[go: up one dir, main page]

JP4400064B2 - 光学フィルムの製造方法 - Google Patents

光学フィルムの製造方法 Download PDF

Info

Publication number
JP4400064B2
JP4400064B2 JP2003043776A JP2003043776A JP4400064B2 JP 4400064 B2 JP4400064 B2 JP 4400064B2 JP 2003043776 A JP2003043776 A JP 2003043776A JP 2003043776 A JP2003043776 A JP 2003043776A JP 4400064 B2 JP4400064 B2 JP 4400064B2
Authority
JP
Japan
Prior art keywords
cellulose acylate
film
electrode
och
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043776A
Other languages
English (en)
Other versions
JP2004252262A (ja
Inventor
隆 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003043776A priority Critical patent/JP4400064B2/ja
Publication of JP2004252262A publication Critical patent/JP2004252262A/ja
Application granted granted Critical
Publication of JP4400064B2 publication Critical patent/JP4400064B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学フィルムの製造方法に関する。
【0002】
【従来の技術】
表示装置の高性能化に伴って用いられる各種機能フィルムへの要求性能はますます高まっている。特に大画面化、高精細化、動画表示のため、優れた視認性が求められている。また反射防止フィルムや偏光板保護フィルムでは目視によりむらがないことが求められている。
【0003】
視認性向上を目的とした技術としては、実質的にハロゲン化炭化水素を含有しない溶媒を用いて形成したセルロースエステルフィルムを用いて反射防止層を形成する技術(例えば、特許文献1参照)が開示されている。しかし、この方法で薄膜を多層積層すると膜厚むらが生じやすく、その改善が求められていた。
【0004】
また、大気圧プラズマ放電処理でトリアセチルセルロースフィルム上に薄膜を形成する方法(例えば、特許文献2参照)が開示されているが、トリアセチルセルロースフィルム上に薄膜を形成した光学フィルムでロール状態で保管中に皺や凹み等の平面性の劣化が起こりやすいという問題があった。更には、形成した金属酸化物層にクラックが入りやすく、膜厚むらが生じやすいという問題があり、特に膜厚が60μmより薄いセルロースエステルフィルムの時に大きな問題であった。
【0005】
【特許文献1】
特開2002−182005号公報
【0006】
【特許文献2】
特開2000−26632号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、金属酸化物層を形成しても、巻き形状での形状劣化が少なく、また金属酸化物層の製膜の際にすじ状の製膜故障が少ない光学フィルムの製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明の上記目的は下記構成により達成された。
【0009】
1.2位と3位とのアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位と3位とのアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとを混合して調製したドープを流涎して得たセルロースアシレートフィルム上に
直接または他の層を介して大気圧プラズマ放電処理により金属酸化物層を設けて光学フィルムを製造するに当たり、
対向する第1電極と第2電極との間に窒素を主成分とするガスを供給し、
該第1電極に第1の周波数ω の高周波電圧V を印加し、
該第2電極に第2の周波数ω の高周波電圧V を印加し、
>V 且つω <ω として前記ガスを励起し、セルロースアシレートフィルムを励起した該ガスに晒すことを特徴とする光学フィルムの製造方法。
【0010】
2.第1の周波数ω が200kHz以下であり、第2の周波数ω が800kHz以上であることを特徴とする前記1記載の光学フィルムの製造方法。
【0011】
3.セルロースアシレートフィルムを構成するセルロースアシレートの、2位と3位とのアシル置換度の合計が1.75〜1.88であることを特徴とする前記1または2に記載の光学フィルムの製造方法。
【0012】
4.セルロースアシレートフィルムが1,3,5−トリアジン環を有する化合物を含有することを特徴とする前記1〜3の何れか1項に記載の光学フィルムの製造方法。
【0013】
5.金属酸化物層が酸化珪素、酸化チタン、酸化錫から選択される成分を含有することを特徴とする前記1〜4の何れか1項に記載の光学フィルムの製造方法。
【0017】
以下、本発明を詳細に説明する。
光学フィルムを用いて表示装置としたときのむらは、表面加工時の各機能層の膜厚むらと支持体自身の膜厚むらあるいは平面性等の面品質等が関係していると考えられる。特に平面性としては、製造した光学フィルムがロール状態で保管されている間に劣化することが問題であることが判明し、この問題を解決するために鋭意検討を行った。その結果、特定のセルロースアシレートを2種以上ブレンドして製造されたセルロースアシレートフィルム上に大気圧プラズマ放電処理によって金属酸化物層を形成したものは巻き形状での形状劣化が少なく、また金属酸化物層の製膜の際にすじ状の製膜故障が少ないことを見出した。これを用いた表示装置は目視によるむらが認められず良好な視認性が得られた。
【0018】
本発明の光学フィルムの製造方法で得られた光学フィルム(以下、単に光学フィルムともいう)は、偏光板保護フィルム、反射防止フィルム、防眩性反射防止フィルム、位相差フィルム、導電性フィルム、帯電防止フィルム、輝度向上フィルム、光学補償フィルム、視野角拡大フィルム等に用いることができる。また、この光学フィルムを用いて作製した偏光板は収率が高く、また、この偏光板あるいは光学フィルムを用いた表示装置は、高温高湿条件下でも優れた視認性を長期間維持することができることが分かった。
【0019】
(セルロースアシレート)
セルロースアシレート原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプやケフナ等がある。またこれらから得られた原料セルロースを任意の割合で混合して使用してもよい。セルロースアシレートは、アセチル基または炭素原子数が3〜22のアシル基を有するセルロースアシレートであることが好ましい。炭素原子数3〜22のアシル基の例には、プロピオニル(C25CO−)、n−ブチリル(C37CO−)、イソブチリル、バレリル(C49CO−)、イソバレリル、sec−バレリル、tert−バレリル、オクタノイル、ドデカノイル、オクタデカノイル及びオレオロイルが含まれる。プロピオニル及びブチリルが好ましい。セルロースアシレートとしては、セルロースアセテートが好ましく、セルローストリアセテートが特に好ましい。アシル基のアシル化剤が酸無水物や酸クロライドである場合、反応溶媒としての有機溶媒は、有機酸(例、酢酸)やメチレンクロライドが使用される。セルロースアシレートは、セルロースの水酸基の置換度が2.6〜3.0であることが好ましい。セルロースアシレートの重合度(粘度平均)は、200〜700であることが好ましく、250〜550であることが特に好ましい。これらのセルロースアシレートは、ダイセル化学工業(株)、コートルズ社、ヘキスト社、イーストマンコダック社により市販されている。写真用グレードのセルロースアシレートが好ましく用いられる。セルロースアシレートの含水率は、2質量%以下であることが好ましい。
【0020】
セルロースを構成するβ−1,4結合しているグルコース単位は、2位、3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を酢酸または他の酸によりエステル化したポリマーである。アシル置換度は、2位、3位及び6位のそれぞれについて、セルロースがエステル化している割合(100%のエステル化は、1.00)を意味する。
【0021】
本発明で用いるセルロースアシレートは、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとをブレンドすることにより得られる。2位、3位のアシル置換度の合計が1.70以下の場合、フィルムが吸湿しやすくなり、加水分解を受けやすくなるためフィルムの耐久性が低下する。また、湿度等による寸法変化も大きくなる。逆に、1.95を越すとセルロースアシレートの有機性が上がるため溶媒との親和性が増大し、ドープの粘度が上昇してしまう。従って、2位、3位のアシル置換度の合計は、1.70〜1.95であることが好ましく、1.75〜1.88であることがさらに好ましい。
【0022】
ところで6位の水酸基が2位、3位の水酸基と異なり一級水酸基であるため、水酸基の水素結合が極めて起こりやすいことが分かってきた。従って6位のアシル置換度を0.88以上とすることにより、溶剤への溶解性は著しく向上し、流延適性上好ましいドープを得ることが可能となる。6位のアシル置換度の範囲は、合成適正等を考慮すると0.88〜0.99が好ましく、0.89〜0.98がさらに好ましい。しかしながら、6位のアシル置換度を向上させると膜強度が低下するという問題があり、その両立が困難であった。また、アシル置換度が0.88よりも小さくなると溶剤への溶解性が著しく低下するため好ましくない。
【0023】
さらに、2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートからなるフィルム、または2位、3位のアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートからなるフィルム上に薄膜を形成した光学フィルムでロール状態で保管中に皺や凹み等の平面性の劣化が起こりやすい、更には、形成した金属酸化物層にクラックが入りやすく、膜厚むらが生じやすいという問題があった。
【0024】
これらの問題はセルロースアシレートをブレンドすることにより解決できることが判明した。また、6位のアシル置換度が0.88以上のセルロースアシレートは膜強度の観点からアシル置換基の炭素数は小さい方が望ましく、全てアセチル基であるほうが好ましい。なお、特開平11−5851号公報には2位、3位、6位のアセチル置換基の合計が2.67以上であり、2位、3位のアセチル置換基の合計が1.97以下のセルロースアセテートが記載されているが、このうち2位と3位の合計が1.90を超える範囲はフィルムの光学適性からは好ましい範囲を記載したものであり、流延適性からは本明細書に記載されている範囲の方がより好ましい。
【0025】
セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、無水酢酸−酢酸−硫酸触媒による液相酢化法である。具体的には、木材パルプ等のセルロース原料を適当量の有機酸で前処理した後、予め冷却したアシル化混液に投入してエステル化し、完全セルロースアシレート(2位、3位及び6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記アシル化混液は、一般に、溶媒としての有機酸、エステル化剤としての無水有機酸及び触媒としての硫酸を含む。無水有機酸は、これと反応するセルロース及び系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水有機酸の加水分解及びエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことにより、ケン化熟成し、所望のアシル置換度及び重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは、中和することなく、水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄及び安定化処理によりセルロースアシレートを得る。
【0026】
通常のセルロースアシレートの合成方法では、2位または3位のアシル置換度の方が、6位のアシル置換度よりも高い値になる。そのため、2位、3位のアシル置換度の合計が1.95以下とし、かつ6位のアシル置換度を0.88以上とするためには、前記の反応条件を特別に調節する必要がある。具体的な反応条件としては、硫酸触媒の量を減らし、アシル化反応の時間を長くすることが好ましい。硫酸触媒が多いと、アシル化反応の進行が速くなるが、触媒量に応じてセルロースとの間に硫酸エステルが生成し、反応終了時に遊離して残存水酸基を生じる。硫酸エステルは、反応性が高い6位により多く生成する。そのため、硫酸触媒が多いと6位のアシル置換度が小さくなる。従って、本発明に用いるセルロースアシレートを合成するためには、可能な限り硫酸触媒の量を削減し、それにより低下した反応速度を補うため、反応時間を延長する必要がある。
【0027】
(セルロースアシレートフィルムの製造)
本発明に用いられるセルロースアシレートフィルムは、フィルムを構成するポリマー成分が実質的に上記の定義を有するセルロースアシレートからなることが好ましい。実質的にとは、ポリマー成分の80質量%以上(好ましくは95質量%以上、さらに好ましくは98質量%以上、最も好ましくは99質量%以上)を意味する。フィルムの製造の原料としては、セルロースアシレート粒子を使用することが好ましい。使用する粒子の90質量%以上は、1〜4mmの粒子径を有することが好ましい。また、使用する粒子の50質量%以上が2〜3mmの粒子径を有することが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが好ましい。
【0028】
本発明においては、セルロースアシレートを溶媒に溶解する際、常温付近で溶解させることもできるが、製膜されたフィルムの物性や、その上に形成された金属酸化物層の良好な特性を得ることから、冷却溶解法と呼ばれる方法で溶解することが好ましい。
【0029】
以下に、冷却溶解法について説明する。
膨潤工程においては、セルロースアシレートと有機溶媒とを混合し、セルロースアシレートを溶媒により膨潤させる。膨潤工程の温度は、好ましくは−10〜55℃である。通常は室温で実施する。セルロースアシレートと有機溶媒との比率は、最終的に得られる溶液の濃度に応じて決定する。一般に、混合物中のセルロースアシレートの量は、5〜30質%であることが好ましく、8〜20質量%であることがさらに好ましく、10〜15質量%であることが最も好ましい。
【0030】
従来、セルロースアシレートフィルムはメチレンクロライドを用いた溶液流延法によってのみ製造されている。このような塩素系溶媒は環境上の配慮からも使用量を低減することが求められており、実質的に塩素系溶媒を含有しない溶媒を用いてセルロースアシレートフィルムを製膜する方法が提案されているが、塩素系溶媒と比較するとどうしても溶解性に劣る等の問題点も多く、いまだ実用化されていないのが現状であるが、下記に示すような実質的に塩素系溶媒を含有しない溶媒を採用することが好ましい。
【0031】
塩素系溶媒としては、アリルクロリド、2−エチルヘキシルクロリド、塩化アミル、塩化イソプロピル、塩化エチル、塩化ブチル、塩化ヘキシル、塩化メチル、塩化メチレン(メチレンクロライド)、o−クロロトルエン、p−クロロトルエン、クロロベンゼン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1.2−ジクロロエタン、1,1−ジクロロエチレン、1,2−ジクロロエチレン、1,1,1,2−テトラクロロエタン、1,1,2,2−テトラクロロエタン、テトラクロロエチレン、テトラメチレンクロロブロミド、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン等が挙げられる。
【0032】
実質的に塩素系溶媒を含有しない溶媒とはメチレンクロライド等の塩素系の溶媒の含有量が全溶媒量の10質量%以下であることを指しており、好ましくは5質量%以下であり、最も好ましくは0質量%である。
【0033】
実質的に塩素系溶媒を含有しない溶媒としては、例えば、炭素原子数が2〜12のエーテル、炭素原子数が3〜12のケトン及び炭素原子数が2〜12のエステル等が好ましい。
【0034】
上記のエーテル、ケトン及びエステルは、環状構造を有していてもよい。エーテル、ケトン及びエステルの官能基(すなわち、−O−、−CO−及び−COO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その炭素原子数は、いずれかの官能基を有する化合物の規定範囲内であればよい。
【0035】
炭素原子数が2〜12のエーテルの例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが含まれる。
【0036】
炭素原子数が3〜12のケトンの例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノンが含まれる。
【0037】
炭素原子数が2〜12のエステルの例には、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテートが含まれる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノール及び2−ブトキシエタノールが含まれる。
【0038】
2種類以上の有機溶媒を混合した溶媒を用いてもよい。特に好ましい有機溶媒は、互いに異なる3種類以上の混合溶媒である。3種類以上の混合溶媒では、第1の溶媒が炭素原子数が3〜4のケトン及び炭素原子数が2〜4のエステルあるいはこれらの混合溶媒であり、第2の溶媒が炭素原子数が5〜7のケトン、エーテルまたはアセト酢酸エステルから選ばれ、そして、第3の溶媒として沸点が30〜170℃のアルコールまたは沸点が30〜170℃の炭化水素を用いることが好ましい。第1の溶媒のケトン及びエステルとしては、アセトン、酢酸メチル、蟻酸メチル及び蟻酸エチルが好ましい。第2の溶媒としては、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、アセト酢酸メチル、ジオキサン及び1,3−ジオキソランが好ましい。
【0039】
第3の溶媒のアルコールは一価であることが好ましい。アルコールの炭化水素部分は、直鎖であっても、分岐を有していても環状であってもよい。炭化水素部分は、飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール(沸点:64.65℃)、エタノール(78.325℃)、1−プロパノール(97.15℃)、2−プロパノール(82.4℃)、1−ブタノール(117.9℃)、2−ブタノール(99.5℃)、t−ブタノール(82.45℃)、1−ペンタノール(137.5℃)、2−メチル−2−ブタノール(101.9℃)及びシクロヘキサノール(161℃)が含まれる。また、二種類以上のアルコールを併用してもよい。
【0040】
第3の溶媒の炭化水素は、直鎖であっても、分岐を有していても、環状であってもよい。炭化水素としては芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン(沸点:80.7℃)、ヘキサン(69℃)、ベンゼン(80.1℃)、トルエン(110.6℃)及びキシレン(138.4〜144.4℃)が含まれる。
【0041】
3種混合溶媒中には、第1の溶媒が30〜95質量%含まれることが好ましく、40〜90質量%含まれることがより好ましく、50〜90質量%含まれることが更に好ましい。第2の溶媒及び第3の溶媒は、1〜40質量%含まれることが好ましく、3〜30質量%含まれることがより好ましい。溶媒の組み合わせ例には、セルロースアシレート/酢酸メチル/シクロヘキサノン/メタノール/エタノール(X/(70−X)/20/5/5、質量部)、セルロースアシレート/酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(X/(50−X)/20/20/5/5、質量部)、セルロースアシレート/アセトン/アセト酢酸メチル/エタノール(X/(75−X)/20//5、質量部)、セルロースアシレート/酢酸メチル/シクロペンタノン/メタノール/エタノール(X/(80−X)/10/5/5、質量部)、セルロースアシレート/酢酸メチル/1、3ジオキソラン/メタノール/エタノール(X/(70−X)/20/5/5、質量部)、セルロースアシレート/酢酸メチル/ジオキサン/アセトン/メタノール/エタノール(X/(60−X)/20/10/5/5、質量部)及びセルロースアシレート/1,3−ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/エタノール(X/(55−X)/20/10/5/5/5、質量部)が含まれる。上記Xは、セルロースアシレートの質量部であって、好ましくは10〜25、さらに好ましくは13〜25である。
【0042】
セルロースアシレートの溶解では、予め室温でセルロースアシレートを非ハロゲン系有機溶媒に膨潤させることが好ましい。すなわち、非ハロゲン系有機溶媒にセルロースアシレート粉末をよく攪拌しつつ添加するか、あるいはその逆としてセルロースアシレートに非ハロゲン系有機溶媒を添加することで、セルロースアシレートの膨潤液を作製することができる。なお、非ハロゲン系有機溶媒とは、ハロゲン系有機溶媒の含有率が5質量%未満(好ましくは3質量%未満)であることを意味する。膨潤に要する時間は0.1〜24時間が好ましく、より好ましくは0.2〜6時間であり、さらに好ましくは0.5〜3時間である。
【0043】
実質的に塩素系溶媒を含有しない溶媒を用いてセルロースアシレートを溶解する場合、冷却溶解法で調製したドープを用いることで、さらに、クラックの発生が少ない光学フィルムを得ることができる。その原因は明らかではないが、得られるセルロースアシレート溶液が安定で、乾燥工程で局部的な残留応力が残ったりせず均一なセルロースアシレートフィルムが得られ、金属酸化物層を設ける工程あるいは設けた後でセルロースアシレートフィルム自身が不均一な形状変化(収縮や膨張)を起こしにくいためではないかと思われる。
【0044】
また、セルロースアシレートを溶解してドープの調製に用いられる有機溶媒としては、上記のような実質的に塩素系溶剤を含有しない溶媒を用いることが好ましいが、求められる溶媒特性としては、セルロースアシレートを溶解でき、かつ、適度な沸点であることが好ましく、例えば酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、1,3−ジメチル−2−イミダゾリジノン、アセト酢酸メチル等を挙げることができる。
【0045】
中でも、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセト酢酸メチル、アセトン等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。更に好ましくは、炭素数が1〜6のアルコールを添加して使用することが好ましく、溶媒中の前記アルコール類の割合は1〜35質量%が好ましい。
【0046】
溶媒とセルロースアシレートとの混合物は、セルロースアシレートが充分に膨潤するまで攪拌することが好ましい。攪拌時間は、10〜150分であることが好ましく、20分〜120分であることがさらに好ましい。膨潤工程において、溶媒とセルロースアシレート以外の成分、すなわち可塑剤、劣化防止剤、染料や紫外線吸収剤を添加してもよい。
【0047】
冷却工程においては、膨潤混合物を−100〜−10℃に冷却する。冷却温度は、膨潤混合物が固化する温度であることが好ましい。冷却速度は、1℃/分以上であることが好ましく、2℃/分以上であることがより好ましく、4℃/分以上であることがさらに好ましく、8℃/分以上であることが最も好ましい。冷却速度は速いほど好ましいが、100℃/秒程度が実用的である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。冷却工程においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却時に減圧すると、冷却時間を短縮することができる。減圧を実施するためには耐圧性容器を用いることが望ましい。具体的な冷却手段としては、さまざまな方法または装置が採用できる。
【0048】
例えば、膨潤混合物を攪拌しながら筒状の容器内を搬送し、その容器の周囲から膨潤混合物を冷却すると、迅速にかつ均一に膨潤混合物を冷却することができる。そのためには、筒状の容器、膨潤混合物を攪拌しながら筒状の容器内を搬送するため容器内に設けられている螺旋状の搬送機構、及び容器内の膨潤混合物を冷却するため容器の周囲に設けられている冷却機構からなる冷却装置が好ましく用いられる。また、−105〜−15℃に冷却した溶媒を膨潤混合物に添加して、より迅速に冷却することもできる。
【0049】
さらに、−100〜−10℃に冷却された液体中へ、膨潤混合物を直径が0.1〜20.0mmの糸状に押し出すことにより膨潤混合物とすることで、さらに迅速に膨潤混合物を冷却することも可能である。
【0050】
加温工程においては、冷却した膨潤混合物を加温する。加温工程の最終温度は、通常は室温である。加温速度は、1℃/分以上であることが好ましく、2℃/分以上であることがより好ましく、4℃/分以上であることがさらに好ましく、8℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、100℃/秒程度が実用的である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を、加温を開始してから最終的な加温温度に達するまでの時間で割った値である。加圧しながら加温すると、加温時間を短縮することができる。加圧を実施するためには、耐圧性容器を用いることが望ましい。なお、溶解が不充分である場合は、冷却工程から加温工程までを繰り返して実施してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。具体的な加温手段としては、さまざまな方法または装置が採用できる。
【0051】
例えば、膨潤混合物を攪拌しながら筒状の容器内を搬送し、その容器の周囲から膨潤混合物を加温すると、迅速にかつ均一に膨潤混合物を加温することができる。そのためには、筒状の容器、膨潤混合物を攪拌しながら筒状の容器内を搬送するため容器内に設けられている螺旋状の搬送機構、及び容器内の膨潤混合物を加温するため容器の周囲に設けられている加温機構からなる加温装置が好ましく用いられる。
【0052】
また、0〜55℃に加温された液体中へ、直径が0.1〜20.0mmの糸状の膨潤混合物を入れることにより膨潤混合物を加温することで、さらに迅速に膨潤混合物を加温することも可能である。冷却工程において、膨潤混合物を糸状に押し出す方法を採用した場合は、その糸状の膨潤混合物を加温用の液体に投入すればよい。
【0053】
さらに、冷却した膨潤混合物を筒状の容器内に導入し、容器内で膨潤混合物の流れを複数に分割し、分割された混合物の流れの向きを容器内で回転させ、この分割と回転とを繰り返しながら、容器の周囲から膨潤混合物を加温することもできる。上記のように、物質の流れを分割及び回転させる仕切りが設けられた容器は、一般に静止型の混合器として知られている。代表的な静止型混合器であるスタチックミキサーTM(ケニックス社)では、物質の流れを二つに分割して右回りに180度回転させる右回りエレメントと、物質の流れを二つに分割して左回りに180度回転させる左回りエレメントとが、容器内で交互に90度ずらして配列されている。さらにまた、溶媒が沸騰しないように調整された圧力下で、溶媒の沸点以上の温度まで膨潤混合物を加温してもよい。温度は、溶媒の種類に応じて決定するが一般に60〜200℃である。圧力は、温度と溶媒の沸点との関係で決定する。
【0054】
製造した溶液は、必要に応じて濃度の調整(濃縮または希釈)、濾過、温度調整、成分添加等の処理を実施することができる。添加する成分は、セルロースアシレートフィルムの用途に応じて決定する。代表的な添加剤は、前述した可塑剤、劣化防止剤、染料及び紫外線吸収剤である。添加剤の詳細については後述する。
【0055】
(セルロースアシレートフィルム中に用いる添加剤)
本発明に用いられるセルロースアシレートフィルムの添加剤について説明する。
【0056】
(可塑剤)
可塑剤としては特に限定はないが、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸エステル系可塑剤、グリコール酸エステル系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を挙げることができる。
【0057】
リン酸エステル系可塑剤としては、
例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等;
フタル酸エステル系可塑剤としては、
例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジシクロヘキシルフタレート、ジベンジルフタレート等;
トリメリット酸エステル系可塑剤としては、例えば、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等;
ピロメリット酸エステル系可塑剤としては、
例えば、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等;
グリセリンエステル系可塑剤としては、
例えば、トリアセチン、トリブチリン等;
グリコール酸エステル系可塑剤としては、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等;
その他のカルボン酸エステル系可塑剤の例としては、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステル、トリメチロールプロパントリベンゾエート、トリメチロールプロパンテトラベンゾエート等の多価アルコールエステルを挙げることができる。これらのうち、リン酸エステル系可塑剤またはグリコール酸エステル系可塑剤が好ましい。
【0058】
これらの可塑剤を単独あるいは併用するのが好ましい。
また、可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースアシレートに対して1〜30質量%であることが好ましい。
【0059】
(紫外線吸収剤)
本発明に係るセルロースアシレートフィルムには、画像表示装置として屋外に置かれた場合等の劣化防止の観点から紫外線吸収剤を含有させることが好ましい。紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ、波長400nm以上の可視光の吸収が少ないものを好ましく用いることができる。例えば380nmにおける透過率が20%未満であることが好ましく、更に好ましくは10%未満であり、特に好ましくは5%未満である。
【0060】
紫外線吸収剤としては、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、本発明はこれらに限定されない。
【0061】
ベンゾトリアゾール系紫外線吸収剤としては、例えば、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−t−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−t−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネート、2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネート等を挙げることができ、チヌビン(TINUVIN)109、チヌビン171、チヌビン326(チバ・スペシャルティ・ケミカルズ社製)等が市販されており、好ましく用いることができる。
【0062】
また、ベンゾフェノン系紫外線吸収剤も本発明に係るセルロースアシレートフィルムに有用なものの一つである。
【0063】
例えば、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができる。
【0064】
本発明の光学フィルムには、紫外線吸収剤として透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤またはベンゾフェノン系紫外線吸収剤を好ましく用いることができ、中でも、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましい。また、紫外線吸収剤は製膜工程でブリードアウトしたり、揮発しないものが好ましい。
【0065】
紫外線吸収剤は、0.1〜10質量%添加されることが好ましく、特に0.5〜5質量%添加されることが好ましい。
【0066】
更に、本発明に用いられる可塑剤または紫外線吸収剤等の添加剤の更に好ましいものとして、分子内に芳香環、シクロアルキル環もしくはシクロアルケニル環を分子内に3つ以上有する添加剤を0.5〜30質量%含有することが好ましく、特に非リン酸系で、ベンゼン環、シクロヘキサン環及びシクロヘキセン環から選ばれる環を分子内に少なくとも3個を有する添加剤等を挙げることができる。更に、これらの環は置換基を有していてもよい。
【0067】
非リン酸系で、ベンゼン環、シクロヘキシル環またはシクロヘキセン環を分子中に少なくとも3個有する可塑剤を含有するウェブは、その乾燥中に内部から表面へと移動することが少なく表面に集まりにくく、張力を付与しながら乾燥させて得られたセルロースアシレートフィルムに局所的な残留応力が残りにくくなるのではないかと思われる。
【0068】
また、非リン酸系で、ベンゼン環、シクロヘキシル環またはシクロヘキセン環を分子中に少なくとも3個有する添加剤を含有するセルロースアシレートフィルムは透湿性を改善し、高温高湿度における安定性を増すことができる。
【0069】
非リン酸系の、ベンゼン環、シクロヘキサン環及びシクロヘキセン環から選ばれる環を少なくとも3個有する添加剤は、ベンゼン環のみを3個以上でも、シクロヘキサン環を3個以上でも、シクロヘキセン環を3個以上でも、また、これらの環が縮合している縮合環であってもよく、異項環との縮合環を含有していてもよい。
【0070】
本発明においては、縮合環内にあるベンゼン環、シクロヘキサン環またはシクロヘキセン環の一つずつの環数を、これらの環の数とする。例えばナフタレン環は2個と数える。これらの環には置換基を有していてもよい。本発明においては、これらの環を分子内に3〜20個あるものが好ましく、更に好ましくは3〜10個である。
【0071】
本発明において、より好ましく用いられるベンゼン環、シクロヘキサン環またはシクロヘキセン環を分子内に少なくとも3個有する添加剤としては、例えば、以下の化合物が挙げられる。
【0072】
P−43:ジベンジルフタレート
P−44:ジベンジルイソフタレート
P−45:ジベンジルテレフタレート
P−46:ジフェニルフタレート
P−47:ジフェニルイソフタレート
P−48:ジフェニルテレフタレート
P−49:ジシクロヘキシルフタレート
P−50:ジシクロヘキシルイソフタレート
P−51:ジシクロヘキシルテレフタレート
P−52:フェニルシクロヘキシルイソフタレート
P−53:フェニルシクロヘキシルテレフタレート
P−54:フェニルシクロヘキシルフタレート
P−55:ベンジルシクロヘキシルフタレート
P−56:ベンジルシクロヘキシルテレフタレート
P−57:ベンジルシクロヘキシルイソフタレート
P−58:ジベンジルシクロヘキサンジアセテート
P−59:1,3−シクロヘキサンジメチルジベンゾエート
P−60:1,3−ジベンジルシクロヘキサンジカルボキシレート
P−61:1,2−ジベンジルテトラデヒドロフタレート
P−62:1,2−ジシクロヘキシルテトラヒドロフタレート
P−63:1,3−ジシクロヘキシルシクロヘキシルジカルボキシレート
P−64:グリセリントリベンゾエート
P−65:グリセリントリフェニルアセテート
P−66:アセチルクエン酸トリベンジルアセチル
P−67:クエン酸トリシクロヘキシル
P−68:アビエチン酸メチル
P−69:アビエチン酸エチル
P−70:アビエチン酸ブチル
P−71:デヒドロアビエチン酸メチル
P−72:デヒドロアビエチン酸ブチル
P−73:パラストリン酸メチル
等、またオリゴマー的な低分子重合体として、
P−74:KE−604(荒川化学製)
P−75:KE−85(荒川化学製)
P−76:アラルダイドEPN1139(旭チバ(株)製)
P−77:アラルダイドGY260(旭チバ(株)製)
P−78:ハイラック110H(日立化成(株)製)
P−79:ハイラック111(日立化成(株)製)
等樹脂オリゴマー等を好ましく挙げることができるが、本発明はこれらに限定されるものではな
【0073】
本発明では、下記に示すような添加剤を用いることができる。
【0074】
【化1】
Figure 0004400064
【0075】
【化2】
Figure 0004400064
【0076】
また、本発明の光学フィルムの添加剤として、1,3,5−トリアジン環を有する化合物を好ましく用いることができる。
【0077】
1,3,5−トリアジン環を有する化合物は、中でも、下記一般式(I)で表される化合物が好ましい。
【0078】
【化3】
Figure 0004400064
【0079】
一般式(I)において、X1は、単結合、−NR4−、−O−または−S−であり;X2は単結合、−NR5−、−O−または−S−であり;X3は単結合、−NR6−、−O−または−S−であり;R1、R2及びR3はアルキル基、アルケニル基、アリール基または複素環基であり;そして、R4、R5及びR6は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。一般式(I)で表される化合物は、メラミン化合物であることが特に好ましい。
【0080】
メラミン化合物では、一般式(I)において、X1、X2及びX3が、それぞれ、−NR4−、−NR5−及び−NR6−であるか、あるいは、X1、X2及びX3が単結合であり、かつ、R1、R2及びR3が窒素原子に遊離原子価をもつ複素環基である。−X1−R1、−X2−R2及び−X3−R3は、同一の置換基であることが好ましい。R1、R2及びR3は、アリール基であることが特に好ましい。R4、R5及びR6は、水素原子であることが特に好ましい。
【0081】
上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。
【0082】
アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることがさらに好ましく、1〜8であることがさらにまた好ましく、1〜6であることが最も好ましい。アルキル基は置換基を有していてもよい。
【0083】
置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることがさらに好ましく、2〜8であることがさらにまた好ましく、2〜6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。
【0084】
置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)またはアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。
【0085】
上記アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。
【0086】
置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。
【0087】
アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。
【0088】
上記アルケニル基は、前述したアルケニル基と同義である。
アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。
【0089】
上記アリール基の具体例としては、例えば、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニルまたは4−ドデシルオキシフェニル等の各基が挙げられる。
【0090】
アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。
【0091】
1、X2またはX3が−NR−、−O−または−S−である場合の複素環基は、芳香族性を有することが好ましい。
【0092】
芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。
【0093】
複素環中のヘテロ原子は、N、SまたはO等の各原子であることが好ましく、N原子であることが特に好ましい。
【0094】
芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2−ピリジルまたは4−ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
【0095】
1、X2またはX3が単結合である場合の複素環基は、窒素原子に遊離原子価をもつ複素環基であることが好ましい。窒素原子に遊離原子価をもつ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。
【0096】
また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。
【0097】
以下に、窒素原子に遊離原子価をもつ複素環基の具体例を示す。
【0098】
【化4】
Figure 0004400064
【0099】
【化5】
Figure 0004400064
【0100】
1,3,5−トリアジン環を有する化合物の分子量は、300〜2000であることが好ましい。該化合物の沸点は、260℃以上であることが好ましい。沸点は、市販の測定装置(例えば、TG/DTA100、セイコー電子工業(株)製)を用いて測定できる。
【0101】
以下に、1,3,5−トリアジン環を有する化合物の具体例を示す。
なお、以下に示す複数のRは同一の基を表す。
【0102】
【化6】
Figure 0004400064
【0103】
(1)ブチル
(2)2−メトキシ−2−エトキシエチル
(3)5−ウンデセニル
(4)フェニル
(5)4−エトキシカルボニルフェニル
(6)4−ブトキシフェニル
(7)p−ビフェニリル
(8)4−ピリジル
(9)2−ナフチル
(10)2−メチルフェニル
(11)3,4−ジメトキシフェニル
(12)2−フリル
【0104】
【化7】
Figure 0004400064
【0105】
【化8】
Figure 0004400064
【0106】
(14)フェニル
(15)3−エトキシカルボニルフェニル
(16)3−ブトキシフェニル
(17)m−ビフェニリル
(18)3−フェニルチオフェニル
(19)3−クロロフェニル
(20)3−ベンゾイルフェニル
(21)3−アセトキシフェニル
(22)3−ベンゾイルオキシフェニル
(23)3−フェノキシカルボニルフェニル
(24)3−メトキシフェニル
(25)3−アニリノフェニル
(26)3−イソブチリルアミノフェニル
(27)3−フェノキシカルボニルアミノフェニル
(28)3−(3−エチルウレイド)フェニル
(29)3−(3,3−ジエチルウレイド)フェニル
(30)3−メチルフェニル
(31)3−フェノキシフェニル
(32)3−ヒドロキシフェニル
(33)4−エトキシカルボニルフェニル
(34)4−ブトキシフェニル
(35)p−ビフェニリル
(36)4−フェニルチオフェニル
(37)4−クロロフェニル
(38)4−ベンゾイルフェニル
(39)4−アセトキシフェニル
(40)4−ベンゾイルオキシフェニル
(41)4−フェノキシカルボニルフェニル
(42)4−メトキシフェニル
(43)4−アニリノフェニル
(44)4−イソブチリルアミノフェニル
(45)4−フェノキシカルボニルアミノフェニル
(46)4−(3−エチルウレイド)フェニル
(47)4−(3,3−ジエチルウレイド)フェニル
(48)4−メチルフェニル
(49)4−フェノキシフェニル
(50)4−ヒドロキシフェニル
(51)3,4−ジエトキシカルボニルフェニル
(52)3,4−ジブトキシフェニル
(53)3,4−ジフェニルフェニル
(54)3,4−ジフェニルチオフェニル
(55)3,4−ジクロロフェニル
(56)3,4−ジベンゾイルフェニル
(57)3,4−ジアセトキシフェニル
(58)3,4−ジベンゾイルオキシフェニル
(59)3,4−ジフェノキシカルボニルフェニル
(60)3,4−ジメトキシフェニル
(61)3,4−ジアニリノフェニル
(62)3,4−ジメチルフェニル
(63)3,4−ジフェノキシフェニル
(64)3,4−ジヒドロキシフェニル
(65)2−ナフチル
(66)3,4,5−トリエトキシカルボニルフェニル
(67)3,4,5−トリブトキシフェニル
(68)3,4,5−トリフェニルフェニル
(69)3,4,5−トリフェニルチオフェニル
(70)3,4,5−トリクロロフェニル
(71)3,4,5−トリベンゾイルフェニル
(72)3,4,5−トリアセトキシフェニル
(73)3,4,5−トリベンゾイルオキシフェニル
(74)3,4,5−トリフェノキシカルボニルフェニル
(75)3,4,5−トリメトキシフェニル
(76)3,4,5−トリアニリノフェニル
(77)3,4,5−トリメチルフェニル
(78)3,4,5−トリフェノキシフェニル
(79)3,4,5−トリヒドロキシフェニル
【0107】
【化9】
Figure 0004400064
【0108】
(80)フェニル
(81)3−エトキシカルボニルフェニル
(82)3−ブトキシフェニル
(83)m−ビフェニリル
(84)3−フェニルチオフェニル
(85)3−クロロフェニル
(86)3−ベンゾイルフェニル
(87)3−アセトキシフェニル
(88)3−ベンゾイルオキシフェニル
(89)3−フェノキシカルボニルフェニル
(90)3−メトキシフェニル
(91)3−アニリノフェニル
(92)3−イソブチリルアミノフェニル
(93)3−フェノキシカルボニルアミノフェニル
(94)3−(3−エチルウレイド)フェニル
(95)3−(3,3−ジエチルウレイド)フェニル
(96)3−メチルフェニル
(97)3−フェノキシフェニル
(98)3−ヒドロキシフェニル
(99)4−エトキシカルボニルフェニル
(100)4−ブトキシフェニル
(101)p−ビフェニリル
(102)4−フェニルチオフェニル
(103)4−クロロフェニル
(104)4−ベンゾイルフェニル
(105)4−アセトキシフェニル
(106)4−ベンゾイルオキシフェニル
(107)4−フェノキシカルボニルフェニル
(108)4−メトキシフェニル
(109)4−アニリノフェニル
(110)4−イソブチリルアミノフェニル
(111)4−フェノキシカルボニルアミノフェニル
(112)4−(3−エチルウレイド)フェニル
(113)4−(3,3−ジエチルウレイド)フェニル
(114)4−メチルフェニル
(115)4−フェノキシフェニル
(116)4−ヒドロキシフェニル
(117)3,4−ジエトキシカルボニルフェニル
(118)3,4−ジブトキシフェニル
(119)3,4−ジフェニルフェニル
(120)3,4−ジフェニルチオフェニル
(121)3,4−ジクロロフェニル
(122)3,4−ジベンゾイルフェニル
(123)3,4−ジアセトキシフェニル
(124)3,4−ジベンゾイルオキシフェニル
(125)3,4−ジフェノキシカルボニルフェニル
(126)3,4−ジメトキシフェニル
(127)3,4−ジアニリノフェニル
(128)3,4−ジメチルフェニル
(129)3,4−ジフェノキシフェニル
(130)3,4−ジヒドロキシフェニル
(131)2−ナフチル
(132)3,4,5−トリエトキシカルボニルフェニル
(133)3,4,5−トリブトキシフェニル
(134)3,4,5−トリフェニルフェニル
(135)3,4,5−トリフェニルチオフェニル
(136)3,4,5−トリクロロフェニル
(137)3,4,5−トリベンゾイルフェニル
(138)3,4,5−トリアセトキシフェニル
(139)3,4,5−トリベンゾイルオキシフェニル
(140)3,4,5−トリフェノキシカルボニルフェニル
(141)3,4,5−トリメトキシフェニル
(142)3,4,5−トリアニリノフェニル
(143)3,4,5−トリメチルフェニル
(144)3,4,5−トリフェノキシフェニル
(145)3,4,5−トリヒドロキシフェニル
【0109】
【化10】
Figure 0004400064
【0110】
(146)フェニル
(147)4−エトキシカルボニルフェニル
(148)4−ブトキシフェニル
(149)p−ビフェニリル
(150)4−フェニルチオフェニル
(151)4−クロロフェニル
(152)4−ベンゾイルフェニル
(153)4−アセトキシフェニル
(154)4−ベンゾイルオキシフェニル
(155)4−フェノキシカルボニルフェニル
(156)4−メトキシフェニル
(157)4−アニリノフェニル
(158)4−イソブチリルアミノフェニル
(159)4−フェノキシカルボニルアミノフェニル
(160)4−(3−エチルウレイド)フェニル
(161)4−(3,3−ジエチルウレイド)フェニル
(162)4−メチルフェニル
(163)4−フェノキシフェニル
(164)4−ヒドロキシフェニル
【0111】
【化11】
Figure 0004400064
【0112】
(165)フェニル
(166)4−エトキシカルボニルフェニル
(167)4−ブトキシフェニル
(168)p−ビフェニリル
(169)4−フェニルチオフェニル
(170)4−クロロフェニル
(171)4−ベンゾイルフェニル
(172)4−アセトキシフェニル
(173)4−ベンゾイルオキシフェニル
(174)4−フェノキシカルボニルフェニル
(175)4−メトキシフェニル
(176)4−アニリノフェニル
(177)4−イソブチリルアミノフェニル
(178)4−フェノキシカルボニルアミノフェニル
(179)4−(3−エチルウレイド)フェニル
(180)4−(3,3−ジエチルウレイド)フェニル
(181)4−メチルフェニル
(182)4−フェノキシフェニル
(183)4−ヒドロキシフェニル
【0113】
【化12】
Figure 0004400064
【0114】
(184)フェニル
(185)4−エトキシカルボニルフェニル
(186)4−ブトキシフェニル
(187)p−ビフェニリル
(188)4−フェニルチオフェニル
(189)4−クロロフェニル
(190)4−ベンゾイルフェニル
(191)4−アセトキシフェニル
(192)4−ベンゾイルオキシフェニル
(193)4−フェノキシカルボニルフェニル
(194)4−メトキシフェニル
(195)4−アニリノフェニル
(196)4−イソブチリルアミノフェニル
(197)4−フェノキシカルボニルアミノフェニル
(198)4−(3−エチルウレイド)フェニル
(199)4−(3,3−ジエチルウレイド)フェニル
(200)4−メチルフェニル
(201)4−フェノキシフェニル
(202)4−ヒドロキシフェニル
【0115】
【化13】
Figure 0004400064
【0116】
(203)フェニル
(204)4−エトキシカルボニルフェニル
(205)4−ブトキシフェニル
(206)p−ビフェニリル
(207)4−フェニルチオフェニル
(208)4−クロロフェニル
(209)4−ベンゾイルフェニル
(210)4−アセトキシフェニル
(211)4−ベンゾイルオキシフェニル
(212)4−フェノキシカルボニルフェニル
(213)4−メトキシフェニル
(214)4−アニリノフェニル
(215)4−イソブチリルアミノフェニル
(216)4−フェノキシカルボニルアミノフェニル
(217)4−(3−エチルウレイド)フェニル
(218)4−(3,3−ジエチルウレイド)フェニル
(219)4−メチルフェニル
(220)4−フェノキシフェニル
(221)4−ヒドロキシフェニル
【0117】
【化14】
Figure 0004400064
【0118】
(222)フェニル
(223)4−ブチルフェニル
(224)4−(2−メトキシ−2−エトキシエチル)フェニル
(225)4−(5−ノネニル)フェニル
(226)p−ビフェニリル
(227)4−エトキシカルボニルフェニル
(228)4−ブトキシフェニル
(229)4−メチルフェニル
(230)4−クロロフェニル
(231)4−フェニルチオフェニル
(232)4−ベンゾイルフェニル
(233)4−アセトキシフェニル
(234)4−ベンゾイルオキシフェニル
(235)4−フェノキシカルボニルフェニル
(236)4−メトキシフェニル
(237)4−アニリノフェニル
(238)4−イソブチリルアミノフェニル
(239)4−フェノキシカルボニルアミノフェニル
(240)4−(3−エチルウレイド)フェニル
(241)4−(3,3−ジエチルウレイド)フェニル
(242)4−フェノキシフェニル
(243)4−ヒドロキシフェニル
(244)3−ブチルフェニル
(245)3−(2−メトキシ−2−エトキシエチル)フェニル
(246)3−(5−ノネニル)フェニル
(247)m−ビフェニリル
(248)3−エトキシカルボニルフェニル
(249)3−ブトキシフェニル
(250)3−メチルフェニル
(251)3−クロロフェニル
(252)3−フェニルチオフェニル
(253)3−ベンゾイルフェニル
(254)3−アセトキシフェニル
(255)3−ベンゾイルオキシフェニル
(256)3−フェノキシカルボニルフェニル
(257)3−メトキシフェニル
(258)3−アニリノフェニル
(259)3−イソブチリルアミノフェニル
(260)3−フェノキシカルボニルアミノフェニル
(261)3−(3−エチルウレイド)フェニル
(262)3−(3,3−ジエチルウレイド)フェニル
(263)3−フェノキシフェニル
(264)3−ヒドロキシフェニル
(265)2−ブチルフェニル
(266)2−(2−メトキシ−2−エトキシエチル)フェニル
(267)2−(5−ノネニル)フェニル
(268)o−ビフェニリル
(269)2−エトキシカルボニルフェニル
(270)2−ブトキシフェニル
(271)2−メチルフェニル
(272)2−クロロフェニル
(273)2−フェニルチオフェニル
(274)2−ベンゾイルフェニル
(275)2−アセトキシフェニル
(276)2−ベンゾイルオキシフェニル
(277)2−フェノキシカルボニルフェニル
(278)2−メトキシフェニル
(279)2−アニリノフェニル
(280)2−イソブチリルアミノフェニル
(281)2−フェノキシカルボニルアミノフェニル
(282)2−(3−エチルウレイド)フェニル
(283)2−(3,3−ジエチルウレイド)フェニル
(284)2−フェノキシフェニル
(285)2−ヒドロキシフェニル
(286)3,4−ジブチルフェニル
(287)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(288)3,4−ジフェニルフェニル
(289)3,4−ジエトキシカルボニルフェニル
(290)3,4−ジドデシルオキシフェニル
(291)3,4−ジメチルフェニル
(292)3,4−ジクロロフェニル
(293)3,4−ジベンゾイルフェニル
(294)3,4−ジアセトキシフェニル
(295)3,4−ジメトキシフェニル
(296)3,4−ジ−N−メチルアミノフェニル
(297)3,4−ジイソブチリルアミノフェニル
(298)3,4−ジフェノキシフェニル
(299)3,4−ジヒドロキシフェニル
(300)3,5−ジブチルフェニル
(301)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
(302)3,5−ジフェニルフェニル
(303)3,5−ジエトキシカルボニルフェニル
(304)3,5−ジドデシルオキシフェニル
(305)3,5−ジメチルフェニル
(306)3,5−ジクロロフェニル
(307)3,5−ジベンゾイルフェニル
(308)3,5−ジアセトキシフェニル
(309)3,5−ジメトキシフェニル
(310)3,5−ジ−N−メチルアミノフェニル
(311)3,5−ジイソブチリルアミノフェニル
(312)3,5−ジフェノキシフェニル
(313)3,5−ジヒドロキシフェニル
(314)2,4−ジブチルフェニル
(315)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(316)2,4−ジフェニルフェニル
(317)2,4−ジエトキシカルボニルフェニル
(318)2,4−ジドデシルオキシフェニル
(319)2,4−ジメチルフェニル
(320)2,4−ジクロロフェニル
(321)2,4−ジベンゾイルフェニル
(322)2,4−ジアセトキシフェニル
(323)2,4−ジメトキシフェニル
(324)2,4−ジ−N−メチルアミノフェニル
(325)2,4−ジイソブチリルアミノフェニル
(326)2,4−ジフェノキシフェニル
(327)2,4−ジヒドロキシフェニル
(328)2,3−ジブチルフェニル
(329)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
(330)2,3−ジフェニルフェニル
(331)2,3−ジエトキシカルボニルフェニル
(332)2,3−ジドデシルオキシフェニル
(333)2,3−ジメチルフ ェニル
(334)2,3−ジクロロフェニル
(335)2,3−ジベンゾイルフェニル
(336)2,3−ジアセトキシフェニル
(337)2,3−ジメトキシフェニル
(338)2,3−ジ−N−メチルアミノフェニル
(339)2,3−ジイソブチリルアミノフェニル
(340)2,3−ジフェノキシフェニル
(341)2,3−ジヒドロキシフェニル
(342)2,6−ジブチルフェニル
(343)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
(344)2,6−ジフェニルフェニル
(345)2,6−ジエトキシカルボニルフェニル
(346)2,6−ジドデシルオキシフェニル
(347)2,6−ジメチルフェニル
(348)2,6−ジクロロフェニル
(349)2,6−ジベンゾイルフェニル
(350)2,6−ジアセトキシフェニル
(351)2,6−ジメトキシフェニル
(352)2,6−ジ−N−メチルアミノフェニル
(353)2,6−ジイソブチリルアミノフェニル
(354)2,6−ジフェノキシフェニル
(355)2,6−ジヒドロキシフェニル
(356)3,4,5−トリブチルフェニル
(357)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
(358)3,4,5−トリフェニルフェニル
(359)3,4,5−トリエトキシカルボニルフェニル
(360)3,4,5−トリドデシルオキシフェニル
(361)3,4,5−トリメチルフェニル
(362)3,4,5−トリクロロフェニル
(363)3,4,5−トリベンゾイルフェニル
(364)3,4,5−トリアセトキシフェニル
(365)3,4,5−トリメトキシフェニル
(366)3,4,5−トリ−N−メチルアミノフェニル
(367)3,4,5−トリイソブチリルアミノフェニル
(368)3,4,5−トリフェノキシフェニル
(369)3,4,5−トリヒドロキシフェニル
(370)2,4,6−トリブチルフェニル
(371)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
(372)2,4,6−トリフェニルフェニル
(373)2,4,6−トリエトキシカルボニルフェニル
(374)2,4,6−トリドデシルオキシフェニル
(375)2,4,6−トリメチルフェニル
(376)2,4,6−トリクロロフェニル
(377)2,4,6−トリベンゾイルフェニル
(378)2,4,6−トリアセトキシフェニル
(379)2,4,6−トリメトキシフェニル
(380)2,4,6−トリ−N−メチルアミノフェニル
(381)2,4,6−トリイソブチリルアミノフェニル
(382)2,4,6−トリフェノキシフェニル
(383)2,4,6−トリヒドロキシフェニル
(384)ペンタフルオロフェニル
(385)ペンタクロロフェニル
(386)ペンタメトキシフェニル
(387)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
(388)5−N−メチルスルファモイル−2−ナフチル
(389)6−N−フェニルスルファモイル−2−ナフチル
(390)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
(391)3−メトキシ−2−ナフチル
(392)1−エトキシ−2−ナフチル
(393)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
(394)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
(395)1−(4−メチルフェニル)−2−ナフチル
(396)6,8−ジ−N−メチルスルファモイル−2−ナフチル
(397)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
(398)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
(399)3−ベンゾイルオキシ−2−ナフチル
(400)5−アセチルアミノ−1−ナフチル
(401)2−メトキシ−1−ナフチル
(402)4−フェノキシ−1−ナフチル
(403)5−N−メチルスルファモイル−1−ナフチル
(404)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
(405)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
(406)7−テトラデシルオキシ−1−ナフチル
(407)4−(4−メチルフェノキシ)−1−ナフチル
(408)6−N−メチルスルファモイル−1−ナフチル
(409)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
(410)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
(411)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
(412)メチル
(413)エチル
(414)ブチル
(415)オクチル
(416)ドデシル
(417)2−ブトキシ−2−エトキシエチル
(418)ベンジル
(419)4−メトキシベンジル
【0119】
【化15】
Figure 0004400064
【0120】
(424)メチル
(425)フェニル
(426)ブチル
【0121】
【化16】
Figure 0004400064
【0122】
(430)メチル
(431)エチル
(432)ブチル
(433)オクチル
(434)ドデシル
(435)2−ブトキシ2−エトキシエチル
(436)ベンジル
(437)4−メトキシベンジル
【0123】
【化17】
Figure 0004400064
【0124】
【化18】
Figure 0004400064
【0125】
本発明においては、1,3,5−トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(II)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。
【0126】
【化19】
Figure 0004400064
【0127】
上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。
【0128】
上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(I)で説明した各基、それらの置換基と同義である。
【0129】
メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。
【0130】
メラミンポリマーの分子量は、2千〜40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。
【0131】
【化20】
Figure 0004400064
【0132】
MP−1:R13、R14、R15、R16:CH2OH
MP−2:R13、R14、R15、R16:CH2OCH3
MP−3:R13、R14、R15、R16:CH2O−i−C49
MP−4:R13、R14、R15、R16:CH2O−n−C49
MP−5:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−6:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−7:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−8:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−9:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−10:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−11:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−12:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−13:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−14:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−15:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−16:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−17:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−18:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−19:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−20:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−21:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−22:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−23:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−24:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−25:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−26:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−27:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−28:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−29:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−30:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−31:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−32:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−33:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−34:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−35:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−36:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−37:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−38:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−39:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C4H9;R16:CH2NHCOCH=CH2
MP−40:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−41:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−42:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−43:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−44:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−45:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−46:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−47:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−48:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−49:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−50:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0133】
【化21】
Figure 0004400064
【0134】
MP−51:R13、R14、R15、R16:CH2OH
MP−52:R13、R14、R15、R16:CH2OCH3
MP−53:R13、R14、R15、R16:CH2O−i−C49
MP−54:R13、R14、R15、R16:CH2O−n−C49
MP−55:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−56:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−57:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−58:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−59:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−60:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−61:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−62:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−63:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−64:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−65:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−66:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−67:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−68:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−69:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−70:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−71:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−72:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−73:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−74:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−75:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−76:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−77:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−78:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−79:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−80:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−81:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−82:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−83:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−84:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−85:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−86:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−87:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−88:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−89:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−90:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−91:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−92:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−93:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−94:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−95:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−96:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−97:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−98:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−99:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−100:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0135】
【化22】
Figure 0004400064
【0136】
MP−101:R13、R14、R15、R16:CH2OH
MP−102:R13、R14、R15、R16:CH2OCH3
MP−103:R13、R14、R15、R16:CH2O−i−C49
MP−104:R13、R14、R15、R16:CH2O−n−C49
MP−105:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−106:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−107:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−108:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−109:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−110:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−111:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−112:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−113:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−114:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−115:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−116:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−117:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−118:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−119:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−120:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−121:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−122:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−123:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−124:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−125:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−126:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−127:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−128:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−129:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−130:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−131:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−132:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−133:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−134:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−135:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−136:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−137:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−138:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−139:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−140:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−141:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−142:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−143:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−144:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−145:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−146:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−147:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−148:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−149:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−150:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
【0137】
【化23】
Figure 0004400064
【0138】
MP−151:R13、R14、R15、R16:CH2OH
MP−152:R13、R14、R15、R16:CH2OCH3
MP−153:R13、R14、R15、R16:CH2O−i−C49
MP−154:R13、R14、R15、R16:CH2O−n−C49
MP−155:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−156:R13、R14、R15、R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−157:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−158:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−159:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−160:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−161:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−162:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−163:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−164:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−165:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−166:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−167:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−168:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−169:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−170:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−171:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−172:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−173:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−174:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−175:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−176:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−177:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−178:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−179:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−180:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−181:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−182:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−183:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−184:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−185:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−186:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−187:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−188:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−189:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−190:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−191:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−192:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−193:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−194:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH 2OH;R16:CH2NHCOCH=CH2
MP−195:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−196:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−197:R13:CH2OH;R14:CH2NHCO(CH27CH=CH(CH27CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−198:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH27CH=CH(CH27CH3;R16:CH2NHCOCH=CH2
MP−199:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH27CH=CH(CH27CH3
MP−200:R13:CH2NHCO(CH27CH=CH(CH27CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマーまたはコポリマーを併用してもよい。
【0139】
また、二種類以上の1,3,5−トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。
【0140】
これらの添加剤はセルロースアシレートフィルムに対して0.2〜30質量%、特に好ましくは1〜20質量%含有することが好ましい。
【0141】
(微粒子)
本発明では、セルロースアシレートフィルムの動摩擦係数を調整するため、微粒子を添加することが好ましい。セルロースアシレートフィルムの動摩擦係数としては0.9以下であることが好ましく、特に好ましくは、0.1〜0.8である。
【0142】
微粒子としては、例えば二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、あるいはポリ弗化エチレン系樹脂粉末等を挙げることができるが、特に架橋高分子微粒子が好ましいが、しかしながら、本発明はこれらに限定されない。
【0143】
上記のうちでも二酸化珪素が動摩擦係数を調整するのに特に好ましく、またフィルムのヘイズを小さくできるので好ましい。微粒子の一次粒子または二次粒子の平均粒径は0.01〜1μmの範囲で、その含有量はセルロースアシレートフィルムに対して0.005〜1質量%が好ましい。二酸化珪素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
【0144】
表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサン等が挙げられる。
【0145】
微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れるため、好ましい微粒子の一次粒子の平均粒径は20nm以下が好ましく、好ましくは5〜16nmであり、特に好ましくは5〜12nmである。これらの微粒子をセルロースアシレートフィルム中に添加して、セルロースアシレートフィルム表面に0.01〜1.0μmの凹凸を形成させることが好ましい。
【0146】
二酸化珪素の微粒子としては日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。
【0147】
これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。
【0148】
この場合、平均粒径や材質の異なる微粒子、例えばアエロジル200VとR972Vを質量比で0.1:99.9〜99.9〜0.1の範囲で使用できる。酸化ジルコニウムとして、例えばアエロジルR976またはR811(日本アエロジル(株)製)等市販品も使用できる。
【0149】
有機物微粒子として、例えば、シリコーン樹脂として、トスパール103、105、108、120、145、3120、240(東芝シリコーン(株)製)等市販品も使用できる。
【0150】
本発明において、微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子を観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。
【0151】
微粒子の見掛比重としては、70g/L以上が好ましく、更に好ましくは、90g/L〜200g/Lであり、特に好ましくは、100〜200g/Lである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。
【0152】
1次粒子の平均径が20nm以下、見掛比重が70g/L以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることができる。本発明において、上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出した。
【0153】
見掛比重(g/L)=二酸化珪素質量(g)÷二酸化珪素の容積(L)
本発明に有用な微粒子の分散液を調製する方法とそれをドープに添加する方法としては、例えば以下に示すような三つの方法を挙げることができる。
【0154】
(調製方法A)
有機溶媒と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて撹拌する。
【0155】
(調製方法B)
有機溶媒と微粒子を撹拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に有機溶媒に少量のセルロースアシレートを加え撹拌溶解した液に微粒子分散液を加えて撹拌する。これを微粒子添加液とし、インラインミキサーでドープ液と十分混合する。
【0156】
(調製方法C)
有機溶媒に少量のセルロースアシレートを加え、撹拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
【0157】
調製方法Aは二酸化珪素微粒子の分散性に優れ、調製方法Cは二酸化珪素微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法Bは二酸化珪素微粒子の分散性と、二酸化珪素微粒子が更に再凝集しにくい等、両方に優れている好ましい調製方法である。
【0158】
(分散方法)
二酸化珪素微粒子を有機溶媒等と混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。
【0159】
セルロースアシレートに対する二酸化珪素微粒子の添加量はセルロースアシレート100質量部に対して、二酸化珪素微粒子は0.01〜0.5質量部が好ましく、0.05〜0.2質量部が更に好ましく、0.08〜0.12質量部が最も好ましい。添加量は多い方が、セルロースアシレートフィルムの動摩擦係数に優れ、添加量が少ない方がヘイズが低く、凝集物も少ない点で優れている。
【0160】
分散液に使用される有機溶媒は低級アルコール類が好ましく、低級アルコールとしては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール等を挙げることができ、好ましく用いることができる。低級アルコール以外の有機溶媒としては特に限定されないが、ドープ調製時に用いられる有機溶媒が好ましい。例えば、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等がドープ調製時に用いられる。
【0161】
分散機は通常の分散機が使用できる。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。二酸化珪素微粒子の分散には後者がヘイズが低くなるので好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミル等を挙げることができる。
【0162】
また、メディアレス分散機として、超音波型、遠心型、高圧型等があるが、本発明においては高圧型が好ましく、高圧分散装置が好ましい。
【0163】
高圧分散装置は、微粒子と有機溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態等特殊な条件を作り出す装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.8MPa以上であることが好ましい。更に好ましくは19.6MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。
【0164】
上記のような高圧分散装置にはMicrofluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)あるいはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等がある。
【0165】
本発明において、上記微粒子を含有させる際、セルロースアシレートフィルムの厚さ方向に均一に分布していることが好ましいが、主に表面近傍に存在するように分布させることがより好ましく、例えば、一つのダイから共流延法により、2種以上のドープを同時に流延し、微粒子を含有するドープを表層側に配置させるようにすることが好ましい。このようにすることによって、ヘイズを減少させ、かつ、動摩擦係数を低めることができる。更に好ましくは3種のドープを使用して表層側の両面または片層に微粒子を含有するドープ配置にさせることが好ましい。
【0166】
このようにして得られたドープは溶液流延製膜法と呼ばれる方法で製造(製膜)することができる。
【0167】
この方法は、無限に移送する無端の金属ベルト(例えばステンレスベルト)あるいは回転する金属ドラム(例えば鋳鉄で表面をクロムメッキしたドラム)等の流延用金属支持体(以降、単に金属支持体ともいう)上に、加圧ダイからドープ(セルロースアシレート溶液のこと)を流延(キャスティング)し、支持体上のウェブ(ドープ膜)を支持体から剥離し、乾燥させて製造するものである。
【0168】
本発明においては、流延後60秒以内に剥離し、張力を掛けながら乾燥させて得られたフィルムはその上に形成した金属酸化物層にクラックが入りにくく、特に好ましい。
【0169】
流延用金属支持体から剥離する際の剥離張力は300N/m以下であることが好ましく、搬送張力は300N/m以下であることが好ましく、更に好ましくは250N/m以下であることが好ましく、更に好ましくは100〜200N/mである。
【0170】
本発明において乾燥工程では、金属支持体から剥離した後、テンターによって幅手方向または長手方向に張力を付与しながら乾燥させることが本発明の方法で形成した金属酸化物層を有する光学フィルムの耐久性が優れ好ましい。幅手方向または長手方向に張力を付与するとは、一方向だけではなく、幅手方向及び長手方向に張力を付与する2軸延伸方式も好ましく用いられる。
【0171】
あるいはウェブの乾燥過程で10質量%以上の高い残留溶媒量のときと10質量%未満の低い残留溶媒量のときにそれぞれ1回以上延伸する方法も好ましい。2回の延伸によって、乾燥時に生じた歪が緩和されるように調整されることが好ましい。
【0172】
テンターによるセルロースアシレートフィルムの延伸倍率は1.01〜1.5倍であることが好ましい。延伸の際の残留溶媒量は3〜30質量%であることが好ましい。これによって更に金属酸化物層の耐久性も改善される。
【0173】
本発明において、ウェブの残留溶媒量は下記式で定義される。
残留溶媒量(%)=〔(ウェブの加熱処理前質量−ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)〕×100
なお、残留溶媒量を測定する際は、110℃、3時間の加熱処理を行う。
【0174】
本発明の光学フィルムに用いられるセルロースアシレートの膜厚は特に限定はなく通常10〜500μmであり、好ましくは10〜150μmである。
【0175】
中でも金属酸化物薄膜層の膜厚むらが起きやすい10〜60μmのセルロースアシレートフィルムにおいて、著しく本発明の効果が認められ特に好ましく用いられる。また、フィルム幅は1.00〜2.00mの長尺フィルムが好ましく用いられる。
【0176】
(金属酸化物層)
本発明の光学フィルムにおいては、本発明に記載の効果を得るために、直接または他の層を介して、金属酸化物層を上記のセルロースアシレートフィルム上に設けることが必須要件であるが、金属酸化物層は、大気圧もしくは大気圧近傍の圧力下にある電極間隙に反応ガスを供給してプラズマ放電処理することにより形成される。電極間隙の雰囲気としては窒素を主成分とすることが好ましい。
【0177】
このプラズマ放電処理方法は、常圧プラズマ法あるいは大気圧プラズマ放電処理方法とも呼ばれている方法(以下、この大気圧プラズマ放電処理を単にプラズマ放電処理と略すことがある)で、大気圧またはその近傍の圧力下にある対向電極間の間隙に反応ガスを供給して放電することにより発生させたプラズマによって、セルロースアシレートフィルム上に薄膜を形成させるものである。
【0178】
しかし、この方法は、長尺セルロースアシレートフィルム上に連続的に薄膜層を形成する場合に、薄膜形成速度を上げようとすると、形成される薄膜層の膜厚むらが起こりやすく、またセルロースアシレートフィルムが部分的に伸びたり縮んだり、変形する等して平面性が悪化しやすいという問題があったが、本発明によって改善することができたのである。
【0179】
また、長時間連続的にセルロースアシレートフィルムに薄膜層を形成することができ、金属酸化物薄膜層のクラックの発生が少なく、さらに、高温高湿環境下で保存した場合に白化を起こさず、導電性の低下が少ない等、耐久性に優れ、かつ、安定した光学フィルムを得ることができた。
【0180】
また、本発明に係る金属酸化物層は、大気圧プラズマ法で形成する際にカールが著しく強くなったり、高温高湿条件でのクラックが発生するという現象を大きく低減することができる。
【0181】
本発明では複数の金属酸化物層を設ける場合、塗布、スパッタ、蒸着、CVD(Chemical Vapor Deposition)法によって形成された金属酸化物層と組み合わせて用いることも可能である。好ましくは2層以上が窒素を主成分とする雰囲気下での大気圧プラズマ放電処理によって形成された金属酸化物層を有することであり、更に好ましくは4層以上が窒素を主成分とする雰囲気下での大気圧プラズマ放電処理によって形成された金属酸化物層を有することである。
【0182】
金属酸化物層を塗布により形成する方法としては、溶剤に溶解したバインダ樹脂中に金属酸化物の粉末を分散し、塗布乾燥する方法、架橋構造を有するポリマーをバインダー樹脂として用いる方法、エチレン性不飽和モノマーと光重合開始剤を含有させ、活性光線を照射することにより層を形成する方法等の方法を挙げることができる。
【0183】
本発明においては、ハードコート層等を付与したセルロースアシレートフィルムの上に金属酸化物層を設けることが特に好ましい。セルロースアシレートフィルムの最上層に低屈折率の金属酸化物層を形成し、その間に高屈折率層の金属酸化物層を形成したり、更にはセルロースアシレートフィルムと高屈折率層との間に更に中屈折率層(金属酸化物の量あるいは、金属の種類を変更して)を設けることは、反射率の低減のために好ましい。高屈折率層の屈折率は1.55〜2.30が好ましく、1.57〜2.20がさらに好ましい。中屈折率層の屈折率は、セルロースアシレートフィルムの屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は1.55〜1.80が好ましい。金属酸化物層の厚さは5nm〜100μmが好ましく、10nm〜10μmがさらに好ましく、30nm〜1μmが最も好ましい。金属酸化物層のヘイズは、5%以下が好ましく、3%以下がさらに好ましく、1%以下が最も好ましい。金属酸化物層の強度は、1kg荷重の鉛筆硬度でH以上が好ましく、2H以上がさらに好ましく、3H以上が最も好ましい。金属酸化物層を塗布により形成する場合は、無機微粒子とバインダーポリマーとを含むことが好ましい。
【0184】
金属酸化物層及び中屈折率層に用いる無機微粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることがさらに好ましい。無機微粒子の一次粒子の重量平均粒子径は1〜150nmが好ましく、1〜100nmがさらに好ましく、1〜80nmが最も好ましい。層中での無機微粒子の重量平均粒子径は1〜200nmが好ましく、5〜150nmがより好ましく、10〜100nmがさらに好ましく、10〜80nmが最も好ましい。無機微粒子の平均粒径は20から30nm以上であれば光散乱法により、20から30nm以下であれば電子顕微鏡写真により測定される。無機微粒子の比表面積は、BET法で測定された値として10〜400m2/gが好ましく、20〜200m2/gがさらに好ましく、30〜150m2/gが最も好ましい。
【0185】
無機微粒子は、金属の酸化物から形成された粒子である。金属の酸化物または硫化物の例として、二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、酸化ジルコニウム等が挙げられる。なかでも、二酸化チタン、酸化錫及び酸化インジウムが特に好ましい。無機微粒子はこれらの金属の酸化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSが挙げられる。
【0186】
無機微粒子は表面処理されていてもよい。表面処理は、無機化合物または有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。なかでもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。なかでも、シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて処理されていても構わない。無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状または不定形状であることが好ましい。二種類以上の無機微粒子を金属酸化物層に併用してもよい。
【0187】
金属酸化物層中の無機微粒子の割合は5〜65体積%が好ましく、より好ましくは10〜60体積%であり、さらに好ましくは20〜55体積%である。
【0188】
無機微粒子は、媒体に分散した分散体の状態で、金属酸化物層を形成するための塗布液に供される。無機微粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。なかでも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ブタノール等が特に好ましい。
【0189】
無機微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
【0190】
金属酸化物層は、架橋構造を有するポリマー(以下、「架橋ポリマー」ともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下「ポリオレフィン」と総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。なかでも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物がさらに好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは、更に好ましい。アニオン性基は、無機微粒子の分散状態を維持する機能を有し、架橋構造は、ポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
【0191】
本発明においては、大気圧プラズマ放電処理によって形成された金属酸化物層を少なくとも一層有する。
【0192】
以下に、プラズマ放電処理により金属酸化物層を形成する方法を図1、2を用いて説明する。
【0193】
図1は本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
【0194】
ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電圧印加手段の他に、図1では図示してない(後述の図に図示してある)が、ガス供給手段、電極温度調節手段を有する装置である。
【0195】
プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、対向電極間に、第1電極11からは第1電源21からの第1の周波数ω1の高周波電圧V1が印加され、また第2電極12からは第2電源22からの第2の周波数ω2の高周波電圧V2が印加されるようになっている。第1電源21は第2電源22より大きな高周波電圧(V1>V2)を印加できる能力を有していることが好ましく、また第1電源21の第1の周波数ω1と第2電源22の第2の周波数ω2は、ω1<ω2の関係にある。周波数ω1は200kHz以下で、周波数ω2は800kHz以上であることが好ましい。
【0196】
第1電極11と第1電源21との間には、第1電源21からの電流21Aが第1電極11に向かって流れるように第1フィルター23が設置されており、第1電源21からの電流21Aをアース側へと通過しにくくし、第2電源22からの電流22Aがアース側へと通過し易くするように設計されている。
【0197】
また、第2電極12と第2電源22との間には、第2電源22からの電流22Aが第2電極12に向かって流れるように第2フィルター24が設置されており、第2電源22からの電流22Aをアース側へと通過しにくくし、第1電源21からの電流21Aをアース側へと通過し易くするように設計されている。
【0198】
第1電極11と第2電極12との対向電極間(放電空間)13に、ここでは図示してない(後述の図2に図示してあるような)ガス供給手段からガスGを導入し、第1電極11と第2電極12から高周波電圧を印加して放電を発生させ、ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、ここでは図示してない(後述の図2に図示してあるような)電極温度調節手段から配管を経て電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは長手方向での基材の温度ムラができるだけ生じないように電極の表面の温度を均等に調節することが望まれる。
【0199】
また、図1に前述の高周波電圧(印加電圧)と放電開始電圧の測定に使用する測定器を示した。25及び26は高周波プローブであり、27及び28はオシロスコープである。
【0200】
ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に同じプラズマ状態のガスを放電させることができるので、何回も処理され高速で処理することもできる。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することもできる。
【0201】
図2は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【0202】
本発明の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電圧印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。
【0203】
図2は、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。
【0204】
ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1であって高周波電圧V1を、また角筒型固定電極群(第2電極)36には第2電源42から周波数ω2であって高周波電圧V2をかけるようになっている。
【0205】
ロール回転電極(第1電極)35と第1電源41との間には、第1電源41からの電流がロール回転電極(第1電極)35に向かって流れるように第1フィルター43が設置されている。該第1フィルターは第1電源41からの電流をアース側へと通過しにくくし、第2電源42からの電流をアース側へと通過し易くするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、第2電源からの電流が第2電極に向かって流れるように第2フィルター44が設置されている。第2フィルター44は、第2電源42からの電流をアース側へと通過しにくくし、第1電源41からの電流をアース側へと通過し易くするように設計されている。
【0206】
なお、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より大きな高周波電圧(V1>V2)を印加できる能力を有しており、また、周波数はω1<ω2となる能力を有している。
【0207】
ガス供給手段50のガス供給装置51で発生させたガスGは、流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。放電空間32及びプラズマ放電処理容器31内をガスGで満たす。
【0208】
基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電圧をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜が形成される。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。
【0209】
放電処理済みの処理排ガスG′は排気口53より排出する。図2では省略しているが、角筒型固定電極群36の間にはガスGの供給口または排ガスG′の排出口が交互に設けられている。
【0210】
薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、65及び66はプラズマ放電処理容器31と外界とを仕切る仕切板である。各々の角筒型固定電極は同じ温度に調整することができるが、各々を異なる温度に設定して薄膜の組成を厚み方向で変化させることもできる。
【0211】
図3は、図2に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【0212】
図3において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。内部は中空のジャケットになっていて温度調節が行われるようになっている。即ち、放電中の電極表面の温度を制御するための媒体(水、シリコンオイル等)を循環できるようになっている。
【0213】
図4は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【0214】
図4において、角筒型電極36aは、導電性の金属質母材36Aに対し、図3同様の誘電体36Bの被覆を有し、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、内部に温度制御された媒体(水、シリコンオイル等)を循環できるようになっている。放電中の電極表面の温度調節が行えるようになっている。
【0215】
なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積はロール回転電極35に対向している全角筒型固定電極面の面積の和で表される。
【0216】
図2に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。
【0217】
図3及び4において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工しやすいので、特に好ましく用いられる。また、誘電体層が、ガラスライニングにより無機材料を設けたライニング処理誘電体であってもよい。
【0218】
導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料等を挙げることができるが、後述の理由から、チタン金属またはチタン合金が特に好ましい。
【0219】
2個の電極間の距離(電極間隙)は、導電性の金属質母材に設けた誘電体の厚さ、印加電圧の大きさ、プラズマを利用する目的等を考慮して決定されるが、電極の一方に誘電体を設けた場合の誘電体表面と導電性の金属質母材表面の最短距離、上記電極の双方に誘電体を設けた場合の誘電体表面同士の距離としては、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.5〜2mmである。
【0220】
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。
【0221】
プラズマ放電処理容器31はパイレックス(R)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けてもよく、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。図1において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
【0222】
本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
Figure 0004400064
等の市販のものを挙げることができ、何れも使用することができる。なお、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。
【0223】
また、第2電源(高周波電源)としては、
Figure 0004400064
等の市販のものを挙げることができ、何れも好ましく使用できる。
【0224】
本発明においては、このような電圧を印加して、均一なグロー放電状態を保つことができる電極をプラズマ放電処理装置に採用する必要がある。
【0225】
本発明において、対向する電極間に印加する電力は、第2電極に1W/cm2以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成性ガスに与え薄膜を形成させる。供給する電力は、好ましくは1〜50W/cm2であり、更に好ましくは、1.2〜20W/cm2である。なお、放電面積(cm2)は、電極において放電が起こる範囲の面積のことを指す。
【0226】
ここで電源の印加法に関しては、連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モードのどちらを採用してもよいが、少なくとも第2電極側は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。
【0227】
このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
【0228】
本発明に使用する誘電体被覆電極においては、さまざまな金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10-6/℃以下となる組み合わせのものである。好ましくは8×10-6/℃以下、更に好ましくは5×10-6/℃以下、更に好ましくは2×10-6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。
【0229】
線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
Figure 0004400064
等がある。線熱膨張係数の差という観点では、上記(a)または(b)及び(e)〜(h)が好ましく、特に、(a)が好ましい。
【0230】
本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることができる。
【0231】
本発明に有用な電極の金属質母材は、チタンを70質量%以上含有するチタン合金またはチタン金属である。チタン合金またはチタン金属中のチタンの含有量は70質量%以上であれば問題なく使用できるが、好ましくは80質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金またはチタン金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使用されているものを用いることができる。工業用純チタンとしては、TIA、TIB、TIC、TID等を挙げることができ、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か含有しているもので、チタンの含有量としては、99質量%以上を有している。耐食性チタン合金としては、T15PBを好ましく用いることができ、上記含有原子の他に鉛を含有しており、チタン含有量としては、98質量%以上である。また、チタン合金としては、鉛を除く上記の原子の他に、アルミニウムを含有し、その他バナジウムや錫を含有しているT64、T325、T525、TA3等を好ましく用いることができ、これらのチタン含有量としては、85質量%以上を含有しているものである。これらのチタン合金またはチタン金属はステンレススティール、例えばAISI316に比べて熱膨張係数が1/2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることができる。
【0232】
一方、誘電体の求められる特性としては、具体的には、比誘電率が6〜45の無機化合物であることが好ましく、また、このような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいは、ケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体が好ましい。
【0233】
または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が10体積%以下、好ましくは8体積%以下であることで、好ましくは0体積%を越えて5体積%以下である。なお、誘電体の空隙率は、BET吸着法や水銀ポロシメーターにより測定することができる。後述の実施例においては、島津製作所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電体が低い空隙率を有することにより、高耐久性が達成される。このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率を下げるためには封孔処理を行うことが好ましい。
【0234】
上記、大気プラズマ溶射法は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、高密度な被膜を得ることができる。詳しくは、特開2000−301655に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、上記のような被覆する誘電体(セラミック溶射膜)の空隙率にすることができる。
【0235】
また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが0.5〜2mmであることである。この膜厚変動は、5%以下であることが望ましく、好ましくは3%以下、更に好ましくは1%以下である。
【0236】
誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に、更に、無機化合物で封孔処理を行うことが好ましい。無機化合物としては、金属酸化物が好ましく、この中では特に酸化ケイ素(SiOx)を主成分として含有するものが好ましい。
【0237】
封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合には、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシシランを封孔液として用いることが好ましい。
【0238】
ここでゾルゲル反応の促進には、エネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬化(好ましくは200℃以下)や、紫外線照射等がある。更に封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返すと、よりいっそう無機質化が向上し劣化のない緻密な電極ができる。
【0239】
本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は60モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシシランを用いた場合には、硬化後のSiOx(xは2以下)含有量が60モル%以上であることが好ましい。硬化後のSiOx含有量は、XPS(X線光電子スペクトル)により誘電体層の断層を分析することにより測定できる。
【0240】
本発明の光学フィルムの製造方法に係る電極においては、電極の少なくとも基材と接する側のJIS B 0601で規定される表面粗さの最大高さ(Rmax)が10μm以下になるように調整することが好ましいが、更に好ましくは8μm以下であり、特に好ましくは7μm以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘電体の厚み及び電極間のギャップを一定に保つことができ、放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無くし、かつ、高精度で、耐久性を大きく向上させることができる。誘電体表面の研磨仕上げは、少なくとも基材と接する側の誘電体において行われることが好ましい。
【0241】
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様としては、耐熱温度が100℃以上であることである。更に好ましくは120℃以上、特に好ましくは150℃以上である。また上限は500℃である。なお、耐熱温度とは、絶縁破壊が発生せず、正常に放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適用したり、下記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選択する手段を適宜組み合わせることによって達成可能である。
【0242】
(反応ガス)
本発明の金属酸化物層の形成方法に用いる反応ガスについて説明する。
【0243】
金属酸化物層を形成するための反応ガスは窒素を含むガスで、窒素を主成分とすること、すなわち、窒素ガスを50体積%以上含有することが好ましく、さらに好ましくは70体積%以上含有することが好ましく、さらに好ましくは90体積%〜99.99体積%含有することが望ましい。反応ガスには窒素のほかに希ガスが含有していてもよい。
【0244】
ここで、希ガスとは、周期表の第18属元素、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等であり、本発明では、ヘリウム、アルゴン等が窒素に添加されて用いられてもよい。
【0245】
窒素ガスは安定したプラズマ放電を発生させるために用いられ、反応ガスには薄膜を形成するための原料として、反応性ガスが添加される。プラズマ中で反応性ガスはイオン化あるいはラジカル化され、基材表面に堆積あるいは付着する等して薄膜が形成される。
【0246】
更に、反応ガス中に酸素、水素、二酸化炭素、一酸化炭素、二酸化窒素、一酸化窒素、水、過酸化水素、オゾン等を0.1〜10体積%含有させることにより薄膜層の硬度、密度等の物性を制御することができる。
【0247】
本発明に有用な反応ガスは、さまざまな物質の原料ガスを添加したものを用いることによって、さまざまな機能を持った薄膜をセルロースアシレートフィルム上に形成することができる。ここでいう原料ガスとはプラズマ処理により薄膜を形成するためのガスであり、金属酸化物層を形成する場合、金属化合物のガスを意味する。
【0248】
本発明に有用な原料ガスとしての有機金属化合物としては、特に限定されないが、Al、As、Au、B、Bi、Sb、Ca、Cd、Cr、Co、Cu、Fe、Ga、Ge、Hg、In、Li、Mg、Mn、Mo、Na、Ni、Pb、Pt、Rh、Se、Si、Sn、Ti、Zr、Y、V、W、Zn、Ta等の金属酸化物を形成するための金属化合物を挙げることができる。例えば、Ti、Zr、In、Sn、Zn、Ge、Si、Taあるいはその他の金属を含有する有機金属化合物、金属水素化合物、金属ハロゲン化物、金属錯体を用いて、これらの金属酸化物層(金属酸化物層、金属酸化物窒化物層も含む)または金属窒化物層等を形成することができ、これらの層は反射防止層の中屈折率層または高屈折率層としたり、あるいは導電層または帯電防止層とすることもできる。
【0249】
金属酸化物層は酸化珪素、酸化チタン、酸化錫から選択される成分を含有することが好ましい。
【0250】
また、フッ素含有有機化合物で防汚層や低屈折率層を形成することもでき、珪素化合物でガスバリア層や低屈折率層あるいは防汚層を形成することもできる。本発明は、高、中屈折率層と低屈折率層を交互に多層を積層して形成される反射防止層の形成に特に好ましく用いられる。
【0251】
本発明において、反応性ガスとして有機金属化合物を用いる場合、プラズマ放電処理によりセルロースアシレートフィルム上に均一な薄膜を形成する観点から、反応ガス中の原料ガスとしての金属化合物の含有率は、0.01〜10体積%であることが好ましいが、更に好ましくは、0.1〜5体積%である。
【0252】
(原料ガス)
原料ガスについてさらに詳細に説明する。
【0253】
反射防止層の高屈折率層を形成するには、チタン化合物、ジルコニウム化合物、タンタル化合物が好ましく、具体的には、例えば、テトラジメチルアミノチタン等の有機アミノ金属化合物、モノチタン、ジチタン等の金属水素化合物、二塩化チタン、三塩化チタン、四塩化チタン等の金属ハロゲン化合物、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、テトラブトキシジルコニウム、ペンタイソプロポキシタンタル、ペンタエトキシタンタル等の金属アルコキシド等を挙げることができ、これらを用いて金属酸化物層を形成することができる。
【0254】
亜鉛化合物としては、ジンクアセチルアセトナート、ジエチル亜鉛、ジメチル亜鉛等があげられ、錫化合物としては、テトラエチルスズ、テトラメチルスズ、二酢酸ジ−n−ブチルすず、ビス(2−エチルヘキサン酸)ジブチルすず、二酢酸ジブチルすず、酸化ジブチルすず、二ラウリン酸ジブチルすず、テトラメチルすず、テトラエチルすず、テトラブチルすず、テトラプロピルすず、テトラオクチルすず等の有機錫化合物が好ましく用いられ、インジウム化合物としてはトリエチルインジウム、トリメチルインジウム等が好ましく用いられる。
【0255】
(フッ素化合物)
大気圧プラズマ放電処理では原料ガスにフッ素含有有機化合物を用いることでフッ素化合物含有層を形成することもできる。
【0256】
フッ素含有有機化合物としては、フッ化炭素ガス、フッ化炭化水素ガス等が好ましい。
【0257】
具体的には、フッ素含有有機化合物としては、例えば、四フッ化炭素、六フッ化炭素、四フッ化エチレン、六フッ化プロピレン、八フッ化シクロブタン等のフッ化炭素化合物;
二フッ化メタン、四フッ化エタン、四フッ化プロピレン、三フッ化プロピレン、八フッ化シクロブタン等のフッ化炭化水素化合物;
更に、一塩化三フッ化メタン、一塩化二フッ化メタン、二塩化四フッ化シクロブタン等のフッ化炭化水素化合物のハロゲン化物、アルコール、酸、ケトン等の有機化合物のフッ素置換体等を挙げることができる。
【0258】
これらは単独でも混合して用いてもよい。上記のフッ化炭化水素ガスとしては、二フッ化メタン、四フッ化エタン、四フッ化プロピレン、三フッ化プロピレン等の各ガスを挙げることができる。
【0259】
更に、一塩化三フッ化メタン、一塩化二フッ化メタン、二塩化四フッ化シクロブタン等のフッ化炭化水素化合物のハロゲン化物やアルコール、酸、ケトン等の有機化合物のフッ素置換体を用いることができるが、本発明はこれらに限定されない。
【0260】
また、これらの化合物は分子内にエチレン性不飽和基を有していてもよい。また、上記の化合物は混合して用いてもよい。
【0261】
本発明に有用な反応性ガスにフッ素含有有機化合物を用いる場合、プラズマ放電処理によりセルロースアシレートフィルム上に均一な薄膜を形成する観点から、反応ガス中の反応性ガスとしてのフッ素含有有機化合物の含有率は、0.01〜10体積%であることが好ましいく、更に好ましくは、0.1〜5体積%である。
【0262】
また、本発明に好ましく用いられるフッ素含有、有機化合物が常温常圧で気体である場合は、反応性ガスの成分としてそのまま使用できる。
【0263】
また、フッ素含有有機化合物が常温常圧で液体または固体である場合には、気化手段により、例えば加熱、減圧等により気化して使用すればよく、適切な有機溶媒に溶解して用いてもよい。
【0264】
(珪素化合物)
本発明に有用な反応性ガスとしての珪素化合物としては、例えば、ジメチルシラン、テトラメチルシラン等の有機金属化合物、モノシラン、ジシラン等の金属水素化合物、二塩化シラン、三塩化シラン、四フッ化珪素等の金属ハロゲン化合物、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、イソプロピルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、等のアルコキシシラン、オルガノシラン等、3,3,3−トリフルオロメチルトリメトキシシラン等のフルオロアルキルシラン類を用いることが好ましいがこれらに限定されない。
【0265】
また、これらは適宜組み合わせて用いることができる。あるいは別の有機化合物を添加して膜の物性を変化あるいは制御することもできる。
【0266】
また、珪素化合物、チタン化合物、ジルコニウム化合物、タンタル化合物等の金属化合物を放電部へ導入するには、両者は常温常圧で気体、液体または固体いずれの状態であっても使用し得る。
【0267】
気体の場合は、そのまま放電部に導入できるが、液体や固体の場合は、加熱、減圧、超音波照射等の気化手段により気化させて使用することができる。この目的のため、市販の気化器が好ましく用いられる。
【0268】
珪素化合物、チタン化合物等の金属化合物を加熱により気化して用いる場合、テトラエトキシシラン、テトライソプロポキシチタン等のように常温で液体で、かつ、沸点が200℃以下である金属アルコキシドが本発明の金属酸化物層の形成する方法に好適である。上記金属アルコキシドは、有機溶媒によって希釈して使用してもよく、有機溶媒としては、メタノール、エタノール、n−ヘキサン、アセトン等の有機溶媒またはこれらの混合有機溶媒を使用することができる。
【0269】
(好ましい反応ガス組成の例)
表1、表2に好ましい反応ガス組成の一例を示すが、これらのみに限定されない。
【0270】
【表1】
Figure 0004400064
【0271】
【表2】
Figure 0004400064
【0272】
これらはあらかじめ調整されたガスとして放電部に供給してもよいし、放電部近傍で2種以上のガスを混合して下記ガス組成としてもよい。水素、酸素等の添加ガスはあらかじめ窒素もしくは希ガス等によって希釈されたものを放電空間に導入することが、連続製膜の際に薄膜の物性が安定するため好ましい。
【0273】
また、反応ガスは室温〜200℃に加温して放電部に供給されることが好ましく、更に好ましくは50〜150℃であり、更に好ましくは70〜120℃であり、特に90〜110℃であることが好ましい。温度が高いほど得られる金属酸化物層が緻密で、硬度に優れた膜が得られるが高すぎると基材が変形することがある。
【0274】
供給ガスの温度は一定であることが、連続製膜において膜厚や膜質を安定するために好ましく、温度変動は±10℃以内であることが好ましく、±5℃以内であることが更に好ましく、±1℃以内であることが更に好ましく±0.1℃以内であることが特に好ましい。
【0275】
供給ガスの供給量も一定であることが好ましい。放電部へのガス供給量としては、反応ガス供給量(ml/秒)/放電空間の容積(ml)に対して、10-2〜104(1/秒)とすることができ、適宜調整される。
【0276】
以上の方法により酸化珪素、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化錫、酸化亜鉛、酸化インジウム等の非晶性の金属酸化物層を好ましく作製することができる。また、これらの非晶性の金属酸化物層は熱処理により、あるいはレーザー等のエネルギーを与えることによって結晶化させることもできる。
【0277】
(金属酸化物層の膜厚)
本発明に係る金属酸化物層の膜厚としては、1〜1000nmが好ましく得られる。
【0278】
本発明の光学フィルムは、例えば低屈折率層と高屈折率層を積層した反射防止層を有する光学フィルムまたは導電層、帯電防止層を有する光学フィルム等に好ましく用いることができる。
【0279】
本発明において、プラズマ放電装置を複数設けることによって、多層の薄膜を連続的に設けることができ、薄膜のムラもなく多層の積層体を形成することができる。複数の層を1パスで連続的に形成するためには、各層が所定の薄膜形成速度となるように調整されることが必要である。そのため、各層形成後膜厚を測定するか、反射スペクトルを測定し、その結果に基づいて薄膜形成速度をフィードバック制御することが好ましい。これによって、一定の速度で搬送される基材フィルム上に異なる組成あるいは異なる膜厚の薄膜を1パスで連続的に形成することができる。各層の薄膜形成速度を制御する方法としては、特に限定はないが、放電の印加電圧、電流、周波数、パルス条件等の放電条件、反応ガス中の各成分の比率(窒素濃度、酸素あるいは水素等の添加ガス濃度、種類、原料ガス濃度)、反応ガス供給量、電極間距離、放電部の気圧、基材温度、電極温度、反応ガス温度、放電部の温度、放電面積の変更等が挙げられるが、これらのみに限定されるものではない。これらの1つ以上の条件を適宜組み合わせることによって、製膜される薄膜の膜質を大きく変えることなく、薄膜形成速度を制御することができる。あるいは薄膜の屈折率を調整することもできる。
【0280】
例えば、セルロースアシレートフィルム上に反射防止層を有する光学フィルムを作製する場合、屈折率1.6〜2.3の高屈折率層及び屈折率1.3〜1.5の低屈折率層をセルロースアシレートフィルム表面に連続して積層し、効率的に作製することができる。
【0281】
低屈折率層としては、含フッ素有機化合物を含むガスをプラズマ放電処理により形成された含フッ素化合物層、あるいはアルコキシシラン等の有機珪素化合物を用いてプラズマ放電処理により形成された主に酸化ケイ素を有する層が好ましく、高屈折率層としては有機金属化合物を含むガスをプラズマ放電処理により形成された金属酸化物層、例えば酸化チタン、酸化ジルコニウム、酸化タンタルを有する層が好ましい。
【0282】
本発明はこれらに限定されるものではなく、層構成もこれらに限定されるものではない。例えば、最表面にフッ素含有有機化合物ガス存在下で大気圧もしくはその近傍の圧力下でのプラズマ放電処理して防汚層を設けてもよい。あるいは公知の防汚層、例えばフルオロアルキルシラン等含む組成物を塗設することもできる。
【0283】
上記の方法により、本発明においては、多層の薄膜を積層することができ、各層の膜厚むらもなく、均一な光学フィルムを得ることができる。
【0284】
金属酸化物層等の薄膜の膜厚は、積層体の断面を作製し、透過電子顕微鏡(Transmission Electoron Microscope:以下、TEMと称す)で観察を行うことによって求めることができる。
【0285】
断面の作製は、具体的には積層体を基材と共に電子顕微鏡観察前処理用のエポキシ包埋樹脂に包埋し、ダイヤモンドナイフを装着したウルトラミクロトームを用いて、厚さ約80nmの超薄切片を作製するか、集束イオンビーム(Focused Ion Beam:FIB)加工装置を用いて、積層体表面にGaイオンビームを集束走査し、厚さ約100nmの薄片化した断面を切り出すことで作製することができる。
【0286】
TEMによる観察は倍率として50,000〜500,000倍にて明視野像を観察し、画像はフィルム、イメージングプレート、CCDカメラ等に記録する。
【0287】
TEMの加速電圧としては、80〜400kVが好ましく、特に好ましくは80〜200kVである。
【0288】
その他、電子顕微鏡観察技法、及び試料作製技法の詳細については「日本電子顕微鏡学会関東支部編/医学・生物学電子顕微鏡観察法」(丸善)、「日本電子顕微鏡学会関東支部編/電子顕微鏡生物試料作製法」(丸善)、「電子顕微鏡Q&A」(アグネ承風社)をそれぞれ参考にすることができる。
【0289】
適当な媒体に記録されたTEM画像は、画像1枚を少なくとも1024画素×1024画素、好ましくは2048画素×2048画素以上に分解し、コンピュータによる画像処理を行なうことが好ましい。
【0290】
画像処理技術の詳細は「田中弘編 画像処理応用技術(工業調査会)」を参考にでき、画像処理プログラムまたは装置としては上記操作が可能なものであれば特に限定はされないが、一例としてMEDIA CYBERNETICS社(USA)製画像解析ソフトImage−Pro PLUSが挙げられる。
【0291】
画像処理を行なうためには、フィルムに記録されたアナログ画像はスキャナ等でデジタル画像に変換し、シェーディング補正、コントラスト・エッジ強調等を必要に応じ施すことが好ましい。その後、ヒストグラムを作製し、2値化処理によって、積層体界面に相当する箇所を抽出し、界面間の幅(Thickness)を計測する。
【0292】
同様にして少なくとも25箇所以上好ましくは50箇所以上について求めた値から平均膜厚及びその変動を算出することができる。
【0293】
このように、本発明においてはさまざまな機能を有する金属酸化物層を形成した光学フィルムを提供することができる。
【0294】
本発明により、金属酸化物層のすじ状の製膜故障が軽減され、巻きの形状劣化が少ないフィルムを提供することができる。
【0295】
(ハードコート層)
本発明に用いられるハードコート層について説明する。
【0296】
本発明の光学フィルムはセルロースアシレートフィルム上に直接または他の層を介して金属酸化物層を形成することを特徴としているが、ハードコート層(樹脂硬化層)あるいは他の層を介して形成することがより好ましい。
【0297】
ハードコート層(樹脂コート層)は、種々の機能を有していてもよく、例えば、防眩層やクリアハードコート層であってもよい。ハードコート層(樹脂コート層)はエチレン性不飽和モノマーを1種以上含む成分を重合させて形成した層であることが好ましい。
【0298】
エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層としては、活性線硬化樹脂あるいは熱硬化樹脂を硬化させて形成された層が好ましく用いられるが、特に好ましく用いられるのは活性線硬化樹脂層である。
【0299】
ここで、活性線硬化樹脂層とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。
【0300】
活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。
【0301】
紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂または紫外線硬化型エポキシ樹脂等を挙げることができる。
【0302】
具体例としては、例えば、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
【0303】
紫外線硬化型アクリルウレタン系樹脂としては、一般にポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151110号公報に記載のものを用いることができる。
【0304】
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151112号公報に記載のものを用いることができる。
【0305】
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号公報に記載のものを用いることができる。
【0306】
これらの光反応開始剤としては、具体的には、ベンゾイン及び誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。
【0307】
上記光反応開始剤も光増感剤としても使用できる。また、エポキシアクリレート系の光反応剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。
【0308】
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
【0309】
本発明において使用し得る市販品として、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−501、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。
【0310】
これらの活性線硬化樹脂層は公知の方法で塗設することができる。
紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm2程度あればよく、好ましくは、50〜2000mJ/cm2である。近紫外線領域〜可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって効率よく形成することができる。
【0311】
紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、あるいはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%含有する上記有機溶媒を用いるのが好ましい。
【0312】
紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として0.1〜30μmが適当で、好ましくは、0.5〜15μmである。また、ドライ膜厚としては1〜15μmが好ましく、特に好ましくは5〜10μmである。
【0313】
紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、照射時間としては0.5秒〜5分が好ましく、紫外線硬化性樹脂の硬化効率または作業効率の観点から3秒〜2分がより好ましい。
【0314】
こうして得た硬化樹脂層に、ブロッキングを防止するために、また対擦り傷性等を高めるために、あるいは防眩性を付与するために、無機化合物あるいは有機化合物の微粒子を加えることもでき、それらの種類としては前述のマット剤の微粒子とほぼ同様である。
【0315】
これらの微粒子粉末の平均粒径としては、0.005〜5μmが好ましく0.01〜1μmであることが特に好ましい。
【0316】
紫外線硬化樹脂組成物と微粒子粉末との割合は、該樹脂組成物100質量部に対して、0.1〜10質量部であることが好ましい。
【0317】
紫外線硬化樹脂層は、JIS B 0601で規定される中心線平均粗さ(Ra)が1〜50nmのクリアハードコート層であっても、Raが0.1〜1μmの防眩層であってもよい。
【0318】
また、紫外線硬化樹脂層は2層以上を重ねて塗設することもでき、より硬度や耐摩擦性に優れたハードコート層を形成することができる。ハードコート層は鉛筆硬度で2H以上であることが好ましく、特に3H〜6Hであることが好ましい。また、必要に応じてセルロースアシレートフィルムの両面にハードコート層を塗設することもできる。
【0319】
(バックコート層)
本発明に係るセルロースアシレートフィルムの動摩擦係数を調整するため、裏面側に微粒子を含有するバックコート層を設けることも好ましく、また添加する微粒子の大きさや添加量、材質等によって動摩擦係数を調整することができる。
【0320】
本発明に有用なバックコート層に含ませる微粒子としては、無機化合物の微粒子または有機化合物の微粒子を挙げることができ、前述のセルロースアシレートフィルムに含有させる微粒子、微粒子の粒径、微粒子の見かけ比重、分散方法等ほぼ同様である。
【0321】
バックコート層のバインダーに対する微粒子の添加量は樹脂100質量部に対して、微粒子は0.01〜1質量部が好ましく、0.05〜0.5質量部が更に好ましく、0.08〜0.2質量部が最も好ましい。添加量は多い方が動摩擦係数が低くなり、また少ない方がヘイズが低く、凝集物も少なくなる。
【0322】
バックコート層に使用される有機溶媒は特に限定されないが、バックコート層にアンチカール機能を付与することもできるので、セルロースアシレートフィルム及びセルロースアシレートフィルムの素材の樹脂を溶解させる有機溶媒または膨潤させる有機溶媒と前記樹脂を溶解させない有機溶媒の混合物が有用である。これらをセルロースアシレートフィルムのカール度合、樹脂の種類、混合割合、塗布量等により適宜選べばよい。
【0323】
特に紫外線硬化樹脂層の膜厚や特性によって生じるカールに合わせて、バックコート層の溶媒組成や塗布量を調整し、前記カールを減らすことができる。
【0324】
バックコート層に使用し得る有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン等がある。
【0325】
溶解させない有機溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール等があるが、有機溶媒としては特にこれらに限定されるものではない。
【0326】
バックコート層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。
【0327】
バックコート層に用いられる樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマーあるいはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースアシレート系樹脂、マレイン酸及び/またはアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることができるが、これらに限定されるものではない。特に好ましくはセルロースジアセテート、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。
【0328】
以上のようなバックコート層を設けることにより、動摩擦係数を0.9以下にすることが好ましく、更に好ましくは0.1〜0.7の範囲である。
【0329】
(偏光板)
本発明の偏光板について説明する。
【0330】
本発明の光学フィルムは特に偏光板保護フィルムとして有用であり、これを用いて公知の方法で偏光板を作製することができる。
【0331】
この光学フィルムを有する偏光板や光学フィルムを有する表示装置は視認性に優れており、過酷な環境下であっても優れた視認性を提供することができたのである。
【0332】
(表示装置)
本発明の光学フィルムは反射型、透過型、半透過型液晶表示装置あるいはTN型、STN型、OCB型、HAN型、VA型、IPS型等の各種駆動方式の液晶表示装置で好ましく用いられ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ等の各種表示装置にも好ましく用いられる。
【0333】
また、本発明の光学フィルムは反射防止フィルム、帯電防止フィルム、位相差フィルム、導電性フィルム、電磁波遮蔽フィルム、偏光板等の保護フィルム、光学補償フィルム、視野角拡大フィルム、輝度向上フィルム、偏光板、プラズマディスプレイ前面フィルター等に好ましく用いられる。特に複数の金属酸化物層を形成する反射防止フィルムに有用である。
【0334】
【実施例】
以下、実施例により本発明を説明するが、本発明の実施態様はこれらに限定されるものではない。
【0335】
実施例1
《セルロースアシレートフィルムの作製》
表3に示すセルロースアシレートA〜Hを用いて、表4に示すようにドープ1〜8を調製した。次いで、ドープ1〜8を用いて、それぞれセルロースアシレートフィルム1〜8を作製した。
【0336】
(ドープ1の調製)
下記素材を密閉容器に投入し、30℃において、20分間攪拌し、次いで混合物を−75℃まで冷却した(冷却速度:−2℃/分)後、45℃まで昇温して透明ドープを得た。ドープに下記二酸化けい素微粒子分散液を添加し、再度均一混合し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して2回濾過し、ドープ1を調製した。
【0337】
Figure 0004400064
(ドープ2〜8の調製)
ドープ1の調製において、セルロースアシレート及び溶媒の種類と量を表4のように変更した以外は同様にして、ドープ2〜8を得た。なお、ドープ6〜8は−75℃への冷却は行わずに45℃で溶解させた。
【0338】
表3記載のセルロースアシレートの置換度は、以下のようにして測定、算出した。
【0339】
酢化度(セルロースアシレート中の酢酸の質量%)はケン化法により測定した。乾燥したセルロースアシレートを精秤し、アセトンとジメチルスルホキシドとの混合溶媒(容量比4:1)に溶解した後、所定量の1mol/L水酸化ナトリウム水溶液を添加し、25℃で2時間ケン化した。フェノールフタレインを指示薬として添加し、1mol/L硫酸(濃度ファクター:F)で過剰の水酸化ナトリウムを滴定した。また、上記と同様の方法により、ブランクテストを行った。そして、下記式に従って酢化度(%)を算出した。
【0340】
酢化度(%)=(6.005×(B−A)×F)/W
式中、Aは試料の滴定に要した1mol/L硫酸量(ml)、Bはブランクテストに要した1mol/L硫酸量(ml)、Fは1mol/L硫酸のファクター、Wは試料質量(g)を示す。なお、複数のアシル基を含有する系では、そのpKaの差を使って、各アシル基の量を求めた。また、文献(T.Sei,K.Ishitani,R.Suzuki,K.Ikematsu Polymer Journal 17 1065(1985))に記載の方法によっても同様に求めた。さらに、これらにより求められた酢化度、その他のアシル基の量からモル分子量を考慮して置換度に換算した。さらに、セルロースアシレートの2位、3位及び6位のアシル置換度は、セルロースアセテートをアシル化に用いていないアシル基でアシル化処理した後、文献(Carbohydr.Res.273(1995)83−91(手塚他))に記載の方法で13C−NMRにより求めた。
【0341】
【表3】
Figure 0004400064
【0342】
【化24】
Figure 0004400064
【0343】
【表4】
Figure 0004400064
【0344】
(セルロースアシレートフィルム1の作製)
表面温度が45℃のステンレス支持体上に上記ドープ1を流延した。60℃の乾燥風で乾燥し、流延60秒後に、10℃に冷却されたステンレス支持体からフィルムを剥離した。剥離したフィルムはテンターで横方向(TD)及び縦方向(MD)に各々1.1倍及び1.05倍に延伸し、100℃で乾燥し、更に多数のロールで搬送させながら130℃の乾燥ゾーンで乾燥を終了させ、フィルム両端に幅10mm、高さ7μmのナーリング加工を施して、膜厚45μmのセルロースアシレートフィルム1を作製した。フィルム幅は1330mm、巻き取り長は3000mとした。セルロースアシレートフィルムの上記ステンレス支持体に接していた側をB面、その反対側をA面とする。
【0345】
(セルロースアシレートフィルム2〜8の作製)
セルロースアシレートフィルム1の作製において、ドープ1の代わりに表4に記載のドープ2〜8を用いた以外は同様にして、ドープ2〜8からそれぞれセルロースアシレートフィルム2〜8を作製した。
【0346】
《光学フィルム1〜8の作製》
上記で得られたセルロースアシレートフィルム1〜8に下記の方法で、バックコート層及びハードコート層を塗設し、更にその上に大気圧プラズマ処理により金属酸化物層を形成し、光学フィルム1〜8を作製した。
【0347】
(バックコート層(BC層)の塗設)
下記の塗布組成物をセルロースアシレートフィルムのA面に、ウェット膜厚15μmとなるようにワイヤーバーコートし、80℃にて乾燥させバックコート層を塗設した。
【0348】
〈バックコート層(BC層)塗布組成物〉
アセトン 30部
酢酸エチル 45部
イソプロピルアルコール 10部
ジアセチルセルロース 0.5部
超微粒子シリカ2質量%アセトン分散液(アエロジル 200V:日本アエロ
ジル(株)製) 0.1部
(クリアハードコート層の塗設)
下記の塗布組成物を、バックコート層を塗設した上記セルロースアシレートフィルムのB面にダイコートし、次いで80℃に設定された乾燥部で乾燥した後、160mJ/cm2で紫外線照射し、乾燥膜厚6μm、中心線平均粗さ(Ra)0.01μmのクリアハードコート層を設けた。中心線平均粗さ(Ra)はJIS B 0601で規定される値である。
【0349】
〈クリアハードコート層塗布組成物〉
紫外線硬化型アクリルウレタン系樹脂(ユニディック17−806(大日本イ
ンキ(株)製)99部、コロネートL(ポリイソシアネート化合物、日本ポリウ
レタン(株)製)1部) 100部
光重合開始剤(イルガキュア184、チバガイギー社製) 3部
を溶剤(酢酸エチル)にてホモジナイザーにより混合して揮発分60質量%の均質な塗布液を調製した。
【0350】
(金属酸化物(酸化珪素)層の形成)
下記のプラズマ放電処理装置を用いて、大気圧プラズマ放電処理により、上記のセルロースアシレートフィルム上に設けられたハードコート層(紫外線硬化樹脂層)上に金属酸化物層(酸化珪素層0.1μm)を形成した。
【0351】
《プラズマ放電処理装置》
(電極の作製)
に示したプラズマ放電処理装置において、誘電体で被覆したロール電極及び同様に誘電体で被覆した複数の角筒型電極のセットを以下のように作製した。
【0352】
第1電極となるロール電極は、冷却水による冷却手段を有するチタン合金T64製ジャケットロール金属質母材に対して、アルミナ溶射膜を被覆し、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行った。このようにして被覆した誘電体表面を研磨し、平滑にしてRmaxが5μmとなるように加工した。最終的な誘電体の膜厚は1mm、誘電体の比誘電率は10であった。更に導電性の金属質母材と誘電体の線熱膨張係数の差は1.7×10-4で、耐熱温度は260℃であった。
【0353】
一方、第2電極の角筒型電極は、中空の角筒型のチタン合金T64に対し、上記同様の誘電体を同条件にて被覆し、対向する角筒型固定電極群とした。この角筒型電極の誘電体については上記ロール電極のものと同じである。
【0354】
この角筒型電極をロール回転電極の周りに、対向電極間隙を1mmとして25本配置した。角筒型固定電極群の放電総面積は、150cm(幅手方向の長さ)×4cm(搬送方向の長さ)×25本(電極の数)=15000cm2であった。
【0355】
各々の角筒型電極の隙間より反応ガスの導入と使用済みガスの排気を交互に行った。
【0356】
プラズマ放電処理装置には、固定電極側に、連続周波数13.56MHz、0.8kV/mmの高周波電圧(パール工業社製高周波電源)を供給し、ロール電極側には、連続周波数100kHz、8kV/mmの高周波電圧(ハイデン研究所製高周波電源)を供給した。また、ロール電極は、ドライブを用いてセルロースアシレートフィルムの搬送に同期して回転させた。
【0357】
なお、固定電極とロール電極の間隙は0.5mm、反応ガスの圧力は大気圧+1kPaとして行った。プラズマ放電処理に用いた反応ガス(酸化珪素層形成用反応ガス)の組成を以下に記す。なお、反応ガス中の液体成分は気化器によって蒸気とし、加温しながら放電部に供給した。
【0358】
〈酸化珪素層形成用反応ガスの組成〉
窒素 98.5体積%
酸素 1.0体積%
テトラエトキシシラン 0.5体積%
《光学フィルムの評価》
得られた光学フィルム1〜8について、下記のように、巻き形状劣化及びすじ状の製膜故障を評価した。その結果を表5に示す。
【0359】
(巻き形状劣化)
ロール状の光学フィルムを埃付着防止のためポリエチレンシートをかけて、30〜40℃、70〜80%RHの倉庫で2ヶ月間保管し、2ヶ月経過後の巻きの状態を目視で観察し、下記のようにランク評価した。
【0360】
◎:ロールの表面に皺、変形等の変化が認められない
○:ロールの表面に僅かに皺が認められるが、変形は認められない
△:ロールの表面に弱い皺が認められ、一部に変形も認められる
×:ロールの表面〜内部に強い皺、表面に強い変形が有り、内部まで変形有り
また、上記のランクについての実用性判断は下記の通りである。
【0361】
◎:切除することなく使用可能
○:数m切除して使用可能
△:表面から数巻き分(数m〜数10m程度)切除により使用可能
×:巻きの変形が認められなくなる、内部(100m以上)まで切除しなければ使用できない
(すじ状の製膜故障)
長時間連続的に製膜した各サンプルについて、すじ状のむらの有無を目視で評価した。
【0362】
◎:すじ状のむらは確認できない
○:わずかにすじ状の故障が認められる
△:弱いすじ状の故障が認められる
×:明らかにすじ状故障が認められる
【0363】
【表5】
Figure 0004400064
【0364】
表5から、比較に比べて本発明の試料は、ロールの巻き形状劣化及びすじ状の製膜故障が減少していることが明らかである。
【0365】
実施例2
実施例1で形成したセルロースアシレートフィルムの上に、下記のようにして防眩層を塗設し、その上に大気圧プラズマ放電処理により反射防止層を形成し、光学フィルムを得た。セルロースアシレートフィルム1〜8からそれぞれ光学フィルム21〜28を得た。
【0366】
(防眩層の塗設)
下記の防眩層塗布組成物をマイクログラビアコートし、次いで80℃に設定された乾燥部で乾燥した後、160mJ/cm2で紫外線照射し、乾燥膜厚で3μmの防眩層を設けた。中心線平均粗さ(Ra)は0.3μmであった。
【0367】
〈防眩層塗布組成物〉
合成シリカ微粒子(平均粒径16nm) 5部
合成シリカ微粒子(平均粒径1.4μm) 8部
紫外線硬化型アクリルウレタン系樹脂(ユニディック17−806(大日本イ
ンキ(株)製)99部、コロネートL(ポリイソシアネート化合物、日本ポリウ
レタン(株)製)1部) 100部
光重合開始剤(イルガキュア184、チバガイギー社製) 3部
を溶剤(酢酸エチル)にてホモジナイザーにより混合して揮発分60質量%の均質な分散液を調製した。
【0368】
(反射防止層の形成)
上記防眩層を塗設したセルロースアシレートフィルム上に、下記の反応ガスを用い、実施例1に記載のプラズマ放電処理装置によりプラズマ処理を行い、ハードコート層側に反射防止層を形成した。
【0369】
Figure 0004400064
ハードコート層上に、第1酸化チタン層、第1酸化珪素層、第2酸化チタン層、第2酸化珪素層の順に設けた。
【0370】
〈反応ガスの種類〉
反射防止層の形成に用いた反応ガスを以下に示す。
【0371】
(反応ガスA):酸化チタン層(高屈折率層)形成用
窒素 68.97体積%
アルゴン 30体積%
反応ガス(酸素ガス) 1体積%
反応ガス(テトライソプロポキシチタン蒸気) 0.03体積%
(反応ガスB):酸化珪素層(低屈折率層1)形成用
窒素 98.97体積%
反応ガス(酸素ガス) 1体積%
反応ガス(テトラエトキシシラン蒸気) 0.03体積%
(反応ガスC):酸化珪素層(低屈折率層2)形成用
窒素 98.97体積%
反応ガス(水素ガス) 1体積%
反応ガス(メチルトリエトキシシラン蒸気) 0.03体積%
得られた光学フィルム21〜28について、実施例1と同様にして、巻き形状劣化及びすじ状の製膜故障を評価した。更に、下記に記載の方法により、偏光板を作製し、これを液晶表示装置に張り付け視認性を評価した。
【0372】
(偏光板の作製)
(a)偏光膜の作製
厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
【0373】
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と光学フィルムとを貼り合わせて偏光板を作製した。
【0374】
工程1:光学フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。金属酸化物層を設けた面にはあらかじめ剥離性の保護フィルム(ポリエチレン製)を張り付けてアルカリから保護した。
【0375】
また、別途用意したその光学フィルムに用いられているセルロースアシレートフィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。
【0376】
工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
【0377】
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理した光学フィルムと、上記の別途用意したセルロースアシレートフィルムとを、前記偏光膜を挟み込むように積層配置した。
【0378】
工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/分の速度で貼り合わせた。このとき気泡が入らないように注意した。
【0379】
工程5:80℃の乾燥機中にて工程4で作製した試料を3分間乾燥処理して、偏光板を作製した。
【0380】
(液晶表示パネルによる評価)
市販の液晶表示パネル(NEC製カラー液晶ディスプレイ;MultiSync LCD1525J:型名LA−1529HM)の観察側の偏光板を注意深く剥離し、上記で作製した偏光板を、金属酸化物層を外側にして偏光方向を合わせて張り付け、液晶表示パネルを作製した。
【0381】
上記作製した各液晶表示パネルについて、下記の評価を行った。
《視認性の評価》
液晶表示パネル(液晶表示装置)を目視観察し、視認性を下記のようにランク評価した。
【0382】
◎:黒がしまって見え、鮮明であり、反射光の色むらは認められない
○:黒がしまって見え、鮮明であるが、わずかに反射光の色むらが認められる
△:黒のしまりがなく、鮮明さがやや低く、反射光の色むらが認められる
×:黒のしまりがなく、鮮明さが低く、反射光の色むらが気になる
得られた結果を表6示す。
【0383】
【表6】
Figure 0004400064
【0384】
表6から、比較に比べて本発明の光学フィルムは、ロールの巻き形状劣化及びすじ状の製膜故障が減少し、かつ、液晶表示パネルにしたときに優れた視認性を示すことが分かる。
【0385】
【発明の効果】
本発明により、金属酸化物層を形成しても、巻き形状での形状劣化が少なく、また金属酸化物層の製膜の際にすじ状の製膜故障が少ない光学フィルムの製造方法を提供すること、更には、視認性に優れた偏光板及び表示装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
【図2】本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【図3】図2に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【図4】角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
【符号の説明】
10 プラズマ放電処理装置
11 第1電極
12 第2電極
20 電圧印加手段
21 第1電源
22 第2電源

Claims (5)

  1. 2位と3位とのアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位と3位とのアシル置換度の合計が1.70〜1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとを混合して調製したドープを流涎して得たセルロースアシレートフィルム上に
    直接または他の層を介して大気圧プラズマ放電処理により金属酸化物層を設けて光学フィルムを製造するに当たり、
    対向する第1電極と第2電極との間に窒素を主成分とするガスを供給し、
    該第1電極に第1の周波数ω の高周波電圧V を印加し、
    該第2電極に第2の周波数ω の高周波電圧V を印加し、
    >V 且つω <ω として前記ガスを励起し、セルロースアシレートフィルムを励起した該ガスに晒すことを特徴とする光学フィルムの製造方法。
  2. 第1の周波数ω が200kHz以下であり、第2の周波数ω が800kHz以上であることを特徴とする請求項1記載の光学フィルムの製造方法。
  3. セルロースアシレートフィルムを構成するセルロースアシレートの、2位と3位とのアシル置換度の合計が1.75〜1.88であることを特徴とする請求項1または2に記載の光学フィルムの製造方法。
  4. セルロースアシレートフィルムが1,3,5−トリアジン環を有する化合物を含有することを特徴とする請求項1〜3の何れか1項に記載の光学フィルムの製造方法。
  5. 金属酸化物層が酸化珪素、酸化チタン、酸化錫から選択される成分を含有することを特徴とする請求項1〜4の何れか1項に記載の光学フィルムの製造方法。
JP2003043776A 2003-02-21 2003-02-21 光学フィルムの製造方法 Expired - Fee Related JP4400064B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043776A JP4400064B2 (ja) 2003-02-21 2003-02-21 光学フィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043776A JP4400064B2 (ja) 2003-02-21 2003-02-21 光学フィルムの製造方法

Publications (2)

Publication Number Publication Date
JP2004252262A JP2004252262A (ja) 2004-09-09
JP4400064B2 true JP4400064B2 (ja) 2010-01-20

Family

ID=33026683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043776A Expired - Fee Related JP4400064B2 (ja) 2003-02-21 2003-02-21 光学フィルムの製造方法

Country Status (1)

Country Link
JP (1) JP4400064B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697201B2 (en) 2005-03-31 2014-04-15 Kaneka Corporation Retardation film and production method thereof
KR102523525B1 (ko) * 2014-10-23 2023-04-18 니폰 제온 가부시키가이샤 대전 방지 필름 및 액정 표시 장치
CN112996438B (zh) * 2018-09-20 2025-01-07 凸版印刷株式会社 检查用贴片

Also Published As

Publication number Publication date
JP2004252262A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
US7407686B2 (en) Optical film, polarizing plate and display device utilising the film, and production method of optical film
JP2002322558A (ja) 薄膜形成方法、光学フィルム、偏光板及び画像表示装置
JP2004279491A (ja) 防眩性反射防止層の形成方法、防眩性反射防止フィルムとその製造方法、防眩性反射防止フィルムを用いた表示装置及び防眩性反射防止加工装置
JP4281304B2 (ja) 光学フィルム、その製造方法、それを用いた偏光板及び表示装置
JP4000830B2 (ja) プラズマ放電処理装置
JP5050299B2 (ja) 長尺基材の表面処理方法及びその方法により製造された光学フィルム
JP2003201570A (ja) 大気圧プラズマ処理装置、大気圧プラズマ処理方法及びそれを用いて作製した長尺フィルム
JP2003025504A (ja) セルロースエステルフィルム、防眩フィルム、それらの製造方法及び偏光板
JP4400064B2 (ja) 光学フィルムの製造方法
JP4099998B2 (ja) 光学フィルム、防眩性反射防止フィルム、偏光板、表示装置及び光学フィルムの製造方法
JP4556357B2 (ja) 低反射偏光板及びそれを用いた表示装置
JP2005096095A (ja) ハードコートフィルム及びその製造方法
JP2004029660A (ja) 光学フィルムの製造方法、光学フィルム、光学フィルムを有する偏光板及び表示装置
JP2004258348A (ja) 防汚処理された光学フィルムおよび該光学フィルムを表面に有する画像表示装置
JP4196686B2 (ja) 光学フィルムの製造方法
JP2003121602A (ja) 光学フィルム及びその製造方法
JP2003337202A (ja) 反射防止フィルム、それを有する表示装置及び光学フィルムの製造方法
JP2004138987A (ja) 光学フィルム、それを用いた偏光板、表示装置及び光学フィルムの製造方法
JP2004151472A (ja) 光学フィルム、その製造方法、それを用いた偏光板及び表示装置
JP2003053882A (ja) 光学フィルム、その製造方法、反射防止フィルム、偏光板
JP2003231765A (ja) 反射防止フィルムの製造方法、その方法で製造された反射防止フィルム及びそれを用いた偏光板
JP2004189958A (ja) プラズマ放電処理装置、プラズマ放電処理方法、その方法で製造された薄膜及び積層体、及び光学フィルム、光学フィルムを用いた偏光板及び画像表示装置
JP4110777B2 (ja) 積層体とそれを用いた楕円偏光板及び表示装置
JP2004177459A (ja) 光学フィルム、その製造方法、偏光板及び表示装置
JP4470426B2 (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees