JP4402134B2 - Multilayer secondary battery and manufacturing method thereof - Google Patents
Multilayer secondary battery and manufacturing method thereof Download PDFInfo
- Publication number
- JP4402134B2 JP4402134B2 JP2007143641A JP2007143641A JP4402134B2 JP 4402134 B2 JP4402134 B2 JP 4402134B2 JP 2007143641 A JP2007143641 A JP 2007143641A JP 2007143641 A JP2007143641 A JP 2007143641A JP 4402134 B2 JP4402134 B2 JP 4402134B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- positive electrode
- electrode active
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、複数枚の平板状の正極電極と負極電極とをセパレータを介して積層した積層型二次電池およびその製造方法に関する。 The present invention relates to a stacked secondary battery in which a plurality of flat positive electrodes and negative electrodes are stacked with a separator interposed therebetween, and a method for manufacturing the same.
積層型二次電池は、金属箔などからなる集電体上に活物質層を形成したシート状の電極面積が異なる正極電極と負極電極とをセパレータを介して積層した積層体を外装材で覆い封止する構造で構成される。 In a laminated type secondary battery, a sheet-shaped positive electrode and a negative electrode having different active electrode layers formed on a current collector made of metal foil or the like are stacked with a separator and covered with an exterior material. It is configured with a sealing structure.
近年、電気自動車の普及やハリブリット自動車の普及に伴って二次電池の高容量化と共に高いレートでの放電が可能な積層型二次電池への要求が高まっているが同時に安全性への要求も高まっている。 In recent years, with the spread of electric vehicles and hybrid vehicles, there has been an increase in the capacity of secondary batteries and the demand for stacked secondary batteries capable of discharging at a high rate. Is also growing.
ラミネートフィルムで外装する積層型二次電池では、金属ケースを用いた電池に比べ製造工程が容易であるが、その発電素子となる積層体の積層位置は高い精度で形成する技術が要求されていた。 A laminated type secondary battery that is packaged with a laminated film is easier to manufacture than a battery using a metal case, but a technique for forming the laminated position of the laminated body to be the power generating element with high accuracy is required. .
すなわち、安全性の観点から従来、セパレータを介した正極電極と負極電極においては正極電極の正極活物質が負極電極の負極活物質の内側に配置される構造としている(例えば特許文献1)。また充放電容量等特性面からもこのような構造が好ましい。 That is, from the viewpoint of safety, conventionally, a positive electrode active material of a positive electrode is arranged inside a negative electrode active material of a negative electrode in a positive electrode and a negative electrode via a separator (for example, Patent Document 1). Such a structure is also preferable from the viewpoint of characteristics such as charge / discharge capacity.
正極電極および負極電極の電極塗工方法は様々な方式があるが、スリットから電極スラリーを塗出して塗工するスリットダイコーターによる塗工方式は薄膜の塗工および塗工厚みの均一性に優れているため、よく用いられている。なお、正極電極および負極電極の電極塗工方法は同様なのでここでは負極を用いて塗工方法について説明する。図5は従来の塗工方法により片面に塗布した負極を説明する平面図であり、図6は従来の塗工方法により両面に塗布した負極を説明する平面図であり、図7は従来の塗工方法による両面に塗布した負極のスリット切断を説明する平面図である。従来の負極の塗工では、間欠塗工を行うが、間欠塗工の塗布開始時には、図5に示すように集電体10上の表面塗布部1(なお図面上の表面塗布部には斜線を付した。以下も同様。)の塗工開始部11の幅方向の中央部に凹部11aが形成され、塗布終了時には塗工終了部12の幅方向の中央部に凸部12bが形成される傾向が見られる。
There are various methods for coating the positive electrode and the negative electrode, but the coating method using the slit die coater that coats the electrode slurry by coating from the slit is excellent in the uniformity of thin film coating and coating thickness. Therefore, it is often used. In addition, since the electrode coating method of a positive electrode and a negative electrode is the same, the coating method is demonstrated here using a negative electrode. FIG. 5 is a plan view illustrating a negative electrode applied to one side by a conventional coating method, FIG. 6 is a plan view illustrating a negative electrode applied to both sides by a conventional coating method, and FIG. 7 is a conventional coating method. It is a top view explaining the slit cutting of the negative electrode apply | coated to both surfaces by a construction method. In the conventional negative electrode coating, intermittent coating is performed. At the start of intermittent coating application, as shown in FIG. 5, the
上述のように表面の塗工をおこない片面に塗布した負極を巻き取った後、裏面について塗工すると、図6に示すように表面塗布部1と裏面塗布部2(なお図面上の裏面塗布部には破線の斜線を付した。以下も同様。)との関係は表面の塗工開始部と裏面の塗工終了部、表面の塗工終了部12と裏面の塗工開始部21が重なることになるため、表面の凹部11aと裏面の凸部、表面の凸部12bと裏面の凹部が重なる構造となる。
After coating the surface and winding the negative electrode coated on one side as described above, coating the back surface, the
両面の塗工を行ったのち、積層型二次電池では図7に示すように負極を必要な寸法にするため短冊状にスリットして用いる。図7では端部の短冊状負極3、5と中央部の短冊状負極4の3枚にスリットしている場合を示す(一点鎖線がスリット線71を示す)が端部の短冊状負極3、5および、中央部の短冊状負極4では表面の塗布部が裏面の塗布部に対してずれて塗布されている。図8は従来の短冊状負極の正面図であり、図8(a)は端部の短冊状負極の正面図、図8(b)は中央部の短冊状負極の正面図である。図8(a)に示すようにスリット後の端部の短冊状負極3、5では表面の塗布部が裏面に対して左側にずれて塗布され、図8(b)に示すように中央部の短冊状負極4では逆に表面の塗布部が裏面に対して右側にずれて塗布されている。
After coating on both sides, in the laminated type secondary battery, as shown in FIG. 7, the negative electrode is slit into a strip shape so as to have a necessary dimension. FIG. 7 shows a case where the strip-shaped
この短冊状負極を積層する前にはそれぞれの負極について寸法を合わせるため切断を行う。このとき、図8(a)、図8(b)に示すように、表面の塗工開始部11を基準点6、8として一定の距離をとって切断線7、9を設けるようにしている。この場合、表面と裏面の塗布端がずれた状態で負極の切断を行なうことになり、端部の短冊状負極3においては、図8(a)に示すように表面の塗布部に対し裏面の塗布部が短い状態で切断され、中央部の短冊状負極4では図8(b)に示すように表面の塗布部に対し裏面の塗布部が長い状態で切断される。なお塗工開始部側では集電体に外部接続端子を接続するため非塗布部を設けている。
Before laminating the strip-shaped negative electrode, cutting is performed to adjust the dimensions of each negative electrode. At this time, as shown in FIGS. 8A and 8B, the
図9は、従来の正極と負極を積層する際の積層体の模式正面図である。上述のように切断した、表裏面で塗布部の寸法が異なる負極と、同様に製造された表裏面で塗布部の寸法が異なる正極とを積層するに当たり正極、負極の集電体の非塗布部は反対側に位置するように、正極、負極それぞれの表面の塗布部の寸法を基準として正極の塗布部が負極の塗布部の内側に配置されるように積層すると、図9に示すように、短冊状正極104の表面の基準点108と切断線109は短冊状負極3、4の表面の基準点6、8と切断線7、9の間に入ることになるが、端部の短冊状負極3の裏面と短冊状正極104の表面との位置関係、および短冊状正極104の裏面と中央部の短冊状負極4の表面との位置関係では正極の塗布部が負極の塗布部の内側に配置されない逆転箇所14、15が形成される場合がある。このように正極の塗布部の端面が負極の塗布部の端面に覆われていない場合には安全上、および性能上の観点で問題となることから不良品として取り扱うため、生産効率が悪くなる問題があった。
FIG. 9 is a schematic front view of a laminate when a conventional positive electrode and negative electrode are laminated. When laminating a negative electrode having a different size of the coated portion on the front and back surfaces, and a positive electrode having a different coated portion size on the front and back surfaces, which are cut as described above, the non-coated portion of the current collector of the positive electrode and the
本発明の課題はダイコーターなど優れた塗膜を形成する塗工方法を用いて正極および負極を作製し、積層する場合においても負極の塗布部が正極の塗布部を覆い、効率よく生産でき信頼性の優れた積層型二次電池およびその製造方法を提供することにある。 The object of the present invention is to produce a positive electrode and a negative electrode using a coating method that forms an excellent coating film such as a die coater, and even in the case of lamination, the negative electrode application part covers the positive electrode application part, and can be produced efficiently and reliable. An object of the present invention is to provide a laminated secondary battery having excellent properties and a method for manufacturing the same.
上記目的を達成するため本発明の積層型二次電池は、平板状の負極集電体の片側端部に非塗布部を有し前記負極集電体の両面に負極活物質層が塗布され、表面の塗布面積より裏面の塗布面積が大きい負極電極と、平板状の正極集電体の片側端部に非塗布部を有し前記正極集電体の両面に正極活物質層が塗布され、表面の塗布面積より裏面の塗布面積が小さい正極電極とを、上方から見て負極電極の表面の負極活物質層の塗布外周位置が、正極電極の表面の正極活物質層の塗布外周位置の外側に位置するように積層されたことを特徴とする。 In order to achieve the above object, the laminated secondary battery of the present invention has a non-coated portion at one end of a flat-plate negative electrode current collector, and a negative electrode active material layer is coated on both surfaces of the negative electrode current collector, A negative electrode having a coating area on the back surface larger than a coating area on the front surface, and a non-coated portion at one end of a flat plate-shaped positive electrode current collector, and a positive electrode active material layer is coated on both surfaces of the positive electrode current collector, The outer periphery position of the negative electrode active material layer on the surface of the negative electrode is outside the outer periphery position of the positive electrode active material layer on the surface of the positive electrode, as viewed from above, with the positive electrode having a smaller coating area on the back surface than the coated area of It is characterized by being laminated so as to be positioned.
また、本発明の積層型二次電池は、前記負極電極の表面の負極活物質層の塗布外周位置が、前記正極電極の表面の正極活物質層の塗布外周位置の0.5〜5mm外側に位置するように積層されることが好ましい。 Further, in the multilayer secondary battery of the present invention, the outer periphery position of the negative electrode active material layer on the surface of the negative electrode is 0.5 to 5 mm outside the outer periphery position of the positive electrode active material layer on the surface of the positive electrode. It is preferable to be laminated so as to be positioned.
また、本発明の積層型二次電池の製造方法は、平板状の負極集電体の表面に間欠的に負極活物質を塗布し負極活物質層を形成する工程と、間欠的に形成された表面のそれぞれの負極活物質層の終端部より開始部側に0.1〜5mmの位置から裏面の負極活物質の塗布を開始し負極活物質層を形成する工程と、平板状の正極集電体の表面に間欠的に正極活物質を塗布し正極活物質層を形成する工程と、間欠的に形成された表面のそれぞれの正極活物質層の終端部より開始部側と反対側に0.1〜5mmの位置から裏面の正極活物質の塗布を開始し正極活物質層を形成する工程と、前記負極活物質層の表面の開始部と前記正極活物質層の表面の開始部とをそれぞれ基準点として所定の寸法で切断し短冊状の負極電極と短冊状の正極電極を形成する工程と、上方から見て前記負極電極の表面の負極活物質層の塗布外周位置が、前記正極電極の表面の正極活物質層の塗布外周位置の外側に位置するように負極電極と正極電極とを積層する工程を含むことを特徴とする。 Also, the method for manufacturing a laminated secondary battery of the present invention was formed intermittently by applying a negative electrode active material on the surface of a flat plate negative electrode current collector to form a negative electrode active material layer. A step of starting the application of the negative electrode active material on the back surface from a position of 0.1 to 5 mm from the end of each negative electrode active material layer on the surface to the start side, and forming a negative electrode active material layer; A step of intermittently applying a positive electrode active material to the surface of the body to form a positive electrode active material layer, and a step of 0. The process of starting the application of the positive electrode active material on the back surface from a position of 1 to 5 mm to form the positive electrode active material layer, and the start part of the surface of the negative electrode active material layer and the start part of the surface of the positive electrode active material layer, respectively Cut to a predetermined size as a reference point to form a strip-shaped negative electrode and a strip-shaped positive electrode The negative electrode and the positive electrode are arranged such that the outer peripheral position of the negative electrode active material layer on the surface of the negative electrode is located outside the outer peripheral position of the positive electrode active material layer on the surface of the positive electrode when viewed from above. Including a step of laminating the layers.
本発明の積層型二次電池およびその製造方法によれば表裏面で塗布部の面積が異なる正極および負極を積層した場合にも、正極の塗布部の端面は負極の塗布部の端面から常に内側の位置に存在するため、信頼性が高く、生産効率の良い積層型二次電池が得られる。 According to the laminated secondary battery of the present invention and the method for manufacturing the same, even when a positive electrode and a negative electrode having different coated areas on the front and back surfaces are laminated, the end surface of the positive electrode coated portion is always inside from the end surface of the negative electrode coated portion. Therefore, it is possible to obtain a stacked secondary battery with high reliability and high production efficiency.
以下、この発明を実施するための最良の形態について図面を参照しながら説明する。図2は本発明による積層型電池の負極電極の両面塗布後の平面図であり、図3は本発明による積層型電池の正極電極の両面塗布後の平面図である。 The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 2 is a plan view of the laminated battery according to the present invention after the double-side application of the negative electrode, and FIG. 3 is a plan view of the laminated battery according to the present invention after the double-side application of the positive electrode.
図2に示すように負極電極は、負極集電体たとえば厚さ10μmの銅箔からなる集電体10上に負極活物質が形成された表面塗布部1と裏面塗布部2から構成される。負極電極は、グラファイト粉末からなる負極活物質をPVDFからなる結着剤とともにスラリー状となるよう調整した合剤を負極の集電体10上に片面ずつ間欠塗工により両面に塗布、乾燥し、表面塗布部1と裏面塗布部2を形成し、その後ロールプレス機により圧延し、所定の寸法にスリット切断することで短冊状負極が形成される。
As shown in FIG. 2, the negative electrode is composed of a front
また、正極活物質層は、図3に示すように、正極集電体たとえば厚さ20μmの帯状のアルミニウム箔からなる集電体110上に正極活物質が形成された表面塗布部101と裏面塗布部102から構成される。正極電極はコバルト酸リチウムからなる正極活物質に、PVDFからなる結着剤とアセチレンブラックからなる導電剤を添加してスラリー状となるように調整した合剤を正極の集電体110上に片面ずつ間欠塗工により両面に塗布、乾燥し、表面塗布部101と裏面塗布部102を形成し、その後ロールプレス機により圧延し、所定の寸法にスリット切断することで短冊状正極が形成される。
Further, as shown in FIG. 3, the positive electrode active material layer includes a front
次に負極電極の形成についてさらに詳細に説明する。図4は本発明の短冊状負極の正面図であり、図4(a)は端部の短冊状負極の正面図であり、図4(b)は中央部の短冊状負極の正面図である。図2に示すように負極電極の形成において表面塗布部1には塗工開始部11で中央部に凹部が形成され、塗工終了部12で中央部に凸部が形成される。表面の塗工終了後、裏面の塗工に際して、塗工開始部は表面の塗工終了部12から塗工開始部11側にずらした位置から塗工を行う。ずらす距離は中央部を基点として0.1〜5mmが好ましい。これは塗工開始部が湾曲する構造上、中央部でのずれが最小となり、端部で最大となるためである。中央部でずらす距離が0.1〜5mmの場合、端部でのずれは0.1〜10mmとなることがある。塗工終了後スリットにより得られる端部の短冊状負極は図4(a)に示すように表面の塗布部が裏面に対して右側にずれて塗布され、中央部の短冊状負極も図4(b)に示すように表面の塗布部が裏面に対して右側にずれて塗布されている。
Next, the formation of the negative electrode will be described in more detail. FIG. 4 is a front view of the strip-shaped negative electrode of the present invention, FIG. 4 (a) is a front view of the strip-shaped negative electrode at the end, and FIG. 4 (b) is a front view of the strip-shaped negative electrode at the center. . As shown in FIG. 2, in the formation of the negative electrode, a concave portion is formed in the central portion at the
この短冊状負極を積層する前には、それぞれの負極について寸法を合わせるため切断を行うがこのとき、図4(a)、図4(b)に示すように表面の塗工開始部11を基準点6、8として一定の距離をとって切断線7、9を設け切断すると、端部の短冊状負極、中央部の短冊状負極とも表面の塗工開始部11の基準点6、8の裏面においては必ず塗布部がある構造となる。このようにして表面の塗布面積より裏面の塗布面積が大きな負極電極が得られる。
Before laminating the strip-shaped negative electrode, cutting is performed to adjust the size of each negative electrode. At this time, as shown in FIGS. 4 (a) and 4 (b), the surface
正極電極の形成については、図3に示すように、表面の塗工終了後、裏面の塗工に際して、塗工開始部は表面の塗工終了部から塗工開始部の反対側にずらした位置から塗工を行う。ずらす距離は0.1〜5mmが好ましい。正極においても負極の場合と同様に塗工開始部が湾曲する構造となるためである。塗工終了後スリットにより得られる端部の短冊状正極は表面の塗布部が裏面に対してずれて塗布され、表面の塗工開始部を基準点として一定の距離を取って切断線を設け切断すると、端部の短冊状正極、中央部の短冊状正極とも表面の塗工開始部の基準点の裏面においては必ず塗布部がない構造となる。このようにして表面の塗布面積より裏面の塗布面積が小さな正極電極が得られる。ここで正極のスリット幅は負極より狭く、また正極の表面の基準点から切断線までの距離は、負極の表面の基準点から切断線までの距離より短く設定しておく。 For the formation of the positive electrode, as shown in FIG. 3, the position where the coating start portion is shifted from the surface coating end portion to the opposite side of the coating start portion after the front surface coating is finished. Apply from. The shifting distance is preferably 0.1 to 5 mm. This is because the coating start portion is curved in the positive electrode as in the negative electrode. The strip-shaped positive electrode at the end obtained by the slit after coating is applied with the coating part on the front side shifted from the back side, and the cutting line is cut with a certain distance from the coating start part on the surface as the reference point Then, both the strip-shaped positive electrode at the end and the strip-shaped positive electrode at the center have a structure in which there is no application portion on the back surface of the reference point of the coating start portion on the surface. In this way, a positive electrode having a coating area on the back surface smaller than the coating area on the front surface is obtained. Here, the slit width of the positive electrode is narrower than that of the negative electrode, and the distance from the reference point on the surface of the positive electrode to the cutting line is set shorter than the distance from the reference point on the surface of the negative electrode to the cutting line.
上記のように作製した正極電極と負極電極の間にセパレータとしてポリエチレン不織布を介して所定の数量だけ対向させて積層させた積層体からなる電池要素を作製する。図1は、本発明の正極電極と負極電極を積層する際の積層体の模式正面図である。図1においてセパレータは図示省略してあるが、正極電極と負極電極を積層する際には、上方から見て負極電極の表面の負極活物質層の塗布外周位置が、正極電極の表面の正極活物質層の塗布外周位置の外側に位置するように積層する。このとき負極電極の表面の負極活物質層の塗布外周位置が、正極電極の表面の正極活物質層の塗布外周位置の0.5〜5mm外側に位置するように積層されることが好ましい。積層作業において、正極活物質は必ず負極活物質の内側に位置することが、重要であり、その内側への位置は負極より1〜2mm程度が望ましい。また、積層作業での位置の精度は±2mmとした場合、合計で4mmとなるためマージンをとって5mmとすることが好ましい。 A battery element made of a laminate in which a predetermined number of layers are opposed to each other through a polyethylene nonwoven fabric as a separator between the positive electrode and the negative electrode produced as described above is produced. FIG. 1 is a schematic front view of a laminate when the positive electrode and the negative electrode of the present invention are laminated. Although the illustration of the separator is omitted in FIG. 1, when laminating the positive electrode and the negative electrode, the position of the coating outer periphery of the negative electrode active material layer on the surface of the negative electrode when viewed from above is the positive electrode active on the surface of the positive electrode. The material layer is laminated so as to be located outside the coating outer peripheral position. At this time, the lamination is preferably performed so that the coating outer peripheral position of the negative electrode active material layer on the surface of the negative electrode is positioned 0.5 to 5 mm outside the coating outer peripheral position of the positive electrode active material layer on the surface of the positive electrode. In the laminating operation, it is important that the positive electrode active material is always located inside the negative electrode active material, and the inner position is preferably about 1 to 2 mm from the negative electrode. Further, when the accuracy of the position in the laminating operation is ± 2 mm, the total is 4 mm, so it is preferable to take a margin of 5 mm.
負極電極及び正極電極の電極活物質の非塗布部に外部接続タブを接合させる。外部接続タブの幅はタブ引出し部の外装体の辺の長さの4/5〜2/5としておくとよい。これは、外装体の接合部の熱融着される箇所を外装体の1/5とした場合、タブ幅はその残り全ての幅を最大とし、2/5を最小とする。これはタブ幅が狭いと、タブ自体の持つ抵抗で効率よく電流を取り出せないために一定以上のタブ幅を必要とするためである。その後、外装を行う。外装フィルムは、ナイロン/アルミ/ポリプロピレンの3層構造をもつアルミラミネートフィルムであり、電池要素を収納するためフィルムに絞り加工による収納部をポリプロピレン側が凹状となるように設けた。上記電池要素を外装フィルムの電池要素収納部に収納し、もう一方の外装フィルムで電池要素を覆い、接合部を重ね合わせて熱融着によって外装体の周囲3辺を融着する。融着されていない1辺より電池要素収納部に電解液を注液した後、真空にて熱融着機によって封止をおこないフィルム外装の積層型二次電池を作製する。 An external connection tab is joined to the non-application part of the electrode active material of a negative electrode and a positive electrode. The width of the external connection tab is preferably 4/5 to 2/5 of the length of the side of the exterior body of the tab drawer portion. In this case, when the heat-sealed portion of the joint portion of the exterior body is 1/5 of the exterior body, the tab width is maximized for all remaining widths, and 2/5 is minimized. This is because if the tab width is narrow, the current cannot be efficiently taken out by the resistance of the tab itself, and a tab width of a certain level or more is required. Then, exterior is performed. The exterior film is an aluminum laminate film having a three-layer structure of nylon / aluminum / polypropylene. In order to store the battery element, the film is provided with a storage portion by drawing so that the polypropylene side is concave. The battery element is housed in a battery element housing portion of the exterior film, the battery element is covered with the other exterior film, the joint portions are overlapped, and the three sides around the exterior body are fused by thermal fusion. An electrolyte solution is injected into the battery element housing portion from one side that is not fused, and then sealed with a heat fusion machine in a vacuum to produce a film-type laminated secondary battery.
1、101 表面塗布部
2、102 裏面塗布部
3、5 (端部の短冊状)負極
4 (中央部の短冊状)負極
6、8、108 基準点
7、9、109 切断線
10、110 集電体
11,21 塗工開始部
11a 凹部
12 塗工終了部
12b 凸部
14、15 逆転箇所
71 スリット線
104 (短冊状)正極
DESCRIPTION OF SYMBOLS 1,101 Surface application part 2,102 Back
Claims (3)
平板状の正極集電体の片側端部に非塗布部を有し前記正極集電体の両面に正極活物質層が塗布され、表面の塗布面積より裏面の塗布面積が小さい正極電極とを、
上方から見て負極電極の表面の負極活物質層の塗布外周位置が、正極電極の表面の正極活物質層の塗布外周位置の外側に位置するように積層されたことを特徴とする積層型二次電池。 A negative electrode active material layer having a non-applied portion on one end of a flat-plate negative electrode current collector and a negative electrode active material layer applied to both surfaces of the negative electrode current collector, and a coating area on the back surface larger than the surface coating area;
A positive electrode active material layer is applied to both sides of the positive electrode current collector having a non-applied portion at one end of a flat plate positive electrode current collector, and a positive electrode having a coating area on the back surface smaller than the coated area on the surface,
Layered type 2 characterized in that the outer periphery position of the negative electrode active material layer on the surface of the negative electrode viewed from above is positioned outside the outer periphery position of the positive electrode active material layer on the surface of the positive electrode. Next battery.
平板状の正極集電体の表面に間欠的に正極活物質を塗布し正極活物質層を形成する工程と、間欠的に形成された表面のそれぞれの正極活物質層の終端部より開始部側と反対側に0.1〜5mmの位置から裏面の正極活物質の塗布を開始し正極活物質層を形成する工程と、
前記負極活物質層の表面の開始部と前記正極活物質層の表面の開始部とをそれぞれ基準点として所定の寸法で切断し短冊状の負極電極と短冊状の正極電極を形成する工程と、
上方から見て前記負極電極の表面の負極活物質層の塗布外周位置が、前記正極電極の表面の正極活物質層の塗布外周位置の外側に位置するように負極電極と正極電極とを積層する工程とを含むことを特徴とする積層型二次電池の製造方法。 A step of intermittently applying a negative electrode active material to the surface of a flat negative electrode current collector to form a negative electrode active material layer, and a start side from the end of each negative electrode active material layer on the intermittently formed surface Starting the application of the negative electrode active material on the back surface from a position of 0.1 to 5 mm to form a negative electrode active material layer;
A step of intermittently applying a positive electrode active material to the surface of a flat positive electrode current collector to form a positive electrode active material layer, and a start side from the end of each positive electrode active material layer on the surface formed intermittently Starting the application of the positive electrode active material on the back surface from a position of 0.1 to 5 mm on the opposite side and forming a positive electrode active material layer;
Forming a strip-shaped negative electrode and a strip-shaped positive electrode by cutting each of the start portion of the surface of the negative electrode active material layer and the start portion of the surface of the positive electrode active material layer with predetermined dimensions as reference points;
The negative electrode and the positive electrode are stacked so that the outer periphery position of the negative electrode active material layer on the surface of the negative electrode is located outside the outer periphery position of the positive electrode active material layer on the surface of the positive electrode when viewed from above. And a process for producing a laminated secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007143641A JP4402134B2 (en) | 2007-05-30 | 2007-05-30 | Multilayer secondary battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007143641A JP4402134B2 (en) | 2007-05-30 | 2007-05-30 | Multilayer secondary battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008300141A JP2008300141A (en) | 2008-12-11 |
JP4402134B2 true JP4402134B2 (en) | 2010-01-20 |
Family
ID=40173471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007143641A Active JP4402134B2 (en) | 2007-05-30 | 2007-05-30 | Multilayer secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4402134B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130236768A1 (en) | 2012-03-08 | 2013-09-12 | Lg Chem, Ltd. | Battery pack of stair-like structure |
KR20130105271A (en) | 2012-03-16 | 2013-09-25 | 주식회사 엘지화학 | Battery cell of asymmetric structure and battery pack employed with the same |
KR20130113301A (en) | 2012-04-05 | 2013-10-15 | 주식회사 엘지화학 | Battery cell of stair-like structure |
KR20130133640A (en) | 2012-05-29 | 2013-12-09 | 주식회사 엘지화학 | A stepwise electrode assembly having corner of various shape and a battery cell, battery pack and device comprising the same |
KR101483505B1 (en) | 2012-11-13 | 2015-01-21 | 주식회사 엘지화학 | Stepped Electrode Assembly |
US9318733B2 (en) | 2012-12-27 | 2016-04-19 | Lg Chem, Ltd. | Electrode assembly of stair-like structure |
US9484560B2 (en) | 2013-02-13 | 2016-11-01 | Lg Chem, Ltd. | Electric device having a round corner and including a secondary battery |
WO2014137018A1 (en) * | 2013-03-08 | 2014-09-12 | 주식회사 엘지화학 | Laminate of electrode groups having stepped structure |
US9786874B2 (en) | 2013-03-08 | 2017-10-10 | Lg Chem, Ltd. | Electrode having round corner |
US9954203B2 (en) | 2013-03-08 | 2018-04-24 | Lg Chem, Ltd. | Stepped electrode group stack |
US9876257B2 (en) | 2013-06-21 | 2018-01-23 | Nec Energy Devices, Ltd. | Secondary battery and electrode production method |
KR101586881B1 (en) * | 2013-08-29 | 2016-01-19 | 주식회사 엘지화학 | Electrode assembly for cell of polymer lithium secondary battery |
US10530006B2 (en) | 2013-08-29 | 2020-01-07 | Lg Chem, Ltd. | Electrode assembly for polymer secondary battery cell |
JP6471647B2 (en) * | 2015-08-24 | 2019-02-20 | 日産自動車株式会社 | Electrode manufacturing method and electrode manufacturing apparatus |
JP7088869B2 (en) * | 2019-03-26 | 2022-06-21 | プライムアースEvエナジー株式会社 | Lithium ion secondary battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001351610A (en) * | 2000-06-07 | 2001-12-21 | Matsushita Electric Ind Co Ltd | Electrode plate for battery, and battery |
JP2002100409A (en) * | 2000-09-22 | 2002-04-05 | Yuasa Corp | Non-aqueous secondary battery |
JP4932263B2 (en) * | 2005-01-28 | 2012-05-16 | Necエナジーデバイス株式会社 | Multilayer secondary battery and manufacturing method thereof |
-
2007
- 2007-05-30 JP JP2007143641A patent/JP4402134B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008300141A (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4402134B2 (en) | Multilayer secondary battery and manufacturing method thereof | |
JP5194072B2 (en) | Manufacturing method of electrode assembly for secondary battery | |
JP6027136B2 (en) | Electrode assembly manufacturing method and electrode assembly manufactured using the same | |
JP6572204B2 (en) | Secondary battery and manufacturing method thereof | |
JP5541514B2 (en) | Multilayer secondary battery | |
WO2015087657A1 (en) | Secondary battery, and method for producing same | |
JP6292678B2 (en) | Secondary battery and electrode manufacturing method | |
EP2487747A2 (en) | Electrode assembly for a battery and method for manufacturing same | |
US11367864B2 (en) | Intermittently coated dry electrode for energy storage device and method of manufacturing the same | |
JP2004071301A (en) | Method for manufacturing storage device case | |
JP2012513076A (en) | Secondary battery manufacturing method and secondary battery | |
KR101663351B1 (en) | Cell for electrochemical device and preparation method thereof | |
JP2017069207A (en) | Lithium ion secondary battery and manufacturing method for the same | |
JP6539080B2 (en) | Method of manufacturing secondary battery | |
WO2018138977A1 (en) | Stacked rechargeable battery, method for producing same, and device | |
JPWO2018138976A1 (en) | Stacked secondary battery, method of manufacturing the same, and device | |
JP2014116080A (en) | Electricity storage device and method for manufacturing electricity storage device | |
KR101387137B1 (en) | Electrode assembly and rechargeable battery with the same | |
JP2009016122A (en) | Laminated secondary battery and battery pack | |
JP2002157997A (en) | Method of manufacturing collapsible lithium battery | |
JP2018055904A (en) | Electrochemical cell and manufacturing method of the electrochemical cell | |
JP2014102897A (en) | Power storage device and manufacturing method for power storage device | |
WO2023127726A1 (en) | Secondary battery | |
JP2018107125A (en) | Method for producing electrode stack for battery cell, and battery cell | |
KR102217444B1 (en) | Electrode assembly and manufactureing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090703 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20090831 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20090918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091022 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4402134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |