[go: up one dir, main page]

JP4401511B2 - Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device - Google Patents

Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
JP4401511B2
JP4401511B2 JP2000021311A JP2000021311A JP4401511B2 JP 4401511 B2 JP4401511 B2 JP 4401511B2 JP 2000021311 A JP2000021311 A JP 2000021311A JP 2000021311 A JP2000021311 A JP 2000021311A JP 4401511 B2 JP4401511 B2 JP 4401511B2
Authority
JP
Japan
Prior art keywords
layer
retardation
liquid crystal
plate
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021311A
Other languages
Japanese (ja)
Other versions
JP2001215329A (en
Inventor
祐一 西小路
裕之 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000021311A priority Critical patent/JP4401511B2/en
Publication of JP2001215329A publication Critical patent/JP2001215329A/en
Application granted granted Critical
Publication of JP4401511B2 publication Critical patent/JP4401511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の技術分野】
本発明は、TN液晶による複屈折を高度に補償して視野角やコントラストに優れる液晶表示装置を形成しうる複合位相差板及び光学補償偏光板に関する。
【0002】
【従来の技術】
高速応答性や正面方向での高コントラスト性に着目されてTN液晶を用いたTFT−LCD(液晶表示装置)がテレビやパソコンモニタ等に広く普及する中、斜視方向でのコントラストの著しい低下や階調表示の反転(階調反転)等による良視認視野角の狭さの改善が求められており、高コントラスト化や広視野角化、視野角による表示色変化の抑制や画面表示の均一化が画面の大型化に伴い特に重要な課題となっている。
【0003】
従来、前記の改善策としては位相差板にてTN液晶の複屈折による位相差を補償して視野角を拡大する提案がなされており、その視野角拡大用の補償板として光学軸傾斜のディスコティク液晶からなる負の屈折率異方性を示すワイドビューフィルム(商品名、富士写真フイルム社製)や光学軸傾斜のネマチック液晶からなる正の屈折率異方性を示すNHフィルム(商品名、日本石油化学社製)、正の複屈折特性を示すポリマーによる一軸延伸フィルムからなる位相差板をその光学軸が面内にあるものと面に対して傾斜したものとの組合せでそれらの屈折率方向が直交するように積層した重畳型の補償板(特開平7−306406号公報、特開平7−35924号公報、特開平10−123506号公報、)が知られていた。
【0004】
しかしながら、前記のワイドビューフィルムでは正面方向から60度以上傾斜した視野角でコントラストが著しく低下し、電圧を印加しない白表示状態で着色現象が発生する問題点があった。またNHフィルムでは電圧を印加した黒表示状態で視野角を変えると変色して黒色でなくなる問題点があった。さらに前記の重畳型補償板では視野角の変化で著しい着色現象が発生する問題点があった。従って従来の補償板ではTN液晶の位相差特性に充分に対処できず、その視認特性の改善に満足できない問題点があった。
【0005】
【発明の技術的課題】
本発明は、大型画面の場合にもTN液晶の複屈折による位相差を高度に補償できて階調反転しない視野角やコントラストに優れ、視野角による表示色変化の抑制や画面表示の均一性に優れる液晶表示装置を形成できる位相差板の開発を目的とする。
【0006】
【課題の解決手段】
本発明は、面内の屈折率をnx、ny、厚さ方向の屈折率をnz、層厚をd、nx−ny=△nxy及び(nx−nz)/(nx−ny)=Qとしたとき、(A)nx>ny>nzを満足する高分子フィルムからなる位相差層、(B)nx≧ny>nzを満足し光学軸が層平面の法線方向に対し傾斜する位相差層及び(C)ノルボルネン系ポリマーの配向フィルムからなり△nxy・d≦70nm、1≦Q≦4を満足する位相差層をそれぞれ1層又は2層以上有する積層体からなり、かつその積層体における面内の屈折率をNx、Ny、厚さ方向の屈折率をNz、厚さをDとしてNx≧Ny、(Nx−Ny)=△Nxy及び{(Nx+Ny)/2−Nz}・D=Rthとしたとき、波長590nmの単色光に基づく△Nxy・Dが25〜100nmで、Rthが100〜300nmであることを特徴とする複合位相差板を提供するものである。
【0007】
また本発明は、前記の複合位相差板と偏光板の積層体からなることを特徴とする光学補償偏光板、及び前記の複合位相差板を偏光板と液晶セルの間に有することを特徴とする液晶表示装置を提供するものである。
【0008】
【発明の効果】
本発明によれば、上記した位相差層の(A)、(B)、(C)を組合せた位相差の複合化による当該△Nxy及びRthの位相差特性の達成により、TN液晶の複屈折による位相差を全方位角において高度に補償できる位相差板を得ることができ、大型画面の場合にも階調反転しない視野角が広くて視野角により表示色が変化しにくく、コントラストや画面表示の均一性に優れる液晶表示装置を形成することができる。
【0009】
【発明の実施形態】
本発明による複合位相差板は、面内の屈折率をnx、ny、厚さ方向の屈折率をnz、層厚をd、nx−ny=△nxy及び(nx−nz)/(nx−ny)=Qとしたとき、(A)nx>ny>nzを満足する高分子フィルムからなる位相差層、(B)nx≧ny>nzを満足し光学軸が層平面の法線方向に対し傾斜する位相差層、及び(C)ノルボルネン系ポリマーの配向フィルムからなり△nxy・d≦70nm、1≦Q≦4を満足する位相差層をそれぞれ1層又は2層以上有する積層体からなり、かつその積層体における面内の屈折率をNx、Ny、厚さ方向の屈折率をNz、厚さをDとしてNx≧Ny、(Nx−Ny)=△Nxy及び{(Nx+Ny)/2−Nz}・D=Rthとしたとき、波長590nmの単色光に基づく△Nxy・Dが25〜100nmで、Rthが100〜300nmであり、かつ積層体面に対する法線とNzのなす角βが5〜30度であるものからなる。
【0010】
前記複合位相差板の例を図1に示した。1が位相差層(A)、(B)、(C)の積層体からなる複合位相差板であり、11,14が位相差層(A)、12,15が位相差層(B)、13,16が位相差層(C)である。なお図は、液晶表示装置としたものを示しており、2が偏光板、3が液晶セルである。
【0011】
位相差層(A)は、nx>ny>nzを満足する高分子フィルム、すなわち面内に屈折率異方性を有して(nx>ny)、その面内の屈折率よりも厚さ方向の屈折率が小さい屈折率特性(ny>nz)を示す高分子フィルムにて形成される。補償効果の点より好ましい位相差層(A)は、波長590nmの単色光に基づく位相差:△nxy・dが0超〜50nm以下であり、式:(nx+ny)/2−nz}・dで定義されるrthが30〜100nmである複屈折特性を示すものである。なお前記において、nx、nyは面内の屈折率、nzは厚さ方向の屈折率、dは層厚を意味し、△nxy=nx−nyである(以下同じ)。
【0012】
高分子フィルムとしては、前記した屈折率特性を示す適宜な透明高分子からなるものを用いることができ、特に限定はない。ちなみにその例としては、各種のポリマーからなるフィルムやそのフィルムを一軸や二軸等の適宜な方式で延伸処理して高分子を配向させてなる延伸フィルムなどがあげられる。就中、光透過率に優れて配向ムラや位相差ムラの少ないものが好ましく用いうる。
【0013】
ちなみに前記高分子フィルムを形成するポリマーの具体例としては、ポリカーボネートやポリアリレート、ポリスルホンやポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート、ノルボルネン系ポリマーやアクリル系ポリマー、スチレン系ポリマーやセルロース系ポリマー、それらポリマーの2種又は3種以上を混合したポリマーなどがあげられる。
【0014】
また位相差層(A)を高分子フィルムにて形成することにより、それに偏光フィルムの透明保護層を兼ねさせることができる。図1の例の如く複合位相差板1を形成する位相差層(A)11、14に偏光フィルムの透明保護層を兼ねさせた状態で複合位相差板1と偏光板2を積層した光学補償偏光板とすることにより、その薄型化や製造プロセスの短縮化を図ることができる。
【0015】
位相差層(B)は、nx≧ny>nz(負の屈折率異方性)を満足し、かつその光学軸が層平面の法線方向に対し傾斜するものにて形成される。これにより正の屈折率異方性を示すTN液晶、特にその電圧印加による黒表示でのセル中におけるセル基板に対し光学軸が傾斜した状態に対する補償を効率よく行うことができる。位相差層(B)が負の屈折率異方性のみを満足して光学軸が層平面の法線方向に対し傾斜する条件を満足しない場合には本発明の目的を達成することができない。
【0016】
すなわち負の屈折率異方性のみを満足する位相差層では、その法線方向を基準(入射角0度)として単色光の入射角を基準から面内の最大屈折率方向に傾けるとその△nxy・dは、0度入射の場合を最大値としてそれを中心に対称形をなし、入射角を面内最大屈折率方位に直交する方向に傾けたときはその△nxy・dが0度入射の場合を最小値としてそれを中心に対称形をなして、補償効果に不足する。
【0017】
前記に対し光学軸が法線より傾斜する特性を付加することで、0度入射のときに△nxy・dが最大値及び最小値となることを回避できて補償効果の向上を図ることができる。なお負の屈折率異方性の傾斜タイプがハイブリッド配向をなす場合には△nxy・dの最小値が0となることはないが、チルト配向をなす場合には△nxy・dの最小値が0となるときもある。
【0018】
上記特性を示す位相差層(B)の形成は、例えば熱可塑性ポリマーからなるフィルムを周速の異なるロールで圧延処理する方式、液晶ポリマーを電場や磁場等の印加下に、あるいは配向膜等を介して配向させる方式などの適宜な方式により分子が層面に対し傾斜配向したものとして形成することができる。
【0019】
なお前記の熱可塑性ポリマーとしては上記の位相差層(A)で例示したものなどの適宜なものを用いることができる。また液晶ポリマーとしては、ディスコチィク系やネマチック系、コレステリック系やスメクチック系のものなどの適宜なものを1種又は2種以上を用いることができる。就中、傾斜配向の処理性などの点より上記したワイドビューフィルムにおける如きディスコチィク液晶ポリマーが好ましく用いうる。
【0020】
位相差層(C)は、ノルボルネン系ポリマーの配向フィルムからなり、△nxy・d≦70nm、1≦Q≦4を満足するものにて形成される。なおQ=(nx−nz)/(nx−ny)である(以下同じ)。かかる位相差層(C)の形成は、例えばノルボルネン系ポリマーフィルムをテンター等を介しガラス転移温度よりも30〜60℃高い温度で幅方向に1.1〜3倍の倍率で一軸延伸する方法などにより行うことができる。位相差層(C)を形成するノルボルネン系ポリマーについては特に限定はなく、市販物等の適宜なものを単独で又は2種以上を混合して用いうる。
【0021】
複合位相差板の形成は、積層体における面内の屈折率をNx、Ny、厚さ方向の屈折率をNz、厚さをDとしてNx≧Ny、(Nx−Ny)=△Nxy及び{(Nx+Ny)/2−Nz}・D=Rthとしたとき、波長590nmの単色光に基づく△Nxy・Dが25〜100nmで、かつRthが100〜300nmとなる組合せで上記した位相差層の(A)と(B)と(C)を、積層体面に対する法線とNzのなす角βが5〜30度となるように積層することにより行うことができる。その積層に際しては前記A、B、Cの各位相差層をそれぞれ1層又は2層以上用いうる。
【0022】
前記の△NxyとRthを満足することで法線(正面方向)に対し略80度の全方位角で表示色の変化なしに良好なコントラストを示すTN型液晶表示装置を形成することも可能である。複合位相差板における前記△NxyとRthの制御は、位相差層の(A)、(B)、(C)の組合せやその組合せ数を変えることにより行うことができる。
【0023】
位相差層の(A)、(B)、(C)の積層においてそれらの遅相軸ないし進相軸の配置角度や配置順序は任意であり、その配置角度の制御にても前記の△NxyやRthを調節することができる。補償効果の点より有利な積層は、位相差層(B)の光学軸の傾斜方向と積層体面内の最大屈折率方向が可及的に直交状態(90度)となるように交差させたものである。
【0024】
また前記の補償効果を達成しつつ複合位相差板の薄型化を図る点より有利な積層は、位相差層の(A)と(B)と(C)を各1層用いてそれらを位相差層の(B)が(A)と(C)の間に位置するように積層したものである。なお位相差層の積層に際しては粘着剤等の適宜な接着剤を用いることができ、液晶ポリマー層では位相差層(A)等にて接着支持することも可能である。
【0025】
上記の如く位相差層の(A)、(B)、(C)の組合せによる複合化にて新たな位相差特性を付与できて、TN液晶の複屈折による位相差やその視角による変化等を補償しうる各種の位相差特性を示す豊富な位相差板を得ることができ、TN液晶の配向状態等の違いによる複屈折特性の相違に対しても高精度に補償することができる。
【0026】
すなわち従来の上記したワイドビューフィルムやNHフィルムの如く位相差層の(A)と(B)のみでは、例えば60度以上の視野角でのコントラストが大きく低下する点や白表示で着色が発生する点、あるいは黒表示で変色して黒色でなくなる点などの補償効果に不足する点を位相差層(C)を補って少なくとも当該3層の位相差層にて補償することにより、広い視野角でコントラストや表示色変化の低さ等に優れるTN型液晶表示装置を得ることができる。
【0027】
なお位相差層の(A)、(B)、(C)の厚さは、目的とする位相差特性などに応じて適宜に決定することができる。一般には高分子フィルムからなる場合、1〜500μm、就中3〜350μm、特に5〜250μm、液晶ポリマー層の場合には100μm以下、就中20μm以下、特に0.1〜10μmの厚さとされるが、これに限定されない。
【0028】
本発明による複合位相差板は、そのまま実用に供することもできるし、図例の如く偏光板2と積層して光学補償偏光板として実用に供することもできる。その光学補償偏光板の形成には、適宜な偏光板を用いることができ、その種類について特に限定はない。就中、所定振動面の直線偏光を透過し、他の光は吸収する特性を示す吸収型の偏光板が高い偏光度の点などより好ましく用いうる。
【0029】
ちなみに前記偏光板の例としては、ポリビニルアルコール系や部分ホルマール化ポリビニルアルコール系、エチレン・酢酸ビニル共重合体系部分ケン化物の如き親水性高分子のフィルムにヨウ素及び/又は二色性染料等の二色性物質を吸着させて延伸配向処理した偏光フィルムやポリエン配向の偏光フィルムなどが用いられる。
【0030】
また偏光板は、偏光フィルムの片面又は両面に透明保護層を設けたものなどであってもよい。透明保護層は、偏光フィルムの補強、耐熱性や耐湿性の向上などの種々の目的で設けられる。透明保護層は、樹脂の塗布層や樹脂フィルムのラミネート層などとして形成でき、拡散化や粗面化用等の微粒子を含有していてもよい。また透明保護層は、上記した如く位相差層(A)として設けられていてもよい。
【0031】
前記の場合には、図例の如く本発明による複合位相差板を形成する位相差層(A)11,14が偏光板2における偏光フィルムの片側の透明保護層を兼ねることとなり、光学補償偏光板の薄型化や液晶表示装置の組立効率の向上に有利である。なお複合位相差板とは別体に設けた透明保護層が位相差を示す場合、複合位相差板は少なくともそれに近接する透明保護層を加えた状態での特性として上記した△NxyとRthを満足することが補償効果等の点より好ましい。
【0032】
用いる偏光板はさらに、特に複合位相差板を設けない側に表面反射の防止などを目的に反射防止層や防眩処理層が設けられたものであってもよい。反射防止層は、例えばフッ素系ポリマーのコート層や多層金属蒸着膜等の光干渉性の膜などとして適宜に形成することができる。一方、防眩処理層も、例えば微粒子含有の樹脂塗工層やエンボス加工、サンドブラスト加工やエッチング加工等の適宜な方式で表面に微細凹凸構造を付与するなどにより表面反射光が拡散する適宜な方式で形成したものであってよい。
【0033】
なお前記の微粒子には、例えば平均粒径が0.5〜20μmのシリカや酸化カルシウム、アルミナやチタニア、ジルコニアや酸化錫、酸化インジウムや酸化カドミウム、酸化アンチモン等の導電性のこともある無機系微粒子や、ポリメチルメタクリレートやポリウレタの如き適宜なポリマーからなる架橋又は未架橋の有機系微粒子などの適宜なものを1種又は2種以上用いうる。
【0034】
光学補償偏光板における複合位相差板の進相軸等と偏光板の透過軸等との配置関係については特に限定はなく、適宜に決定することができる。一般には偏光板の透過軸と複合位相差板の面内最大屈折方向を平行関係又は直交関係に配置することが、正面(垂直)方向の特性には影響を与えずに視角が変化する斜め方向の特性を制御して視野角の拡大等を図る点より好ましい。
【0035】
本発明による複合位相差板や光学補償偏光板を形成する位相差層や偏光板等の各層は、分離状態にあってもよいが、層間の屈折率差調節による反射の抑制や光学系のズレ防止、ゴミ等の異物の侵入防止などの点よりその一部、就中、全部が固着処理されていることが好ましい。
【0036】
前記の固着処理には、例えば透明な接着剤などの適宜なものを用いることができ、接着剤等の種類について特に限定はない。構成部材の光学特性の変化防止などの点より、接着処理時の硬化や乾燥の際に高温のプロセスを要しないものが好ましく、長時間の硬化処理や乾燥時間を要しないものが望ましい。かかる点よりは粘着層が好ましく用いうる。
【0037】
粘着層の形成には、例えばアクリル系重合体やシリコーン系ポリマー、ポリエステルやポリウレタン、ポリエーテルや合成ゴムなどの適宜なポリマーを用いてなる透明粘着剤を用いることができる。就中、光学的透明性や粘着特性、耐候性などの点よりアクリル系粘着剤が好ましい。
【0038】
なお粘着層は、液晶セル等の被着体への接着を目的に複合位相差板や光学補償偏光板等の片面又は両面に必要に応じて設けることもできる。粘着層が表面に露出する場合には、それを実用に供するまでの間、セパレータなどを仮着して粘着層表面の汚染等を防止することが好ましい。
【0039】
本発明による複合位相差板や光学補償偏光板は、液晶、特にTN液晶による複屈折に対する補償板などとして液晶表示装置の形成に好ましく用いうる。液晶表示装置は一般に、偏光板や液晶セルや補償板、必要に応じてのバックライトや反射板等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては上記した複合位相差板や光学補償偏光板を用いる点を除いて特に限定はなく、従来に準じて液晶表示装置を形成することができる。
【0040】
従って液晶表示装置の形成に際しては、例えば視認側の偏光板の上に設ける光拡散板やアンチグレア層やプリズムシート、反射防止膜や保護層や保護板、バックライトに設けるプリズムシート等の光路制御板などの適宜な光学素子を適宜に配置することができる。なお補償板は通例、図例の如く液晶セル3と視認側又は/及びバックライト側の偏光板2との間に配置される。従って本発明による複合位相差板又は光学補償偏光板は、液晶セルの少なくとも片側に配置されていればよい。
【0041】
【実施例】
実施例1
厚さ100μmのノルボルネン系ポリマーフィルム(JSR社製、アートン、以下同じ)をテンター延伸機にて175℃で延伸処理して、nx>ny>nzの屈折率特性を有して、波長590nmの単色光による(以下同じ)△nxy・dが10nmで、rthが80nmの位相差層A1を得た。なお屈折率等は、自動複屈折計(王子計測機器社製、KOBRA−21ADH、以下同じ)にて測定した。
【0042】
次に前記の位相差層A1の上に、加湿処理下に接着剤を介し移着させる方式でワイドビューフィルム(WV02A)のディスコチック液晶ポリマーの傾斜配向層のみを転写して位相差層B1を積層し、波長590nmの単色光による△nxy・dが30nmで、rthが130nmの積層体を得た。なお転写積層に際しては、位相差層A1の面内最大屈折率(nx)の方向とディスコチック液晶の傾斜方向とが平行になるように処理した。
【0043】
ついで前記の位相差層B1の上に、厚さ100μmのノルボルネン系ポリマーフィルムをテンターにて210℃で一軸延伸処理して得た波長590nmの単色光による△nxy・dが20nmで、Qが1.6の位相差層C1をアクリル系粘着層を介し積層し、波長590nmの単色光による△Nxy・Dが50nmで、Rthが160nmの複合位相差板を得た。
【0044】
次に厚さ75μmのポリビニルアルコールフィルムをヨウ素を含む水溶液中で染色した後、ホウ酸を含む水溶液中で周速の異なるロール間にて6倍に一軸延伸して得た偏光フィルムの片面にポリビニルアルコール系接着剤を介し厚さ80μmのトリアセチルセルロースフィルムを接着し、偏光フィルムの他面にポリビニルアルコール系接着剤を介し前記の複合位相差板をその位相差層A1を介し接着積層して光学補償偏光板を得た。
【0045】
比較例
複合位相差板に代えて、上記した位相差層A1と位相差層B1との積層体を用いてその位相差層A1を介し接着積層したほかは実施例1に準じて光学補償偏光板を得た。
【0046】
評価試験
実施例1及び比較例で得た光学補償偏光板をTN型液晶セルの両面に偏光板が外側となるように接着して液晶表示装置を得、コントラスト測定器(ELDIM社製、EZContrast)にてその表示コントラストの視野角特性を調べた。その結果を、等コントラスト曲線にて図2に示した。また上下左右方向のコントラスト10基準の視野角特性を次表に示した。以上の結果より、実施例においてはほぼ全方位において良視認の視野角が大きく拡大されていることがわかる。
【0047】

Figure 0004401511

【図面の簡単な説明】
【図1】液晶表示装置例の断面図
【図2】実施例1及び比較例の等コントラスト曲線
【符号の説明】
1:複合位相差板
11,14:位相差層(A)
12,15:位相差層(B)
13,16:位相差層(C)
2:偏光板
3:液晶セル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite phase difference plate and an optical compensation polarizing plate that can form a liquid crystal display device having excellent viewing angle and contrast by highly compensating birefringence due to TN liquid crystal.
[0002]
[Prior art]
While TFT-LCDs (liquid crystal display devices) using TN liquid crystals are widely used in televisions, personal computer monitors, etc., paying attention to high-speed response and high contrast in the front direction, there is a significant decrease in contrast in the perspective direction. Improvement of narrowness of good viewing angle by inversion of tone display (gradation inversion), etc. is required. High contrast, wide viewing angle, suppression of display color change by viewing angle and uniform screen display. This is a particularly important issue as the screen size increases.
[0003]
Conventionally, as the above-mentioned improvement measures, a proposal has been made to expand the viewing angle by compensating for the phase difference due to the birefringence of the TN liquid crystal by using a retardation plate. Wide view film (trade name, manufactured by Fuji Photo Film Co., Ltd.) showing negative refractive index anisotropy made of Tik liquid crystal, and NH film (trade name, made of nematic liquid crystal with tilted optical axis) (Made by Nippon Petrochemical Co., Ltd.), a retardation plate composed of a uniaxially stretched film made of a polymer exhibiting positive birefringence characteristics, and the refractive index of the retardation plate in combination with the optical axis being in-plane and inclined with respect to the plane Superposition type compensation plates (JP-A-7-306406, JP-A-7-35924, JP-A-10-123506) laminated so that the directions are orthogonal to each other have been known.
[0004]
However, the wide-view film has a problem that the contrast is remarkably lowered at a viewing angle inclined by 60 degrees or more from the front direction, and a coloring phenomenon occurs in a white display state where no voltage is applied. In addition, the NH film has a problem in that when the viewing angle is changed in a black display state where a voltage is applied, the color changes and the color is not black. Further, the superposed compensation plate has a problem that a remarkable coloring phenomenon occurs due to a change in viewing angle. Therefore, the conventional compensator cannot sufficiently cope with the phase difference characteristic of the TN liquid crystal, and has a problem that it cannot satisfy the improvement of the visual recognition characteristic.
[0005]
[Technical Problem of the Invention]
The present invention can highly compensate the phase difference due to the birefringence of the TN liquid crystal even in the case of a large screen, has excellent viewing angle and contrast that does not invert the gradation, suppresses the display color change due to the viewing angle, and makes the screen display uniform. The purpose is to develop a retardation plate capable of forming an excellent liquid crystal display device.
[0006]
[Means for solving problems]
In the present invention, the in-plane refractive index is nx, ny, the thickness direction refractive index is nz, the layer thickness is d, nx−ny = Δnxy and (nx−nz) / (nx−ny) = Q. (A) a retardation layer composed of a polymer film satisfying nx>ny> nz, (B) a retardation layer satisfying nx ≧ ny> nz and an optical axis inclined with respect to the normal direction of the layer plane; (C) A laminate comprising an oriented film of norbornene-based polymer and having one or more retardation layers each satisfying Δnxy · d ≦ 70 nm and 1 ≦ Q ≦ 4, and in-plane in the laminate Nx, Ny, the refractive index in the thickness direction is Nz, the thickness is D, and Nx ≧ Ny, (Nx−Ny) = ΔNxy and {(Nx + Ny) / 2−Nz} · D = Rth when, based on the monochromatic light of wavelength 590 nm △ Nxy · D is at 25 to 100 nm, birefringence which Rth is characterized by the Dearuko 100~300nm There is provided a retardation plate.
[0007]
The present invention also includes an optical compensation polarizing plate comprising a laminate of the composite retardation plate and the polarizing plate, and the composite retardation plate between the polarizing plate and a liquid crystal cell. Provided is a liquid crystal display device.
[0008]
【The invention's effect】
According to the present invention, the birefringence of the TN liquid crystal is achieved by achieving the retardation characteristics of ΔNxy and Rth by combining the retardation of the retardation layers (A), (B), and (C). A phase difference plate that can compensate for the phase difference due to the azimuth at all azimuth angles can be obtained, and even in the case of a large screen, the viewing angle that does not invert the gradation is wide and the display color does not easily change depending on the viewing angle. A liquid crystal display device with excellent uniformity can be formed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The composite phase difference plate according to the present invention has an in-plane refractive index of nx, ny, a thickness direction refractive index of nz, a layer thickness of d, nx−ny = Δnxy and (nx−nz) / (nx−ny). ) = Q, (A) retardation layer made of a polymer film satisfying nx>ny> nz, (B) nx ≧ ny> nz satisfying optic axis tilted with respect to the normal direction of the layer plane And (C) a norbornene polymer oriented film, and a laminate having one or more retardation layers each satisfying Δnxy · d ≦ 70 nm and 1 ≦ Q ≦ 4, and The in-plane refractive index of the laminate is Nx, Ny, the refractive index in the thickness direction is Nz, and the thickness is D. Nx ≧ Ny, (Nx−Ny) = ΔNxy and {(Nx + Ny) / 2−Nz} When D = Rth, ΔNxy · D based on monochromatic light with a wavelength of 590 nm is 25 to 100 nm, and Rth is 100 to 300 nm. And consist of angle of the normal line and Nz for lamination body surface β is 5 to 30 degrees.
[0010]
An example of the composite retardation plate is shown in FIG. Reference numeral 1 denotes a composite retardation plate made of a laminate of retardation layers (A), (B), and (C), 11 and 14 are retardation layers (A), and 12 and 15 are retardation layers (B), Reference numerals 13 and 16 denote retardation layers (C). The figure shows a liquid crystal display device, 2 is a polarizing plate, and 3 is a liquid crystal cell.
[0011]
The retardation layer (A) is a polymer film satisfying nx>ny> nz, that is, having an in-plane refractive index anisotropy (nx> ny), and having a thickness direction larger than the in-plane refractive index. Is formed of a polymer film exhibiting a refractive index characteristic (ny> nz) having a small refractive index. A phase difference layer (A) preferable from the viewpoint of the compensation effect has a phase difference based on monochromatic light having a wavelength of 590 nm: Δnxy · d is more than 0 to 50 nm or less, and the formula: (nx + ny) / 2−nz} · d The birefringence characteristic in which rth is defined as 30 to 100 nm is shown. In the above, nx and ny are in-plane refractive indices, nz is the refractive index in the thickness direction, d is the layer thickness, and Δnxy = nx−ny (the same applies hereinafter).
[0012]
As the polymer film, one made of an appropriate transparent polymer exhibiting the above-described refractive index characteristics can be used, and there is no particular limitation. Incidentally, examples thereof include films made of various polymers and stretched films obtained by orienting polymers by stretching the films by an appropriate method such as uniaxial or biaxial. In particular, those having excellent light transmittance and less alignment unevenness and phase difference unevenness can be preferably used.
[0013]
Incidentally, specific examples of the polymer forming the polymer film include polycarbonate, polyarylate, polysulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, norbornene polymer, acrylic polymer, styrene polymer, cellulose polymer, and polymers of these polymers. Examples thereof include polymers in which two or three or more are mixed.
[0014]
In addition, by forming the retardation layer (A) with a polymer film, it can also serve as a transparent protective layer for the polarizing film. As shown in FIG. 1, optical compensation in which the composite retardation plate 1 and the polarizing plate 2 are laminated in a state where the retardation layers (A) 11 and 14 forming the composite retardation plate 1 also serve as a transparent protective layer of the polarizing film. By using a polarizing plate, the thickness can be reduced and the manufacturing process can be shortened.
[0015]
The retardation layer (B) is formed by satisfying nx ≧ ny> nz (negative refractive index anisotropy) and having an optical axis inclined with respect to the normal direction of the layer plane. This makes it possible to efficiently compensate for the state in which the optical axis is inclined with respect to the TN liquid crystal exhibiting positive refractive index anisotropy, particularly the cell substrate in the cell in black display by applying the voltage. If the retardation layer (B) satisfies only the negative refractive index anisotropy and does not satisfy the condition that the optical axis is inclined with respect to the normal direction of the layer plane, the object of the present invention cannot be achieved.
[0016]
That is, in a retardation layer that satisfies only negative refractive index anisotropy, if the normal direction is the reference (incidence angle 0 degree) and the incident angle of monochromatic light is tilted from the reference to the in-plane maximum refractive index direction, nxy · d has a symmetric shape centered on the maximum value when incident at 0 °, and Δnxy · d is incident at 0 ° when the incident angle is tilted in a direction perpendicular to the in-plane maximum refractive index azimuth. In this case, the minimum value is taken as a symmetric shape around the center, and the compensation effect is insufficient.
[0017]
On the other hand, by adding a characteristic that the optical axis is inclined from the normal line, it is possible to avoid the Δnxy · d from reaching the maximum value and the minimum value when incident at 0 degree, thereby improving the compensation effect. . Note that the minimum value of Δnxy · d does not become 0 when the gradient type with negative refractive index anisotropy forms a hybrid orientation, but the minimum value of Δnxy · d does not become 0 when a tilt orientation is formed. Sometimes it becomes zero.
[0018]
The retardation layer (B) having the above characteristics can be formed by, for example, a method of rolling a film made of a thermoplastic polymer with rolls having different peripheral speeds, applying a liquid crystal polymer under an electric field or a magnetic field, or using an alignment film or the like. It is possible to form the molecules in a tilted orientation with respect to the layer surface by an appropriate method such as a method of orienting via a layer.
[0019]
In addition, as said thermoplastic polymer, appropriate things, such as what was illustrated by said retardation layer (A), can be used. In addition, as the liquid crystal polymer, one or two or more suitable ones such as discotic, nematic, cholesteric, and smectic can be used. In particular, a discotic liquid crystal polymer such as that in the above-mentioned wide view film can be preferably used from the viewpoint of the processability of tilt alignment.
[0020]
The retardation layer (C) is composed of a norbornene-based polymer oriented film, and is formed to satisfy Δnxy · d ≦ 70 nm and 1 ≦ Q ≦ 4. Q = (nx-nz) / (nx-ny) (the same applies hereinafter). The retardation layer (C) is formed by, for example, a method in which a norbornene polymer film is uniaxially stretched at a magnification of 1.1 to 3 times in the width direction at a temperature 30 to 60 ° C. higher than the glass transition temperature via a tenter or the like. Can be performed. There is no particular limitation on the norbornene-based polymer that forms the retardation layer (C), and any suitable commercially available product may be used alone or in admixture of two or more.
[0021]
The composite retardation plate is formed by using Nx and Ny as the in-plane refractive index of the laminate, Nz as the refractive index in the thickness direction, and D as the thickness, and Nx ≧ Ny, (Nx−Ny) = ΔNxy and {( Nx + Ny) / 2−Nz} · D = Rth, where ΔNxy · D based on monochromatic light with a wavelength of 590 nm is 25 to 100 nm and Rth is 100 to 300 nm. ), (B), and (C) can be performed by laminating so that the angle β formed by the normal to the laminate surface and Nz is 5 to 30 degrees. In the lamination, one or more of the retardation layers A, B, and C can be used.
[0022]
By satisfying the above-mentioned ΔNxy and Rth, it is possible to form a TN liquid crystal display device that exhibits good contrast without change in display color at an omnidirectional angle of approximately 80 degrees with respect to the normal (front direction). is there. The control of ΔNxy and Rth in the composite retardation plate can be performed by changing the combination of the retardation layers (A), (B), and (C) and the number of the combinations.
[0023]
In the stacking of the retardation layers (A), (B), and (C), the arrangement angle and arrangement order of the slow axis or the fast axis are arbitrary, and the above ΔNxy can be controlled by controlling the arrangement angle. And Rth can be adjusted. Lamination that is more advantageous than the compensation effect is one in which the tilt direction of the optical axis of the retardation layer (B) intersects with the maximum refractive index direction in the laminate surface as orthogonally as possible (90 degrees). It is.
[0024]
In addition, the lamination which is advantageous from the viewpoint of reducing the thickness of the composite retardation plate while achieving the compensation effect described above is to use the retardation layers (A), (B) and (C) as a single layer, respectively. The layers are laminated so that (B) is located between (A) and (C). An appropriate adhesive such as an adhesive can be used for laminating the retardation layer, and the liquid crystal polymer layer can be adhered and supported by the retardation layer (A) or the like.
[0025]
As described above, a new retardation property can be provided by combining the retardation layers (A), (B), and (C), and the phase difference due to the birefringence of the TN liquid crystal, the change due to its viewing angle, etc. An abundant retardation plate exhibiting various types of retardation characteristics that can be compensated can be obtained, and it is possible to compensate for the difference in birefringence characteristics due to the difference in the alignment state of the TN liquid crystal with high accuracy.
[0026]
That is, only the retardation layers (A) and (B) such as the conventional wide-view film and NH film described above, for example, the contrast at a viewing angle of 60 degrees or more is greatly reduced, and coloring occurs in white display. By compensating for at least three of the retardation layers by compensating the retardation layer (C), such as a point or a point that is discolored by black display and becomes non-black, a wide viewing angle can be obtained. It is possible to obtain a TN liquid crystal display device that is excellent in contrast, low display color change, and the like.
[0027]
The thicknesses (A), (B), and (C) of the retardation layer can be appropriately determined according to the target retardation characteristics and the like. In general, in the case of a polymer film, the thickness is 1 to 500 μm, especially 3 to 350 μm, especially 5 to 250 μm, and in the case of a liquid crystal polymer layer, the thickness is 100 μm or less, especially 20 μm or less, especially 0.1 to 10 μm. However, it is not limited to this.
[0028]
The composite retardation plate according to the present invention can be used as it is, or can be used as an optical compensation polarizing plate by being laminated with the polarizing plate 2 as shown in the figure. For the formation of the optical compensation polarizing plate, an appropriate polarizing plate can be used, and the type thereof is not particularly limited. In particular, an absorptive polarizing plate that transmits linearly polarized light having a predetermined vibration surface and absorbs other light can be used more preferably because of its high degree of polarization.
[0029]
Incidentally, examples of the polarizing plate include a film of a hydrophilic polymer such as polyvinyl alcohol, partially formalized polyvinyl alcohol, or partially saponified ethylene / vinyl acetate copolymer, and iodine and / or dichroic dye. For example, a polarizing film obtained by adsorbing a chromatic substance and subjected to stretching and orientation treatment, a polyene-oriented polarizing film, and the like are used.
[0030]
The polarizing plate may be one in which a transparent protective layer is provided on one side or both sides of a polarizing film. The transparent protective layer is provided for various purposes such as reinforcing the polarizing film, improving heat resistance and moisture resistance. The transparent protective layer can be formed as a resin coating layer, a resin film laminate layer, or the like, and may contain fine particles for diffusion and roughening. The transparent protective layer may be provided as the retardation layer (A) as described above.
[0031]
In the above case, as shown in the figure, the retardation layers (A) 11 and 14 forming the composite retardation plate according to the present invention also serve as a transparent protective layer on one side of the polarizing film in the polarizing plate 2, so that the optical compensation polarization This is advantageous in reducing the thickness of the plate and improving the assembly efficiency of the liquid crystal display device. When the transparent protective layer provided separately from the composite retardation plate exhibits a retardation, the composite retardation plate satisfies the above-described ΔNxy and Rth as characteristics in a state in which at least the transparent protective layer adjacent thereto is added. It is preferable from the viewpoint of the compensation effect.
[0032]
The polarizing plate to be used may further be provided with an antireflection layer or an antiglare layer for the purpose of preventing surface reflection on the side where the composite retardation plate is not provided. The antireflection layer can be suitably formed, for example, as a light interference film such as a fluorine polymer coat layer or a multilayer metal vapor deposition film. On the other hand, the anti-glare treatment layer is also an appropriate method for diffusing the surface reflected light by providing a fine concavo-convex structure on the surface by an appropriate method such as a resin coating layer containing fine particles, embossing, sand blasting or etching, etc. It may be formed by.
[0033]
Examples of the fine particles include inorganic materials having an average particle diameter of 0.5 to 20 μm, such as silica, calcium oxide, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide. One kind or two or more kinds of fine particles, such as crosslinked or uncrosslinked organic fine particles made of a suitable polymer such as polymethyl methacrylate and polyureta can be used.
[0034]
The arrangement relationship between the fast axis of the composite retardation plate and the transmission axis of the polarizing plate in the optical compensation polarizing plate is not particularly limited and can be determined as appropriate. In general, arranging the transmission axis of the polarizing plate and the in-plane maximum refraction direction of the composite retardation plate in a parallel or orthogonal relationship causes the viewing angle to change without affecting the front (vertical) direction characteristics. It is preferable from the point of controlling the above-mentioned characteristics to increase the viewing angle.
[0035]
The layers such as the retardation layer and the polarizing plate forming the composite retardation plate and the optical compensation polarizing plate according to the present invention may be in a separated state, but the reflection is suppressed by adjusting the refractive index difference between layers and the optical system is shifted. It is preferable that a part, especially, all of them are fixedly treated for prevention of foreign matter such as dust.
[0036]
For the fixing treatment, an appropriate material such as a transparent adhesive can be used, and the type of the adhesive is not particularly limited. From the standpoint of preventing changes in the optical characteristics of the constituent members, those that do not require a high-temperature process during curing and drying during the adhesion treatment are preferable, and those that do not require a long curing treatment or drying time are desirable. From this point, an adhesive layer can be preferably used.
[0037]
For the formation of the pressure-sensitive adhesive layer, for example, a transparent pressure-sensitive adhesive using an appropriate polymer such as an acrylic polymer, a silicone-based polymer, polyester, polyurethane, polyether, or synthetic rubber can be used. In particular, acrylic pressure-sensitive adhesives are preferred from the viewpoints of optical transparency, pressure-sensitive adhesive properties, weather resistance, and the like.
[0038]
In addition, an adhesion layer can also be provided as needed on one side or both sides of a composite phase difference plate, an optical compensation polarizing plate, etc. for the purpose of adhesion to an adherend such as a liquid crystal cell. When the pressure-sensitive adhesive layer is exposed on the surface, it is preferable to temporarily attach a separator or the like to prevent contamination of the pressure-sensitive adhesive layer surface until it is put to practical use.
[0039]
The composite retardation plate and the optical compensation polarizing plate according to the present invention can be preferably used for forming a liquid crystal display device as a compensation plate for birefringence by a liquid crystal, particularly TN liquid crystal. In general, a liquid crystal display device is formed by appropriately assembling components such as a polarizing plate, a liquid crystal cell, a compensation plate, and a backlight or a reflector as necessary, and incorporating a drive circuit. There is no particular limitation except that the above-described composite retardation plate and optical compensation polarizing plate are used, and a liquid crystal display device can be formed according to the conventional art.
[0040]
Therefore, when forming a liquid crystal display device, for example, an optical path control plate such as a light diffusing plate, an antiglare layer, a prism sheet, an antireflection film, a protective layer, a protective plate provided on the polarizing plate on the viewing side, a prism sheet provided on the backlight, etc. Appropriate optical elements such as can be appropriately arranged. The compensation plate is usually arranged between the liquid crystal cell 3 and the polarizing plate 2 on the viewing side or / and the backlight side as shown in the figure. Therefore, the composite retardation plate or optical compensation polarizing plate according to the present invention may be disposed on at least one side of the liquid crystal cell.
[0041]
【Example】
Example 1
A norbornene polymer film having a thickness of 100 μm (manufactured by JSR, Arton, the same applies hereinafter) is stretched at 175 ° C. with a tenter stretching machine, has a refractive index characteristic of nx>ny> nz, and is monochromatic with a wavelength of 590 nm A retardation layer A1 with light (hereinafter the same) Δnxy · d of 10 nm and rth of 80 nm was obtained. The refractive index and the like were measured with an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH, the same shall apply hereinafter).
[0042]
Next, only the tilted orientation layer of the discotic liquid crystal polymer of the wide view film (WV02A) is transferred onto the retardation layer A1 by a method of transferring through an adhesive under a humidification process, and the retardation layer B1 is transferred. A laminated body was obtained in which Δnxy · d by monochromatic light having a wavelength of 590 nm was 30 nm and rth was 130 nm. In the transfer lamination, the direction of the in-plane maximum refractive index (nx) of the retardation layer A1 and the tilt direction of the discotic liquid crystal were processed in parallel.
[0043]
Next, Δnxy · d by monochromatic light having a wavelength of 590 nm obtained by uniaxially stretching a norbornene-based polymer film having a thickness of 100 μm on the retardation layer B1 with a tenter at 210 ° C. is 20 nm, and Q is 1. .6 retardation layer C1 was laminated through an acrylic adhesive layer to obtain a composite retardation plate having ΔNxy · D of 50 nm and Rth of 160 nm by monochromatic light having a wavelength of 590 nm.
[0044]
Next, a polyvinyl alcohol film having a thickness of 75 μm is dyed in an aqueous solution containing iodine, and then uniaxially stretched 6 times between rolls having different peripheral speeds in an aqueous solution containing boric acid. A triacetyl cellulose film having a thickness of 80 μm is bonded through an alcohol adhesive, and the composite retardation plate is bonded and laminated on the other surface of the polarizing film through a retardation layer A1 through a polyvinyl alcohol adhesive. A compensation polarizing plate was obtained.
[0045]
Comparative Example An optical compensation polarizing plate according to Example 1 except that instead of the composite retardation plate, a laminate of the above-described retardation layer A1 and retardation layer B1 was used and bonded and laminated through the retardation layer A1. Got.
[0046]
Evaluation test Example 1 and the optical compensation polarizing plate obtained in Comparative Example were adhered to both sides of the TN type liquid crystal cell so that the polarizing plate was on the outer side to obtain a liquid crystal display device, and a contrast measuring device (ELDIM, EZContrast) The viewing angle characteristics of the display contrast were examined. The results are shown in FIG. 2 as isocontrast curves. The viewing angle characteristics based on contrast 10 in the vertical and horizontal directions are shown in the following table. From the above results, it can be seen that in the embodiment, the viewing angle for good visual recognition is greatly enlarged in almost all directions.
[0047]
Figure 0004401511

[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a liquid crystal display device. FIG. 2 is an isocontrast curve of Example 1 and a comparative example.
1: Composite retardation plates 11, 14: Retardation layer (A)
12, 15: Retardation layer (B)
13, 16: Retardation layer (C)
2: Polarizing plate 3: Liquid crystal cell

Claims (4)

面内の屈折率をnx、ny、厚さ方向の屈折率をnz、層厚をd、nx−ny=△nxy及び(nx−nz)/(nx−ny)=Qとしたとき、(A)nx>ny>nzを満足する高分子フィルムからなる位相差層、(B)nx≧ny>nzを満足し光学軸が層平面の法線方向に対し傾斜する位相差層及び(C)ノルボルネン系ポリマーの配向フィルムからなり△nxy・d≦70nm、1≦Q≦4を満足する位相差層をそれぞれ1層又は2層以上有する積層体からなり、かつその積層体における面内の屈折率をNx、Ny、厚さ方向の屈折率をNz、厚さをDとしてNx≧Ny、(Nx−Ny)=△Nxy及び{(Nx+Ny)/2−Nz}・D=Rthとしたとき、波長590nmの単色光に基づく△Nxy・Dが25〜100nmで、Rthが100〜300nmであることを特徴とする複合位相差板。When the in-plane refractive index is nx, ny, the refractive index in the thickness direction is nz, the layer thickness is d, nx−ny = Δnxy and (nx−nz) / (nx−ny) = Q, (A A retardation layer comprising a polymer film satisfying nx>ny> nz, (B) a retardation layer satisfying nx ≧ ny> nz and an optical axis inclined with respect to the normal direction of the layer plane, and (C) norbornene It is composed of a laminated body made of an oriented film of a polymer and having one or more retardation layers each satisfying Δnxy · d ≦ 70 nm and 1 ≦ Q ≦ 4, and the in-plane refractive index in the laminated body is Nx, Ny, refractive index Nz, thickness D, Nx ≧ Ny, (Nx−Ny) = ΔNxy and {(Nx + Ny) / 2−Nz} · D = Rth, wavelength 590 nm based on the monochromatic light △ Nxy · D is at 25 to 100 nm, the composite retardation plate Rth is characterized by the Dearuko 100~300nm 請求項1に記載の複合位相差板と偏光板の積層体からなることを特徴とする光学補償偏光板。An optical compensation polarizing plate comprising a laminate of the composite retardation plate according to claim 1 and a polarizing plate. 請求項1に記載の複合位相差板を偏光板と液晶セルの間に有することを特徴とする液晶表示装置。A liquid crystal display device comprising the composite retardation plate according to claim 1 between a polarizing plate and a liquid crystal cell. 請求項3において、複合位相差板が位相差層(A)と位相差層(C)の間に位相差層(B)を有し、かつ位相差層の(A)と(B)と(C)を各1層用いたものである液晶表示装置。In Claim 3, a composite phase difference plate has a phase difference layer (B) between a phase difference layer (A) and a phase difference layer (C), and (A) and (B) ( A liquid crystal display device using one layer each of C).
JP2000021311A 2000-01-31 2000-01-31 Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device Expired - Fee Related JP4401511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021311A JP4401511B2 (en) 2000-01-31 2000-01-31 Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021311A JP4401511B2 (en) 2000-01-31 2000-01-31 Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2001215329A JP2001215329A (en) 2001-08-10
JP4401511B2 true JP4401511B2 (en) 2010-01-20

Family

ID=18547731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021311A Expired - Fee Related JP4401511B2 (en) 2000-01-31 2000-01-31 Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4401511B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777960B1 (en) 2002-02-19 2007-11-21 닛토덴코 가부시키가이샤 Optical Compensation Polarizer and Liquid Crystal Display Using It
JP4784972B2 (en) 2005-04-26 2011-10-05 日東電工株式会社 Optical film, liquid crystal panel, and liquid crystal display device

Also Published As

Publication number Publication date
JP2001215329A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
KR100707596B1 (en) Composite retarder plate, optically compensatory polarizing plate and liquid-crystal display device
KR100685549B1 (en) Composite Retardation Plate, Optically Compensated Polarizer, and Liquid Crystal Display
US6717642B2 (en) Wide viewing angle polarizer and liquid-crystal display device
KR100805504B1 (en) Laminated quarter-wave plate or circularly polarizing plate, liquid crystal display using the same, and manufacturing method thereof
KR20030030936A (en) Laminated phase retarder, polarizing member and liquid-crystal display device
JP2000227520A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
TWI428643B (en) Elliptical polarizer and liquid crystal display device
JP2002258041A (en) Optical compensation polarizing plate and liquid crystal display
JP3923682B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device
US6791645B2 (en) Optical sheet, polarizer and liquid-crystal display device
JP3957257B2 (en) Liquid crystal display
JP3957256B2 (en) Liquid crystal display
JP2002090530A (en) Composite optical retardation plate, optical compensation polarizing plate and liquid crystal display device
JP2002139623A (en) Optical sheet, polarization plate and liquid crystal display
JP2001272538A (en) Phase difference plate, optical compensating polarizing plate and liquid crystal display device
JP3609563B2 (en) Wide-field polarizing plate
JP4401511B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device
JP2001264538A (en) Optical compensation plate, optical member and liquid crystal display device
JP2002062424A (en) Optical retardation plate, composite optical retardation plate, optical compensation polarizing plate and liquid crystal display device
KR100847650B1 (en) Manufacturing Method of Polarizing Plate and Liquid Crystal Display
WO2009028428A1 (en) Elliptic polarization plate and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees