン鎖数(すなわち前記一般式(3)におけるR4 中、あるいは前記一般式(4)におけるR5 中に含まれるオキシアルキレン基、オキシフルオロカーボン基の繰返し数nは1〜1000の範囲が好ましく、5〜100の範囲が特に好ましい。
【0027】
本発明のプロトン伝導性高分子固体電解質に用いる高分子は、前記のように、一般式(1)または(2)で表される官能基を有する化合物の単独重合体であっても、該カテゴリーに属する2種以上の共重合体であっても、あるいは該化合物の少なくとも一種と他の重合性化合物との共重合体であってもよい。また、本発明のプロトン伝導性高分子固体電解質に用いる高分子は、前記一般式(1)または(2)で表される官能基を有する化合物の少なくとも一種から得られる重合体及び/または該化合物を共重合成分とする共重合体と他の高分子との混合物であってもよい。例えば、前記一般式(1)または(2)で表される官能基を有する化合物の少なくとも一種から得られる重合体及び/または該化合物を共重合成分とする共重合体と、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリブタジエン、ポリメタクリル(またはアクリル)酸エステル類、ポリスチレン、ポリホスファゼン類、ポリシロキサンあるいはポリシラン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のポリマーとの混合物を本発明のプロトン伝導性高分子固体電解質に用いてもよい。
【0028】
本発明のプロトン伝導性高分子固体電解質に少なくとも一種の極性溶媒が含浸されることにより、イオン伝導度が向上し好ましい。使用できる極性溶媒としては、本発明のプロトン伝導性高分子固体電解質に用いる高分子との相溶性が良好で、沸点が高く、電解質塩の溶解性が高く、使用する電池に悪影響を与えないものが良い。即ち、誘電率が大きく、沸点が60℃以上であり、電気化学的安定範囲が広い化合物が適しており、水やアルコール等のヒドロキシ含有化合物は電気化学的安定範囲が狭く、水素や酸素が発生しやすいので好ましくない。従って、非水系極性有機溶媒が好ましく、そのような溶媒としては、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のオリゴエーテル類、ベンゾニトリル、トルニトリル、アセトニトリル等のニトリル類、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン、N−ビニルピロリドン等の含窒素極性溶媒、スルホラン等の含硫黄極性溶媒、リン酸エステル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類等が挙げられる。この中で、オリゴエーテル類及びニトリル類、含窒素極性溶媒がプロトン酸塩の溶解性が高く、電気化学的安定範囲が広く好ましく、含窒素極性溶媒が特に好ましい。
【0029】
プロトン伝導性高分子固体電解質中の溶媒の含有量が多いほど、プロトン酸塩の解離またはイオンの拡散が容易で、またその場合のイオン伝導度は高くなるが、機械的強度が低下する。好ましい添加量としては、本発明のプロトン伝導性高分子固体電解質中の高分子重量の0.5倍から12倍量以下で、1倍量から8倍量以下が特に好ましい。
本発明のプロトン伝導性高分子固体電解質に用いるプロトン酸塩の複合比は、高分子の重量に対し、0.1〜50重量%が好ましく、1〜30重量%が特に好ましい。複合に用いる電解質塩が50重量%以上の比率で存在すると、プロトンの移動が大きく阻害され、逆に0.1重量%以下の比率では、プロトンの絶対量が不足となってイオン伝導度が小さくなる。
複合に用いるプロトン酸塩の種類は特に限定されるものではないが、上記非水系極性有機溶媒や高分子への溶解性が良好で、解離度の高いものが好ましい。
そのような例としてパラトルエンスルホン酸等の有機酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸等の含フッ素有機酸、ホウ酸類、リン酸類が挙げられる。
【0030】
本発明のプロトン伝導性高分子固体電解質には各種無機微粒子が添加された方が好ましい。そうすることにより強度、膜厚均一性が改善するばかりでなく、無機微粒子と高分子間に微細な空孔が生じることになり、電解液中に浸漬した場合には空孔を通じてセパレーター内にフリーの電解液が分散することになり、強度アップを損ねることなく、逆にイオン伝導度、移動度を増加させることもできる。また、無機微粒子を添加することにより、重合性組成物の粘度が上昇し、高分子と溶媒の相溶性が不十分な場合にもその分離を抑える効果も現われる。
使用する無機微粒子としては非電子伝導性、電気化学的に安定なものが選ばれる。また、イオン伝導性であればさらに好ましい。具体的にはα、β、γ−アルミナ、シリカ、チタニア、マグネシア、及びこれらの複合酸化物、ゼオライト等のイオン伝導性または非電導性セラミックス微粒子が挙げられる。
プロトン伝導性高分子固体電解質の強度アップ、電解液保液量増加の観点から、無機微粒子は一次粒子が凝集した二次粒子構造をもつものが好ましく、このような構造を持つ無機微粒子の具体例としてはエアロジル(日本エアロジル製)のようなシリカ超微粒子、アルミナ超微粒子、スーパータイタニア(昭和電工製)のようなチタニア超微粒子、協栄社製のマグネシア超微粒子が挙げられ、安定性、複合効率からアルミナ超微粒子、シリカ超微粒子が特に好ましい。
【0031】
イオン伝導性、移動度を増加させるという目的で、無機微粒子の比表面積はできるだけ大きいことが好ましく、BET法で10m2/g以上が好ましく50m2/g以上がさらに好ましい。
このような無機微粒子のサイズとしては、重合性組成物と混合できれば特に限定はないが、結晶粒子径としては0.001μm 〜10μm が好ましく、0.001μm 〜1μm が特に好ましい。
また、形状としては球形、卵形、立方体状、直方体状、円筒ないし棒状等の種々の形状のものを用いることができる。
無機微粒子の添加量は多すぎると逆にプロトン伝導性高分子固体電解質の強度やイオン伝導性を低下させたり、成膜がしづらくなるという問題を生じる。従って好ましい添加量としては、複合電解質に対して50wt%以下が好ましく、0.1から30wt%の範囲が特に好ましい。
【0032】
本発明のプロトン伝導性高分子固体電解質を製造する場合には、一般式(1)または(2)で表される重合性官能基を有する(メタ)アクリロイル系化合物の少なくとも一種に、少なくとも一種の電解質塩、またはさらに少なくとも一種の無機微粒子、またはさらに少なくとも一種の極性溶媒を添加した重合性組成物を、またはこれにさらに少なくとも一種の重合開始剤を添加した重合性組成物を各種基材上に成膜、塗布後、かかる(メタ)アクリロイル系化合物を、加熱及び/または活性光線照射により重合し、硬化する方法が、均一に成膜でき、膜厚制御が簡便であり、推奨できる。
重合させる温度としては、前記一般式(1)または(2)で表される重合性官能基を有する重合性化合物の種類や開始剤の種類によるが、重合が起こる温度であれば良く、通常は、0℃から200℃の範囲で行えばよい。活性光線照射により重合させる場合にも、前記一般式(1)または(2)で表される重合性官能基を有する重合性化合物の種類等によるが、例えば、ベンジルメチルケタール、ベンゾフェノン等の活性光線開始剤を使用して、数mW以上の紫外光または電子線、γ線等を照射して重合させることができる。
【0033】
本発明のプロトン伝導性高分子固体電解質は他の多孔性高分子フィルムと複合して使用することにより強度改善等を行うことも可能である。但し、使用する高分子の種類、フィルム形状、複合割合によってはイオン伝導度の低下や安定性の悪化を招くので、適したものを選ぶ必要がある。使用する多孔性高分子フィルムとしてはポリプロピレン製不織布やポリエチレン製ネットのような網状ポリオレフィンシート等の多孔性ポリオレフィンフィルム、セルガード(商品名)等のポリオレフィン製マイクロポーラスフィルム、ナイロン不織布、ポリエステル製ネット等が挙げられるが、ポリオレフィン製多孔性フィルムが安定性の面で好ましい。また、その空孔率としては、10〜90%程度あればよいが、強度の許す限りできるだけ空孔率の大きいものが良いので、好ましい空孔率の範囲としては40〜90%の範囲である。
複合方法としては特に制限がないが、例えば、一般式(1)または(2)で表される重合性官能基を有する(メタ)アクリロイル系化合物の少なくとも一種に、少なくとも一種の電解質塩、またはさらに少なくとも一種の無機微粒子、またはさらに少なくとも一種の極性溶媒を添加した重合性組成物を、またはこれにさらに少なくとも一種の重合開始剤を添加した重合性組成物を、多孔性ポリマーフィルムに含浸後、かかる(メタ)アクリロイル系化合物を重合する方法が、均一に複合でき、膜厚制御が簡便であり、推奨できる。
【0034】
本発明のプロトン伝導性高分子固体電解質を電池に応用した場合、本プロトン伝導性高分子固体電解質の電解液保持性が高く、また孔が無い為、液もれ、短絡が起りにくく、サイクル寿命が長く、取り出し電流が大きく、安全性及び信頼性が高い電池が得られる。また、液もれや短絡が起りにくいことから、薄型にでき、パッケージの簡単な電池が得られる。
このようにして製造される電池として、薄膜電池の一例の概略断面図を図1に示す。図中、1は正極、2は本発明のプロトン伝導性高分子固体電解質からなるセパレーター用フィルム、3は負極、4は集電体、5は絶縁性樹脂封止剤である。
【0035】
本発明の電池に用いる電極活物質はプロトンの挿入放出による充放電反応が可能なものでなければならない。そのような化合物としては、導電性高分子、遷移金属酸化物、グラファイト、活性炭等の各種炭素材料、各種有機金属錯体等が挙げられる。
この中で導電性高分子は柔軟で、薄膜にし易いという点で好ましい。導電性高分子の例としてはポリアニリン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリピロール及びその誘導体、ポリキノン及びその誘導体、ポリチエニレン及びその誘導体、ポリピリジンジイル及びその誘導体、ポリイソチアナフテニレン及びその誘導体、ポリフリレン及びその誘導体、ポリセレノフェン及びその誘導体、ポリパラフェニレンビニレン、ポリチエニレンビニレン、ポリフリレンビニレン、ポリナフテニレンビニレン、ポリセレノフェンビニレン、ポリピリジンジイルビニレン等のポリアリーレンビニレン及びそれらの誘導体等が挙げられる。
この中でポリアニリン及びその誘導体は酸性水溶液中でプロトンのドーピング/アンドーピング反応による充放電反応効率が優れているが、容量的にまだ不十分である。
【0036】
これら導電性高分子側鎖にスルホン酸を導入することにより、プロトンのドーピング/アンドーピング反応容量が向上し好ましい。このような高分子の例としてはポリアニリンを硫酸中で処理したスルホン化ポリアニリン(日東電工)、スルホン化チオフェン、スルホン化イソチアナフテンの酸化重合体(昭和電工)が挙げられる。
含窒素芳香族系導電性高分子はその窒素とプロトン酸との特異的反応により、プロトンのドーピング/アンドーピング反応容量が向上し好ましい。
その中で下記の一般式
【化9】
Figure 0004404322
[Rは、水素、アルキル基、アルコキシ基、エステル基、カルボキシル基、ニトリル基、ニトロ基、ハロゲン基、またはスルホン酸基を表す。nは1以上の整数を表す。]
で表されるポリピリジンジイル及びその誘導体、下記の一般式
【化10】
Figure 0004404322
[Rは、水素、アルキル基、アルコキシ基、エステル基、カルボキシル基、ニトリル基、ニトロ基、ハロゲン基、またはスルホン酸基を表す。nは1以上の整数を表す。]
で表されるポリピリミジンジイル及びその誘導体等のポリピリジン骨格、ポリピリミジン骨格を有する高分子が好ましい。
【0037】
下記の一般式
【化11】
Figure 0004404322
または
【化12】
Figure 0004404322
で表されるポリキノン等のポリキノン骨格を有する高分子はキンヒドロン酸化還元反応でのプロトンの挿入放出容量が大きく好ましい。
【0038】
また、遷移金属酸化物は、充填密度が高くなり、体積容量密度が高くなるという点で本発明の電極活物質として好ましい。その例としては、酸化コバルト、酸化マンガン、酸化バナジウム、酸化ニッケル、酸化モリブデン等が挙げられ、特に酸化マンガン、酸化ニッケルが高容量、高電圧という点から好ましい。
また炭素材料としては、天然黒鉛、人造黒鉛、気相法黒鉛、石油コークス、石炭コークス、フッ化黒鉛、ピッチ系炭素、ポリアセン等が挙げられる。
集電体は電子伝導性で電気化学的に耐食性があり、できるだけ比表面積の大きい材料を用いることが好ましい。例えば、各種金属及びその燒結体、電子伝導性高分子、カーボンシート等を挙げることができる。
【0039】
【実施例】
以下に本発明について代表的な例を示しさらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
【0040】
[実施例1]
<化合物▲3▼の合成>
【化13】
Figure 0004404322
化合物▲1▼(KOH価 34.0mg /g 、m/n=7/3)50.0g 及び化合物▲2▼(メタクリロイルオキシエチルイソシアネート) 4.6g を窒素雰囲気中でよく精製したTHF100ml に溶解した後、0.44g のジブチルチンジラウレートを添加する。その後、25℃で約15時間反応させることにより、無色の粘稠液体を得た。その1H-NMR、IR及び元素分析の結果から、化合物▲1▼と化合物▲2▼は1対3で反応し、さらに、化合物▲2▼のイソシアナート基が消失し、ウレタン結合が生成しており、化合物▲3▼が生成していることがわかった。
【0041】
[実施例2]
化合物▲3▼ 1.0g 、ジメチルホルムアミド(DMF)3.0g、パラトルエンスルホン酸(PTS)0.6g及び2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド(商品名ルシリンTPO、BASF社製)0.004gをアルゴン雰囲気中でよく混合し、光重合性組成物溶液を得た。
上記光重合性組成物溶液をアルゴン雰囲気下、PET フィルム上に塗布後、ケミカル蛍光ランプ(三共電気社製 FL20S.BL)を10分照射したところ、溶媒、プロトン酸を含浸した化合物▲3▼重合体フィルムが約30μm の自立フィルムとして得られた。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、6.0 ×10-3、2.0×10-3S/cmであった。
【0042】
[実施例3]
実施例2で調製したと同様の光重合性組成物溶液にアルゴン雰囲気下、無機微粒子としてアルミニウムオキサイドC(日本アエロジル製、比表面積約100m 2/g )を0.20g 添加し、攪拌することにより、乳白色の溶液とした。この乳白色光重合性組成物溶液を実施例2と同様に塗布、光照射することにより、溶媒を含浸した化合物▲3▼重合体/アルミニウムオキサイドC複合フィルムが約30μm の白濁色自立フィルムとして得られた。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、7.0 ×10-3、2.2×10-3S/cmであった。
【0043】
[実施例4]
パラトルエンスルホン酸の代わりにオルトリン酸を0.3g用いた以外は実施例3と同様にして、溶媒を含浸した化合物▲3▼重合体/アルミニウムオキサイドC複合フィルム、約30μm を自立フィルムとして得た。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、7.3 ×10-3、2.4×10-3S/cmであった。
【0044】
[実施例5]
アルミニウムオキサイドCの代わりに、無機微粒子としてシリカ微粒子(日本アエロジル製、比表面積約200m2/g)0.20g を用いた以外は、実施例3と同様にして、溶媒を含浸した化合物▲3▼重合体/シリカ微粒子複合フィルム、約30μm を自立フィルムとして得た。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、6.8 ×10-3、2.1×10-3S/cmであった。
【0045】
[実施例6]
<化合物▲5▼の合成>
Figure 0004404322
化合物▲4▼(平均分子量Mn=550)55g 、化合物▲2▼ 15.5gを窒素雰囲気中でよく精製したTHF100ml に溶解した後、0.66g のジブチルチンジラウレートを添加した。その後、25℃で約15時間反応させることにより、無色の粘稠液体を得た。その1H-NMR、IR及び元素分析の結果から、化合物▲4▼と化合物▲2▼は1対1で反応し、さらに、化合物▲2▼のイソシアナート基が消失し、ウレタン結合が生成しており、化合物▲5▼が生成していることがわかった。
【0046】
[実施例7]
化合物▲5▼ 0.3g 、実施例1で合成した化合物▲3▼ 0.7g 、ジメチルスルホキサイド(DMSO)3.0g、オルトリン酸0.3g、アルミニウムオキサイドC0.20g 、ルシリンTPO0.004g をアルゴン雰囲気中でよく混合し、光重合性組成物溶液を得た。
上記光重合性組成物溶液をアルゴン雰囲気下、PET フィルム上に塗布後、ケミカル蛍光ランプ(三共電気社製 FL20S.BL)を10分照射したところ、溶媒、プロトン酸を含浸した化合物▲3▼+▲5▼重合体フィルムが約30μm の自立フィルムとして得られた。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、7.5 ×10-3、2.3×10-3S/cmであった。
【0047】
[実施例8]
<化合物▲8▼の合成>
Figure 0004404322
化合物▲7▼(2,2,3,3,4,4,4-ヘプタフルオロ−1−ブタノール、アルドリッチ製)20g 、化合物▲2▼ 15.5gを窒素雰囲気中でよく精製したTHF100ml に混合した後、0.66g のジブチルチンジラウレートを添加する。その後、25℃で約15時間反応させることにより、無色の粘稠液体として化合物▲8▼を得た。その1H-NMR、IR及び元素分析の結果から、化合物▲7▼と化合物▲2▼は1対1で反応し、さらに、化合物▲2▼のイソシアナート基が消失し、ウレタン結合が生成してしていることがわかった。
【0048】
[実施例9]
<化合物(10)の合成>
【化14】
Figure 0004404322
化合物▲9▼(日本アオジムント製、Zdol平均分子量2000)100g、化合物▲2▼ 15.5gを窒素雰囲気中でよく精製したTHF100ml に混合した後、0.66g のジブチルチンジラウレートを添加する。その後、25℃で約15時間反応させることにより、無色の粘稠液体として化合物(10)を得た。その1H-NMR、IR及び元素分析の結果から、化合物▲9▼と化合物▲2▼は1対2で反応し、さらに、化合物▲2▼のイソシアナート基が消失し、ウレタン結合が生成していることがわかった。
【0049】
[実施例10]
化合物▲8▼ 0.3g 、化合物(10) 0.7g 、アセトニトリル3.0g、オルトリン酸0.3g、シリカ微粒子(日本アエロジル製、比表面積約200m2/g)0.20g 及びルシリンTPO 0.004g をアルゴン雰囲気中でよく混合し、光重合性組成物溶液を得た。
上記光重合性組成物溶液をアルゴン雰囲気下、ガラス上に塗布後、ケミカル蛍光ランプ(三共電気社製 FL20S.BL)を10分照射したところ、溶媒、プロトン酸を含浸した化合物▲8▼+(10)重合体フィルムが約30μm の自立フィルムとして得られた。
このフィルムの25℃、−10℃でのイオン伝導度をインピーダンス法にて測定したところ、それぞれ、3.0 ×10-3、1.2×10-3S/cmであった。
【0050】
[実施例11 ]
<ポリアニリン電極の製造>
特開昭62−108459号公報記載の方法に従い、過硫酸アンモニウムで塩酸中でアニリンを酸化重合後、アンモニア水溶液で中和し、下記の一般式で表される塩基型ポリアニリン粉末を得た。
【化15】
Figure 0004404322
このポリアニリン粉末とアセチレンブラック、ポリフッ化ビニリデンの重量比 8.5 : 0.7 : 0.8の混合物に過剰のN−メチルピロリドン溶液を加え、ゲル状組成物を得た。この組成物を約15μmのSUS箔上に10mm×10mm、約200μmの厚さに塗布成型した。さらに、約100℃で24時間加熱真空乾燥することにより、ポリアニリン電極(15mg)を得た。
【0051】
[実施例12]
<プロトン系二次電池の製造>
化合物▲3▼ 1.0g 、ジメチルホルムアミド(DMF)3.0g、パラトルエンスルホン酸(PTS)0.6g、及びベンゾイルパーオキサイド(BPO)0.04g をアルゴン雰囲気中でよく混合し、熱重合性組成物溶液を得た。
アルゴン雰囲気グローブボックス内で、実施例11で製造したポリアニリン電極(15mg)10mm×10mmに該熱重合性組成物溶液を含浸させた電極を二個用意した。次に、実施例3で製造した溶媒含浸化合物▲3▼重合体/アルミニウムオキサイド複合フィルム(10mm×10mm)を一方の電極に貼り合わせ、さらにもう一枚の電極をはり合わせ、電池端部をエポキシ樹脂で封止後、100℃で1時間加熱することにより、図1に示すようなポリアニリン/ポリアニリン系二次電池を製造した。
この電池を、作動電圧0〜0.7V、電流0.1mAで充放電を行なったところ、最大容量は1.8mAhであった。また、この条件で充放電を50回繰り返しても容量変化は殆どなかった。
【0052】
[実施例13]
<スルホン化ポリアニリン電極の製造>
特公平8−9662号公報記載の方法に従い、ポリアニリンを無水硫酸中で熱処理することにより、下記の一般式で表されるスルホン化ポリアニリンを製造した。元素分析からこのスルホン化率はアニリンユニットに対して約50mol%であることを確認した。
【化16】
Figure 0004404322
このスルホン化ポリアニリン粉末とアセチレンブラック、ポリフッ化ビニリデンの重量比 8.5 : 0.7 : 0.8の混合物に過剰のN−メチルピロリドン溶液を加え、ゲル状組成物を得た。この組成物を約15μmのSUS箔上に10mm×10mm、約200μmの厚さに塗布成型した。さらに、約100℃で24時間加熱真空乾燥することにより、ポリアニリン電極(18mg)を得た。
【0053】
[実施例14]
<プロトン系二次電池の製造>
アルゴン雰囲気グローブボックス内で、実施例13で製造したスルホン化ポリアニリン電極(18mg)10mm×10mmに、該熱重合性組成物溶液を含浸させた電極を用意した。次に、実施例3で製造した溶媒含浸化合物▲3▼重合体/アルミニウムオキサイド複合フィルム(10mm×10mm)をこのスルホン化ポリアニリン電極に貼り合わせ、さらに実施例12で製造したものと同様の熱重合性組成物溶液含浸ポリアニリン電極をはり合わせ、電池端部をエポキシ樹脂で封止後、100℃で1時間加熱することにより、図1に示すようなスルホン化ポリアニリン/ポリアニリン二次電池を製造した。
この電池を、作動電圧0〜1.0V、電流0.1mAで充放電を行なったところ、最大容量は2.0mAhであった。また、この条件で充放電を50回繰り返しても容量変化は殆どなかった。
【0054】
[実施例15]
<ポリピリジン電極の製造>
Synth. Metals 25 103 (1988) に記載の方法に従い、Ni(0価)法で下記の一般式で表されるポリピリジン粉末を得た。
【化17】
Figure 0004404322
このポリピリジン粉末とアセチレンブラック、ポリフッ化ビニリデンの重量比 8.5 : 0.7 : 0.8の混合物に過剰のN−メチルピロリドン溶液を加え、ゲル状組成物を得た。この組成物を約15μmのSUS箔上に10mm×10mm、約200μmの厚さに塗布成型した。さらに、約100℃で24時間加熱真空乾燥することにより、ポリピリジン電極(18mg)を得た。
【0055】
[実施例16]
<プロトン系二次電池の製造>
ポリアニリン電極(15mg)の代りに、実施例15で製造したポリピリジン電極(18mg)を用いた以外は、実施例14と同様の方法で図1に示すようなスルホン化ポリアニリン/ポリピリジン二次電池を製造した。 この電池を、作動電圧0〜1.2V、電流0.1mAで充放電を行なったところ、最大容量は2.3mAhであった。また、この条件で充放電を50回繰り返しても容量変化は殆どなかった。
【0056】
[実施例17]
<ポリキノン電極の製造>
Chem. Lett., 461 (1994) に記載の方法に従い、ポリキノン粉末を得た。
【化18】
Figure 0004404322
このポリキノン粉末とアセチレンブラック、ポリフッ化ビニリデンの重量比 8.5 : 0.7 : 0.8の混合物に過剰のN−メチルピロリドン溶液を加え、ゲル状組成物を得た。この組成物を約15μmのSUS箔上に10mm×10mm、約200μmの厚さに塗布成型した。さらに、約100℃で24時間加熱真空乾燥することにより、ポリキノン電極(15mg)を得た。
【0057】
[実施例18]
<プロトン系二次電池の製造>
化合物▲8▼ 0.3g 、化合物(10) 0.7g 、アセトニトリル3.0g、オルトリン酸0.3g、シリカ微粒子(日本アエロジル製、比表面積約200m2/g)0.20g 及びBPO0.04g をアルゴン雰囲気中でよく混合し、熱重合性組成物溶液を得た。
アルゴン雰囲気グローブボックス内で、実施例17で製造したポリキノン電極(15mg)10mm×10mmに、該熱重合性組成物溶液を含浸させた電極に、実施例10で製造した溶媒含浸化合物▲8▼+(10)重合体/シリカ複合フィルム(10mm×10mm)を貼り合わせ、さらに実施例15で製造したポリピリジン電極に該熱重合性組成物溶液を含浸した電極をはり合わせ、電池端部をエポキシ樹脂で封止後、100℃で1時間加熱することにより、図1に示すようなポリキノン/ポリピリジン系二次電池を製造した。
この電池を、作動電圧0〜1.0V、電流0.1mAで充放電を行なったところ、最大容量は2.1mAhであった。また、この条件で充放電を50回繰り返しても容量変化は殆どなかった。
【0058】
[実施例19]
<二酸化マンガン電極の製造>
電解二酸化マンガン粉末とアセチレンブラック、ポリフッ化ビニリデンの重量比 8.8 : 0.7 : 0.5の混合物に過剰のN−メチルピロリドン溶液を加え、ゲル状組成物を得た。この組成物を約15μmのSUS箔上に10mm×10mm、約100μmの厚さに塗布成型した。さらに、約100℃で24時間加熱真空乾燥することにより、二酸化マンガン電極(23mg)を得た。
【0059】
[実施例20]
<プロトン系二次電池の製造>
スルホン化ポリアニリン電極(18mg)の代りに、実施例19で製造した二酸化マンガン電極(23mg)を用いた以外は、実施例14と同様の方法で図1に示すような二酸化マンガン/ポリアニリン二次電池を製造した。
この電池を、作動電圧0〜1.0V、電流0.1mAで充放電を行なったところ、最大容量は2.5mAhであった。
【0060】
【発明の効果】
本発明の二次電池は、プロトンの挿入、放出反応容量が大きい、スルホン酸側鎖を有する高分子及び/またはポリピリジン骨格を有する高分子及び/またはポリピリミジン骨格を有する高分子及び/またはヒドロキノン骨格を有する高分子及び/またはマンガン酸化物からなる電極活物質とプロトン伝導性高分子固体電解質とから得られるプロトン系固体二次電池である為、安全性、信頼性、電流特性に優れ、長寿命、高容量で薄型化、チップ化等が可能な形状自由性のある二次電池である。
また本発明のプロトン伝導性高分子固体電解質は、特定の熱及び活性光線重合性にすぐれた化合物を重合することによって得られる高分子からなる加工性、機械的強度にすぐれ、高イオン伝導度で耐久性が良好なプロトン伝導性高分子固体電解質であり、プロトン系固体二次電池に適している。
また本発明の電極は、該熱及び活性光線重合性にすぐれた化合物を重合することによって得られる高分子からなるプロトン伝導性高分子固体電解質とスルホン酸側鎖を有する高分子及び/またはポリピリジン骨格を有する高分子及び/またはポリピリミジン骨格を有する高分子及び/またはヒドロキノン骨格を有する高分子及び/またはマンガン酸化物から選ばれる電極活物質とを複合することにより得られ、高容量、長寿命で加工性に優れた電極である。
【図面の簡単な説明】
【図1】本実施例中に作製した電池の概略断面図である。
【符号の説明】
1 正極
2 セパレーター用フィルム
3 負極
4 集電体
5 絶縁性樹脂封止剤[0001]
BACKGROUND OF THE INVENTION
The present invention uses a positive electrode active material and / or negative electrode active material that performs a charge / discharge reaction by proton insertion / release, and a proton conductive polymer solid electrolyte, and has excellent safety and reliability, a large extraction current, and an excellent cycle life. The present invention relates to secondary batteries.
[0002]
[Prior art]
In the flow of downsizing and solidification in the field of ionics, the application of solid electrolytes to all-solid primary batteries, secondary batteries, and electric double-layer capacitors is popular as a new ion conductor that replaces conventional electrolyte solutions. Has been tried. A battery using an electrolyte solution has a problem in long-term reliability because liquid leakage to the outside of the component or elution of the electrode material is likely to occur. On the other hand, a product using a solid electrolyte does not have such a problem and can be easily reduced in thickness. Furthermore, the solid electrolyte is excellent in heat resistance and is advantageous in the manufacturing process of products such as batteries.
Among batteries using an electrolyte solution, lithium primary batteries and lithium (ion) secondary batteries have recently been rapidly mounted on small portable devices due to their high energy density, and have shown rapid growth. For example, LiCoO2 , LiNiO2 LiMnO2 , MoS2 Lithium secondary batteries using organic electrolytes have been studied extensively, using metal oxides such as metal sulfides and metal sulfides for the positive electrode, lithium, lithium alloys, carbon materials that can occlude and release lithium ions, and inorganic compounds for the negative electrode. Yes. "J. Electrochem. Soc., Vol. 138 (No. 3), 665, 1991" includes MnO.2 Or NiO2 A lithium battery having a positive electrode as a positive electrode has been reported.
[0003]
In addition, there are many reports on batteries using a conductive polymer as an electrode active material. For example, lithium secondary batteries using polyanilines as positive electrodes are, for example, “The 27th Battery Conference, 3A05L and 3A06L, 1986”. As already reported in Japan, Bridgestone Corporation and Seiko Corporation have already been put on the market as coin-type batteries for use as backup power sources. Polyaniline is attracting attention as a positive electrode active material having high capacity and excellent flexibility. In addition, polyaniline can be oxidized and reduced by protons, and it is also proposed that it can be applied as a positive electrode active material for a battery using an acidic aqueous solution (Bull. Chem. Soc. Jpn. 57, 2254, 1984).
However, since these lithium batteries use lithium and / or lithium compounds that are active and easily oxidized in moisture and air, there are concerns about safety and reliability at the time of short circuit, high temperature, liquid leakage, opening, etc. Safety measures have been taken by various methods such as a separator, incorporation of a PTC element, and a sealing method. For the purpose of improving safety and reliability, studies for changing the organic electrolyte to a lithium ion conductive polymer solid electrolyte have been actively attempted recently, and a part thereof has been put on the market. What uses the solid electrolyte which has a polymer as a main component has the merit that the softness | flexibility of a battery increases compared with an inorganic substance, and it can process into a various shape. However, what has been studied so far has left the problem that the extraction current is small because the lithium ion conductivity of the polymer solid electrolyte is low.
[0004]
As an example of these polymer solid electrolytes, “British Polymer Journal (Br. Polym. J.), Vol. 319, p. 137, 1975” describes a complex of polyethylene oxide and an inorganic alkali metal salt. Although it is described to show conductivity, the ionic conductivity at room temperature is 10-7S / cm is low.
Recently, it has been reported that comb polymers in which oligooxyethylene is introduced into the side chain improve the thermal mobility of the oxyethylene chain responsible for ionic conductivity and improve the ionic conductivity. For example, in "J. Phys. Chem. 89, 987, 1984", an alkali metal salt is added to the side chain of polymethacrylic acid to which oligooxyethylene is added. An example in which is combined is described.
U.S. Pat. No. 4,357,401 describes that a polymer solid electrolyte composed of a cross-linked polymer containing a heteroatom and an ionizable salt has reduced crystallinity, low glass transition point, and improved ionic conductivity. 10-FiveIt was still insufficient with about S / cm.
[0005]
The ionic conductivity of a lithium ion conductive polymer solid electrolyte that is generally studied has a value of 10 at room temperature.-Four-10-FiveAlthough improved to about S / cm, the level is still two orders of magnitude lower than that of the liquid ion conductive material. In addition, when the temperature is lower than 0 ° C., the ionic conductivity is extremely lowered.
J. et al. Appl. Electrochem. , No. As described in pages 5, 63 to 69 (1975), a so-called lithium ion conductive high-polymer having a solvent and an electrolyte added to a thermoplastic polymer and / or a crosslinked polymer such as polyacrylonitrile and polyvinylidene fluoride gel. It has been reported that molecular gel electrolytes have high ionic conductivity. Japanese Patent Publication No. 58-36828 reports that a similar polymer gel electrolyte obtained by adding a solvent and an electrolyte to polymethacrylic acid alkyl ester has high ionic conductivity. However, although these polymer gel electrolytes have high ionic conductivity, they impart fluidity, so they cannot be handled as complete solids, are inferior in film strength and film formability, and are susceptible to short circuits when applied to batteries. In addition, a sealing problem occurs like the liquid ion conductive material.
[0006]
On the other hand, in US Pat. No. 4,792,504, ionic conductivity can be improved by using a crosslinked polymer solid electrolyte in which an electrolytic solution composed of a metal salt and an aprotic solvent is impregnated in a continuous network of polyethylene oxide. Has been proposed. Also, in US Pat. No. 4,830,939, JP-A-58-82477, and JP-A-63-94563, a mixture of a vinyl compound such as a (meth) acrylate monomer and a styrene derivative and an organic electrolyte is present in an appropriate initiator. It has been reported that it is polymerized with actinic rays to form a polymer solid electrolyte. However, these polymer solid electrolytes have a solvent added, but the ionic conductivity is 10-FourSince the S / cm was still insufficient and a large amount of solvent was added, there was a problem that the film strength further decreased.
[0007]
In order to solve these problems, the present inventors have prepared a polymer using a (meth) acrylate monomer mixture containing an oxyalkylene group having a urethane bond, and an ion conductive polymer using a composite comprising an electrolyte. A solid electrolyte (JP-A-6-187822) has been proposed. The ionic conductivity of this polymer solid electrolyte is 10 when no solvent is added.-FourS / cm (room temperature), which is a high level, but when a solvent is further added, it is 10 at room temperature or lower.-3S / cm or more, and the film quality was improved to the extent that it can be obtained as a self-supporting film. In addition, this monomer has good polymerizability, and when applied to a battery or an electric double layer capacitor, it is polymerized and solidified by heating or actinic rays after being incorporated into the battery or electric double layer capacitor in the monomer state, and the adhesion to the electrode. There was also a merit in processing that a solid polymer electrolyte with good quality could be made.
However, batteries using these lithium ion conductive polymer solid electrolytes still have insufficient ion conductivity and a low extraction current. Moreover, although it solidified, since the lithium and / or lithium compound are used, it cannot be said that the above-mentioned safety and reliability are still sufficient.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a proton-type solid secondary battery that is excellent in safety, reliability, and current characteristics, has a long life, and has a high capacity. It is another object of the present invention to provide a proton conductive polymer solid electrolyte and an electrode having excellent characteristics when applied to the secondary battery.
[0009]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have found that as an electrode active material, a polymer having a sulfonic acid side chain and / or a polymer having a polypyridine skeleton and / or a polymer having a polypyrimidine skeleton and / or Polymers having a polyquinone skeleton and / or manganese oxides have large proton insertion and emission reaction capacities, and proton-based solid secondary batteries obtained from these and proton-conducting polymer solid electrolytes are safe, reliable, and current-proof. It has been found that the secondary battery is excellent in characteristics, has a long life, has a high capacity, can be thinned, and can be formed into a chip.
In addition, the inventors of the present invention have a proton conductive polymer solid electrolyte containing a polymer obtained by polymerizing a specific compound having excellent heat and actinic ray polymerizability, which has excellent workability and mechanical strength, and high ionic conductivity. And has good durability, and was found to be suitable for the proton-type solid secondary battery of the present invention.
Furthermore, the present inventors have prepared a proton conductive polymer solid electrolyte containing a polymer obtained by polymerizing the compound having excellent thermal and actinic ray polymerizability, a polymer having a sulfonic acid side chain and / or a polypyridine skeleton. High capacity, long life, and workability by combining a polymer having a polymer and / or a polymer having a polypyrimidine skeleton and / or a polymer having a polyquinone skeleton and / or an electrode active material selected from manganese oxide It has been found that an excellent electrode can be obtained.
[0010]
  That is, the present invention has achieved the above object by developing the following.
[1] A conductive polymer having a sulfonic acid side chain, a conductive polymer having a polypyridine skeleton and / or a polypyrimidine skeleton, in which a positive electrode active material and / or a negative electrode active material performs a charge / discharge reaction by proton insertion / release, and A proton secondary battery, which is at least one material selected from the group consisting of conductive polymers having a polyquinone skeleton, and wherein the electrolyte is a proton conductive polymer solid electrolyte.
[0011]
[2] The proton conductive polymer solid electrolyte is represented by the general formula (1) or the general formula (2).
[Chemical Formula 3]
Figure 0004404322
[Formula 4]
Figure 0004404322
[Wherein R1, R2Represents hydrogen or an alkyl group, R3Represents a divalent group having 10 or less carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. x represents 0 or a numerical value of 1 to 10. However, a plurality of R in the polymerizable functional group represented by the general formula (1) or (2) in the same molecule.1, R2, R3And the values of x are independent of each other and need not be the same. ]
[1] characterized in that it comprises at least one conductive polymer obtained by polymerizing a thermal and / or actinic ray polymerizable compound having a polymerizable functional group represented by the formula [1]. A proton secondary battery according to 1.
[0012]
[3] The proton secondary battery as described in [2] above, wherein the proton acid is an organic sulfonic acid compound and / or a phosphoric acid compound and / or a boric acid compound.
[4]Polar solventThe proton secondary battery according to the above [2] or [3], further comprising:
[5]Polar solventThe proton secondary battery according to [4], wherein is a heteroatom-containing polar organic solvent.
[0013]
[6] The proton secondary battery as described in [1] to [5] above, wherein the electrolyte contains at least one kind of inorganic fine particles.
[7] Inorganic fine particles have a BET specific surface area of 10 m2 / GAs described above, it is silica, alumina, titania, or magnesia having a crystal particle diameter of 1 μm or less, or a composite oxide thereof, and the content thereof is 1 to 50 wt%. Next battery.
[0014]
  The present invention is described in detail below.
  The polymer that is the main constituent of the proton conductive polymer solid electrolyte of the present invention must be non-electron conductive and capable of absorbing and retaining various polar solvents. As such a polymer,Nafion (registered trademark), Fluorinated polyether, polyvinylidene fluoride, polyalkylene oxide, polyalkyleneimine, polyacrylonitrile, poly (meth) acrylate, polyphosphazene, polyurethane, polyamide, polyester, polysiloxane, etc. Examples thereof include a plastic polymer and a crosslinked polymer. In particular, the crosslinked polymer is suitable as the polymer for composite electrolytes of the present invention because it has high strength after solvent absorption, high solvent retention, and is a viscoelastic body. The cross-links represented here include those in which the side chain is cross-linked by ionic bonds or hydrogen bonds, and those that are physically cross-linked through various additives, in addition to the cross-linked chains being formed by covalent bonds. Yes.
  Among the above polymers, from the viewpoint of stability,Nafion (registered trademark)Those having a fluorocarbon group in the molecular structure such as fluorinated polyether and polyvinylidene fluoride are preferred. In addition, those having an oxyalkylene or urethane structure such as polyalkylene oxide or polyurethane in the molecular structure are preferable because they have good compatibility with various polar solvents and good electrochemical stability.
[0015]
Among the above polymers, a polymerizable functional group represented by the general formula (1) or (2)
[Chemical formula 5]
Figure 0004404322
[Chemical 6]
Figure 0004404322
[Wherein R1 , R2 Represents hydrogen or an alkyl group, RThree Represents a divalent group having 10 or less carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. x represents 0 or a numerical value of 1 to 10. However, a plurality of R in the polymerizable functional group represented by the general formula (1) or (2) in the same molecule.1 , R2 , RThree And the values of x are independent of each other and need not be the same. ]
A polymer obtained by curing at least one polymerizable compound having an anion by heating and / or actinic ray irradiation is preferable because it is easy to form a film in a state containing a solvent and has good film strength.
[0016]
Among them, the following general formula (3) or (4)
[Chemical 7]
Figure 0004404322
[Chemical 8]
Figure 0004404322
[Wherein R1 , R2 , RThree , X is the same as in general formula (1) or (2). RFour , RFive Is a divalent group containing an oxyalkylene group and / or a fluorocarbon or oxyfluorocarbon. ]
Particularly preferred is a polymer obtained by curing at least one polymerizable compound having a polymerizable functional group represented by formula (2) by heating and / or actinic ray irradiation.
[0017]
The method for synthesizing the compound having the functional group represented by the general formula (1) used for the proton conductive polymer solid electrolyte of the present invention is not particularly limited. For example, the compound having an acid chloride and a terminal hydroxyl group For example, it can be easily obtained by reacting with oligooxyalkyleneol.
For example, a compound having one functional group represented by the general formula (1) is obtained by reacting an acid chloride with a monoalkyl oligooxyalkylene glycol at a 1: 1 molar ratio according to the following reaction formula. Easy to get.
CH2 = C (R1 ) COCl + HO (CH2 CH (R6) O)mR7
→ CH2 = C (R1 ) COO (CH2 CH (R6) O)mR7
[However, R in the formula1 Is the same as in general formula (1). R6 Is H or an alkyl group having 10 or less carbon atoms. R7 Is an alkyl group having 10 or less carbon atoms. ]
[0018]
For example, a compound having two functional groups represented by the general formula (1) can be easily obtained by reacting acid chloride and oligooxyalkylene glycol at a molar ratio of 2: 1 according to the following reaction formula. can get.
2CH2 = C (R1 ) COCl + HO (CH2 CH (R6) O)mH
→ CH2 = C (R1 ) COO (CH2 CH (R6) O)mCO (R1 ) C = CH2
[However, R in the formula1 Is the same as in general formula (1). R6 Is H or an alkyl group having 10 or less carbon atoms. ]
[0019]
The method for synthesizing the compound having a polymerizable functional group represented by the general formula (2) used in the proton conductive polymer solid electrolyte of the present invention is not particularly limited.2= C (R2 ) CO [ORThree ]x It can be obtained by the reaction of NCO and oligoalkylene glycol (wherein R2 , RThree , X are the same as those in the general formula (2). ).
As a specific method, a compound having one ethylenically unsaturated group is, for example, a methacryloyl isocyanate compound (hereinafter abbreviated as MI) or an acryloyl isocyanate compound (hereinafter abbreviated as AI) and a monoalkyl. Oligoalkylene glycol and the following reaction formula
CH2 = C (R2 ) CO [ORThree ]x NCO + HO (CH2 CH (R6) O)mR7
→ CH2 = C (R2 ) CO [ORThree ]x NHCOO (CH2 CH (R6) O)mR7
[However, R in the formula2 , RThree , X is the same as in the general formula (2). R6 Is H or an alkyl group having 10 or less carbon atoms, R7 Is an alkyl group having 10 or less carbon atoms. ]
Thus, it can be easily obtained by reacting at a molar ratio of 1: 1.
[0020]
A compound having two ethylenically unsaturated groups can be easily obtained by reacting, for example, MIs or AIs with an oligoalkylene glycol at a molar ratio of 2: 1.
A compound having three ethylenically unsaturated groups reacts, for example, with MIs and / or AIs and a triol obtained by addition polymerization of alkylene oxide to a trihydric alcohol such as glycerin at a molar ratio of 3: 1. Can be easily obtained.
The compound having four ethylenically unsaturated groups is, for example, a 4: 1 molar ratio of MIs and / or AIs and tetraol obtained by addition polymerization of alkylene oxide to a tetrahydric alcohol such as pentaerythritol. It can be easily obtained by reacting.
[0021]
The compound having five ethylenically unsaturated groups is, for example, MIs and / or AIs and pentaol obtained by addition polymerization of α-D-glucopyranose with alkylene oxide at a molar ratio of 5: 1. It can be easily obtained by reacting.
In addition, the compound having six ethylenically unsaturated groups is obtained by reacting, for example, MIs and / or AIs with hexaol obtained by addition polymerization of alkylene oxide to mannitol at a molar ratio of 6: 1. Easy to get.
There is no particular limitation on the method for synthesizing the compound having a polymerizable functional group represented by the general formula (1) and / or (2) having a fluorocarbon group and / or an oxyfluorocarbon group. A compound having one functional group can be obtained by reacting MIs or AIs with monools such as 2,2,3,3,4,4,4-heptafluoro-1-butanol in the following reaction formula: It can be easily obtained by reacting at a molar ratio of 1: 1.
CH2= C (R1 ) COO (CH2)2 NCO + CFThree(CF2)2 CH2 OH
→ CH2= C (R1 ) COO (CH2)2 NHCOOCH2(CF2)2 CFThree
[0022]
A compound having two polymerizable functional groups is, for example, an MI or AI compound and a diol such as 2,2,3,3-tetrafluoro-1,4-butanediol represented by the following reaction formula: It can be easily obtained by reacting at a molar ratio of 2: 1.
2CH2= C (R1 ) COO (CH2)2 NCO + HOCH2(CF2)2 CH2 OH
→ {CH2= C (R1 ) COO (CH2)2 NHCOOCH2 CF2 −}2
[0023]
A polymer obtained by polymerizing a compound having only one polymerizable functional group represented by the general formula (1) or (2) does not have a cross-linked structure and has insufficient film strength. If it is, there is a greater risk of short circuiting, and it is better not to use it alone. Therefore, it is preferable to copolymerize and crosslink with a compound having two or more polymerizable functional groups represented by the general formula (1) or (2).
Considering the thin film strength of the proton conductive polymer solid electrolyte, the number of polymerizable functional groups represented by the general formula (1) or (2) contained in one molecule is more preferably 3 or more.
Among the compounds having a polymerizable functional group represented by the general formula (1), the polymer obtained from the compound having a polymerizable functional group represented by the general formula (2) contains a urethane group. The polymerizability is favorable, and the film strength when formed into a thin film is large, which is preferable.
[0024]
A polymer preferable as a constituent component of the proton conductive polymer solid electrolyte of the present invention is obtained by polymerizing at least one compound having a polymerizable functional group represented by the general formula (1) or the general formula (2), or It is obtained by polymerizing a compound as a copolymerization component.
The polymer used in the proton conductive polymer solid electrolyte of the present invention may be a homopolymer of a compound having a polymerizable functional group represented by the general formula (1) or the general formula (2). Or a copolymer of at least one of the compounds and another polymerizable compound.
[0025]
There is no restriction | limiting in particular as another polymeric compound copolymerizable with the compound which has a polymeric functional group represented by the said General formula (1) or General formula (2). For example, (meth) acrylamide compounds such as acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, acryloylmorpholine, methacryloylmorpholine, N, N-dimethylaminopropyl (meth) acrylamide, styrene, Examples thereof include styrene compounds such as α-methylstyrene, N-vinylamide compounds such as N-vinylacetamide and N-vinylformamide, and alkyl vinyl ethers such as ethyl vinyl ether. For the polymerization, a general method utilizing the polymerizability of the acryloyl group or methacryloyl group in the polymerizable compound can be employed. That is, a radical polymerization catalyst such as azobisisobutyronitrile, benzoyl peroxide, CF, etc., alone with these monomers or with a mixture of these monomers and other polymerizable compounds described above.Three Protonic acid such as COOH, BFThree AlClThree It is possible to carry out radical polymerization, cationic polymerization or anionic polymerization using a cationic polymerization catalyst such as Lewis acid or the like, or an anionic polymerization catalyst such as butyl lithium, sodium naphthalene or lithium alkoxide. In addition, some polymerizable compounds can be radically polymerized only by heating in an oxygen-free state.
[0026]
The polymer used for the proton conductive polymer solid electrolyte of the present invention preferably contains an oxyalkylene or oxyfluorocarbon structure. In this case, the number of oxyalkylene chains and the number of oxyfluorocarbon chains (that is, the general formula (3 R in)Four Or R in the general formula (4)Five The repeating number n of the oxyalkylene group and oxyfluorocarbon group contained therein is preferably in the range of 1 to 1000, particularly preferably in the range of 5 to 100.
[0027]
As described above, the polymer used for the proton conductive polymer solid electrolyte of the present invention may be a homopolymer of a compound having a functional group represented by the general formula (1) or (2). Or a copolymer of at least one of the compounds and another polymerizable compound. The polymer used in the proton conductive polymer solid electrolyte of the present invention is a polymer obtained from at least one of the compounds having a functional group represented by the general formula (1) or (2) and / or the compound. It may be a mixture of a copolymer having a copolymer component with other polymer. For example, a polymer obtained from at least one of the compounds having the functional group represented by the general formula (1) or (2) and / or a copolymer containing the compound as a copolymerization component, polyethylene oxide, polypropylene oxide , Polyacrylonitrile, polybutadiene, polymethacrylic (or acrylic) esters, polystyrene, polyphosphazenes, polysiloxane or polysilane, polyvinylidene fluoride, polytetrafluoroethylene, etc. You may use for a solid electrolyte.
[0028]
It is preferable that the proton conductive polymer solid electrolyte of the present invention is impregnated with at least one polar solvent to improve ionic conductivity. As the polar solvent that can be used, those having good compatibility with the polymer used in the proton conductive polymer solid electrolyte of the present invention, high boiling point, high solubility of electrolyte salt, and no adverse effect on the battery used Is good. That is, a compound having a large dielectric constant, a boiling point of 60 ° C. or higher, and a wide electrochemical stability range is suitable. Hydroxy-containing compounds such as water and alcohol have a narrow electrochemical stability range, and hydrogen and oxygen are generated. It is not preferable because it is easy to do. Therefore, non-aqueous polar organic solvents are preferred, and examples of such solvents include oligoethers such as triethylene glycol dimethyl ether and tetraethylene glycol dimethyl ether, nitriles such as benzonitrile, tolunitrile and acetonitrile, dimethylformamide, dimethyl sulfoxide, N -Nitrogen-containing polar solvents such as methylpyrrolidone and N-vinylpyrrolidone, sulfur-containing polar solvents such as sulfolane, phosphates, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate It is done. Of these, oligoethers, nitriles, and nitrogen-containing polar solvents have high protonic acid salt solubility, a wide electrochemical stability range, and nitrogen-containing polar solvents are particularly preferred.
[0029]
The higher the content of the solvent in the proton conductive polymer solid electrolyte, the easier the dissociation of the proton acid salt or the diffusion of ions, and the higher the ionic conductivity, the lower the mechanical strength. A preferable addition amount is 0.5 to 12 times or less and 1 to 8 times or less the weight of the polymer in the proton conducting polymer solid electrolyte of the present invention.
The composite ratio of the proton acid salt used in the proton conductive polymer solid electrolyte of the present invention is preferably 0.1 to 50% by weight, particularly preferably 1 to 30% by weight, based on the weight of the polymer. When the electrolyte salt used in the composite is present in a ratio of 50% by weight or more, proton transfer is greatly inhibited. Conversely, in the ratio of 0.1% by weight or less, the absolute amount of proton is insufficient and the ionic conductivity is low. Become.
The type of protonic acid salt used for the complex is not particularly limited, but a protonic acid salt having good solubility in the non-aqueous polar organic solvent or polymer and a high degree of dissociation is preferable.
Examples thereof include organic acids such as paratoluenesulfonic acid, fluorine-containing organic acids such as trifluoromethanesulfonic acid and trifluoroacetic acid, boric acids, and phosphoric acids.
[0030]
It is preferable that various inorganic fine particles are added to the proton conductive polymer solid electrolyte of the present invention. By doing so, not only the strength and film thickness uniformity are improved, but also fine pores are formed between the inorganic fine particles and the polymer, and when immersed in the electrolyte, free in the separator through the pores. In other words, the ionic conductivity and mobility can be increased without deteriorating the strength. Further, by adding inorganic fine particles, the viscosity of the polymerizable composition is increased, and the effect of suppressing the separation also appears when the compatibility between the polymer and the solvent is insufficient.
As the inorganic fine particles to be used, non-electron conductive and electrochemically stable particles are selected. Moreover, if it is ion conductivity, it is still more preferable. Specific examples include α, β, γ-alumina, silica, titania, magnesia, and composite oxides thereof, and ion conductive or nonconductive ceramic fine particles such as zeolite.
From the viewpoint of increasing the strength of the proton conductive polymer solid electrolyte and increasing the amount of electrolyte solution retained, the inorganic fine particles preferably have a secondary particle structure in which primary particles are aggregated. Specific examples of inorganic fine particles having such a structure Examples include silica ultrafine particles such as Aerosil (made by Nippon Aerosil), alumina ultrafine particles, titania ultrafine particles such as Super Titania (made by Showa Denko), and magnesia ultrafine particles made by Kyoeisha. To alumina ultrafine particles and silica ultrafine particles are particularly preferable.
[0031]
For the purpose of increasing ion conductivity and mobility, it is preferable that the specific surface area of the inorganic fine particles is as large as possible.2/ g or more is preferable 50m2More preferably / g or more.
The size of such inorganic fine particles is not particularly limited as long as it can be mixed with the polymerizable composition, but the crystal particle diameter is preferably 0.001 μm to 10 μm, particularly preferably 0.001 μm to 1 μm.
In addition, various shapes such as a spherical shape, an oval shape, a cubic shape, a rectangular parallelepiped shape, a cylindrical shape or a rod shape can be used.
On the other hand, when the amount of the inorganic fine particles added is too large, there are problems that the strength and ionic conductivity of the proton conductive polymer solid electrolyte are lowered, and film formation is difficult. Therefore, the preferable addition amount is preferably 50 wt% or less, particularly preferably in the range of 0.1 to 30 wt% with respect to the composite electrolyte.
[0032]
When producing the proton conductive polymer solid electrolyte of the present invention, at least one of the (meth) acryloyl compounds having a polymerizable functional group represented by the general formula (1) or (2) is at least one kind. An electrolyte salt, or at least one inorganic fine particle, or a polymerizable composition to which at least one polar solvent is further added, or a polymerizable composition to which at least one polymerization initiator is further added, on various substrates. A method of polymerizing and curing such a (meth) acryloyl-based compound by heating and / or actinic ray irradiation after film formation and application can be uniformly formed, and film thickness control is simple and recommended.
The polymerization temperature depends on the type of the polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2) and the type of the initiator, but may be any temperature at which polymerization occurs. The temperature may be in the range of 0 ° C to 200 ° C. Even in the case of polymerization by irradiation with actinic rays, depending on the type of the polymerizable compound having a polymerizable functional group represented by the general formula (1) or (2), for example, actinic rays such as benzyl methyl ketal and benzophenone Using an initiator, it can be polymerized by irradiation with ultraviolet light of several mW or more, electron beam, γ-ray or the like.
[0033]
The proton conductive polymer solid electrolyte of the present invention can be improved in strength and the like by being used in combination with another porous polymer film. However, depending on the type of polymer to be used, the film shape, and the composite ratio, it may cause a decrease in ionic conductivity and a deterioration in stability, so it is necessary to select a suitable one. Examples of porous polymer films to be used include porous polyolefin films such as polypropylene nonwoven fabrics and reticulated polyolefin sheets such as polyethylene nets, polyolefin microporous films such as Celgard (trade name), nylon nonwoven fabrics, and polyester nets. Among them, a polyolefin porous film is preferable in terms of stability. Further, the porosity may be about 10 to 90%, but as long as the strength permits, a porosity as large as possible is good, and therefore a preferable range of the porosity is 40 to 90%. .
Although there is no restriction | limiting in particular as a composite method, For example, at least 1 type of electrolyte salt in the at least 1 type of the (meth) acryloyl type compound which has a polymeric functional group represented by General formula (1) or (2), or further A porous polymer film is impregnated with a polymerizable composition to which at least one kind of inorganic fine particles or at least one kind of polar solvent is further added, or a polymerizable composition to which at least one kind of polymerization initiator is further added, and then applied. A method of polymerizing a (meth) acryloyl compound can be uniformly combined, and film thickness control is simple and recommended.
[0034]
When the proton conductive polymer solid electrolyte of the present invention is applied to a battery, the proton conductive polymer solid electrolyte has high electrolyte retention and does not have pores. Battery with a long lead-out current and a high safety and reliability. In addition, liquid leakage and short-circuiting are unlikely to occur, so that a thin battery can be obtained with a simple package.
FIG. 1 shows a schematic cross-sectional view of an example of a thin film battery as a battery manufactured in this manner. In the figure, 1 is a positive electrode, 2 is a separator film made of the proton conductive polymer solid electrolyte of the present invention, 3 is a negative electrode, 4 is a current collector, and 5 is an insulating resin sealant.
[0035]
The electrode active material used in the battery of the present invention must be capable of charge / discharge reaction by proton insertion / release. Examples of such a compound include various carbon materials such as conductive polymers, transition metal oxides, graphite, activated carbon, and various organometallic complexes.
Among these, the conductive polymer is preferable in that it is flexible and easily formed into a thin film. Examples of conductive polymers include polyaniline and derivatives thereof, polyparaphenylene and derivatives thereof, polypyrrole and derivatives thereof, polyquinone and derivatives thereof, polythienylene and derivatives thereof, polypyridinediyl and derivatives thereof, polyisothianaphthenylene and derivatives thereof. Polyarylene vinylenes such as polyfurylene and derivatives thereof, polyselenophene and derivatives thereof, polyparaphenylene vinylene, polythienylene vinylene, polyfurylene vinylene, polynaphthenylene vinylene, polyselenophene vinylene, polypyridinediyl vinylene, and the like Derivatives and the like.
Among them, polyaniline and derivatives thereof are excellent in charge / discharge reaction efficiency by proton doping / undoping reaction in an acidic aqueous solution, but are still insufficient in capacity.
[0036]
It is preferable to introduce sulfonic acid into these conductive polymer side chains because the proton doping / undoping reaction capacity is improved. Examples of such polymers include sulfonated polyaniline obtained by treating polyaniline in sulfuric acid (Nitto Denko), sulfonated thiophene, and oxidized polymer of sulfonated isothianaphthene (Showa Denko).
Nitrogen-containing aromatic conductive polymers are preferable because of the specific reaction between nitrogen and protonic acid, the proton doping / undoping reaction capacity is improved.
Among them, the following general formula
[Chemical 9]
Figure 0004404322
[R represents hydrogen, an alkyl group, an alkoxy group, an ester group, a carboxyl group, a nitrile group, a nitro group, a halogen group, or a sulfonic acid group. n represents an integer of 1 or more. ]
Polypyridinediyl and its derivatives represented by the following general formula
[Chemical Formula 10]
Figure 0004404322
[R represents hydrogen, an alkyl group, an alkoxy group, an ester group, a carboxyl group, a nitrile group, a nitro group, a halogen group, or a sulfonic acid group. n represents an integer of 1 or more. ]
A polymer having a polypyridine skeleton and a polypyrimidine skeleton such as polypyrimidinediyl and derivatives thereof represented by
[0037]
The following general formula
Embedded image
Figure 0004404322
Or
Embedded image
Figure 0004404322
A polymer having a polyquinone skeleton such as polyquinone represented by the formula is preferred because it has a large proton insertion / release capacity in the quinhydroacid reduction reaction.
[0038]
Transition metal oxides are preferable as the electrode active material of the present invention in that the packing density is high and the volume capacity density is high. Examples thereof include cobalt oxide, manganese oxide, vanadium oxide, nickel oxide, molybdenum oxide and the like, and manganese oxide and nickel oxide are particularly preferable from the viewpoint of high capacity and high voltage.
Examples of the carbon material include natural graphite, artificial graphite, gas phase method graphite, petroleum coke, coal coke, fluorinated graphite, pitch-based carbon, and polyacene.
The current collector is preferably made of a material having an electronic conductivity and electrochemical corrosion resistance, and having a specific surface area as large as possible. Examples thereof include various metals and their sintered bodies, electron conductive polymers, carbon sheets and the like.
[0039]
【Example】
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
[0040]
[Example 1]
<Synthesis of Compound (3)>
Embedded image
Figure 0004404322
After dissolving 50.0 g of compound (1) (KOH value 34.0 mg / g, m / n = 7/3) and 4.6 g of compound (2) (methacryloyloxyethyl isocyanate) in 100 ml of well-purified THF in a nitrogen atmosphere, 0.44 Add g of dibutyltin dilaurate. Then, the colorless viscous liquid was obtained by making it react at 25 degreeC for about 15 hours. That1From the results of H-NMR, IR, and elemental analysis, compound (1) and compound (2) reacted one to three, and the isocyanate group of compound (2) disappeared and a urethane bond was formed. Compound (3) was found to be produced.
[0041]
[Example 2]
Compound (3) 1.0 g, dimethylformamide (DMF) 3.0 g, p-toluenesulfonic acid (PTS) 0.6 g and 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name Lucillin TPO, manufactured by BASF) 0.004 g in argon Mix well in an atmosphere to obtain a photopolymerizable composition solution.
The above photopolymerizable composition solution was applied on a PET film in an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL, manufactured by Sankyo Electric Co., Ltd.) for 10 minutes. A coalesced film was obtained as a free standing film of about 30 μm.
When the ionic conductivity at 25 ° C. and −10 ° C. of this film was measured by the impedance method, it was 6.0 × 10 6 respectively.-3, 2.0 × 10-3S / cm.
[0042]
[Example 3]
In a photopolymerizable composition solution similar to that prepared in Example 2, an aluminum oxide C (manufactured by Nippon Aerosil Co., Ltd., specific surface area of about 100 m as inorganic fine particles in an argon atmosphere was used.20.20 g of / g) was added and stirred to give a milky white solution. By applying this milky white photopolymerizable composition solution in the same manner as in Example 2 and irradiating with light, a compound impregnated with the solvent (3) a polymer / aluminum oxide C composite film was obtained as a white turbid color free-standing film of about 30 μm. It was.
When the ionic conductivity of this film at 25 ° C. and −10 ° C. was measured by the impedance method, it was 7.0 × 10 respectively.-3, 2.2 × 10-3S / cm.
[0043]
[Example 4]
A compound {circle around (3)} polymer / aluminum oxide C composite film impregnated with a solvent, about 30 μm, was obtained as a self-supporting film in the same manner as in Example 3 except that 0.3 g of orthophosphoric acid was used instead of paratoluenesulfonic acid.
The ionic conductivity of this film at 25 ° C. and −10 ° C. was measured by the impedance method.-3, 2.4 × 10-3S / cm.
[0044]
[Example 5]
Instead of aluminum oxide C, silica fine particles (made by Nippon Aerosil, specific surface area of about 200 m as inorganic fine particles)2/ g) A compound (3) polymer / silica fine particle composite film impregnated with a solvent, about 30 μm, was obtained as a self-supporting film in the same manner as in Example 3 except that 0.20 g was used.
When the ionic conductivity of this film at 25 ° C. and −10 ° C. was measured by the impedance method, it was 6.8 × 10 6 respectively.-32.1 × 10-3S / cm.
[0045]
[Example 6]
<Synthesis of Compound (5)>
Figure 0004404322
After dissolving 55 g of compound (4) (average molecular weight Mn = 550) and 15.5 g of compound (2) in 100 ml of well-purified THF in a nitrogen atmosphere, 0.66 g of dibutyltin dilaurate was added. Then, the colorless viscous liquid was obtained by making it react at 25 degreeC for about 15 hours. That1From the results of H-NMR, IR, and elemental analysis, compound (4) and compound (2) reacted one-on-one, and the isocyanate group of compound (2) disappeared and a urethane bond was formed. Compound (5) was found to be produced.
[0046]
[Example 7]
Compound (5) 0.3 g, Compound (3) synthesized in Example 1, 0.7 g, dimethyl sulfoxide (DMSO) 3.0 g, orthophosphoric acid 0.3 g, aluminum oxide C 0.20 g, lucillin TPO 0.004 g in an argon atmosphere Mix well to obtain a photopolymerizable composition solution.
The above photopolymerizable composition solution was applied on a PET film in an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL, manufactured by Sankyo Electric Co., Ltd.) for 10 minutes. (5) A polymer film was obtained as a free-standing film of about 30 μm.
When the ionic conductivity of this film at 25 ° C. and −10 ° C. was measured by the impedance method, it was 7.5 × 10 5 respectively.-3, 2.3 × 10-3S / cm.
[0047]
[Example 8]
<Synthesis of Compound (8)>
Figure 0004404322
Compound (7) (2,2,3,3,4,4,4-heptafluoro-1-butanol, manufactured by Aldrich) (20 g) and Compound (2) (15.5 g) were mixed with 100 ml of well-purified THF in a nitrogen atmosphere. Add 0.66 g of dibutyltin dilaurate. Thereafter, the mixture was reacted at 25 ° C. for about 15 hours to obtain Compound (8) as a colorless viscous liquid. That1From the results of H-NMR, IR, and elemental analysis, compound (7) and compound (2) react one-on-one, and the isocyanate group of compound (2) disappears and a urethane bond is formed. I found out.
[0048]
[Example 9]
<Synthesis of Compound (10)>
Embedded image
Figure 0004404322
Compound (9) (manufactured by Nippon Aozinmund, Zdol average molecular weight 2000) 100 g, Compound (2) 15.5 g are mixed with 100 ml of well-purified THF in a nitrogen atmosphere, and then 0.66 g of dibutyltin dilaurate is added. Then, it was made to react at 25 degreeC for about 15 hours, and the compound (10) was obtained as a colorless viscous liquid. That1From the results of H-NMR, IR, and elemental analysis, compound (9) and compound (2) react in a one-to-two relationship, and the isocyanate group of compound (2) disappears and a urethane bond is formed. I understood it.
[0049]
[Example 10]
Compound (8) 0.3 g, Compound (10) 0.7 g, acetonitrile 3.0 g, orthophosphoric acid 0.3 g, silica fine particles (manufactured by Nippon Aerosil, specific surface area of about 200 m)2/ g) 0.20 g and 0.004 g of lucillin TPO were mixed well in an argon atmosphere to obtain a photopolymerizable composition solution.
The above photopolymerizable composition solution was applied on glass in an argon atmosphere, and then irradiated with a chemical fluorescent lamp (FL20S.BL manufactured by Sankyo Electric Co., Ltd.) for 10 minutes. As a result, a compound impregnated with a solvent and a protonic acid (8) + ( 10) A polymer film was obtained as a free-standing film of about 30 μm.
When the ionic conductivity of this film at 25 ° C. and −10 ° C. was measured by the impedance method, it was 3.0 × 10 3 respectively.-3, 1.2 × 10-3S / cm.
[0050]
[Example 11]
<Manufacture of polyaniline electrode>
In accordance with the method described in JP-A-62-210859, aniline was oxidatively polymerized in hydrochloric acid with ammonium persulfate, and then neutralized with an aqueous ammonia solution to obtain a basic polyaniline powder represented by the following general formula.
Embedded image
Figure 0004404322
An excess N-methylpyrrolidone solution was added to a mixture of this polyaniline powder, acetylene black, and polyvinylidene fluoride in a weight ratio of 8.5: 0.7: 0.8 to obtain a gel.CompositionGot. This composition was applied and molded on a SUS foil of about 15 μm to a thickness of 10 mm × 10 mm and about 200 μm. Furthermore, polyaniline electrode (15 mg) was obtained by heating and vacuum drying at about 100 ° C. for 24 hours.
[0051]
[Example 12]
<Manufacture of proton secondary batteries>
Compound (3) 1.0 g, 3.0 g of dimethylformamide (DMF), 0.6 g of paratoluenesulfonic acid (PTS), and 0.04 g of benzoyl peroxide (BPO) are mixed well in an argon atmosphere to obtain a thermally polymerizable composition solution. Obtained.
Two electrodes were prepared by impregnating the polyaniline electrode (15 mg) 10 mm × 10 mm produced in Example 11 with the thermopolymerizable composition solution in an argon atmosphere glove box. Next, the solvent-impregnated compound prepared in Example 3 (3) Polymer / aluminum oxide composite film (10 mm × 10 mm) was bonded to one electrode, and another electrode was bonded, and the battery end was bonded to epoxy. A polyaniline / polyaniline secondary battery as shown in FIG. 1 was manufactured by sealing with resin and heating at 100 ° C. for 1 hour.
When this battery was charged and discharged at an operating voltage of 0 to 0.7 V and a current of 0.1 mA, the maximum capacity was 1.8 mAh. In addition, there was almost no change in capacity even when charging and discharging were repeated 50 times under these conditions.
[0052]
[Example 13]
<Manufacture of sulfonated polyaniline electrode>
In accordance with the method described in JP-B-8-9662, a sulfonated polyaniline represented by the following general formula was produced by heat-treating polyaniline in sulfuric anhydride. Elemental analysis confirmed that the sulfonation rate was about 50 mol% with respect to the aniline unit.
Embedded image
Figure 0004404322
An excess N-methylpyrrolidone solution was added to a mixture of the sulfonated polyaniline powder, acetylene black, and polyvinylidene fluoride in a weight ratio of 8.5: 0.7: 0.8 to obtain a gel composition. This composition was applied and molded on a SUS foil of about 15 μm to a thickness of 10 mm × 10 mm and about 200 μm. Furthermore, polyaniline electrode (18 mg) was obtained by heating and vacuum drying at about 100 ° C. for 24 hours.
[0053]
[Example 14]
<Manufacture of proton secondary batteries>
In an argon atmosphere glove box, an electrode obtained by impregnating the sulfonated polyaniline electrode (18 mg) 10 mm × 10 mm produced in Example 13 with the thermopolymerizable composition solution was prepared. Next, the solvent-impregnated compound prepared in Example 3 (3) Polymer / aluminum oxide composite film (10 mm × 10 mm) was bonded to this sulfonated polyaniline electrode, and thermal polymerization similar to that prepared in Example 12 was performed. A sulfonated polyaniline / polyaniline secondary battery as shown in FIG. 1 was manufactured by laminating a polyaniline electrode impregnated with an aqueous composition solution, sealing the battery edge with an epoxy resin, and heating at 100 ° C. for 1 hour.
When this battery was charged and discharged at an operating voltage of 0 to 1.0 V and a current of 0.1 mA, the maximum capacity was 2.0 mAh. In addition, there was almost no change in capacity even when charging and discharging were repeated 50 times under these conditions.
[0054]
[Example 15]
<Production of polypyridine electrode>
Synth. Metalstwenty five According to the method described in 103 (1988), a polypyridine powder represented by the following general formula was obtained by the Ni (zero valent) method.
Embedded image
Figure 0004404322
An excess N-methylpyrrolidone solution was added to a mixture of the polypyridine powder, acetylene black, and polyvinylidene fluoride in a weight ratio of 8.5: 0.7: 0.8 to obtain a gel composition. This composition was applied and molded on a SUS foil of about 15 μm to a thickness of 10 mm × 10 mm and about 200 μm. Furthermore, polypyridine electrode (18 mg) was obtained by heating and vacuum drying at about 100 ° C. for 24 hours.
[0055]
[Example 16]
<Manufacture of proton secondary batteries>
A sulfonated polyaniline / polypyridine secondary battery as shown in FIG. 1 was produced in the same manner as in Example 14 except that the polypyridine electrode (18 mg) produced in Example 15 was used instead of the polyaniline electrode (15 mg). did. When this battery was charged and discharged at an operating voltage of 0 to 1.2 V and a current of 0.1 mA, the maximum capacity was 2.3 mAh. In addition, there was almost no change in capacity even when charging and discharging were repeated 50 times under these conditions.
[0056]
[Example 17]
<Manufacture of polyquinone electrode>
According to the method described in Chem. Lett., 461 (1994), polyquinone powder was obtained.
Embedded image
Figure 0004404322
An excess N-methylpyrrolidone solution was added to a mixture of the polyquinone powder, acetylene black, and polyvinylidene fluoride in a weight ratio of 8.5: 0.7: 0.8 to obtain a gel composition. This composition was applied and molded on a SUS foil of about 15 μm to a thickness of 10 mm × 10 mm and about 200 μm. Furthermore, polyquinone electrode (15 mg) was obtained by heating and vacuum drying at about 100 ° C. for 24 hours.
[0057]
[Example 18]
<Manufacture of proton secondary batteries>
Compound (8) 0.3 g, Compound (10) 0.7 g, acetonitrile 3.0 g, orthophosphoric acid 0.3 g, silica fine particles (manufactured by Nippon Aerosil, specific surface area of about 200 m)2/ g) 0.20 g and BPO 0.04 g were mixed well in an argon atmosphere to obtain a thermally polymerizable composition solution.
In an argon atmosphere glove box, the polyquinone electrode (15 mg) produced in Example 17 was impregnated with 10 mm × 10 mm of the thermally polymerizable composition solution, and the solvent-impregnated compound produced in Example 10 (8) + (10) A polymer / silica composite film (10 mm × 10 mm) was bonded, and the polypyridine electrode produced in Example 15 was bonded to the electrode impregnated with the thermopolymerizable composition solution. After sealing, the polyquinone / polypyridine secondary battery as shown in FIG. 1 was manufactured by heating at 100 ° C. for 1 hour.
When this battery was charged and discharged at an operating voltage of 0 to 1.0 V and a current of 0.1 mA, the maximum capacity was 2.1 mAh. In addition, there was almost no change in capacity even when charging and discharging were repeated 50 times under these conditions.
[0058]
[Example 19]
<Manufacture of manganese dioxide electrode>
An excess N-methylpyrrolidone solution was added to a mixture of electrolytic manganese dioxide powder, acetylene black and polyvinylidene fluoride in a weight ratio of 8.8: 0.7: 0.5 to obtain a gel composition. This composition was applied and molded on a SUS foil of about 15 μm to a thickness of 10 mm × 10 mm and about 100 μm. Furthermore, manganese dioxide electrode (23 mg) was obtained by heating and vacuum drying at about 100 ° C. for 24 hours.
[0059]
[Example 20]
<Manufacture of proton secondary batteries>
A manganese dioxide / polyaniline secondary battery as shown in FIG. 1 in the same manner as in Example 14 except that the manganese dioxide electrode (23 mg) produced in Example 19 was used instead of the sulfonated polyaniline electrode (18 mg). Manufactured.
When this battery was charged and discharged at an operating voltage of 0 to 1.0 V and a current of 0.1 mA, the maximum capacity was 2.5 mAh.
[0060]
【The invention's effect】
The secondary battery of the present invention has a large proton insertion / release reaction capacity, a polymer having a sulfonic acid side chain and / or a polymer having a polypyridine skeleton and / or a polymer having a polypyrimidine skeleton and / or a hydroquinone skeleton. Proton-based solid secondary battery obtained from an electrode active material consisting of a polymer and / or manganese oxide with a proton conductive polymer solid electrolyte, and has excellent safety, reliability, and current characteristics, and long life It is a secondary battery with a high capacity and a shape that can be thinned and formed into chips.
The proton conductive polymer solid electrolyte of the present invention is excellent in processability and mechanical strength made of a polymer obtained by polymerizing a compound excellent in specific heat and actinic ray polymerizability, and has high ionic conductivity. It is a proton conductive polymer solid electrolyte with good durability, and is suitable for proton-based solid secondary batteries.
The electrode of the present invention also comprises a proton conductive polymer solid electrolyte comprising a polymer obtained by polymerizing the compound having excellent heat and actinic ray polymerizability, and a polymer and / or polypyridine skeleton having a sulfonic acid side chain. And / or a polymer having a polypyrimidine skeleton and / or a polymer having a hydroquinone skeleton and / or an electrode active material selected from manganese oxide. It is an electrode with excellent workability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a battery produced in this example.
[Explanation of symbols]
1 Positive electrode
2 Separator film
3 Negative electrode
4 Current collector
5 Insulating resin sealant

Claims (7)

正極活物質及び/または負極活物質がプロトン挿入放出による充放電反応を行う、スルホン酸側鎖を有する導電性高分子、ポリピリジン骨格及び/またはポリピリミジン骨格を有する導電性高分子、及びポリキノン骨格を有する導電性高分子からなる群から選ばれる少なくとも一種の材料であり、電解質がプロトン伝導性高分子固体電解質であることを特徴とするプロトン二次電池。  A conductive polymer having a sulfonic acid side chain, a conductive polymer having a polypyridine skeleton and / or a polypyrimidine skeleton, and a polyquinone skeleton in which a positive electrode active material and / or a negative electrode active material performs a charge / discharge reaction by proton insertion / release. A proton secondary battery, characterized in that it is at least one material selected from the group consisting of conductive polymers, and the electrolyte is a proton conductive polymer solid electrolyte. プロトン伝導性高分子固体電解質が、一般式(1)または一般式(2)
Figure 0004404322
Figure 0004404322
[式中、R1、R2は水素またはアルキル基を表し、R3は炭素数10以下の2価の基を表す。該2価の基はヘテロ原子を含んでいてもよく、直鎖状、分岐状、環状構造のいずれからなるものでもよい。xは0または1〜10の数値を示す。但し、同一分子中の複数個の上記一般式(1)または(2)で表される重合性官能基中のR1、R2、R3及びxの値は、それぞれ独立であり、同じである必要はない。]
で表される重合性官能基を有する熱及び/または活性光線重合性化合物を重合することによって得られる少なくとも一種の導電性高分子、少なくとも一種のプロトン酸を含むことを特徴とする請求項1に記載のプロトン二次電池。
The proton conductive polymer solid electrolyte is represented by the general formula (1) or the general formula (2).
Figure 0004404322
Figure 0004404322
[Wherein R 1 and R 2 represent hydrogen or an alkyl group, and R 3 represents a divalent group having 10 or less carbon atoms. The divalent group may contain a hetero atom, and may have any of a linear, branched, or cyclic structure. x represents 0 or a numerical value of 1 to 10. However, the values of R 1 , R 2 , R 3 and x in the plurality of polymerizable functional groups represented by the general formula (1) or (2) in the same molecule are independent and the same. There is no need. ]
And at least one conductive polymer obtained by polymerizing a thermal and / or actinic ray polymerizable compound having a polymerizable functional group represented by the formula: The proton secondary battery described.
プロトン酸が、有機スルホン酸系化合物及び/またはリン酸系化合物及び/またはホウ酸系化合物であることを特徴とする請求項2に記載のプロトン二次電池  3. The proton secondary battery according to claim 2, wherein the proton acid is an organic sulfonic acid compound and / or a phosphoric acid compound and / or a boric acid compound. 極性溶媒をさらに含むことを特徴とする請求項2または請求項3に記載のプロトン二次電池。The proton secondary battery according to claim 2, further comprising a polar solvent . 極性溶媒がヘテロ原子含有有極性有機溶媒である請求項4に記載のプロトン二次電池。The proton secondary battery according to claim 4, wherein the polar solvent is a heteroatom-containing polar organic solvent. 電解質に、少なくとも一種の無機微粒子を含むことを特徴とする請求項1〜5のいずれか1項に記載のプロトン二次電池。  The proton secondary battery according to any one of claims 1 to 5, wherein the electrolyte contains at least one kind of inorganic fine particles. 無機微粒子がBET比表面積10m2 /g以上、結晶粒子径1μm以下のシリカ、アルミナ、チタニア、もしくはマグネシア、またはこれらの複合酸化物であり、その含有量が1〜50wt%であることを特徴とする請求項6に記載のプロトン二次電池。The inorganic fine particles are silica, alumina, titania, or magnesia having a BET specific surface area of 10 m 2 / g or more and a crystal particle diameter of 1 μm or less, or a composite oxide thereof, and the content thereof is 1 to 50 wt% The proton secondary battery according to claim 6.
JP09743597A 1997-04-15 1997-04-15 Secondary battery and electrolyte and electrode active material used for the secondary battery Expired - Lifetime JP4404322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09743597A JP4404322B2 (en) 1997-04-15 1997-04-15 Secondary battery and electrolyte and electrode active material used for the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09743597A JP4404322B2 (en) 1997-04-15 1997-04-15 Secondary battery and electrolyte and electrode active material used for the secondary battery

Publications (2)

Publication Number Publication Date
JPH10289617A JPH10289617A (en) 1998-10-27
JP4404322B2 true JP4404322B2 (en) 2010-01-27

Family

ID=14192303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09743597A Expired - Lifetime JP4404322B2 (en) 1997-04-15 1997-04-15 Secondary battery and electrolyte and electrode active material used for the secondary battery

Country Status (1)

Country Link
JP (1) JP4404322B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168962B2 (en) 1997-11-04 2001-05-21 日本電気株式会社 Battery
JP3036501B2 (en) 1997-12-17 2000-04-24 日本電気株式会社 Electrode materials for batteries and batteries
JP3144410B2 (en) 1999-03-11 2001-03-12 日本電気株式会社 Battery and capacitor using quinoxaline resin
JP3471304B2 (en) 2000-09-18 2003-12-02 Necトーキン株式会社 Secondary battery and capacitor using indole compound
AU2002304247A1 (en) 2001-06-14 2003-01-02 Showa Denko K.K. Method for producing composite material for electrode comprising quinoxaline based polymer, such material, electrode and battery using the same
JP4393527B2 (en) 2007-03-08 2010-01-06 パナソニック株式会社 Electrode active material and power storage device
JP4478706B2 (en) 2007-09-05 2010-06-09 セイコーエプソン株式会社 Lithium ion conductive solid electrolyte and all solid lithium secondary battery using the same
JP5109540B2 (en) * 2007-09-11 2012-12-26 株式会社エクォス・リサーチ Method for producing conductive polymer powder, electrode material and capacitor using the same
US8778543B2 (en) 2007-12-03 2014-07-15 Seiko Epson Corporation Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery
CN103875119B (en) * 2011-10-12 2016-04-20 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery
US11621420B2 (en) 2016-03-11 2023-04-04 University Of Houston System High ionic conductivity rechargeable solid state batteries with an organic electrode
JP6915453B2 (en) * 2017-08-24 2021-08-04 三菱ケミカル株式会社 Carbon fine particle dispersion
US11462726B2 (en) * 2017-09-27 2022-10-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
EP3483957A1 (en) 2017-11-08 2019-05-15 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, the rechargeable battery and method for manufacturing the electrode
EP3483948B1 (en) 2017-11-08 2021-10-06 Samsung SDI Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
JP7251554B2 (en) * 2018-12-28 2023-04-04 株式会社村田製作所 Batteries, battery packs, electronics, electric vehicles and power systems
WO2022145033A1 (en) * 2020-12-29 2022-07-07 カワサキモータース株式会社 Positive electrode active material for proton conducting secondary batteries, and proton conducting secondary battery provided wih same

Also Published As

Publication number Publication date
JPH10289617A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US6190805B1 (en) Polymerizable compound, solid polymer electrolyte using the same and use thereof
JP4404322B2 (en) Secondary battery and electrolyte and electrode active material used for the secondary battery
JP2000086711A (en) Thermopolymerizable composition and use thereof
JP3848435B2 (en) Electric double layer capacitor and manufacturing method thereof
JP4060899B2 (en) Film for separator of electrochemical device, its production method and use
JP3575108B2 (en) Polymer solid electrolyte, its material and use
JP3907282B2 (en) Composite electrolyte and its use
JP4169134B2 (en) Electrochemical element separator and its use
JP3129961B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JPH10294015A (en) Polymeric solid electrolyte and usage thereof
JP3748995B2 (en) Polymer solid electrolyte and use thereof
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
JPH1131415A (en) Polymer solid electrolyte and use thereof
JP3685296B2 (en) Electrode for lithium secondary battery, polarizable electrode for electric double layer capacitor, and binder for these electrodes
JP2002025335A (en) Polymeric compound and use of the same
JP4017091B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JP3614658B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH10116513A (en) Polymeric solid electrolyte for combining eletrode and its usage
JP3557477B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, method for producing them, and polymer solid electrolyte material
JPH107759A (en) Monomer compound for solid polyelectrolyte, solid polyelectrolyte, and their use
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
JP3984359B2 (en) Polymerizable compound, polymer solid electrolyte using the same, and use thereof
JPH1131414A (en) Polymerizable composition and use thereof
JPH10204109A (en) Actinic-radiation-polymerizable composition and its use
JPH1017763A (en) Solid polymer electrolyte and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151113

Year of fee payment: 6

EXPY Cancellation because of completion of term