[go: up one dir, main page]

JP4401893B2 - Polyimide precursor resin composition - Google Patents

Polyimide precursor resin composition Download PDF

Info

Publication number
JP4401893B2
JP4401893B2 JP2004230840A JP2004230840A JP4401893B2 JP 4401893 B2 JP4401893 B2 JP 4401893B2 JP 2004230840 A JP2004230840 A JP 2004230840A JP 2004230840 A JP2004230840 A JP 2004230840A JP 4401893 B2 JP4401893 B2 JP 4401893B2
Authority
JP
Japan
Prior art keywords
resin composition
acid
film
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004230840A
Other languages
Japanese (ja)
Other versions
JP2006045423A (en
Inventor
明宏 加藤
聡 扇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2004230840A priority Critical patent/JP4401893B2/en
Publication of JP2006045423A publication Critical patent/JP2006045423A/en
Application granted granted Critical
Publication of JP4401893B2 publication Critical patent/JP4401893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、逐次積層工程が可能な多層配線板の絶縁材料や半導体チップ等の電子部品における絶縁保護膜形成材料等に用いられる、耐薬品性、低吸水率、密着性、耐熱性に優れた低温硬化可能なポリイミド前駆体樹脂組成物、ならびに前記前駆体より誘導されるポリイミド樹脂を含む構造体に関する。   The present invention is excellent in chemical resistance, low water absorption, adhesion, and heat resistance, which is used as an insulating material for multilayer wiring boards that can be sequentially laminated and an insulating protective film forming material for electronic components such as semiconductor chips. The present invention relates to a low-temperature curable polyimide precursor resin composition and a structure containing a polyimide resin derived from the precursor.

従来、回路基板の層間絶縁樹脂としてはエポキシ樹脂が使用されている。エポキシ樹脂は流動性が高く加工温度が低いなど取扱いが容易なため広く電子材料用途に使用されているが、熱膨張係数が高い上、熱硬化性樹脂であるため他の一般の熱硬化性樹脂と同様に機械強度測定における破断伸度、引張強伸度などの機械特性は十分ではなく概して脆い材料である。エポキシ樹脂の熱膨張係数を下げる方法として、シリカなど低熱膨張係数を持ったフィラー成分を混合する方法などが用いられるが、靭性の低下をもたらし、さらに脆い材料となって引張強伸度などの特性を損なうため、冷熱衝撃試験といった電子機器としての信頼性試験に掛けた時にクラックが生じることが問題となる。   Conventionally, epoxy resin has been used as an interlayer insulating resin for circuit boards. Epoxy resins are widely used for electronic materials because they are easy to handle because they have high fluidity and low processing temperature. However, they have a high coefficient of thermal expansion and are thermosetting resins, so other general thermosetting resins are used. In the same way as in the mechanical strength measurement, mechanical properties such as elongation at break and tensile strength / elongation are not sufficient, and the material is generally brittle. As a method of lowering the thermal expansion coefficient of an epoxy resin, a method of mixing a filler component having a low thermal expansion coefficient such as silica is used, but it causes a decrease in toughness and becomes a brittle material, such as tensile strength and elongation. Therefore, cracks are a problem when subjected to a reliability test as an electronic device such as a thermal shock test.

一方、ポリイミド樹脂は、一般に、高いガラス転移温度/高い耐薬品性/優れた機械物性/優れた電気特性などを有する材料として電子回路用の基材や層間絶縁樹脂層として広く使用されてきた。しかし、通常のポリイミド樹脂は、特性を発現させるため、イミド化硬化温度が300℃以上と、エポキシ樹脂等の熱硬化性樹脂に比較して高く、そのために使用範囲が限定されるという欠点があった。 イミド化硬化温度を低下させる方法として、ポリイミド分子構造中に屈曲性の高い構造を導入する方法や、無水酢酸とピリジンなどの化学イミド化剤を利用する方法が知られている。しかしながら、前者においては、屈曲性の高い構造を分子鎖に導入することによりポリイミドのガラス転移温度を著しく下げざるを得ず、熱膨張係数や耐熱性や耐薬品性や機械物性などの性能を損なうことが多かった。また、後者においては、イミド化の硬化温度の低下が可能であるが、硬化速度の制御が困難であり、保存時や電子回路基板や電子素子製造工程に適用する際の溶媒乾燥の段階ですでにイミド化が進行してしまい、好ましい製造工程上の特性が得られない。例えば、ポリアミド酸を含む塗布用溶液をコーティングした後90〜120℃程度の低温で溶媒を乾燥した後、その上にフォトレジストを形成してアルカリ水溶液よりなるフォトレジストの現像時に下層に設けたポリアミド酸層を同時にエッチング開孔し、フォトレジストの剥離後に高温加熱によりポリイミド化して開孔されたポリイミド層を得るという方法が半導体チップ製造工程などで採られるが、上記の例のようなこれまでに知られた化学イミド化剤を用いると、低温乾燥時にイミド化が進行しすぎてしまうことでエッチング性を著しく損なう。   On the other hand, polyimide resins have been widely used as substrates for electronic circuits and interlayer insulating resin layers as materials having high glass transition temperature / high chemical resistance / excellent mechanical properties / excellent electrical characteristics. However, in order to express characteristics, ordinary polyimide resins have an imidization curing temperature of 300 ° C. or higher, which is higher than thermosetting resins such as epoxy resins, which limits the range of use. It was. As a method for lowering the imidization curing temperature, a method of introducing a highly flexible structure into a polyimide molecular structure and a method of using a chemical imidizing agent such as acetic anhydride and pyridine are known. However, in the former, by introducing a highly flexible structure into the molecular chain, the glass transition temperature of polyimide has to be remarkably lowered, and the performance such as thermal expansion coefficient, heat resistance, chemical resistance and mechanical properties are impaired. There were many things. In the latter case, it is possible to lower the curing temperature for imidization, but it is difficult to control the curing rate, and it is the stage of solvent drying during storage and application to electronic circuit boards and electronic device manufacturing processes. Thus, imidization proceeds, and preferable characteristics in the production process cannot be obtained. For example, after coating a coating solution containing polyamic acid, drying a solvent at a low temperature of about 90 to 120 ° C., forming a photoresist thereon, and developing a polyamide provided in the lower layer when developing a photoresist made of an alkaline aqueous solution The method of etching holes in the acid layer at the same time, and polyimide is formed by high-temperature heating after peeling of the photoresist to obtain a holed polyimide layer has been adopted in the semiconductor chip manufacturing process etc. When a known chemical imidizing agent is used, imidization proceeds excessively at low temperature drying, so that the etching property is remarkably impaired.

また、特許文献1には、ポリアミド酸を含むフィルムを80〜200℃の温度で加熱乾燥し、厚み50μm以下にてイミド化率が10〜50%である離型フィルム上に形成された半硬化状態のポリアミック酸フィルムとする技術が開示されているが、この場合でも、加熱乾燥温度した後に、イミド化率が10%以上となるため樹脂の流動性が低下し、該組成物を電子回路配線の凹凸がある基板用のラミネート材料として用いようとしたときに配線間への樹脂の良好な埋込み性が得られないという問題がある。特許文献2には、200℃以下での硬化が可能なポリイミド樹脂組成物が開示されているが、化学イミド化剤の利用により200℃での硬化が可能となるものであり、120℃でのイミド化率が35%以上のため、同様にして、樹脂の流動性が低下するために、該組成物を電子回路配線の凹凸がある基板用のラミネート材料として用いようとしたときに配線間への樹脂の良好な埋込み性が得られないという問題がある。これまで知られた化学イミド化剤では、100℃前後でのイミド化を抑制することは困難だった。
以上述べたように、ポリイミドの優れた物理的特性をより広い用途で活かすためには、100℃前後の比較的低温での乾燥工程ではポリイミド化が実質的に進行せず、一方、それに引き続くそれほど高くない温度での加熱イミド化の工程で完全にイミド化するような材料の開発が望まれていた。
In Patent Document 1, a film containing polyamic acid is heat-dried at a temperature of 80 to 200 ° C., and is semi-cured formed on a release film having a thickness of 50 μm or less and an imidization ratio of 10 to 50%. Although a technique for forming a polyamic acid film in a state is disclosed, even in this case, after the heating and drying temperature, the imidization ratio becomes 10% or more, so that the fluidity of the resin is lowered, and the composition is used as an electronic circuit wiring. There is a problem that good embedding of the resin between the wirings cannot be obtained when it is used as a laminate material for a substrate having unevenness. Patent Document 2 discloses a polyimide resin composition that can be cured at 200 ° C. or lower, but can be cured at 200 ° C. by using a chemical imidizing agent. Similarly, since the imidization ratio is 35% or more, and the fluidity of the resin is lowered, when the composition is used as a laminate material for a substrate having unevenness of electronic circuit wiring, between the wirings. There is a problem that good embedding property of the resin cannot be obtained. It has been difficult to suppress imidization at around 100 ° C. with known chemical imidizing agents.
As described above, in order to utilize the excellent physical properties of polyimide in a wider range of applications, polyimide formation does not substantially proceed in a drying process at a relatively low temperature of about 100 ° C. It has been desired to develop a material that can be completely imidized in the process of heat imidization at a low temperature.

特開平4−339834号公報Japanese Patent Laid-Open No. 4-339834 特開平8−245879号公報JP-A-8-245879

本発明は、上記のような状況を鑑みてなされたもので、ポリイミドが本来持つ高いガラス転移温度、高い耐薬品性、優れた機械物性を保持し、溶媒乾燥程度の温度ではイミド化が実質的に進行せず、樹脂流動性やアルカリ水溶液でのエッチング性といった電子機器回路基板や電子素子製造工程で必要な性能を保持しながら、その後の220℃以下の温度での加熱によりイミド化が可能である組成物を提供することを目的とするものである。   The present invention has been made in view of the above situation, and maintains the high glass transition temperature, high chemical resistance, and excellent mechanical properties inherent to polyimide, and imidization is substantially achieved at a temperature of solvent drying. It is possible to imidize by heating at a temperature of 220 ° C. or lower, while maintaining the performance required in the manufacturing process of electronic device circuit boards and electronic elements such as resin flowability and etchability with alkaline aqueous solution. The object is to provide a composition.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の構造の化合物を用いると、溶媒乾燥のための加熱温度ではイミド化が進行せず、一方で220℃以下の加熱温度で完全にイミド化することができる潜在硬化性の高いポリイミド前駆体樹脂樹脂組成物を見出し、本発明をなすに至った。
すなわち本発明は、以下のとおりのものである。
(1)a)ポリアミド酸と、b)次の一般式(I)で示されるジアザビシクロ誘導体を必須成分として含み、a)成分とb)成分の和100質量部を基準として、a)成分が70〜99.9質量部であり、b)成分が0.1〜30質量部であることを特徴とする低温硬化性ポリイミド樹脂組成物。
As a result of intensive studies to solve the above problems, the present inventor, when using a compound having a specific structure, imidation does not proceed at a heating temperature for solvent drying, while heating at 220 ° C. or lower. The present inventors have found a polyimide precursor resin resin composition having a high latent curing property that can be completely imidized at a temperature, and have reached the present invention.
That is, the present invention is as follows.
(1) a) a polyamic acid and b) a diazabicyclo derivative represented by the following general formula (I) as essential components, and based on 100 parts by mass of the sum of the components a) and b), the component a) is 70 The low-temperature-curable polyimide resin composition, which is ˜99.9 parts by mass and the component b) is 0.1 to 30 parts by mass.

Figure 0004401893
(ただし、一般式(I)中、m、nはそれぞれ独立した整数であり、m+n≦8、m、n≧0である。−(CH2)−基と−(CH)−基の順序に制限は無い。Xは、−N(n−Bu)2、CH3、Hから選ばれる少なくとも1種の基であり、Rは、炭素数1〜20の有機酸残基及び/又は無機酸残基である。)
(2)上記(1)の低温硬化性ポリイミド前駆体樹脂組成物をイミド閉環させてなるポリイミド樹脂を含む構造体。
Figure 0004401893
(In the general formula (I), m and n are independent integers, and m + n ≦ 8, m, and n ≧ 0. In the order of — (CH 2 ) — group and — (CH) — group) There is no limitation, X is at least one group selected from —N (n-Bu) 2 , CH 3 and H, and R is an organic acid residue and / or inorganic acid residue having 1 to 20 carbon atoms. Group.)
(2) A structure containing a polyimide resin obtained by ring-closing an imide ring of the low-temperature curable polyimide precursor resin composition of (1).

本発明により、逐次積層工程が可能な多層配線板の絶縁材料や半導体チップ等の電子部品における絶縁保護膜形成材料等に用いられる、イミド化後の耐薬品性、低吸水率、密着性、耐熱性に優れた低温硬化可能なポリイミド前駆体樹脂組成物が得られた。
本発明による低温硬化性ポリイミド樹脂組成物は、電子回路基板や電子素子製造工程へ適用するために必要な成型工程での加熱条件ではイミド化が実質的に進行せず、一方で、その後に220℃以下の加熱処理を行うことでイミド化が可能なポリイミド樹脂組成物である。
本発明により、半導体製造工程のような電子素子製造工程の中でのポリアミド酸を用いる製造工程が容易になるのはもとより、電子回路基板へのポリアミド酸の応用用途が広がった。
According to the present invention, chemical resistance after imidization, low water absorption, adhesion, heat resistance, etc. used for insulating materials of multilayer wiring boards that can be sequentially laminated and insulating protective film forming materials in electronic parts such as semiconductor chips A polyimide precursor resin composition capable of being cured at low temperature was obtained.
In the low-temperature curable polyimide resin composition according to the present invention, imidization does not substantially proceed under heating conditions in a molding process necessary for application to an electronic circuit board or an electronic element manufacturing process, while 220 It is a polyimide resin composition that can be imidized by performing a heat treatment at a temperature of ℃ or less.
According to the present invention, not only the manufacturing process using polyamic acid in the electronic device manufacturing process such as the semiconductor manufacturing process becomes easy, but also the application of the polyamic acid to the electronic circuit board has been expanded.

以下、本発明について具体的に説明する。
本発明の低温硬化性ポリイミド樹脂組成物におけるa)成分であるポリアミド酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得られ、また、必要に応じて、ジカルボン酸無水物も加えて反応させても良い。
上記のテトラカルボン酸二無水物としては、ピロメリット酸、ベンゼンテトラカルボン酸、シクロブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸、オキシジフタル酸、ジフェニルスルホンテトラカルボン酸、ナフタレンテトラカルボン酸などの二無水物が挙げられる。また、上記のジアミンとしては、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどが挙げられる。更に、ジカルボン酸無水物とテトラカルボン酸二無水物とジアミンは、それぞれ1種又は2種以上を適宜組み合わせて用いることができる。
これらのポリアミド酸は、前記のテトラカルボン酸二無水物成分とジアミン酸成分を反応させて得られるが、それら成分がブロックあるいは、ランダムに含有されていてもよい。
Hereinafter, the present invention will be specifically described.
The polyamic acid which is component a) in the low-temperature curable polyimide resin composition of the present invention is obtained by reacting tetracarboxylic dianhydride and diamine, and if necessary, dicarboxylic acid anhydride is also added. You may make it react.
Examples of the tetracarboxylic dianhydride include pyromellitic acid, benzenetetracarboxylic acid, cyclobutanetetracarboxylic acid, cyclohexanetetracarboxylic acid, biphenyltetracarboxylic acid, benzophenonetetracarboxylic acid, oxydiphthalic acid, diphenylsulfonetetracarboxylic acid, and naphthalene. And dianhydrides such as tetracarboxylic acid. Examples of the diamine include phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl ether, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane. Furthermore, each of dicarboxylic acid anhydride, tetracarboxylic dianhydride, and diamine can be used singly or in combination of two or more.
These polyamic acids are obtained by reacting the tetracarboxylic dianhydride component and the diamine acid component, but these components may be contained in blocks or randomly.

本発明の低温硬化性ポリイミド前駆体樹脂組成物におけるb)成分である、下記一般式(I)で示されるジアザビシクロ誘導体は、ジアザビシクロ化合物と酸から構成される化合物であり、式中m、nはそれぞれ独立した整数であり、m+n≦8、m、n≧0である。−(CH2)−基と−(CH)−基との順序に制限は無い。Xは、−N(n−Bu)2、CH3、Hから選ばれる少なくとも1種の基であり、Rは、炭素数1〜20の有機酸残基又は無機酸残基である。 The diazabicyclo derivative represented by the following general formula (I), which is the component b) in the low-temperature curable polyimide precursor resin composition of the present invention, is a compound composed of a diazabicyclo compound and an acid, where m and n are Each is an independent integer, and m + n ≦ 8, m, and n ≧ 0. - (CH 2) - group and - (CH) - restricted to the orders of the groups no. X is at least one group selected from —N (n-Bu) 2 , CH 3 , and H, and R is an organic acid residue or inorganic acid residue having 1 to 20 carbon atoms.

Figure 0004401893
m+nはジアザビシクロ誘導体の化学安定性の観点から3以上8以下が好ましい。上記ジアザビシクロ誘導体を構成するジアザビシクロ化合物としては、ジアザビシクロウンデセン、ジアザビシクロノネンがあげられる。ポリイミド樹脂との反応性の観点からジアザビシクロウンデセンが好ましい。ジアザビシクロ化合物の骨格中にジノルマルブチルアミノ基やメチル基などの置換基が導入されていてもよい。ジノルマルブチルアミノ基が導入された6−ジブチルアミノ−1、8−ジアザビシクロウンデセンなどが挙げられる。
Figure 0004401893
m + n is preferably 3 or more and 8 or less from the viewpoint of chemical stability of the diazabicyclo derivative. Examples of the diazabicyclo compound constituting the diazabicyclo derivative include diazabicycloundecene and diazabicyclononene. From the viewpoint of reactivity with the polyimide resin, diazabicycloundecene is preferred. Substituents such as a di-normal butylamino group and a methyl group may be introduced into the skeleton of the diazabicyclo compound. Examples include 6-dibutylamino-1,8-diazabicycloundecene and the like into which a dinormalbutylamino group has been introduced.

また、酸残基としては、Rが、炭素数1〜20である有機酸残基及び/又は無機酸残基が好ましい。有機酸残基としては、ギ酸や酢酸、マレイン酸などといった脂肪族カルボン酸やコハク酸、安息香酸などの芳香族カルボン酸、また、フェノール、カテコールなどのフェノール類やp−トルエンスルホン酸などの芳香族スルホン酸などの酸残基があげられ、無機酸残基としては塩酸塩、硫酸塩、炭酸塩、リン酸塩、ホウ酸塩など酸残基があげられる。
ポリアミド酸との相溶性や、有機溶媒との溶解性から、酸としては、ギ酸や酢酸、マレイン酸などといった脂肪族カルボン酸やコハク酸、安息香酸などの芳香族カルボン酸、また、フェノール、カテコールなどのフェノール類やp−トルエンスルホン酸などの芳香族スルホン酸などの有機酸残基が好ましい。
Moreover, as an acid residue, R is a C1-C20 organic acid residue and / or an inorganic acid residue. Organic acid residues include aliphatic carboxylic acids such as formic acid, acetic acid and maleic acid, aromatic carboxylic acids such as succinic acid and benzoic acid, phenols such as phenol and catechol, and aromatics such as p-toluenesulfonic acid. Acid residues such as aromatic sulfonic acids, and inorganic acid residues include acid residues such as hydrochloride, sulfate, carbonate, phosphate and borate.
Due to compatibility with polyamic acid and solubility in organic solvents, acids include aliphatic carboxylic acids such as formic acid, acetic acid and maleic acid, aromatic carboxylic acids such as succinic acid and benzoic acid, and phenol and catechol. Preferred are organic acid residues such as phenols and aromatic sulfonic acids such as p-toluenesulfonic acid.

また、これらの中でも、室温よりも高い温度で容易に解離することが可能であり、ポリイミド樹脂との相溶性が良好なp−トルエンスルホン酸やフェノールなどがより好ましい。
また、対応する酸は、ジアザビシクロ誘導体に対してそれぞれ1種又は2種以上を適宜組み合わせて用いることができる。
a)成分とb)成分の混合比率は、a)成分とb)成分の和100質量部を基準として、a)成分が70〜99.9質量部であり、b)成分が0.1〜30質量部であることが好ましく、さらに好ましくは、a)成分が80〜99.5質量部であり、b)成分が0.5〜20質量部である。220℃以下での硬化といった低温硬化性の観点から、b)成分は0.1質量部以上が好ましく、イミド化の硬化速度の制御の観点から30質量部以下が好ましい。
Among these, p-toluenesulfonic acid and phenol that can be easily dissociated at a temperature higher than room temperature and have good compatibility with the polyimide resin are more preferable.
In addition, the corresponding acid can be used alone or in combination of two or more with respect to the diazabicyclo derivative.
The mixing ratio of the component a) and the component b) is based on 100 parts by mass of the sum of the components a) and b), the component a) is 70 to 99.9 parts by mass, and the component b) is 0.1 to It is preferable that it is 30 mass parts, More preferably, a) component is 80-99.5 mass parts, b) A component is 0.5-20 mass parts. From the viewpoint of low-temperature curability such as curing at 220 ° C. or less, the component b) is preferably 0.1 parts by mass or more, and preferably 30 parts by mass or less from the viewpoint of controlling the curing rate of imidization.

本発明で用いられる樹脂組成物には、用途に応じて溶媒や添加剤を加えることも可能である。溶媒としては、前記のポリアミド酸と混合するもので、例としては、γ−ブチロラクトン、γ−バレロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジオキサン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテル、テトラメチル尿素等が挙げられる。本発明に使用する好ましい溶媒は、γ−ブチロラクトン、N,N−ジメチルホルムアミドおよびN−メチル−2−ピロリドンである。これらは単独、または2種以上を混合して用いることができる。また添加剤として、脱水剤、シリカなどのフィラー、及びシランカップリング剤などの表面改質剤などをさらに加えても良い。
本発明のポリイミド樹脂よりなる構造体は、前記のポリイミド前駆体樹脂組成物を220℃以下の温度で加熱硬化して得たポリイミド樹脂を含む構造体である。加熱時の雰囲気は、不活性ガス中でも良いし、構造体の他の構成成分に酸化などの問題のない限り空気中でも良い。
It is also possible to add a solvent and an additive to the resin composition used in the present invention depending on the application. Examples of the solvent include those mixed with the above-described polyamic acid. Examples include γ-butyrolactone, γ-valerolactone, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl Examples include sulfoxide, 1,3-dioxane, 1,4-dioxane, cyclopentanone, cyclohexanone, diethylene glycol dimethyl ether, and tetramethylurea. Preferred solvents for use in the present invention are γ-butyrolactone, N, N-dimethylformamide and N-methyl-2-pyrrolidone. These can be used alone or in admixture of two or more. As additives, a dehydrating agent, a filler such as silica, and a surface modifier such as a silane coupling agent may be further added.
The structure made of the polyimide resin of the present invention is a structure containing a polyimide resin obtained by heat curing the polyimide precursor resin composition at a temperature of 220 ° C. or lower. The atmosphere at the time of heating may be an inert gas, or may be air as long as there are no problems such as oxidation in other components of the structure.

以下実施例により本発明を具体的に説明するが、本発明はこれらの実施例などによって何ら限定されるものではない。
尚、以下の実施例において、ポリアミド酸の特性やイミド化の程度の測定は、次のようにして行った。
(1)還元粘度
ポリマー濃度が0.5g/dlとなるようにN−メチル−2−ピロリドン溶液を調整した後、柴田科学株式会社製の粘度計番号1のウベローデ粘度管を使用し、温度30℃±1℃の恒温水槽中で測定した。
(2)イミド化率
本発明においてのイミド化率は、IR法で求めた。使用した測定器は、Thermo Nicolet Corporation製のCentaurusで、Ge結晶を使用したATR法で測定した。Journal of Polymer Science:Part A:Polymer Chemistry,Vol.27,711−724(1989)に倣い、1500cm-1近傍のベンゼン環に基づくピークを基準とし、1380cm-1近傍のイミド環生成に基づくピークの吸光度との比からイミド化率を求める。それらのピーク前後でピークの谷と谷を結ぶように適宜ベースラインを引き、それぞれのピークからそのベースラインへ降ろした線とベースラインとの交点からピークまでの高さをそれぞれの吸光度と定義し、本発明の樹脂を窒素雰囲気で300℃60分間熱処理した際の樹脂の1380cm-1における吸光度をA1、1500cm-1の吸光度をA2とし、各条件における1380cm-1の吸光度をB1、1500cm-1の吸光度をB2とした場合、各条件におけるイミド化率Cは、300℃60分間処理時のそれを100として、以下の式で算出した。
イミド化率C=[(B1/B2)/(A1/A2)]×100(%)
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
In the following examples, the properties of polyamic acid and the degree of imidization were measured as follows.
(1) Reduced viscosity After adjusting the N-methyl-2-pyrrolidone solution so that the polymer concentration is 0.5 g / dl, a Ubbelohde viscometer tube with a viscosity meter number 1 manufactured by Shibata Kagaku Co., Ltd. is used, and the temperature is 30. The measurement was performed in a constant temperature water bath at ± 1 ° C.
(2) Imidization rate The imidation rate in this invention was calculated | required by IR method. The measuring instrument used was Centaurus manufactured by Thermo Nicolet Corporation, which was measured by the ATR method using a Ge crystal. Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 27,711-724 (1989), the imidation rate is determined from the ratio of the peak based on the imide ring formation near 1380 cm -1 to the peak based on the benzene ring near 1500 cm -1 . Draw a baseline as appropriate to connect the valleys of the peaks before and after those peaks, and define the height from the intersection of the line drawn from each peak to the baseline to the peak as the absorbance. the resin of the present invention the absorbance A1,1500cm -1 absorbance at 1380 cm -1 of the resin at the time of heat treatment 300 ° C. 60 min in a nitrogen atmosphere and A2, B1,1500cm -1 absorbance 1380 cm -1 in each condition Assuming that the absorbance of B2 is B2, the imidization ratio C in each condition was calculated by the following formula, assuming that it was 100 at 60 ° C. for 60 minutes.
Imidization rate C = [(B1 / B2) / (A1 / A2)] × 100 (%)

(3)吸水率
イミド化が完結せずポリアミド酸が残存していると、その量に応じて該ポリマー層の吸水率は増加する。吸水率は、樹脂組成物を200℃、90分空気中にて熱処理し、縦5cm×横5cm×厚さ10μmとしたフィルムで測定した。このフィルムを105℃、60分間加熱乾燥した後、質量を測定し、その後100℃沸騰水中に1時間浸漬させた後、フィルム表面の水滴をふき取り質量を測定した。吸水率は、以下の計算式にて計算した。
吸水率(%)=〔(浸漬後の質量−浸漬前の質量)/浸漬前の質量〕×100
(4)樹脂流動性
樹脂組成物の流動性は、ポリエステルフィルム上に形成した樹脂組成物層を10cm角のシートに切断し、圧力2.9MPa、170℃で10分間プレスした後に、シート外に流れ出した樹脂の質量%で評価した。7.0質量%以上であるときに充分な樹脂流動性があると評価した。
(3) Water absorption rate If imidization is not completed and polyamic acid remains, the water absorption rate of the polymer layer increases according to the amount. The water absorption was measured with a film in which the resin composition was heat-treated in air at 200 ° C. for 90 minutes, and the length was 5 cm × width 5 cm × thickness 10 μm. The film was heated and dried at 105 ° C. for 60 minutes, and then the mass was measured. Thereafter, the film was immersed in boiling water at 100 ° C. for 1 hour, and then water droplets on the film surface were wiped off and the mass was measured. The water absorption was calculated by the following formula.
Water absorption (%) = [(mass after soaking−mass before soaking) / mass before soaking] × 100
(4) Resin fluidity The fluidity of the resin composition is determined by cutting the resin composition layer formed on the polyester film into 10 cm square sheets and pressing them at a pressure of 2.9 MPa at 170 ° C. for 10 minutes. Evaluation was based on the mass% of the resin that flowed out. It was evaluated that there was sufficient resin fluidity when it was 7.0% by mass or more.

[実施例1]
ステンレススチール製の碇型撹拌器を取り付けた容量500mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにN−メチル−2−ピロリドン(脱水)(和光純薬工業株式会社製)(以下「NMP」と略す)347.9g、4,4’−ジアミノジフェニルエーテル(和歌山精化工業株式会社製)(以下「ODA」と略す)27.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、無水フタル酸(和光純薬工業株式会社製)(以下「PA」と略す)0.5gを加え5分間撹拌後に3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(ダイセル化学工業株式会社製)(以下「BTDA」と略す)43.7gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した。反応終了後のポリアミド酸樹脂の還元粘度は、1.27dl/gであった。上記で製造したポリアミド酸ワニス100g(固形分濃度17.2wt%)に対してジアザビシクロウンデセン・p−トルエンスルホン酸2.1g(商品名:SA506、サンアプロ株式会社製)を加え十分攪拌して樹脂組成物ワニスを得た。
このワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃、30分乾燥してフィルムを得た。乾燥後の樹脂組成物層の厚さは40μmであった。このフィルムは、イミド化率が2%であり、流動性は8.5質量%であり、良好な流動性を示した。
このフィルムから、支持フィルムであるポリエステルフィルムを剥離して、空気循環式の乾燥炉で200℃90分の熱処理を実施した。イミド化率は100%であり、吸水率は0.8%であった。得られた結果を要約して表1に示す。
[Example 1]
A silica gel drying tube for absorbing water was attached to a 500 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. In this flask, 347.9 g of N-methyl-2-pyrrolidone (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter abbreviated as “NMP”), 4,4′-diaminodiphenyl ether (manufactured by Wakayama Seika Kogyo Co., Ltd.) After adding 27.5 g (hereinafter abbreviated as “ODA”) at room temperature, stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 0.5 g of phthalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter abbreviated as “PA”) was added, and after stirring for 5 minutes, 3, 3 ′, 4 4,4′-benzophenonetetracarboxylic dianhydride (manufactured by Daicel Chemical Industries, Ltd.) (hereinafter abbreviated as “BTDA”) was gradually added to the flask and stirred for 8 hours while cooling with ice water. The reduced viscosity of the polyamic acid resin after the reaction was 1.27 dl / g. To 100 g of the polyamic acid varnish produced above (solid content concentration: 17.2 wt%), 2.1 g of diazabicycloundecene / p-toluenesulfonic acid (trade name: SA506, manufactured by San Apro Co., Ltd.) was added and stirred sufficiently. Thus, a resin composition varnish was obtained.
This varnish was applied onto a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulating drying oven to obtain a film. The thickness of the resin composition layer after drying was 40 μm. This film had an imidation ratio of 2% and a fluidity of 8.5% by mass, and showed a good fluidity.
From this film, the polyester film as the support film was peeled off, and heat treatment was carried out at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidation rate was 100%, and the water absorption rate was 0.8%. The results obtained are summarized in Table 1.

[実施例2]
ステンレススチール製の碇型撹拌器を取り付けた容量300mlのガラス製のセパラブル3つ口フラスコに、水分吸収用シリカゲル乾燥管を取り付けた。このフラスコにNMP256.3g、ODA13.5gを室温にて加え、撹拌・溶解した後に、氷水にてフラスコを冷却した。フラスコ内の液体の温度が5℃になった際に、BTDA21.4gをフラスコに除々に加え、氷水で冷却しながら8時間撹拌した。反応終了後のポリアミド酸樹脂の還元粘度は、0.85dl/gであった。上記で製造したポリアミド酸ワニス100g(固形分濃度17.2wt%)に対してジアザビシクロウンデセン・p−トルエンスルホン酸2.1g(商品名:SA506、サンアプロ株式会社製)を加え十分攪拌して樹脂組成物ワニスを得た。このワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃、30分乾燥して樹脂シートを得た。乾燥後の樹脂組成物層の厚さは40μmであった。このフィルムは、イミド化率は2%であり、流動性は8.5質量%であり、良好な流動性を示した。このフィルムから、支持フィルムを剥離して、空気循環式の乾燥炉で200℃、90分の熱処理を実施した。イミド化率は100%であ1、吸水率は0.6%であった。得られた結果を要約して表1に示す。
[Example 2]
A silica gel drying tube for absorbing water was attached to a 300-ml glass separable three-necked flask equipped with a stainless steel vertical stirrer. NMP256.3g and ODA13.5g were added to this flask at room temperature, and after stirring and dissolving, the flask was cooled with ice water. When the temperature of the liquid in the flask reached 5 ° C., 21.4 g of BTDA was gradually added to the flask and stirred for 8 hours while cooling with ice water. The reduced viscosity of the polyamic acid resin after completion of the reaction was 0.85 dl / g. To 100 g of the polyamic acid varnish produced above (solid content concentration: 17.2 wt%), 2.1 g of diazabicycloundecene / p-toluenesulfonic acid (trade name: SA506, manufactured by San Apro Co., Ltd.) was added and stirred sufficiently. Thus, a resin composition varnish was obtained. This varnish was applied on a polyester film held on a smooth plate kept at 80 ° C. and allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulation type drying furnace to obtain a resin sheet. The thickness of the resin composition layer after drying was 40 μm. This film had an imidation ratio of 2% and a fluidity of 8.5% by mass, and showed a good fluidity. The support film was peeled from this film, and heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidization rate was 100% and the water absorption rate was 0.6%. The results obtained are summarized in Table 1.

[実施例3]
実施例2で製造したポリアミド酸ワニス100gに対して(固形分濃度17.2wt%)に対してジアザビシクロウンデセン・p−トルエンスルホン酸2.1g(商品名:SA506、サンアプロ株式会社製)を加え十分攪拌して樹脂組成物ワニスを得た。この樹脂組成物ワニスをSiウェハー上に乾燥後の膜厚が17μmとなるようにスピンコートし、100℃で20分乾燥した後、イミド化率4%のポリアミド酸膜を得た。その塗布膜を2.38wt%のTMAH水溶液を用いて、完全に溶解する時間を23℃で測定したところ、膜厚1μmあたり30秒だった。
[Example 3]
Based on 100 g of the polyamic acid varnish produced in Example 2 (solid content concentration: 17.2 wt%), 2.1 g of diazabicycloundecene / p-toluenesulfonic acid (trade name: SA506, manufactured by San Apro Co., Ltd.) Was added and sufficiently stirred to obtain a resin composition varnish. This resin composition varnish was spin-coated on a Si wafer so that the film thickness after drying was 17 μm, dried at 100 ° C. for 20 minutes, and then a polyamic acid film having an imidization ratio of 4% was obtained. When the coating film was completely dissolved using a 2.38 wt% TMAH aqueous solution at 23 ° C., it was 30 seconds per 1 μm film thickness.

[比較例1]
実施例1で製造したポリアミド酸ワニス100g(固形分濃度17.2wt%)に対して、ジアザビシクロウンデセン・p−トルエンスルホン酸を加えない以外は同様にしてフィルムを得た。
100℃、30分乾燥後のフィルム中の樹脂組成物層の厚さは40μmであった。この樹脂組成物層の組成は、イミド化率が2%であり、流動性は8.2質量%であり、良好な流動性を示した。このフィルムから支持フィルムを剥離して、空気循環式の乾燥炉で200℃、90分の熱処理を実施した。イミド化率は92%であり、吸水率は2.2%であった。得られた結果を要約して表1に示す。
これを実施例1と比較すると、実施例1では100℃乾燥後のイミド化率は変わらず、さらに、200℃熱処理後において比較例1ではイミド化率が92%に留まるのに対して、実施例1では100%となっており、本発明の化学イミド化剤が望ましい潜在硬化性を有することが判る。
[Comparative Example 1]
A film was obtained in the same manner except that diazabicycloundecene / p-toluenesulfonic acid was not added to 100 g (solid content concentration: 17.2 wt%) of the polyamic acid varnish produced in Example 1.
The thickness of the resin composition layer in the film after drying at 100 ° C. for 30 minutes was 40 μm. The composition of this resin composition layer had an imidation ratio of 2% and a fluidity of 8.2% by mass, indicating a good fluidity. The support film was peeled from this film, and heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidation rate was 92% and the water absorption rate was 2.2%. The results obtained are summarized in Table 1.
When this is compared with Example 1, the imidization rate after drying at 100 ° C. does not change in Example 1, and further, the imidation rate remains at 92% in Comparative Example 1 after heat treatment at 200 ° C. In Example 1, it is 100%, and it can be seen that the chemical imidizing agent of the present invention has desirable latent curability.

[比較例2]
実施例1で製造したポリアミド酸ワニス100g(固形分濃度17.2wt%)に対してジアザビシクロウンデセン5g(サンアプロ株式会社製)を加え十分攪拌して樹脂組成物ワニスを得た。
このワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃、30分乾燥してフィルムを得た。乾燥後の樹脂組成物層の厚さは40μmであった。このフィルムは、イミド化率は6%であり、流動性は6質量%であり、やや流動性が低下した。
このフィルムにおける支持フィルムを剥離して、空気循環式の乾燥炉で200℃、90分の熱処理を実施した。イミド化率は90%であり、吸水率は2.4%であった。得られた結果を要約して表1に示す。
[Comparative Example 2]
To 100 g of the polyamic acid varnish produced in Example 1 (solid content concentration: 17.2 wt%), 5 g of diazabicycloundecene (manufactured by San Apro Co., Ltd.) was added and stirred sufficiently to obtain a resin composition varnish.
This varnish was applied onto a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulating drying oven to obtain a film. The thickness of the resin composition layer after drying was 40 μm. This film had an imidization ratio of 6%, a fluidity of 6% by mass, and the fluidity was slightly lowered.
The support film in this film was peeled off, and heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidization rate was 90%, and the water absorption rate was 2.4%. The results obtained are summarized in Table 1.

[比較例3]
実施例1で製造したポリアミド酸ワニス100g(固形分濃度17.2wt%)に対してジアザビシクロウンデセン・p−トルエンスルホン酸8gを加え十分攪拌して樹脂組成物ワニスを得た。
このワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃、30分乾燥してフィルムを得た。乾燥後の樹脂組成物層の厚さは40μmであった。このフィルムは、イミド化率が13%であり、流動性は0質量%であり、良好な流動性が得られなかった。
このフィルムから、支持フィルムを剥離して、空気循環式の乾燥炉で200℃、90分の熱処理を実施した。イミド化率は100%であり、吸水率は0.8%であった。得られた結果を要約して表1に示す。
[Comparative Example 3]
To 100 g of the polyamic acid varnish produced in Example 1 (solid content concentration: 17.2 wt%), 8 g of diazabicycloundecene / p-toluenesulfonic acid was added and stirred sufficiently to obtain a resin composition varnish.
This varnish was applied onto a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulating drying oven to obtain a film. The thickness of the resin composition layer after drying was 40 μm. This film had an imidization ratio of 13% and a fluidity of 0% by mass, and good fluidity could not be obtained.
The support film was peeled from this film, and heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidation rate was 100%, and the water absorption rate was 0.8%. The results obtained are summarized in Table 1.

[比較例4]
実施例1で製造したポリアミド酸ワニスに対して1.8gの2−エチル−4−メチルイミダゾールを加えて、十分攪拌して樹脂組成物ワニスを得た。
このワニスを80℃に保温された平滑なプレートに保持されたポリエステルフィルム上に塗布して30分放置後、空気循環式の乾燥炉で100℃、30分乾燥してフィルムを得た。乾燥後の樹脂組成物層の厚さは40μmであった。このフィルムは、イミド化率が14%であり、流動性は0.4質量%であり、良好な流動性が得られなかった。
このフィルムにおける支持フィルムを剥離して、空気循環式の乾燥炉で200℃、90分の熱処理を実施した。イミド化率は100%であり、吸水率は0.7%であった。得られた結果を要約して表1に示す。
[Comparative Example 4]
1.8 g of 2-ethyl-4-methylimidazole was added to the polyamic acid varnish produced in Example 1, and the mixture was sufficiently stirred to obtain a resin composition varnish.
This varnish was applied onto a polyester film held on a smooth plate kept at 80 ° C., allowed to stand for 30 minutes, and then dried at 100 ° C. for 30 minutes in an air circulating drying oven to obtain a film. The thickness of the resin composition layer after drying was 40 μm. This film had an imidation ratio of 14% and a fluidity of 0.4% by mass, and good fluidity could not be obtained.
The support film in this film was peeled off, and heat treatment was performed at 200 ° C. for 90 minutes in an air circulation type drying furnace. The imidization rate was 100%, and the water absorption rate was 0.7%. The results obtained are summarized in Table 1.

[比較例5]
実施例3で製造したポリアミド酸ワニス100gに対して(固形分濃度17.2wt%)1.8gの2−エチル−4−メチルイミダゾールを加え十分攪拌して樹脂組成物ワニスを得た。この樹脂組成物ワニスをSiウェハー上に乾燥後の膜厚が17μmとなるようにスピンコートし、100℃で20分乾燥した後、イミド化率14%のポリアミド酸膜を得た。その塗布膜を2.38wt%のTMAH水溶液を用いて、完全に溶解する時間を23℃で測定したところ、1μmあたり40秒であった。
[Comparative Example 5]
To 100 g of the polyamic acid varnish produced in Example 3, 1.8 g of 2-ethyl-4-methylimidazole (solid content concentration: 17.2 wt%) was added and stirred sufficiently to obtain a resin composition varnish. This resin composition varnish was spin-coated on a Si wafer so that the film thickness after drying was 17 μm, dried at 100 ° C. for 20 minutes, and then a polyamic acid film having an imidization ratio of 14% was obtained. When the coating film was completely dissolved using a 2.38 wt% TMAH aqueous solution at 23 ° C., it was 40 seconds per 1 μm.

Figure 0004401893
Figure 0004401893

本発明のポリイミド前駆体樹脂組成物は、耐薬品性、低吸水率、密着性、耐熱性に優れ、溶媒乾燥時にイミド化しないため必要な成型が可能であり、その後220℃以下の温度でイミド化硬化できるため、電子回路基板用多層配線板の絶縁材料や、半導体チップ等の電子部品における絶縁保護膜形成材料等に好適である。   The polyimide precursor resin composition of the present invention is excellent in chemical resistance, low water absorption, adhesion, and heat resistance, and can be molded as necessary because it is not imidized when the solvent is dried. Therefore, it is suitable for insulating materials for multilayer wiring boards for electronic circuit boards and insulating protective film forming materials for electronic components such as semiconductor chips.

Claims (2)

a)ポリアミド酸と、b)下記一般式(I)で示されるジアザビシクロ誘導体を必須成分として含み、a)成分とb)成分の和100質量部を基準として、a)成分が70〜99.9質量部であり、b)成分が0.1〜30質量部であることを特徴とするポリイミド前駆体樹脂組成物。
Figure 0004401893
(ただし、一般式(I)中、m、nはそれぞれ独立した整数であり、m+n≦8、m、n≧0である。−(CH2)−基と−(CH)−基との順序に制限は無い。Xは、−N(n−Bu)2、CH3、Hから選ばれる少なくとも1種の基であり、Rは、炭素数1〜20の有機酸残基及び/又は無機酸残基である。)
a) a polyamic acid and b) a diazabicyclo derivative represented by the following general formula (I) as essential components, and a) component is 70 to 99.9 based on 100 parts by mass of the sum of components a) and b) It is a mass part, b) Component is 0.1-30 mass parts, The polyimide precursor resin composition characterized by the above-mentioned.
Figure 0004401893
(In the general formula (I), m and n are independent integers, and m + n ≦ 8, m, and n ≧ 0. The order of the — (CH 2 ) — group and the — (CH) — group) X is at least one group selected from —N (n—Bu) 2 , CH 3 and H, and R is an organic acid residue having 1 to 20 carbon atoms and / or an inorganic acid. Residue.)
請求項1記載のポリイミド前駆体樹脂組成物をイミド閉環させてなるポリイミド樹脂を含む構造体。   The structure containing the polyimide resin formed by carrying out the imide ring closure of the polyimide precursor resin composition of Claim 1.
JP2004230840A 2004-08-06 2004-08-06 Polyimide precursor resin composition Expired - Fee Related JP4401893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230840A JP4401893B2 (en) 2004-08-06 2004-08-06 Polyimide precursor resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230840A JP4401893B2 (en) 2004-08-06 2004-08-06 Polyimide precursor resin composition

Publications (2)

Publication Number Publication Date
JP2006045423A JP2006045423A (en) 2006-02-16
JP4401893B2 true JP4401893B2 (en) 2010-01-20

Family

ID=36024385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230840A Expired - Fee Related JP4401893B2 (en) 2004-08-06 2004-08-06 Polyimide precursor resin composition

Country Status (1)

Country Link
JP (1) JP4401893B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245226B2 (en) * 2005-08-24 2013-07-24 住友ベークライト株式会社 Resin composition and semiconductor device
KR100963376B1 (en) * 2007-02-09 2010-06-14 주식회사 엘지화학 Polyimide Manufacturing Method and Polyimide Prepared thereby
JP5093572B2 (en) * 2007-04-10 2012-12-12 日立金属株式会社 LAMINATED CORE AND MANUFACTURING METHOD THEREOF
JP6138943B2 (en) * 2013-08-09 2017-05-31 太陽ホールディングス株式会社 Photosensitive resin composition, relief pattern film thereof, method for producing relief pattern film, electronic component or optical product including relief pattern film, and adhesive including photosensitive resin composition
JP6254459B2 (en) * 2014-02-27 2017-12-27 東京エレクトロン株式会社 Method for improving chemical resistance of polymerized film, method for forming polymerized film, film forming apparatus, and method for manufacturing electronic product

Also Published As

Publication number Publication date
JP2006045423A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP2024040228A (en) Manufacturing method for metal clad laminates
JP4962046B2 (en) Polyimide film and method for producing the same
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
JP7509560B2 (en) Resin films, metal-clad laminates and circuit boards
JP3934335B2 (en) Polyimide and method for producing the same
JP4009918B2 (en) Polyimide film, method for producing the same, and metal laminate using the same
JP4665373B2 (en) Polyimide film
JP5270865B2 (en) Adhesive and its use
JP2023052289A (en) Metal-clad laminate and circuit board
JPWO2006090658A1 (en) Laminate for wiring board
JP4401893B2 (en) Polyimide precursor resin composition
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
CN113043690A (en) Metal-clad laminate and circuit board
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
JP4768606B2 (en) Laminate for wiring board
JPS63264632A (en) Low-thermal expansion resin
JP2006104371A (en) Polyimide precursor resin composition
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JP2022017273A (en) Metal-clad laminate and circuit board
JP2007106891A (en) New polyimide resin
JP3819057B2 (en) Resin composition for printing
JP2002283369A (en) Method for manufacturing polyimide film
KR101777450B1 (en) Composition for formimg polyimide film and polyimide film prepared by using same
JP7492836B2 (en) Polyimide film manufacturing method
JP7662314B2 (en) Method for producing polyimide film and method for producing metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees