JP4401203B2 - Square battery - Google Patents
Square battery Download PDFInfo
- Publication number
- JP4401203B2 JP4401203B2 JP2004076208A JP2004076208A JP4401203B2 JP 4401203 B2 JP4401203 B2 JP 4401203B2 JP 2004076208 A JP2004076208 A JP 2004076208A JP 2004076208 A JP2004076208 A JP 2004076208A JP 4401203 B2 JP4401203 B2 JP 4401203B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrode
- winding
- gas discharge
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Gas Exhaust Devices For Batteries (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は、直方体状の内部に電池要素となる巻き取り電極体を収容して構成される角形電池に関するものである。 The present invention relates to a prismatic battery configured by accommodating a wound electrode body serving as a battery element inside a rectangular parallelepiped.
近年、携帯型電子機器、電気自動車等の動力源として、エネルギー密度(Wh/Kg)の高いリチウムイオン二次電池が開発されており、その中でも体積エネルギー密度(Wh/l)の高い角形二次電池が注目されている(特許文献1、2参照)。 In recent years, lithium ion secondary batteries with high energy density (Wh / Kg) have been developed as power sources for portable electronic devices, electric vehicles, etc. Among them, rectangular secondary batteries with high volume energy density (Wh / l) have been developed. Batteries are attracting attention (see Patent Documents 1 and 2).
図7及び図9は、出願人の提案にかかる角形二次電池の構成を示しており、図7の如く、直方体状の缶本体(11)と該缶本体(11)の開口部を覆う封口体(12)によって形成される電池缶(1)の内部に、発電要素となる巻き取り電極体(2)が収容されている。封口体(12)には、正負一対の電極端子機構(4)(40)が配備されると共に、両電極端子機構(4)(40)の間には、内圧が所定値を越えたときに開放すべきガス排出弁(13)と、電解液注入用の貫通孔を塞ぐ注液栓(14)とが配備されている。巻き取り電極体(2)は、缶本体(1)に横向きに収容されており、巻き軸に対して垂直な方向に扁平な形状を有している。
7 and 9 show the configuration of the prismatic secondary battery according to the applicant's proposal . As shown in FIG. 7 , a rectangular parallelepiped can body (11) and a seal covering the opening of the can body (11). A winding electrode body (2) serving as a power generation element is accommodated in a battery can (1) formed by the body (12). The sealing body (12) is provided with a pair of positive and negative electrode terminal mechanisms (4) and (40), and when the internal pressure exceeds a predetermined value between the electrode terminal mechanisms (4) and (40). A gas discharge valve (13) to be opened and an injection plug (14) for closing the through hole for injecting the electrolyte are provided. The winding electrode body (2) is accommodated horizontally in the can body (1) and has a flat shape in a direction perpendicular to the winding axis.
図9に示す如く、巻き取り電極体(2)の両電極端縁(28)(29)にはそれぞれ帯状の集電板(3)(30)が接合され、該集電板(3)(30)が、金属板を塑性加工してなるリード部材(5)(50)を介して、正負一対の電極端子機構(4)(40)に連結されている。これによって、一対の電極端子機構(4)(40)から巻き取り電極体(2)の発生電力を取り出すことが出来る。
As shown in FIG. 9 , strip-shaped current collector plates (3) and (30) are joined to both electrode edges (28) and (29) of the take-up electrode body (2), and the current collector plates (3) ( 30) is connected to a pair of positive and negative electrode terminal mechanisms (4) and (40) via lead members (5) and (50) formed by plastic processing of a metal plate. As a result, the electric power generated by the take-up electrode body (2) can be taken out from the pair of electrode terminal mechanisms (4) and (40).
集電板(3)(30)はそれぞれ帯状の平板部(31)を具え、該平板部(31)の幅方向の両端部には、電極端縁(28)(29)に向けて突出する一対のリブ(32)(32)が前記両端部に沿って形成されている。平板部(31)には、一対のリブ(32)(32)と交差する方向に伸びる複数の凸条部(33)が、電極端縁(28)(29)に向かって突設されると共に、隣接する凸条部(33)の間にはそれぞれ、複数の貫通孔(34)が開設されている。
しかしながら、上述の角形二次電池においては、巻き取り電極体(2)が電解液を吸収することによって巻き軸を中心とする径方向に膨張し、図8に示す様に、巻き取り電極体(2)の外周面が、電池缶(1)の封口板(12)に取り付けられているガス排出弁(13)に密着することがあった。これによって、ガス排出弁(13)のガス流路が塞がれるため、電池の内圧が上昇して所定値を越えたときのガス排出弁(13)のガス排出機能に支障が生じる問題があった。
However, in the above-described prismatic secondary battery, the winding electrode body (2) expands in the radial direction around the winding axis by absorbing the electrolyte, and as shown in FIG. The outer peripheral surface of 2) sometimes adhered to the gas discharge valve (13) attached to the sealing plate (12) of the battery can (1). As a result, the gas flow path of the gas discharge valve (13) is blocked, and there is a problem that the gas discharge function of the gas discharge valve (13) is hindered when the internal pressure of the battery rises and exceeds a predetermined value. It was.
この問題に対しては、電池缶(1)の缶本体(11)の側面にガス排出弁(13)を配備する構成が考えられるが(特許文献2参照)、缶本体(11)にガス排出弁(13)を配備することは製造上困難で、コストアップにつながる問題がある。
そこで本発明の目的は、電池缶の封口板にガス排出弁を配備する構成を変えることなく、ガス排出弁のガス排出機能に支障が生じることのない角形電池を提供することである。
To solve this problem, a configuration in which a gas discharge valve (13) is provided on the side surface of the can body (11) of the battery can (1) can be considered (refer to Patent Document 2), but gas can be discharged to the can body (11). It is difficult to manufacture the valve (13), and there is a problem that leads to an increase in cost.
Accordingly, an object of the present invention is to provide a prismatic battery that does not interfere with the gas discharge function of the gas discharge valve without changing the configuration of disposing the gas discharge valve on the sealing plate of the battery can.
本発明に係る角形電池においては、直方体状を呈する缶本体(11)の開口部に封口板(12)を固定してなる電池缶(1)の内部に、電池要素となる巻き取り電極体(2)が、その外周面を缶本体(11)の底面に沿わせて収容され、該巻き取り電極体(2)の巻き軸方向の両端部に突出する正負一対の電極端縁(28)(29)には集電板(3)(30)がそれぞれ接合され、両集電板(3)(30)はそれぞれ、金属板を塑性加工してなるリード部材(5)(50)を介して、封口板(12)に取り付けられた正負一対の電極端子機構(4)(40)に連結されている。
そして、電池缶(1)の封口板(12)には、何れか一方の集電板(3)から対応する電極端子機構(4)へ伸びるリード部材(5)の表面と対向する位置に、内圧が所定値を越えたときに開放すべきガス排出弁(13)が取り付けられている。
In the rectangular battery according to the present invention, a winding electrode body (battery element) is formed inside a battery can (1) in which a sealing plate (12) is fixed to an opening of a can body (11) having a rectangular parallelepiped shape. 2), a pair of positive and negative electrode edges (28) which are accommodated along the outer peripheral surface of the can body (11) and project at both ends in the winding axis direction of the wound electrode body (2). 29) are joined to current collector plates (3) and (30), respectively, and both current collector plates (3) and (30) are respectively connected via lead members (5) and (50) formed by plastic processing of metal plates. The positive and negative electrode terminal mechanisms (4) and (40) attached to the sealing plate (12) are connected to each other.
The sealing plate (12) of the battery can (1) is positioned at a position facing the surface of the lead member (5) extending from one of the current collector plates (3) to the corresponding electrode terminal mechanism (4). A gas discharge valve (13) to be opened when the internal pressure exceeds a predetermined value is attached.
具体的構成において、電池缶(1)の封口板(12)には、巻き取り電極体(2)の巻き軸方向に沿って、前記一対の電極端子機構(4)(40)が配備されると共に、両電極端子機構(4)(40)の外側に前記ガス排出弁(13)が配備されている。 In a specific configuration, the pair of electrode terminal mechanisms (4) and (40) are arranged on the sealing plate (12) of the battery can (1) along the winding axis direction of the winding electrode body (2). In addition, the gas discharge valve (13) is disposed outside the both electrode terminal mechanisms (4) and (40).
上記本発明の角形電池においては、電解液の吸収によって巻き取り電極体(2)が径方向に膨張して、巻き取り電極体(2)の外周面がガス排出弁(13)に接近したとしても、ガス排出弁(13)との対向位置には、リード部材(5)が伸びているため、該リード部材(5)によって巻き取り電極体(2)の外周面が受け止められる。この結果、ガス排出弁(13)とリード部材(5)の間の空間が保たれ、これによってガス排出弁(13)のガス排出機能が確保される。 In the prismatic battery of the present invention, the winding electrode body (2) expands in the radial direction due to absorption of the electrolytic solution, and the outer peripheral surface of the winding electrode body (2) approaches the gas discharge valve (13). However, since the lead member (5) extends at a position facing the gas discharge valve (13), the outer peripheral surface of the winding electrode body (2) is received by the lead member (5). As a result, a space between the gas discharge valve (13) and the lead member (5) is maintained, thereby ensuring the gas discharge function of the gas discharge valve (13).
本発明に係る角形電池によれば、電池缶の封口板にガス排出弁を配備する構成を変えることなく、電池内圧上昇時におけるガス排出弁のガス排出機能を良好に保つことが出来る。 According to the prismatic battery according to the present invention, the gas discharge function of the gas discharge valve when the battery internal pressure rises can be satisfactorily maintained without changing the configuration of disposing the gas discharge valve on the sealing plate of the battery can.
以下、本発明を角形リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。 Hereinafter, the embodiment in which the present invention is applied to a prismatic lithium ion secondary battery will be specifically described with reference to the drawings.
第1実施例
本発明に係る角形リチウムイオン二次電池は、図1に示す如く、直方体状の缶本体(11)の開口部に封口体(12)を溶接固定してなる電池缶(1)を具え、該電池缶(1)の内部には、発電要素となる巻き取り電極体(2)が収容されている。巻き取り電極体(2)は、巻き軸に対して垂直な方向に扁平な形状を有し、缶本体(1)に横向きに収容されている。電池缶(1)は、例えば17mm×50mm×90mmの外形を有している。
First Embodiment As shown in FIG. 1, a prismatic lithium ion secondary battery according to the present invention has a battery can (1) in which a sealing body (12) is welded and fixed to an opening of a rectangular parallelepiped can body (11). A winding electrode body (2) serving as a power generation element is accommodated in the battery can (1). The take-up electrode body (2) has a flat shape in a direction perpendicular to the winding axis, and is accommodated sideways in the can body (1). The battery can (1) has an outer shape of, for example, 17 mm × 50 mm × 90 mm.
電池缶(1)の封口体(12)には、正負一対の電極端子機構(4)(40)が配備されると共に、両電極端子機構(4)(40)の間には電解液注入用の貫通孔を塞ぐ注液栓(14)が配備され、更に両電極端子機構(4)(40)の外側に、内圧が所定値を越えたときに開放すべきガス排出弁(13)が配備されている。 The sealing body (12) of the battery can (1) is provided with a pair of positive and negative electrode terminal mechanisms (4) and (40), and between the electrode terminal mechanisms (4) and (40), for electrolyte injection. A liquid injection plug (14) that closes the through hole of the gas is provided, and a gas discharge valve (13) that should be opened when the internal pressure exceeds a predetermined value is provided outside the electrode terminal mechanisms (4) and (40). Has been.
巻き取り電極体(2)は、図6に示す如く、それぞれ帯状の正極(21)と負極(23)の間に帯状のセパレータ(22)を介在させて、これらを渦巻き状に巻き取って構成されている。正極(21)は、厚さ15μmのアルミニウム箔からなる帯状芯体(25)の両面にコバルト酸リチウムからなる正極活物質(24)を塗布して構成され、負極(23)は、厚さ10μmの銅箔からなる帯状芯体(27)の両面に黒鉛からなる負極活物質(26)を塗布して構成されている。セパレータ(22)は、イオン透過性のポリプロピレン製の微多孔膜であり、該セパレータ(22)には、非水電解液が含浸されている。 As shown in FIG. 6, the take-up electrode body (2) is formed by interposing a strip-shaped separator (22) between the strip-shaped positive electrode (21) and the negative electrode (23) and winding them in a spiral shape. Has been. The positive electrode (21) is configured by applying a positive electrode active material (24) made of lithium cobaltate on both sides of a strip-like core (25) made of an aluminum foil having a thickness of 15 μm, and the negative electrode (23) is made to have a thickness of 10 μm. The negative electrode active material (26) made of graphite is applied to both surfaces of a strip-like core (27) made of copper foil. The separator (22) is an ion-permeable polypropylene microporous membrane, and the separator (22) is impregnated with a non-aqueous electrolyte.
正極(21)には、正極活物質(24)の塗布されている塗工部と、正極活物質(24)の塗布されていない非塗工部とが形成されている。又、負極(23)にも、負極活物質(26)の塗布されている塗工部と、負極活物質の塗布されていない非塗工部とが形成されている。
正極(21)及び負極(23)は、それぞれセパレータ(22)上に幅方向へずらして重ね合わせ、正極(21)及び負極(23)の前記非塗工部をセパレータ(22)の両端縁からそれぞれ外側へ突出させる。そして、これらを渦巻き状に巻き取った後、電極体の外周面を両側から圧縮することにより、巻き軸に垂直な方向に扁平な形状を有する巻き取り電極体(2)が形成される。又、巻き取り電極体(2)の中央部には、両端部を貫通する中央孔(210)が形成されている。
The positive electrode (21) is formed with a coated portion where the positive electrode active material (24) is applied and an uncoated portion where the positive electrode active material (24) is not applied. The negative electrode (23) is also formed with a coated portion where the negative electrode active material (26) is applied and a non-coated portion where the negative electrode active material is not applied.
The positive electrode (21) and the negative electrode (23) are respectively shifted and overlapped on the separator (22) in the width direction, and the non-coated portions of the positive electrode (21) and the negative electrode (23) are separated from both end edges of the separator (22). Each protrudes outward. And after winding these up in a spiral shape, the winding electrode body (2) which has a flat shape in the direction perpendicular | vertical to a winding axis | shaft is formed by compressing the outer peripheral surface of an electrode body from both sides. A central hole (210) penetrating both ends is formed in the central portion of the winding electrode body (2).
巻き取り電極体(2)の一方の端部には、複数枚の正極(21)の芯体(25)の端縁が突出して正極側の電極端縁(28)が形成されると共に、他方の端部には、複数枚の負極(23)の芯体(27)の端縁が突出して負極側の電極端縁(29)が形成されており、電極端縁(28)(29)には、図3に示す如く、正負一対の帯状の集電板(3)(30)がそれぞれ接合されている。 At one end of the wound electrode body (2), the edge of the core body (25) of the plurality of positive electrodes (21) protrudes to form the electrode edge (28) on the positive electrode side, and the other The edge of the core body (27) of the plurality of negative electrodes (23) protrudes from the end of the negative electrode (29) to form an electrode edge (29) on the negative electrode side. As shown in FIG. 3, a pair of positive and negative belt-shaped current collector plates (3) and (30) are joined to each other.
両集電板(3)(30)はそれぞれ帯状の平板部(31)を具え、該平板部(31)の幅方向の両端部には、電極端縁(28)(29)に向けて突出する一対のリブ(32)(32)が前記両端部に沿って形成されている。平板部(31)には、一対のリブ(32)(32)と交差する方向に伸びる複数の凸条部(33)が、電極端縁(28)(29)に向かって突設されると共に、隣接する凸条部(33)どうしの間にはそれぞれ、複数の貫通孔(34)が開設されている。
尚、集電板(3)(30)の厚さは0.5mmであり、平板部(31)は14mm×50mm、リブ(32)は20mm×50mmの外形を有している。
Both current collector plates (3) and (30) each have a strip-shaped flat plate portion (31), and project at both ends in the width direction of the flat plate portion (31) toward the electrode edges (28) and (29). A pair of ribs (32) and (32) are formed along the both end portions. The flat plate portion (31) is provided with a plurality of protruding strip portions (33) extending in a direction intersecting with the pair of ribs (32) and (32) and projecting toward the electrode end edges (28) and (29). A plurality of through-holes (34) are opened between the adjacent ridges (33).
The current collecting plates (3) and (30) have a thickness of 0.5 mm, the flat plate portion (31) has an outer shape of 14 mm × 50 mm, and the rib (32) has an outer shape of 20 mm × 50 mm.
図5は、他の集電板(3)(30)の構造を表わしている。該集電板(3)(30)においては、隣接する凸条部(33)(33)の間にそれぞれ、巻き取り電極体(2)の電極端縁(28)(29)に向かって突出する一対の切り起し片(35)(35)が形成されている。両切り起し片(35)(35)は、平板部(31)の長手方向に伸びると共に、平板部(31)の電極端縁(28)(29)との対向面に対して120度程度の開き角度を有している。該切り起し片(35)(35)の切り起こしに伴って平板部(31)に形成された開口(36)は、後述の組立工程にて巻き取り電極体(2)に電解液を含浸させる際の通路となる。 FIG. 5 shows the structure of another current collector plate (3) (30). In the current collector plates (3) and (30), they protrude toward the electrode edges (28) and (29) of the winding electrode body (2) between the adjacent protrusions (33) and (33), respectively. A pair of cut and raised pieces (35) and (35) are formed. Both the cut and raised pieces (35) and (35) extend in the longitudinal direction of the flat plate portion (31) and are about 120 degrees with respect to the surface facing the electrode edges (28) and (29) of the flat plate portion (31). Has an opening angle. The opening (36) formed in the flat plate portion (31) as the cut and raised pieces (35) and (35) are cut and raised impregnates the winding electrode body (2) with the electrolytic solution in the assembly process described later. It becomes a passage when letting go.
図3に示す如く、一対の集電板(3)(30)はそれぞれ、厚さ0.5mm〜1.5mmの金属板をL字状に塑性加工してなるリード部材(5)(50)を介して、正負一対の電極端子機構(4)(40)の基端部に連結されている。尚、正極側のリード部材(5)はアルミニウム製であり、負極側のリード部材(50)はニッケル製である。
リード部材(5)(50)の基端部は集電板(3)(30)に溶接され、先端部は電極端子機構(4)(40)の基端部にかしめ固定される。
ここで、一方のリード部材(5)は、図4に示す如く、巻き取り電極体(2)の外周面と封口板(12)の間を伸びて、その先端が電極端子機構(4)の位置に達しており、ガス排出弁(13)は、リード部材(5)の表面と対向することになる。
As shown in FIG. 3, each of the pair of current collector plates (3) and (30) is a lead member (5) (50) formed by plastic working a metal plate having a thickness of 0.5 mm to 1.5 mm into an L shape. And is connected to the base end of the pair of positive and negative electrode terminal mechanisms (4), (40). The lead member (5) on the positive electrode side is made of aluminum, and the lead member (50) on the negative electrode side is made of nickel.
The proximal ends of the lead members (5) and (50) are welded to the current collector plates (3) and (30), and the distal ends are caulked and fixed to the proximal ends of the electrode terminal mechanisms (4) and (40).
Here, as shown in FIG. 4, one lead member (5) extends between the outer peripheral surface of the wound electrode body (2) and the sealing plate (12), and the tip thereof is the electrode terminal mechanism (4). The gas discharge valve (13) faces the surface of the lead member (5).
上記本発明の角形リチウムイオン二次電池においては、図2に示す如く、電解液の吸収によって巻き取り電極体(2)が径方向に膨張して、巻き取り電極体(2)の外周面がガス排出弁(13)に向かって接近したとしても、ガス排出弁(13)との対向位置には、リード部材(5)が伸びているため、該リード部材(5)によって巻き取り電極体(2)の外周面が受け止められる。この結果、ガス排出弁(13)とリード部材(5)の間の空間(ガス流路)が保たれ、これによってガス排出弁(13)のガス排出機能が確保される。 In the above-described prismatic lithium ion secondary battery of the present invention, as shown in FIG. 2, the winding electrode body (2) expands in the radial direction due to absorption of the electrolytic solution, and the outer circumferential surface of the winding electrode body (2) Even when approaching the gas discharge valve (13), the lead member (5) extends at a position facing the gas discharge valve (13). The outer peripheral surface of 2) is received. As a result, a space (gas flow path) between the gas discharge valve (13) and the lead member (5) is maintained, thereby ensuring the gas discharge function of the gas discharge valve (13).
上記第1実施例の角形二次電池の組立においては、先ず、図3に示す缶本体(11)、封口板(12)、巻き取り電極体(2)を作製すると共に、プレス加工によって正負一対の集電板(3)(30)及びリード部材(5)(50)を作製する。
次に、巻き取り電極体(2)の両端部から突出している電極端縁(28)(29)に集電板(3)(30)を押し付ける。ここで、集電板(3)(30)の剛性は、プレス加工により形成された一対のリブ(32)(32)及び凸条部(33)によって大きなものとなっているので、集電板(3)(30)を電極端縁(28)(29)に押し付ける押圧力によって集電板(3)(30)の平板部(31)が変形する虞はない。
両集電板(3)(30)を電極端縁(28)(29)にそれぞれ押し付けることによって、両集電板(3)(30)の凸条部(33)は電極端縁(28)(29)にそれぞれ均一に食い込み、各凸条部(33)と電極端縁(28)(29)の間には、円筒面からなる接合部が形成される。
In the assembly of the prismatic secondary battery of the first embodiment, first, the can body (11), the sealing plate (12), and the winding electrode body (2) shown in FIG. Current collector plates (3) and (30) and lead members (5) and (50) are prepared.
Next, the current collector plates (3) and (30) are pressed against the electrode edges (28) and (29) protruding from both ends of the wound electrode body (2). Here, the rigidity of the current collector plates (3) and (30) is large due to the pair of ribs (32) and (32) and the ridges (33) formed by pressing. (3) There is no possibility that the flat plate portion (31) of the current collector plates (3) and (30) is deformed by the pressing force pressing the electrode edges (28) and (29).
By pressing the current collector plates (3) and (30) against the electrode edges (28) and (29), respectively, the ridges (33) of the current collector plates (3) and (30) become the electrode edges (28). (29) is uniformly bitten, and a joint portion formed of a cylindrical surface is formed between each protrusion (33) and the electrode edge (28) (29).
又、一対のリブ(32)(32)によって、巻き取り電極体(2)の複数枚の芯体端部が集電板(3)(30)の平板部(31)の中央部に向かって寄せ集められ、束ねられる。これに伴って、集電板(3)(30)はそれぞれ、電極端縁(28)(29)に対して位置決めされることとなり、両集電板(3)(30)の位置が巻き取り電極体(2)の厚さ方向にずれることはない。 Further, the end portions of the plurality of cores of the winding electrode body (2) are directed toward the center of the flat plate portion (31) of the current collecting plates (3) and (30) by the pair of ribs (32) and (32). They are gathered and bundled. Accordingly, the current collector plates (3) and (30) are positioned with respect to the electrode edges (28) and (29), respectively, and the positions of the current collector plates (3) and (30) are wound up. There is no deviation in the thickness direction of the electrode body (2).
この様に、巻き取り電極体(2)の電極端縁(28)(29)に集電板(3)(30)を押し付けた状態で、各凸条部(33)の内周面に向けてレーザビームを照射し、レーザ溶接を施す。このとき、電極端縁(28)(29)は、複数枚の芯体端部が従来よりも密に束ねられた状態で集電板(3)(30)に接触しているので、従来よりも大きな出力をもって溶接を施し、溶接接合部に大きな溶接熱を発生させた場合にも、該溶接接合部に溶断が生じることはなく、両集電板(3)(30)はそれぞれ電極端縁(28)(29)に確実に接合されることになる。 In this way, the current collector plates (3) and (30) are pressed against the electrode edges (28) and (29) of the winding electrode body (2), and are directed toward the inner peripheral surface of each protrusion (33). The laser beam is irradiated and laser welding is performed. At this time, the electrode edges (28) and (29) are in contact with the current collector plates (3) and (30) in a state in which the end portions of the plurality of core bodies are more tightly bundled than in the prior art. Even when welding is performed with a large output and a large welding heat is generated in the welded joint, the welded joint does not melt, and both current collector plates (3) and (30) have their respective electrode edges. (28) It is securely joined to (29).
そして、封口板(12)に対して正負一対の電極端子機構(4)(40)を組み付けると共に、一対のリード部材(5)(50)の先端部を電極端子機構(4)(40)にかしめ固定する。その後、両リード部材(5)(50)の基端部をそれぞれ集電板(3)(30)の平板部(31)の裏面にレーザ溶接する。 Then, the pair of positive and negative electrode terminal mechanisms (4), (40) are assembled to the sealing plate (12), and the tip ends of the pair of lead members (5), (50) are attached to the electrode terminal mechanisms (4), (40). Secure by caulking. Thereafter, the base ends of the lead members (5) and (50) are laser-welded to the back surfaces of the flat plate portions (31) of the current collector plates (3) and (30), respectively.
次に、巻き取り電極体(2)を缶本体(11)の内部に収容すると共に、封口板(12)を缶本体(11)の開口部に被せ、封口板(12)を缶本体(11)に溶接する。
その後、ドライボックス内にて封口板(12)の注液孔から電解液を注入する。このとき、電解液は集電板(3)(30)の貫通孔(34)から巻き取り電極体(2)の内部に供給されるため、巻き取り電極体(2)に電解液を含浸させるための時間が大幅に短縮されることとなり、これによって、電池缶(1)に電解液を注液する注液時間が大幅に短縮される。最後に前記注液孔を注液栓(14)によって封止し、電池の組立を終了する。
Next, the take-up electrode body (2) is accommodated inside the can body (11), and the sealing plate (12) is placed over the opening of the can body (11), and the sealing plate (12) is placed on the can body (11 ).
Thereafter, an electrolytic solution is injected from the injection hole of the sealing plate (12) in the dry box. At this time, since the electrolytic solution is supplied into the winding electrode body (2) from the through holes (34) of the current collector plates (3) and (30), the winding electrode body (2) is impregnated with the electrolytic solution. Therefore, the time for injecting the electrolyte into the battery can (1) is greatly reduced. Finally, the liquid injection hole is sealed with a liquid injection stopper (14), and the assembly of the battery is completed.
上述の如く、本発明に係る角形リチウムイオン二次電池によれば、電池缶(1)の封口板(12)にガス排出弁(13)を配備する構成を変えることなく、電池内圧上昇時におけるガス排出弁(13)のガス排出機能を良好に保つことが出来る。 As described above, according to the prismatic lithium ion secondary battery according to the present invention, without changing the configuration of disposing the gas discharge valve (13) on the sealing plate (12) of the battery can (1), the battery internal pressure can be increased. The gas discharge function of the gas discharge valve (13) can be kept good.
(1) 電池缶(1) Battery can
(11) 缶本体(11) Can body
(12) 封口板(12) Sealing plate
(13) ガス排出弁(13) Gas discharge valve
(14) 注液栓(14) Injection stopper
(2) 巻き取り電極体(2) Winding electrode body
(3) 集電板(3) Current collector
(30) 集電板(30) Current collector
(4) 電極端子機構(4) Electrode terminal mechanism
(40) 電極端子機構(40) Electrode terminal mechanism
(5) リード部材(5) Lead material
(50) リード部材(50) Lead material
Claims (2)
The sealing plate (12) of the battery can (1) is provided with the pair of electrode terminal mechanisms (4) and (40) along the winding axis direction of the winding electrode body (2), and both electrode terminals. The prismatic battery according to claim 1, wherein the gas discharge valve (13) is arranged outside the mechanism (4) (40).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004076208A JP4401203B2 (en) | 2004-03-17 | 2004-03-17 | Square battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004076208A JP4401203B2 (en) | 2004-03-17 | 2004-03-17 | Square battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005267945A JP2005267945A (en) | 2005-09-29 |
JP4401203B2 true JP4401203B2 (en) | 2010-01-20 |
Family
ID=35092281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004076208A Expired - Fee Related JP4401203B2 (en) | 2004-03-17 | 2004-03-17 | Square battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4401203B2 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4821196B2 (en) * | 2005-07-11 | 2011-11-24 | トヨタ自動車株式会社 | battery |
JP2009110751A (en) | 2007-10-29 | 2009-05-21 | Panasonic Corp | Secondary battery |
US8822065B2 (en) * | 2009-03-11 | 2014-09-02 | Samsung Sdi Co., Ltd. | Rechargeable battery with current collector plate |
KR101030916B1 (en) | 2009-04-21 | 2011-04-22 | 에스비리모티브 주식회사 | Secondary battery |
KR101147171B1 (en) * | 2009-04-21 | 2012-05-25 | 에스비리모티브 주식회사 | Rechargeable battery |
KR101049833B1 (en) * | 2009-06-23 | 2011-07-15 | 에스비리모티브 주식회사 | Secondary battery |
KR101201744B1 (en) * | 2009-10-16 | 2012-11-15 | 에스비리모티브 주식회사 | Rechargeable battery |
KR101084055B1 (en) | 2009-10-26 | 2011-11-16 | 에스비리모티브 주식회사 | Secondary battery |
KR101042808B1 (en) * | 2010-01-26 | 2011-06-20 | 에스비리모티브 주식회사 | Secondary battery |
KR101126839B1 (en) | 2010-06-04 | 2012-03-23 | 에스비리모티브 주식회사 | Secondary battery |
US8501341B2 (en) | 2010-06-30 | 2013-08-06 | Samsung Sdi Co., Ltd. | Rechargeable battery |
US10115958B2 (en) | 2010-08-17 | 2018-10-30 | Gs Yuasa International Ltd. | Manufacturing method of electric storage device and electric storage device |
US8722237B2 (en) | 2011-03-29 | 2014-05-13 | Samsung Sdi Co., Ltd. | Secondary battery |
US9559339B2 (en) * | 2011-04-19 | 2017-01-31 | Samsung Sdi Co., Ltd. | Secondary battery |
WO2013021463A1 (en) | 2011-08-09 | 2013-02-14 | トヨタ自動車株式会社 | Battery and battery manufacturing method |
JP5962530B2 (en) * | 2013-02-06 | 2016-08-03 | トヨタ自動車株式会社 | battery |
JP6173729B2 (en) * | 2013-03-14 | 2017-08-02 | 株式会社東芝 | Battery manufacturing method |
JP5447739B1 (en) | 2013-06-12 | 2014-03-19 | トヨタ自動車株式会社 | Vehicle control device |
JP2015195218A (en) * | 2015-06-19 | 2015-11-05 | 三菱自動車工業株式会社 | battery |
WO2017057324A1 (en) * | 2015-09-29 | 2017-04-06 | 株式会社Gsユアサ | Power storage element and method for manufacturing power storage element |
US10943745B2 (en) * | 2016-03-31 | 2021-03-09 | Kabushiki Kaisha Toyota Jidoshokki | Electric storage device |
CN109417134B (en) | 2016-06-29 | 2021-12-03 | 三洋电机株式会社 | Secondary battery |
CN109417154B (en) | 2016-07-29 | 2022-01-04 | 三洋电机株式会社 | Secondary battery |
CN109417153B (en) | 2016-07-29 | 2022-02-18 | 三洋电机株式会社 | Method for manufacturing secondary battery |
CN109792073B (en) | 2016-09-30 | 2022-04-08 | 三洋电机株式会社 | Method for manufacturing prismatic secondary battery |
CN116683134B (en) * | 2023-08-03 | 2023-10-24 | 中自环保科技股份有限公司 | Explosion-proof structure of cylindrical battery |
WO2025026471A1 (en) * | 2023-10-24 | 2025-02-06 | 惠州亿纬动力电池有限公司 | Battery pressure relief protection device and battery |
CN119208858B (en) * | 2024-11-29 | 2025-02-28 | 深圳海辰储能科技有限公司 | Energy storage devices and electrical equipment |
-
2004
- 2004-03-17 JP JP2004076208A patent/JP4401203B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005267945A (en) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4401203B2 (en) | Square battery | |
JP4514434B2 (en) | Secondary battery | |
CN107710459B (en) | Battery and battery pack | |
KR101859227B1 (en) | Square type sealed secondary battery and method of manufacturing square type sealed secondary battery | |
JP5917407B2 (en) | Prismatic secondary battery | |
KR101808923B1 (en) | Manufacturing method for secondary battery and secondary battery | |
JP5106024B2 (en) | battery | |
JP5957239B2 (en) | Secondary battery | |
JP2004303500A (en) | Square battery | |
CN109768211B (en) | Secondary battery | |
JP2004119330A (en) | Secondary battery and its manufacturing method | |
JP2007134233A (en) | Battery terminal structure | |
WO2015097770A1 (en) | Rectangular secondary battery | |
CN114762182B (en) | Sealed battery | |
JP2006252890A (en) | Cylinder-shaped secondary battery and manufacturing method of the same | |
JP5677373B2 (en) | battery | |
JP6530819B2 (en) | Secondary battery | |
JP4679046B2 (en) | Battery and battery unit using the same | |
JP4159299B2 (en) | Secondary battery | |
JP7322872B2 (en) | Storage element | |
JP6235422B2 (en) | Secondary battery | |
WO2019116914A1 (en) | Electricity storage element | |
JP2004022339A (en) | Battery | |
JP5514618B2 (en) | Secondary battery | |
JP2004273288A (en) | Cylindrical secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091027 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |