[go: up one dir, main page]

JP4403360B2 - Conductive adhesive sheet - Google Patents

Conductive adhesive sheet Download PDF

Info

Publication number
JP4403360B2
JP4403360B2 JP2003053215A JP2003053215A JP4403360B2 JP 4403360 B2 JP4403360 B2 JP 4403360B2 JP 2003053215 A JP2003053215 A JP 2003053215A JP 2003053215 A JP2003053215 A JP 2003053215A JP 4403360 B2 JP4403360 B2 JP 4403360B2
Authority
JP
Japan
Prior art keywords
conductive
mass
particles
pressure
sensitive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003053215A
Other languages
Japanese (ja)
Other versions
JP2004263030A (en
Inventor
剛 岩崎
博樹 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2003053215A priority Critical patent/JP4403360B2/en
Publication of JP2004263030A publication Critical patent/JP2004263030A/en
Application granted granted Critical
Publication of JP4403360B2 publication Critical patent/JP4403360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Elimination Of Static Electricity (AREA)
  • Conductive Materials (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粒子分散型の導電性粘着剤を用いた導電性粘着シートに関するものであり、詳しくは、電気、電子機器のデジタル装置、ケーブル等から輻射する不要な漏洩電磁波のシールド用、他の電気、電子機器より発生する有害な空間電磁波のシールド用、静電気帯電防止の接地用などとして使用される導電性粘着シートに関するものである。
【従来の技術】
【0002】
導電性粘着シートはその取扱いの容易さから、電気、電子機器のデジタル装置、ケーブル等から輻射する不要な漏洩電磁波のシールド用、他の電気、電子機器より発生する有害な空間電磁波のシールド用、静電気帯電防止の接地用などに用いられている。
【0003】
上記用途の導電性粘着シートとしては、粘着性樹脂に、金属粒子などの導電性粒子を分散させた粒子分散型導電性粘着剤、およびそれを金属箔などの導電性基材と組み合わせた導電性粘着シートが公知である。導電性粒子としては、銅、銀、ニッケル、アルミニウム、カーボンなどからなる粉末が、粘着性樹脂にはアクリル樹脂系、ゴム系、シリコン樹脂系等が使用される。
【0004】
粒子分散型導電性粘着剤を使用した導電性粘着シートにおいてシートの厚さ方向に導電性を得るには、導電性粒子が粘着剤層の表面から露出し、かつ導電性基材と接触することが必要であることが知られている(例えば特許文献1及び特許文献2参照)。これらの先行技術においては、導電性粒子の粒子径が粘着剤厚みと同等、あるいは同等以上2倍未満であると導電性、粘着性が共に優れた導電性粘着シートが得られると記述されている。しかしながら、導電性と粘着シートの接着力はトレードオフの関係にあり、粘着剤層の表面に導電性粒子が露出すると接着性は低下する傾向にあるので、前記先行技術で開示されている導電性粘着シートは、導電性は優れていても接着性が劣るものであった。
【0005】
特に、導電性粒子には粒度分布があるため、粘着剤厚みと同等以上の粒子径を有する導電性粒子を大量に添加しようとすると、接着性に悪影響を及ぼす過大な粒子径の導電性粒子の割合も増加するので、接着力の低下が著しくなる。これを防ぐため、前記特許文献2では導電性粒子をふるい分けして、特定の粒径範囲の導電性粒子を選別することが記載されているが、このような工程を用いることは製造工程を増やすことになり、また、所期の粒径範囲から外れた導電性粒子を廃棄することになり、製造コスト面で不利である。
【0006】
ところで、導電性粘着シートの粘着剤としてポリアルキルシリコーン系粘着剤を用い、導電性粒子としてニッケル粉を用いた例も報告されている(例えば特許文献3参照)。しかしながら、当該技術においても、優れた導電性と接着性を共に有する導電性粘着シートについては開示されていない。
【0007】
【特許文献1】
特公昭46-15240号公報
【特許文献2】
特開平5-222346号公報
【特許文献3】
特開2001-146578号公報(実施例3)
【0008】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の欠点を解決すべく、導電性及び接着性に優れる粒子分散型の導電性粘着シートを提供することを目的とするものである。
【発明が解決するための手段】
【0009】
本発明者らは鋭意検討の結果、特定の粒径を有する導電性粒子を2種類以上使用したときに、導電性と接着性に優れる粒子分散型の導電性粘着シートが得られることを見出し、本発明を完成するに至った。
【0010】
すなわち本発明は、カーボニル法で製造したニッケル粉を粘着性物質中に分散させた導電性粘着剤からなる粘着層を導電性基材上に設けた導電性粘着シートであって、前記ニッケル粉が、
(1)50%体積粒子径が前記粘着層の厚みの50%〜80%である粒子(A)と
(2)50%体積粒子径が前記粘着層の厚みの50%未満である粒子(B)とを含有し、粒子(A)と粒子(B)の質量比率(A):(B)が40:60〜80:20であり、粘着性物質100質量部に対して50質量部を越えて100質量部以下含有することを特徴とする導電性粘着シートを提供するものである。
【0011】
本発明で使用する粒子(A)は50%体積粒子径が粘着層の厚みの50%〜80%であるため、粒子(A)中には、粘着層の表面から必要以上に露出して、本発明の導電性粘着シートの接着性を著しく低下せしめる過大な粒子径を有する粒子が非常に少ない。一方、50%体積粒子径が前記粘着層の厚みの50%未満である粒子(B)を適当量含有しているため、粒子(B)を介した導通路が粘着層内部で形成され、粒子(A)により形成される導通路に加算されるため、本発明の導電性粘着シートは導電性の優れた粘着シートとなる。
【0012】
【発明の実施の形態】
以下に、本発明の導電性粘着シートを、その構成要素に基づいて、更に詳しく説明する。なお、本発明における「シート」とは、少なくとも一層の導電性粘着剤の薄層を導電性基材上、あるいは剥離シート上に設けた形態を意味し、例えば、毎葉、ロール状、あるいは薄板状、帯状(テープ状)等の製品形態すべてを含む。
【0013】
(粘着剤組成)
本発明の導電性粘着シートに使用される粘着性物質としては、公知のアクリル系、ゴム系、シリコン系の粘着剤を使用することができるが、中でも、(メタ)アクリル系粘着剤を用いることが好ましい。特に、(メタ)アクリル系粘着剤としては、単量体成分として炭素数2〜14のアルキル基を有するアクリル酸エステルを含有する(メタ)アクリル系共重合体が、耐候性、耐熱性の点から好ましい。そのような単量体としては、例えば、n-ブチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレートなどのアクリル系共重合体、2-エチルヘキシルメタクリレートなどのメタクリル系共重合体が挙げられる。
【0014】
さらに単量体成分として、側鎖に水酸基、カルボキシル基、アミノ基などの極性基を有する(メタ)アクリル酸エステルや、その他のビニル系単量体を、0.01〜15質量%の範囲で添加するのが好ましい。好ましくは、後述する架橋剤に応じて、それと反応し架橋点を形成する官能基を有する単量体成分を適宜規定することがゲル分率の調整上好ましい。イソシアネート系架橋剤の場合は、側鎖に水酸基を有する単量体成分を0.01〜2.0質量%の範囲で添加するのが好ましい。エポキシ系架橋剤の場合やキレート系架橋剤の場合は、カルボキシル基を含有する単量体成分を0.1〜12質量%の範囲で添加するのが好ましい。
アクリル系共重合体は、溶液重合法、塊状重合法、懸濁重合法、乳化重合法など公知の方法で共重合させることにより得ることができるが、生産コストや生産性の面から、溶液重合によって重合されることが好ましい。アクリル系共重合体の平均分子量は、30万〜150万が好ましく、更に好ましくは50万〜120万である。
【0015】
(粘着剤のゲル分率)
本発明の導電性粘着シートに使用される(メタ)アクリル系粘着剤は、凝集力向上のため3次元架橋構造を形成するのが好ましい。架橋構造形成の指標として、(メタ)アクリル系粘着剤の良溶媒であるトルエンに24時間浸漬した後の不溶分で表されるゲル分率を用いる。その場合、25〜60質量%であることが好ましく、より好ましくは30〜40質量%である。ゲル分率が25質量%未満ではせん断方向の凝集力が不足し、60質量%を越える場合は耐剥がれ性が低下する。
【0016】
ゲル分率は、以下の式で算出する。
ゲル分率(質量%)={(トルエンに浸漬した後の粘着剤質量)/(トルエンに浸漬する前の粘着剤質量)}×100
*粘着剤質量 =(導電性粘着シートの質量)−(基材の質量)−(導電性粒子の質量)
【0017】
架橋構造の形成には、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、キレート系架橋剤、アジリジン系架橋剤など、公知の架橋剤などが挙げられる。架橋剤の種類は、前述の単量体成分の官能基に応じて選定するのが好ましい。架橋剤の添加量としては、ゲル分率が25〜60質量%に調整できる量であれば特に規定はしない。
【0018】
(添加剤)
さらに、導電性粘着シートの粘着力を向上させるため、粘着付与樹脂を添加しても良い。本発明で使用する粒子分散型の導電性粘着剤に添加する粘着付与樹脂は、ロジン系樹脂、テルペン系樹脂、脂肪族(C5系)や芳香族(C9系)などの石油樹脂、スチレン系樹脂フェノール系樹脂、キシレン系樹脂、メタクリル系樹脂などが挙げられる。粘着付与樹脂の添加量としては、(メタ)アクリル系共重合体100質量部に対し、10〜50質量%添加するのが好ましい。
【0019】
本発明の導電性粘着テープに使用する粘着剤には必要に応じて、各種添加剤が添加されても良い。上記添加剤としては、例えば可塑剤、軟化剤、金属不活性剤、酸化防止剤、顔料、染料などが挙げられ、必要に応じて適宜使用される。
【0020】
(導電性粒子)
本発明の導電性粘着シートに使用する導電性粒子は、カーボニル法で製造したニッケル粉であり、50%体積粒子径が粘着層の厚みの50%〜80%の粒子(A)と、粘着層の厚みの50%未満の粒子(B)を併用する。このように、特定の50%体積粒子径を有する特定のニッケル粉を配合して導電性粒子の粒度分布を調整する(例えば、2つ以上の複数のピークを有する粒度分布にする)ことで、従来の単一分布を有する導電性粒子と同等の高い導電性を実現でき、更に、従来の技術では得られなかった十分な接着性を得ることが可能となる。粒子(A)の50%体積粒子径が粘着層の厚みの80%を越えると、接着性が低下する。
【0021】
50%体積粒子径が粘着層の厚みの50%〜80%である粒子(A)の見かけ密度は1.5g/cm以下、好ましくは1.0g/cm以下、更に好ましくは0.4〜0.8g/cmである。1.5g/cmを越える場合は、粒子1個あたりの質量が大きく粘着剤溶液に分散させた際に導電性粒子の沈降速度が速いため、導電性粘着シートの生産時に均一な塗工溶液を得ることが困難になる。また嵩高くないため、過剰に導電性粒子を添加せねばならないので好ましくない。
【0022】
50%体積粒子径が粘着層の厚みの50%〜80%である粒子(A)の粒度分布は、好ましくは、95%体積粒子径と5%体積粒子径の比(95%体積粒子径/5%体積粒子径)の数値が10〜30、より好ましくは15〜25である。10未満では導電性が低下する。また、30を越えると接着性が低下する。このようなニッケル粉としては、インコ社製のニッケルパウダ#210、#255、#287などが挙げられるが、これに限定されるものではない。
【0023】
一方、50%体積粒子径が粘着層の厚みの50%未満である粒子(B)の見かけ密度は3.0g/cm以下、好ましくは1.6〜2.6g/cmである。3.0g/cmを越える場合は、粒子1個あたりの質量が大きく粘着剤溶液に分散させた際に導電性粒子の沈降速度が速くなるため、導電性粘着シートの生産時に均一な塗工溶液を得ることが困難になる。
【0024】
50%体積粒子径が粘着層の厚みの50%未満である粒子(B)の粒度分布は、好ましくは、95%体積粒子径と5%体積粒子径の比(95%体積粒子径/5%体積粒子径)の数値が15以下であり、更に好ましくは5〜12である。15を越えると、添加の効果が薄れるので好ましくない。
【0025】
このようなニッケル粉としては、インコ社製のニッケルパウダ#123、#110などが挙げられるが、これに限定されるものではない。
【0026】
なお、カーボニル法で製造したニッケル粉とは、下記の反応によりニッケルカーボニルからニッケルパウダを製造する方法である。
Ni(CO) → Ni+4CO
また、ニッケルパウダとしては、種々の形状のものがあるが、デンドライト状(樹枝状)の表面を有する形状、あるいはウニ状の形状(図1)、又は、フィラメント状の形状(図2)を有するものが好ましい。図1の形状をしたものとしては、例えば、インコ社製のニッケルパウダ#123があり、図2の形状をしたものとしては、例えば、#255、#287がある。
【0027】
(見かけ密度)
導電性粒子の見かけ密度は、JISZ2504−2000「金属粉の見かけ密度の測定方法」に準じて測定した。
【0028】
(体積粒子径)
導電性粒子の体積粒子径は、島津製作所製レーザー回折式粒度分布測定器SALD−3000で、分散媒にイソプロパノールを使用して測定した値である。
【0029】
(導電性粒子の添加量)
導電性粒子の添加量は、粘着性物質100質量部に対して50質量部を越えて100質量部以下であることが好ましく、60〜85質量部であることがより好ましい。50質量部以下の場合は、導電性が低下する。100質量部を越える場合は、接着性が低下する。また、粒子(A)と粒子(B)は、質量比率(A):(B)が40:60〜80:20となる範囲で使用する。より好ましくは、50:50〜70:30である。粒子(A)が40質量%未満の場合は、導電性が低下する。80質量%を越える場合は、接着性が低下する。このような比率に配合することで高い導電性と接着性を両立することが可能となる。さらに、導電性粘着シートの粘着層の設定幅への対応や、塗工厚のふれによる物性への影響が低減するなどの効果もある。
【0030】
(導電性粘着層の厚さ)
導電性粘着シートの粘着層の厚さは、導電性粒子の50%体積粒子径に応じて適宜設定されるが、10〜100μmであることが好ましく、より好ましくは15〜75μmである。中でも、25〜45μmであることが特に好ましい。上記範囲であれば、粗面への初期接着性に優れ、また、導通に優れているため好ましい。
【0031】
(剥離シート)
本発明の導電性粘着シートでは、粘着層上に剥離シートを積層することができる。剥離シートは、特に限定されず、例えばクラフト紙やグラシン紙、上質紙などの紙類や、ポリエチレン、ポリプロピレン(OPP、CPP)、ポリエチレンテレフタレートなどの樹脂フィルム、前記紙類と樹脂フィルムを積層したラミネート紙、前記紙類にクレーやポリビニルアルコールなどで目止め処理を施したものの片面もしくは両面に、シリコン系樹脂等の剥離処理を施したものなど従来公知のものを用いることができる。
【0032】
(導電性粘着シートの構成)
本発明の導電性粘着シートの基本的な構成を図3に示す。図3は、導電性基材1上に導電性粘着剤からなる粘着層2を積層した構造である。導電性基材1としては、銅箔、アルミ箔、ニッケル箔、鉄箔などの金属箔や、前記金属箔の片側にポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリイミド、ポリ塩化ビニルなどの樹脂製フィルムを貼り合わせた金属箔、金、銀、銅、ニッケル、錫などで表面処理を施した金属箔や樹脂製フィルム、導電性織布、導電性不織布、導電性発泡体などがあげられる。なお、金属箔を非導電性の樹脂フィルム等にラミネートした導電性基材1を使用する場合は、粘着層2は金属箔上に積層する。図1の構造の導電性粘着シートは、ロール状(巻状)の実施形態で製造することが好ましい。その場合は、粘着層2が積層されていない導電性基材1の他方の面は、シリコン系樹脂等により剥離処理を施したものを使用することが好ましい。また、図4のように粘着層2上に剥離シート3を積層した形態とすることもできる。このような形態にすると毎葉の実施形態にすることができる。
【0033】
図5、図6は導電性基材1の両面に粘着層2を積層し、片方あるいは両方の粘着層2上に剥離シート3を積層した形態を示したものである。本発明の導電性粘着シートは、このように1層以上の粘着層を積層した形態とすることもできる。
【0034】
図7、図8は導電性基材1を使用せずに、導電性基材1の替わりに剥離シート3を用いた実施形態である。図7の構造の導電性粘着シートは、図1の実施形態と同様に、ロール状(巻状)の実施形態で製造することが好ましい。その場合は、粘着層2が積層されていない剥離シート3の他方の面も、シリコン系樹脂等により剥離処理を施したものを使用することが好ましい。このような導電性基材1を使用しない導電性粘着シートの使用方法は、種々のケースが考えられるが、例えば、2枚の金属板の間に、剥離シートを剥がした状態で貼り、金属板間の導通を確保するための使用方法がある。
【0035】
【実施例】
以下に実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0036】
(実施例1)
[アクリル系粘着剤組成物の調製]
冷却管、撹拌機、温度計、滴下漏斗を備えた反応容器にn−ブチルアクリレート96.0質量部、2−ヒドロキシエチルアクリレート0.1質量部、アクリル酸3.9質量部と重合開始剤として2,2’−アゾビスイソブチルニトリル0.1質量部とを酢酸エチル100質量部に溶解し、窒素置換後、80℃で12時間重合した。この粘着剤溶液の固形分100質量部に対し、重合ロジンペンタエリスリトールエステル(荒川化学(株)製、ペンセルD−135、軟化点135℃)10質量部、不均化ロジングリセリンエステル(荒川化学(株)製、スーパーエステルA−100、軟化点100℃)10質量部を配合し、酢酸エチルで樹脂固形分濃度を45質量%に調整して、アクリル系粘着剤組成物を調整した。
【0037】
[粒子分散型導電性粘着剤組成物の作成]
前記アクリル系粘着剤組成物100質量部(固形分45質量部)に対して、#287(インコリミテッド社製のニッケル粉、50%平均粒径:19.7μm、見かけ密度:0.8g/cm)20.0質量部、#123(インコリミテッド社製のニッケル粉、50%平均粒径:10.8μm、見かけ密度:2.4g/cm)10.0質量部、酢酸エチル10質量部、架橋剤コロネートL(日本ポリウレタン工業製のイソシアネート系架橋剤)を樹脂固形分比で1.3質量部添加し、分散攪拌機で10分混合して粒子分散型導電性粘着剤を作成した。
【0038】
[導電性粘着シートの作成]
この組成物を厚さ130μmの剥離紙上に乾燥後の粘着剤層の厚さが33μmになるように塗工し、80℃の乾燥器中で2分間乾燥させた後、厚さ35μmの圧延銅箔(BAC−13−T、ジャパンエナジー(株)製)と貼り合わせたのち、40℃で48時間養生して、導電性粘着シートを作成した。(#287の50%平均粒径は粘着剤層厚みの60.0%、#123は32.7%である)
【0039】
(実施例2)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を20.0質量部、#123を20.0質量部に変更した以外は、実施例1と同様に導電性粘着シートを作成した。
【0040】
(実施例3)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を36質量部、#123を9質量部に変更した以外は、実施例1と同様に導電性粘着シートを作成した。
【0041】
(実施例4)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を16質量部、#123を22質量部に変更した以外は、実施例1と同様に導電性粘着シートを作成した。
【0042】
(比較例1)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を40.0質量部に変更し、#123を使用しない以外は、実施例1と同様にして両面粘着シートを得た。
【0043】
(比較例2)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を使用せず、#123を40.0質量部に変更した以外は、実施例1と同様にして両面粘着シートを得た。
【0044】
(比較例3)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を20.0質量部に変更し、#123を使用しない以外は、実施例1と同様にして両面粘着シートを得た。
【0045】
(比較例4)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、導電性粘着剤の厚さを、50μmに変更した以外は、実施例1と同様にして両面粘着シートを得た。(#287の50%平均粒径は粘着剤層厚みの39.4%、#123は21.6%である)
【0046】
(比較例5)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、導電性粘着剤の厚さを、20μmに変更した以外は、実施例1と同様にして両面粘着シートを得た。(#287の50%平均粒径は粘着剤層厚みの98.5%、#123は54.0%である)
【0047】
(比較例6)
実施例1記載のアクリル系粘着剤組成物100質量部に対して、#287を9質量部、#123を27質量部に変更した以外は、実施例1と同様にして両面粘着シートを得た。
【0048】
(評価)
実施例1〜4、比較例1〜6で作成した導電性粘着シートについて、導電性、接着力、耐湿劣化後接着力、定荷重剥離を測定し、表2に示した。
【0049】
接着力
360番の耐水研磨紙でヘアライン研磨処理したステンレス板(以下ステンレス板)に、20mm幅の導電性粘着シート試料を、23℃60%RHの環境下で2.0kgローラ1往復加圧貼付し、常温で1時間放置後、引っ張り試験機(テンシロンRTA−100、エーアンドディー社製)にて、常温で引張速度300mm/minで180度剥離接着力を測定した。
【0050】
定荷重剥離
ステンレス板に、20mm幅の導電性粘着シート試料を、常温で2.0kgローラ1往復加圧貼付し、1時間40℃で放置後、23℃60%RHの環境下で200gの荷重をかけて90度方向に剥離させ、3時間後の剥がれ距離を測定した。
【0051】
抵抗値
25mm幅×80mm長さの試験片を、貼付面積が6.25cmになるようにして銅板に常温で2.0kgローラ1往復加圧貼付し、23℃60%RHの環境下で1時間放置後、同環境下で試験片端部と銅板端部(貼り合わせていない部分)に端子を接続し、ミリオームメーター(エヌエフ回路設計製)にて10μAの電流を流した際の抵抗値を測定した。
【0052】
【表1】

Figure 0004403360
【0053】
【表2】
Figure 0004403360
【0054】
また、銅以外の金属に対する導電性を調べるため、実施例1記載の導電性粘着テープをステンレス板(SUS304)に貼付した際の抵抗値を評価したところ、400mΩ/6.25cmであり、本発明の導電性粘着シートはステンレスにも良好な導通が得られることを確認した。
【0055】
【発明の効果】
以上のように、本発明によれば導電性や接着性に非常に優れる導電性粘着シートを得ることができる。本発明の導電性粘着シートは、電気、電子機器のデジタル装置、ケーブル等から輻射する不要な漏洩電磁波のシールド用、他の電気、電子機器より発生する有害な空間電磁波のシールド用、静電気帯電防止の接地固定用として有用である。
【図面の簡単な説明】
【図1】 ウニ状のニッケルパウダの写真である。
【図2】 フィラメント状のニッケルパウダの写真である。
【図3】 導電性粘着シートの構造の一例を示す断面図である。
【図4】 導電性粘着シートの構造の一例を示す断面図である。
【図5】 導電性粘着シートの構造の一例を示す断面図である。
【図6】 導電性粘着シートの構造の一例を示す断面図である。
【図7】 導電性粘着シートの構造の一例を示す断面図である。
【図8】 導電性粘着シートの構造の一例を示す断面図である。
【符号の説明】
1 導電性基材
2 粘着層
3 剥離シート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive pressure-sensitive adhesive sheet using a particle-dispersed conductive pressure-sensitive adhesive, and more specifically, for shielding unwanted leakage electromagnetic waves radiated from digital devices, cables, etc. of electric and electronic devices, and the like. The present invention relates to a conductive pressure-sensitive adhesive sheet used for shielding harmful spatial electromagnetic waves generated from electricity and electronic equipment, and for grounding for preventing electrostatic charge.
[Prior art]
[0002]
Because of the ease of handling, the conductive adhesive sheet is used to shield unwanted leaked electromagnetic waves radiated from digital devices, cables, etc. of electricity and electronic equipment, and shield harmful electromagnetic waves generated from other electrical and electronic equipment, Used for grounding to prevent static electricity.
[0003]
As the conductive adhesive sheet for the above use, a particle-dispersed conductive adhesive in which conductive particles such as metal particles are dispersed in an adhesive resin, and conductivity obtained by combining it with a conductive substrate such as metal foil Adhesive sheets are known. As the conductive particles, powder made of copper, silver, nickel, aluminum, carbon, or the like is used. As the adhesive resin, acrylic resin, rubber, silicon resin, or the like is used.
[0004]
To obtain conductivity in the sheet thickness direction in a conductive adhesive sheet using a particle-dispersed conductive adhesive, the conductive particles are exposed from the surface of the adhesive layer and are in contact with the conductive substrate. Is known to be necessary (see, for example, Patent Document 1 and Patent Document 2). In these prior arts, it is described that a conductive pressure-sensitive adhesive sheet excellent in both conductivity and adhesiveness can be obtained when the particle diameter of the conductive particles is equal to or equal to or more than twice the thickness of the pressure-sensitive adhesive. . However, there is a trade-off relationship between the conductivity and the adhesive strength of the pressure-sensitive adhesive sheet, and the adhesiveness tends to decrease when the conductive particles are exposed on the surface of the pressure-sensitive adhesive layer. The pressure-sensitive adhesive sheet was inferior in adhesiveness even though the electrical conductivity was excellent.
[0005]
In particular, since the conductive particles have a particle size distribution, if a large amount of conductive particles having a particle size equal to or greater than the thickness of the pressure-sensitive adhesive is added, the conductive particles having an excessively large particle size that adversely affects the adhesiveness. Since the ratio also increases, the decrease in adhesive strength becomes significant. In order to prevent this, Patent Document 2 describes that the conductive particles are screened and the conductive particles having a specific particle size range are selected, but using such a process increases the number of manufacturing steps. In addition, conductive particles that are out of the intended particle size range are discarded, which is disadvantageous in terms of manufacturing cost.
[0006]
By the way, an example in which a polyalkyl silicone pressure-sensitive adhesive is used as the pressure-sensitive adhesive of the conductive pressure-sensitive adhesive sheet and nickel powder is used as the conductive particles has also been reported (see, for example, Patent Document 3). However, even in this technique, a conductive pressure-sensitive adhesive sheet having both excellent conductivity and adhesiveness is not disclosed.
[0007]
[Patent Document 1]
Japanese Patent Publication No.46-15240 [Patent Document 2]
Japanese Patent Laid-Open No. 5-222346 [Patent Document 3]
JP 2001-146578 A (Example 3)
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a particle-dispersed conductive pressure-sensitive adhesive sheet that is excellent in conductivity and adhesiveness in order to solve the above-described drawbacks of the prior art.
[Means for Solving the Invention]
[0009]
As a result of intensive studies, the present inventors have found that when two or more kinds of conductive particles having a specific particle diameter are used, a particle-dispersed conductive pressure-sensitive adhesive sheet excellent in conductivity and adhesiveness can be obtained. The present invention has been completed.
[0010]
That is, the present invention is a conductive pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer made of a conductive pressure-sensitive adhesive in which nickel powder produced by a carbonyl method is dispersed in a pressure-sensitive adhesive material, the nickel powder being ,
(1) Particles (A) having a 50% volume particle diameter of 50% to 80% of the thickness of the adhesive layer and (2) Particles having a 50% volume particle diameter of less than 50% of the thickness of the adhesive layer (B ), And the mass ratio (A) :( B) of the particles (A) to the particles (B) is 40:60 to 80:20, and exceeds 50 parts by mass with respect to 100 parts by mass of the adhesive substance. It provides a conductive pressure-sensitive adhesive sheet containing 100 parts by mass or less.
[0011]
Since the particles (A) used in the present invention have a 50% volume particle diameter of 50% to 80% of the thickness of the adhesive layer, the particles (A) are exposed more than necessary from the surface of the adhesive layer, There are very few particles having an excessively large particle size that significantly deteriorates the adhesiveness of the conductive pressure-sensitive adhesive sheet of the present invention. On the other hand, since an appropriate amount of particles (B) having a 50% volume particle diameter of less than 50% of the thickness of the adhesive layer is contained, a conduction path through the particles (B) is formed inside the adhesive layer. Since it adds to the conduction path formed by (A), the electroconductive adhesive sheet of this invention turns into an adhesive sheet excellent in electroconductivity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Below, the electroconductive adhesive sheet of this invention is demonstrated in more detail based on the component. The “sheet” in the present invention means a form in which at least one thin layer of conductive adhesive is provided on a conductive substrate or a release sheet. For example, each sheet, a roll, or a thin plate All product forms such as strips and strips (tapes) are included.
[0013]
(Adhesive composition)
As the adhesive substance used in the conductive adhesive sheet of the present invention, known acrylic, rubber-based, and silicon-based adhesives can be used, and among them, a (meth) acrylic adhesive is used. Is preferred. In particular, as a (meth) acrylic pressure-sensitive adhesive, a (meth) acrylic copolymer containing an acrylate ester having an alkyl group having 2 to 14 carbon atoms as a monomer component is suitable for weather resistance and heat resistance. To preferred. Examples of such monomers include acrylic copolymers such as n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, and isononyl acrylate, and methacrylic copolymers such as 2-ethylhexyl methacrylate. .
[0014]
Furthermore, as a monomer component, (meth) acrylic acid ester having a polar group such as a hydroxyl group, a carboxyl group, or an amino group in the side chain and other vinyl monomers are added in a range of 0.01 to 15% by mass. Is preferred. Preferably, it is preferable in terms of adjustment of the gel fraction to appropriately define a monomer component having a functional group that reacts with it to form a crosslinking point in accordance with a crosslinking agent described later. In the case of an isocyanate-based crosslinking agent, it is preferable to add a monomer component having a hydroxyl group in the side chain in the range of 0.01 to 2.0% by mass. In the case of an epoxy-based crosslinking agent or a chelate-based crosslinking agent, it is preferable to add a monomer component containing a carboxyl group in the range of 0.1 to 12% by mass.
The acrylic copolymer can be obtained by copolymerization by a known method such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method, or an emulsion polymerization method. However, from the viewpoint of production cost and productivity, solution polymerization is possible. It is preferable to be polymerized by. The average molecular weight of the acrylic copolymer is preferably 300,000 to 1,500,000, more preferably 500,000 to 1,200,000.
[0015]
(Gel fraction of adhesive)
The (meth) acrylic pressure-sensitive adhesive used for the conductive pressure-sensitive adhesive sheet of the present invention preferably forms a three-dimensional cross-linked structure in order to improve cohesion. As an index for forming a crosslinked structure, a gel fraction represented by an insoluble matter after being immersed in toluene, which is a good solvent for a (meth) acrylic adhesive, for 24 hours is used. In that case, it is preferable that it is 25-60 mass%, More preferably, it is 30-40 mass%. When the gel fraction is less than 25% by mass, the cohesive force in the shearing direction is insufficient, and when it exceeds 60% by mass, the peel resistance decreases.
[0016]
The gel fraction is calculated by the following formula.
Gel fraction (% by mass) = {(Adhesive mass after being immersed in toluene) / (Adhesive mass before being immersed in toluene)} × 100
* Adhesive mass = (Mass of conductive adhesive sheet)-(Mass of substrate)-(Mass of conductive particles)
[0017]
Examples of the formation of the crosslinked structure include known crosslinking agents such as isocyanate crosslinking agents, epoxy crosslinking agents, chelate crosslinking agents, and aziridine crosslinking agents. The type of the crosslinking agent is preferably selected according to the functional group of the monomer component described above. The addition amount of the crosslinking agent is not particularly defined as long as the gel fraction can be adjusted to 25 to 60% by mass.
[0018]
(Additive)
Furthermore, in order to improve the adhesive strength of the conductive adhesive sheet, a tackifier resin may be added. Tackifying resins to be added to the particle-dispersed conductive adhesive used in the present invention are rosin resins, terpene resins, aliphatic (C5) and aromatic (C9) petroleum resins, and styrene resins. Examples thereof include phenolic resins, xylene resins, and methacrylic resins. As addition amount of tackifying resin, it is preferable to add 10-50 mass% with respect to 100 mass parts of (meth) acrylic-type copolymers.
[0019]
Various additives may be added to the pressure-sensitive adhesive used in the conductive pressure-sensitive adhesive tape of the present invention, if necessary. As said additive, a plasticizer, a softener, a metal deactivator, antioxidant, a pigment, dye, etc. are mentioned, for example, It uses suitably as needed.
[0020]
(Conductive particles)
The conductive particles used in the conductive pressure-sensitive adhesive sheet of the present invention are nickel powder produced by a carbonyl method, particles (A) having a 50% volume particle diameter of 50% to 80% of the thickness of the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer. Particles (B) having a thickness of less than 50% are used in combination. Thus, by blending a specific nickel powder having a specific 50% volume particle diameter to adjust the particle size distribution of the conductive particles (for example, a particle size distribution having two or more peaks), High conductivity equivalent to that of conductive particles having a conventional single distribution can be realized, and sufficient adhesiveness that cannot be obtained by the conventional technology can be obtained. When the 50% volume particle diameter of the particles (A) exceeds 80% of the thickness of the pressure-sensitive adhesive layer, the adhesiveness is lowered.
[0021]
The apparent density of the particles (A) having a 50% volume particle diameter of 50% to 80% of the thickness of the adhesive layer is 1.5 g / cm 3 or less, preferably 1.0 g / cm 3 or less, more preferably 0.4. ~ 0.8 g / cm 3 . If the amount exceeds 1.5 g / cm 3 , the mass per particle is large, and the dispersion speed of the conductive particles when dispersed in the adhesive solution is high. It becomes difficult to get. Moreover, since it is not bulky, since it is necessary to add electroconductive particle excessively, it is not preferable.
[0022]
The particle size distribution of the particles (A) having a 50% volume particle diameter of 50% to 80% of the thickness of the adhesive layer is preferably a ratio of 95% volume particle diameter to 5% volume particle diameter (95% volume particle diameter / The numerical value of (5% volume particle diameter) is 10 to 30, more preferably 15 to 25. If it is less than 10, the conductivity decreases. On the other hand, if it exceeds 30, the adhesiveness is lowered. Examples of such nickel powder include, but are not limited to, nickel powders # 210, # 255, and # 287 manufactured by Inco Corporation.
[0023]
On the other hand, the apparent density of the particles diameter of 50% volume particle is less than 50% of the thickness of the adhesive layer (B) is 3.0 g / cm 3 or less, preferably 1.6~2.6g / cm 3. If it exceeds 3.0 g / cm 3 , the mass per particle is large, and the dispersion speed of the conductive particles increases when dispersed in the pressure-sensitive adhesive solution. It becomes difficult to obtain a solution.
[0024]
The particle size distribution of the particles (B) having a 50% volume particle diameter of less than 50% of the thickness of the adhesive layer is preferably a ratio of 95% volume particle diameter to 5% volume particle diameter (95% volume particle diameter / 5% The numerical value of (volume particle diameter) is 15 or less, more preferably 5-12. If it exceeds 15, the effect of the addition is reduced, which is not preferable.
[0025]
Examples of such nickel powder include, but are not limited to, nickel powders # 123 and # 110 manufactured by Inco Corporation.
[0026]
The nickel powder produced by the carbonyl method is a method for producing nickel powder from nickel carbonyl by the following reaction.
Ni (CO) 4 → Ni + 4CO
Nickel powders have various shapes, but have a dendritic (dendritic) surface shape, a sea urchin shape (FIG. 1), or a filament shape (FIG. 2). Those are preferred. Examples of the shape shown in FIG. 1 include Inco nickel powder # 123, and examples of the shape shown in FIG. 2 include # 255 and # 287.
[0027]
(Apparent density)
The apparent density of the conductive particles was measured according to JISZ2504-2000 “Measuring Method of Apparent Density of Metal Powder”.
[0028]
(Volume particle size)
The volume particle diameter of the conductive particles is a value measured with a laser diffraction particle size distribution analyzer SALD-3000 manufactured by Shimadzu Corporation using isopropanol as a dispersion medium.
[0029]
(Amount of conductive particles added)
The addition amount of the conductive particles is preferably more than 50 parts by mass and 100 parts by mass or less, more preferably 60 to 85 parts by mass with respect to 100 parts by mass of the adhesive substance. In the case of 50 parts by mass or less, the conductivity is lowered. When it exceeds 100 parts by mass, the adhesiveness is lowered. Moreover, particle | grains (A) and particle | grains (B) are used in the range from which mass ratio (A) :( B) will be 40: 60-80: 20. More preferably, it is 50: 50-70: 30. When the particle (A) is less than 40% by mass, the conductivity is lowered. When it exceeds 80 mass%, adhesiveness falls. It becomes possible to make high electroconductivity and adhesiveness compatible by mix | blending in such a ratio. Furthermore, there is an effect that the influence on the physical properties due to the correspondence of the adhesive layer of the conductive adhesive sheet to the set width and the fluctuation of the coating thickness is reduced.
[0030]
(Thickness of conductive adhesive layer)
Although the thickness of the adhesion layer of a conductive adhesive sheet is suitably set according to the 50% volume particle diameter of electroconductive particle, it is preferable that it is 10-100 micrometers, More preferably, it is 15-75 micrometers. Especially, it is especially preferable that it is 25-45 micrometers. If it is the said range, since it is excellent in the initial stage adhesiveness to a rough surface and is excellent in conduction | electrical_connection, it is preferable.
[0031]
(Peeling sheet)
In the conductive pressure-sensitive adhesive sheet of the present invention, a release sheet can be laminated on the pressure-sensitive adhesive layer. The release sheet is not particularly limited. For example, paper such as kraft paper, glassine paper, and high-quality paper, resin films such as polyethylene, polypropylene (OPP, CPP), and polyethylene terephthalate, and laminates obtained by laminating the papers and resin films. Conventionally known papers such as paper, papers that have been subjected to sealing treatment with clay, polyvinyl alcohol, etc., and one side or both sides that have been subjected to a release treatment such as silicon-based resin can be used.
[0032]
(Configuration of conductive adhesive sheet)
A basic configuration of the conductive pressure-sensitive adhesive sheet of the present invention is shown in FIG. FIG. 3 shows a structure in which an adhesive layer 2 made of a conductive adhesive is laminated on a conductive substrate 1. Examples of the conductive substrate 1 include metal foils such as copper foil, aluminum foil, nickel foil, and iron foil, and resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polyimide, and polyvinyl chloride on one side of the metal foil. Examples thereof include a metal foil obtained by bonding a film made of metal, a metal foil subjected to surface treatment with gold, silver, copper, nickel, tin and the like, a resin film, a conductive woven fabric, a conductive nonwoven fabric, a conductive foam, and the like. In addition, when using the electroconductive base material 1 which laminated metal foil on the nonelectroconductive resin film etc., the adhesion layer 2 is laminated | stacked on metal foil. The conductive pressure-sensitive adhesive sheet having the structure of FIG. 1 is preferably produced in a roll-shaped (rolled) embodiment. In that case, it is preferable to use what the other surface of the electroconductive base material 1 in which the adhesion layer 2 is not laminated | stacked gave the peeling process by silicon-type resin etc. FIG. Moreover, it can also be set as the form which laminated | stacked the peeling sheet 3 on the adhesion layer 2 like FIG. If it is set as such a form, it can be set as embodiment of every leaf.
[0033]
5 and 6 show a form in which the adhesive layer 2 is laminated on both surfaces of the conductive substrate 1 and the release sheet 3 is laminated on one or both of the adhesive layers 2. Thus, the electroconductive adhesive sheet of this invention can also be made into the form which laminated | stacked the adhesive layer of one or more layers in this way.
[0034]
7 and 8 show an embodiment in which the release sheet 3 is used in place of the conductive substrate 1 without using the conductive substrate 1. The conductive pressure-sensitive adhesive sheet having the structure of FIG. 7 is preferably manufactured in a roll-shaped (rolled) embodiment, similarly to the embodiment of FIG. In that case, it is preferable to use the other surface of the release sheet 3 on which the adhesive layer 2 is not laminated, which has been subjected to a release treatment with a silicon-based resin or the like. Although various cases can be considered as a method of using a conductive adhesive sheet that does not use such a conductive base material 1, for example, it is stuck between two metal plates in a state where the release sheet is peeled off, and between the metal plates. There are methods of use to ensure continuity.
[0035]
【Example】
Examples will be specifically described below, but the present invention is not limited to these examples.
[0036]
Example 1
[Preparation of acrylic pressure-sensitive adhesive composition]
In a reaction vessel equipped with a condenser, a stirrer, a thermometer, and a dropping funnel, 96.0 parts by mass of n-butyl acrylate, 0.1 part by mass of 2-hydroxyethyl acrylate, 3.9 parts by mass of acrylic acid and a polymerization initiator 0.12 parts by mass of 2,2′-azobisisobutylnitrile was dissolved in 100 parts by mass of ethyl acetate, and after nitrogen substitution, polymerization was carried out at 80 ° C. for 12 hours. For 100 parts by mass of the solid content of this adhesive solution, 10 parts by mass of polymerized rosin pentaerythritol ester (Arakawa Chemical Co., Ltd., Pencel D-135, softening point 135 ° C.), disproportionated rosin glycerin ester (Arakawa Chemical ( Co., Ltd., Superester A-100, softening point 100 ° C.) 10 parts by mass were mixed, and the resin solid content concentration was adjusted to 45% by mass with ethyl acetate to prepare an acrylic pressure-sensitive adhesive composition.
[0037]
[Preparation of particle-dispersed conductive adhesive composition]
With respect to 100 parts by mass (45 parts by mass of solid content) of the acrylic pressure-sensitive adhesive composition, # 287 (nickel powder manufactured by Incori Ltd., 50% average particle size: 19.7 μm, apparent density: 0.8 g / cm 3 ) 20.0 parts by mass, # 123 (nickel powder manufactured by Incori Ltd., 50% average particle size: 10.8 μm, apparent density: 2.4 g / cm 3 ) 10.0 parts by mass, ethyl acetate 10 parts by mass Then, 1.3 parts by mass of a crosslinking agent Coronate L (an isocyanate-based crosslinking agent manufactured by Nippon Polyurethane Industry) was added in a resin solid content ratio, and mixed for 10 minutes with a dispersion stirrer to prepare a particle-dispersed conductive adhesive.
[0038]
[Creation of conductive adhesive sheet]
This composition was coated on a release paper having a thickness of 130 μm so that the thickness of the pressure-sensitive adhesive layer after drying was 33 μm, dried in an oven at 80 ° C. for 2 minutes, and then rolled copper having a thickness of 35 μm. After pasting together with foil (BAC-13-T, Japan Energy Co., Ltd.), curing was performed at 40 ° C. for 48 hours to prepare a conductive pressure-sensitive adhesive sheet. (The 50% average particle size of # 287 is 60.0% of the pressure-sensitive adhesive layer thickness, and # 123 is 32.7%)
[0039]
(Example 2)
Conductive adhesive as in Example 1 except that # 287 was changed to 20.0 parts by mass and # 123 was changed to 20.0 parts by mass with respect to 100 parts by mass of the acrylic adhesive composition described in Example 1. Created a sheet.
[0040]
(Example 3)
A conductive adhesive sheet was prepared in the same manner as in Example 1 except that # 287 was changed to 36 parts by mass and # 123 was changed to 9 parts by mass with respect to 100 parts by mass of the acrylic adhesive composition described in Example 1. .
[0041]
Example 4
A conductive pressure-sensitive adhesive sheet was prepared in the same manner as in Example 1 except that # 287 was changed to 16 parts by mass and # 123 was changed to 22 parts by mass with respect to 100 parts by mass of the acrylic pressure-sensitive adhesive composition described in Example 1. .
[0042]
(Comparative Example 1)
A double-sided PSA sheet is obtained in the same manner as in Example 1 except that # 287 is changed to 40.0 parts by mass and # 123 is not used with respect to 100 parts by mass of the acrylic pressure-sensitive adhesive composition described in Example 1. It was.
[0043]
(Comparative Example 2)
The double-sided PSA sheet was prepared in the same manner as in Example 1 except that # 287 was not used and # 123 was changed to 40.0 parts by mass with respect to 100 parts by mass of the acrylic adhesive composition described in Example 1. Obtained.
[0044]
(Comparative Example 3)
A double-sided PSA sheet was obtained in the same manner as in Example 1 except that # 287 was changed to 20.0 parts by mass with respect to 100 parts by mass of the acrylic adhesive composition described in Example 1 and # 123 was not used. It was.
[0045]
(Comparative Example 4)
A double-sided pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1 except that the thickness of the conductive pressure-sensitive adhesive was changed to 50 μm with respect to 100 parts by mass of the acrylic pressure-sensitive adhesive composition described in Example 1. (The 50% average particle size of # 287 is 39.4% of the pressure-sensitive adhesive layer thickness, and # 123 is 21.6%)
[0046]
(Comparative Example 5)
A double-sided pressure-sensitive adhesive sheet was obtained in the same manner as in Example 1 except that the thickness of the conductive pressure-sensitive adhesive was changed to 20 μm with respect to 100 parts by mass of the acrylic pressure-sensitive adhesive composition described in Example 1. (The 50% average particle size of # 287 is 98.5% of the thickness of the pressure-sensitive adhesive layer, and # 123 is 54.0%)
[0047]
(Comparative Example 6)
A double-sided PSA sheet was obtained in the same manner as in Example 1 except that # 287 was changed to 9 parts by mass and # 123 was changed to 27 parts by mass with respect to 100 parts by mass of the acrylic adhesive composition described in Example 1. .
[0048]
(Evaluation)
The conductive adhesive sheets prepared in Examples 1 to 4 and Comparative Examples 1 to 6 were measured for conductivity, adhesive strength, adhesive strength after moisture resistance deterioration, and constant load peeling, and are shown in Table 2.
[0049]
A 20 mm wide conductive adhesive sheet sample is attached to a stainless steel plate (hereinafter referred to as a stainless steel plate) that has been subjected to hairline polishing treatment with water-resistant abrasive paper having an adhesive strength of # 360, and a 2.0 kg roller and one reciprocating pressure application in an environment of 23 ° C. and 60% RH. Then, after being left at room temperature for 1 hour, the 180 ° peel adhesion was measured at room temperature at a tensile rate of 300 mm / min with a tensile tester (Tensilon RTA-100, manufactured by A & D).
[0050]
Constant load peeling A 20 mm wide conductive adhesive sheet sample was applied to a stainless steel plate at a normal temperature and a reciprocating pressure of 2.0 kg roller and left for 1 hour at 40 ° C., and then in an environment of 23 ° C. and 60% RH. Then, a load of 200 g was applied to peel in the direction of 90 degrees, and the peel distance after 3 hours was measured.
[0051]
A test piece having a resistance value of 25 mm width × 80 mm length was affixed to a copper plate with a reciprocating pressure of 2.0 kg roller at room temperature so that the application area was 6.25 cm 2 , and 1 in an environment of 23 ° C. and 60% RH. After standing for a period of time, connect the terminal to the end of the test piece and the end of the copper plate (the part that is not bonded) in the same environment, and measure the resistance when a current of 10 μA is applied using a milliohm meter (NF circuit design). did.
[0052]
[Table 1]
Figure 0004403360
[0053]
[Table 2]
Figure 0004403360
[0054]
Moreover, in order to investigate the electroconductivity with respect to metals other than copper, when the resistance value at the time of sticking the electroconductive adhesive tape of Example 1 to a stainless steel plate (SUS304) was evaluated, it was 400 mΩ / 6.25 cm 2 , The conductive pressure-sensitive adhesive sheet of the invention was confirmed to have good conduction to stainless steel.
[0055]
【The invention's effect】
As mentioned above, according to this invention, the electroconductive adhesive sheet which is very excellent in electroconductivity and adhesiveness can be obtained. The conductive adhesive sheet of the present invention is used to shield unwanted leakage electromagnetic waves radiated from digital devices, cables, etc. of electric and electronic devices, shield harmful electromagnetic waves generated from other electric and electronic devices, and prevent electrostatic charge. It is useful for fixing the grounding.
[Brief description of the drawings]
FIG. 1 is a photograph of a sea urchin nickel powder.
FIG. 2 is a photograph of filamentary nickel powder.
FIG. 3 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
FIG. 4 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
FIG. 5 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
FIG. 6 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
FIG. 7 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
FIG. 8 is a cross-sectional view showing an example of the structure of a conductive adhesive sheet.
[Explanation of symbols]
1 Conductive substrate 2 Adhesive layer 3 Release sheet

Claims (5)

導電性粒子を、粘着性物質中に分散させた導電性粘着剤からなる粘着層を導電性基材上に設けた導電性粘着シートであって、
前記導電性粒子は、
(1)50%体積粒子径が前記粘着層の厚みの50%〜80%である粒子(A)と、
(2)50%体積粒子径が前記粘着層の厚みの50%未満である粒子(B)を併用するカーボニル法で製造したニッケル粉であり、
粒子(A)と粒子(B)の質量比率(A):(B)が40:60〜80:20であり、粘着性物質100質量部に対して導電性粒子を50質量部を越えて100質量部以下含有し、
前記粘着剤層の厚さが10〜45μmであることを特徴とする導電性粘着シート。
A conductive pressure-sensitive adhesive sheet comprising a conductive base material and a pressure-sensitive adhesive layer made of a conductive pressure-sensitive adhesive in which conductive particles are dispersed in a pressure-sensitive adhesive material,
The conductive particles are:
(1) particles (A) having a 50% volume particle diameter of 50% to 80% of the thickness of the adhesive layer;
(2) Nickel powder produced by a carbonyl method using a particle (B) having a 50% volume particle diameter of less than 50% of the thickness of the adhesive layer,
The mass ratio (A) :( B) of the particles (A) to the particles (B) is 40:60 to 80:20, and the conductive particles exceed 100 parts by mass with respect to 100 parts by mass of the adhesive substance. parts by containing less,
The conductive adhesive sheet, wherein the adhesive layer has a thickness of 10 to 45 μm .
前記粘着性物質が(メタ)アクリル系粘着剤である請求項1に記載の導電性粘着シート。The conductive adhesive sheet according to claim 1, wherein the adhesive substance is a (meth) acrylic adhesive. 請求項1又は2記載の導電性粘着シートにおいて、導電性基材に替えて剥離シートを用い、該剥離シート上に前記導電性粘着剤からなる粘着層を設けた導電性粘着シート。  The conductive adhesive sheet according to claim 1 or 2, wherein a release sheet is used instead of the conductive substrate, and an adhesive layer made of the conductive adhesive is provided on the release sheet. 前記粒子(A)の95%体積粒子径と5%体積粒子径の比(95%体積粒子径/5%体積粒子径)が10〜30であり、前記粒子(B)の95%体積粒子径と5%体積粒子径の比(95%体積粒子径/5%体積粒子径)が15以下である請求項1又は2のいずれかに記載の導電性粘着シート。  The ratio of 95% volume particle diameter to 5% volume particle diameter of the particles (A) (95% volume particle diameter / 5% volume particle diameter) is 10 to 30, and the 95% volume particle diameter of the particles (B). The conductive pressure-sensitive adhesive sheet according to claim 1, wherein the ratio of the 5% volume particle diameter (95% volume particle diameter / 5% volume particle diameter) is 15 or less. 前記粒子(A)の見かけ密度が1.5g/cm以下であり、前記粒子(B)の見かけ密度が3.0g/cm以下である請求項1、2又は3のいずれかに記載の導電性粘着シート。4. The apparent density of the particles (A) is 1.5 g / cm 3 or less, and the apparent density of the particles (B) is 3.0 g / cm 3 or less. 5. Conductive adhesive sheet.
JP2003053215A 2003-02-28 2003-02-28 Conductive adhesive sheet Expired - Lifetime JP4403360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053215A JP4403360B2 (en) 2003-02-28 2003-02-28 Conductive adhesive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053215A JP4403360B2 (en) 2003-02-28 2003-02-28 Conductive adhesive sheet

Publications (2)

Publication Number Publication Date
JP2004263030A JP2004263030A (en) 2004-09-24
JP4403360B2 true JP4403360B2 (en) 2010-01-27

Family

ID=33117888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053215A Expired - Lifetime JP4403360B2 (en) 2003-02-28 2003-02-28 Conductive adhesive sheet

Country Status (1)

Country Link
JP (1) JP4403360B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545974B2 (en) 2005-02-09 2013-10-01 Laird Technologies, Inc. Flame retardant EMI shields
KR20100117680A (en) * 2005-08-04 2010-11-03 히다치 가세고교 가부시끼가이샤 Anisotropic conductive film and its manufacturing method
JP2007189091A (en) * 2006-01-13 2007-07-26 Tatsuta System Electronics Kk Isotropic conductive bonding sheet and circuit substrate
JP5291316B2 (en) * 2007-09-26 2013-09-18 日東電工株式会社 Conductive adhesive tape
JP5280034B2 (en) * 2007-10-10 2013-09-04 日東電工株式会社 Double-sided adhesive tape or sheet for printed circuit board and printed circuit board
JP2011153190A (en) 2010-01-26 2011-08-11 Nitto Denko Corp Conductive adhesive tape
WO2011108490A1 (en) 2010-03-03 2011-09-09 日東電工株式会社 Electrically conductive adhesive tape
JP2012007093A (en) * 2010-06-25 2012-01-12 Nitto Denko Corp Conductive adhesive tape
JP5952078B2 (en) 2011-06-23 2016-07-13 日東電工株式会社 Conductive thermosetting adhesive tape
WO2013031499A1 (en) * 2011-08-30 2013-03-07 日東電工株式会社 Conductive adhesive tape
JP5924123B2 (en) * 2012-05-23 2016-05-25 Dic株式会社 Conductive thin adhesive sheet
KR102048696B1 (en) * 2012-07-05 2019-11-26 린텍 가부시키가이샤 Pressure-sensitive adhesive sheet
JP6098180B2 (en) * 2013-01-18 2017-03-22 Dic株式会社 Conductive adhesive sheet
JP5660418B1 (en) 2013-04-19 2015-01-28 Dic株式会社 Conductive pressure-sensitive adhesive sheet, method for producing the same, and electronic terminal obtained using the same
JP2014234444A (en) * 2013-05-31 2014-12-15 日東電工株式会社 Electroconductive double-sided adhesive tape
JP5824478B2 (en) * 2013-06-06 2015-11-25 日東電工株式会社 Conductive adhesive tape
JP5858317B2 (en) 2013-11-20 2016-02-10 Dic株式会社 Conductive adhesive sheet and electronic device
JP6106148B2 (en) * 2013-11-27 2017-03-29 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
JP2017066407A (en) * 2013-11-27 2017-04-06 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
JP6516473B2 (en) * 2014-02-28 2019-05-22 日東電工株式会社 Conductive adhesive tape and display device with conductive adhesive tape
KR102270480B1 (en) * 2014-02-28 2021-06-29 닛토덴코 가부시키가이샤 Conductive adhesive tape and conductive adhesive tape attaching display device
GB2539697A (en) * 2015-06-25 2016-12-28 Lussey David Improved conductive polymer
WO2017164174A1 (en) * 2016-03-23 2017-09-28 タツタ電線株式会社 Electromagnetic shielding film
JP6783106B2 (en) 2016-09-29 2020-11-11 日東電工株式会社 Conductive adhesive tape
JP2017126775A (en) * 2017-03-16 2017-07-20 Dic株式会社 Conductive Thin Adhesive Sheet
JP6930239B2 (en) 2017-06-15 2021-09-01 Dic株式会社 Conductive adhesive sheet

Also Published As

Publication number Publication date
JP2004263030A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4403360B2 (en) Conductive adhesive sheet
JP2005277145A (en) Electromagnetic wave shielding adhesive sheet
KR101523332B1 (en) Adhesive sheet, electromagnetic wave shielding sheet and electronic device
KR101534644B1 (en) Electroconductive thin adhesive sheet
JP6098180B2 (en) Conductive adhesive sheet
CN105683320B (en) Electroconductive adhesive sheet and electronic equipment
CN103201352A (en) Nonwoven adhesive tapes and articles therefrom
KR20150144740A (en) Conductive adhesive sheet, method for manufacturing same and electronic terminal obtained by using same
KR20170129900A (en) Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
US20120325518A1 (en) Conductive thermosetting adhesive tape
JP2014001297A (en) Conductive adhesive tape
JP7363864B2 (en) Conductive adhesive sheets and portable electronic devices
JP6969172B2 (en) Conductive adhesive sheet
JP7574534B2 (en) Conductive adhesive sheet
TWI756215B (en) Conductive adhesive composition and conductive adhesive tape
JP6798646B2 (en) Conductive adhesive sheet
JP6996121B2 (en) Conductive adhesive sheet
CN112940642B (en) Conductive adhesive sheet
CN109996851B (en) Conductive adhesive tape
CN119931526A (en) Conductive adhesive tape

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term