[go: up one dir, main page]

JP4396123B2 - Partially stabilized ZrO2 sphere and method for producing the same - Google Patents

Partially stabilized ZrO2 sphere and method for producing the same Download PDF

Info

Publication number
JP4396123B2
JP4396123B2 JP2003107469A JP2003107469A JP4396123B2 JP 4396123 B2 JP4396123 B2 JP 4396123B2 JP 2003107469 A JP2003107469 A JP 2003107469A JP 2003107469 A JP2003107469 A JP 2003107469A JP 4396123 B2 JP4396123 B2 JP 4396123B2
Authority
JP
Japan
Prior art keywords
weight
range
sphere
content
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003107469A
Other languages
Japanese (ja)
Other versions
JP2004315246A (en
Inventor
康博 中野
正樹 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003107469A priority Critical patent/JP4396123B2/en
Publication of JP2004315246A publication Critical patent/JP2004315246A/en
Application granted granted Critical
Publication of JP4396123B2 publication Critical patent/JP4396123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボールミル等における粉砕・分散媒体として用いるのに好適な部分安定化ZrO2球体とその製造方法に関する。
【0002】
【従来の技術】
よく知られているように、ボールミル等における粉砕・分散媒体として、ZrO2球体、Al23球体等のセラミックス球体が多用されている。そのような粉砕・分散媒体においては、不純物が混入して最終製品の品質や性能に影響を与えることがないよう、高純度で、しかも、使用時の減耗の少ないものが求められている。また、近年、粉砕や分散の効率を向上させるために、より小径のものが求められるようになってきている。
【0003】
さて、そのような粉砕・分散媒体としては、少なくとも50重量%のAl23と、15〜40重量%の、0.1〜5モル%のY23および/またはCeO2を含むZrO2との複合セラミックスからなるものが知られている(たとえば、特許文献1参照)。しかしながら、この従来の粉砕媒体は、Al23を主成分とするものであるために靱性が低く、使用中の衝撃で割れたり欠けたりしやすく、耐久性に劣るという問題がある。
【0004】
また、2〜4モル%のY23と、0.05〜1重量%のAl23とを含み、鏡面仕上げされた表面には単斜晶ZrO2を実質的に含まず、熱処理し、徐冷し、粉砕したときに単斜晶ZrO2に変態する正方晶ZrO2を30%以上含み、残余が立方晶ZrO2からなり、平均結晶粒子径が0.5μm以下であり、かさ密度が5.98g/cm3以上であり、ボールミルによる損耗量が0.01%以下であるようなものが知られている(たとえば、特許文献2参照)。しかしながら、この従来の粉砕媒体は、立方晶ZrO2を多く含んでいるために強度や硬度が低く、使用中の衝撃で割れたり欠けたりしやすく、また、耐摩耗性に劣るという問題がある。
【0005】
さらに、主としてZrO2とY23とを含み、モル比でY23/ZrO2が1.5/98.5〜2.6/97.4の範囲内にあり、0.005〜4.5重量%のAl23を含み、1重量%以下のCaOおよび/またはMgOを含み、SiO2、Na2OおよびK2Oの合計量が0.3重量%以下で、かつ、SiO2が0.2重量%以下、Na2Oが0.05重量%以下、K2Oが0.05重量%以下であり、正方晶ZrO2を60容量%以上含み、かさ密度が5.85g/cm3以上であり、平均結晶粒子径が0.3〜0.7μmである、特定の条件下で測定したボールミル等による摩耗量が40ppm/時以下であるようなものが知られている(たとえば、特許文献3参照)。この従来のセラミックス球体は、CaOやMgOを含有させることで熱劣化を抑え、また、粒界を少なくするために結晶粒子径を大きくしたものであるが、そのために強度や硬度は低くなっており、やはり使用中の衝撃で割れたり欠けたりしやすく、また、耐摩耗性にも劣るという問題がある。
【0006】
【特許文献1】
特開平10−85619号公報
【0007】
【特許文献2】
特公平8−25798号公報
【0008】
【特許文献3】
特許第2860953号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、従来の技術の上述した問題点を解決し、耐摩耗性に優れ、耐久性に優れた、粉砕・分散媒体として好適な部分安定化ZrO2球体と、そのような部分安定化ZrO2球体を容易に製造する方法を提供するにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、3〜6重量%の範囲内の、Y23、CeO2等の安定化剤と、0.36〜0.4重量%または0.1〜0.5重量%の範囲内のAl23(製造方法により異なる)とを含み、かさ密度が理論密度の少なくとも98%であり、すなわち、相対密度が少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあり、かつ、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にあることを特徴とする部分安定化ZrO2球体を提供する。表面の算術平均高さRaは、0.05μm以下であるのが好ましい。また、単斜晶ZrO2の含有量は、10重量%以下であるのが好ましい。なお、以下においては、便宜上、部分安定化ZrO2球体を単に球体という。
【0011】
上記において、かさ密度は、約20gの球体を容器に入れ、アルキメデス法によって求める。なお、理論密度は6.08g/cm3とする。
【0012】
また、安定化剤たるY23、CeO2の含有量やAl23の含有量は、次のようにして求める。すなわち、HIP処理したY23系部分安定化ZrO2セラミックスからなる圧壊部を有する万能試験機を用いて球体を圧壊し、圧壊片約0.3gを白金るつぼに入れ、硫酸水素カリウムで融解する。これを希硝酸で溶解して定溶し、ICP発光分光分析法を用いてY、Ce、Alを定量し、さらにそれらをY23、CeO2、Al23に換算する。
【0013】
さらに、平均結晶粒子径Cs、Ciとそれらの比Ci/Csは、次のようにして求める。すなわち、球体を樹脂に埋め込んで保持し、球体がほぼ半球になるまで保持面を研磨し、研磨面を鏡面仕上げし、さらに焼結温度よりも50℃低い温度で3時間サーマルエッチングする。しかる後、エッチング面を走査型電子顕微鏡を用いて観察し、表面から半径の1/3までの領域における任意の3点と、球心から半径の2/3までの領域における任意の3点について30,000倍の写真を撮影する。次いで、画像処理装置を用いて表面から半径の1/3までの領域における平均結晶粒子径Csと、球心から半径の2/3までの領域における平均結晶粒子径Ciとを求め、さらにそれらの比Ci/Csを求める。
【0014】
また、表面の算術平均高さRaは、次のようにして求める。すなわち、球体を走査型電子顕微鏡で観察し、電子線三次元測定法のうちの二次電子方式による表面形態観察機能を用い、任意の5点に電子線をあて、放射される二次電子線から表面の凹凸を測定し、単純平均して算術平均高さRaとする。
【0015】
さらに、単斜晶ZrO2の含有量は、次のようにして求める。すなわち、球体をX線回折し、その回折強度(回折ピークの面積)から次式によって算出する。ただし、回折強度はローレンツ因子による補正後の値を用いる。また、X線はCuKα線を用い、電圧は40kv、電流は20mAとする。
【0016】
【数1】

Figure 0004396123
【0017】
本発明は、また、上述の球体を製造する方法として、3〜6重量%の範囲内の、Y23、CeO2等の安定化剤と、0.36〜0.4重量%の範囲内のAl23とを含み、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.02重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.001〜0.02重量%の範囲内にあり、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を転動造粒して成形球体を得た後、成形球体を酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結することを特徴とする部分安定化ZrO2球体の製造方法を提供する。また、3〜6重量%の範囲内の、Y23、CeO2等の安定化剤と、0.1〜0.5重量%の範囲内のAl23とを含み、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.005重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.005〜0.03重量%の範囲内にあり、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を噴霧造粒して成形球体を得た後、成形球体を酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結することを特徴とする部分安定化ZrO2球体の製造方法を提供する。
【0018】
上記において、Y23、CeO2、Al23 、Fe23、TiO2の含有量は、次のようにして求める。すなわち、約0.5gのZrO2粉末を白金るつぼに入れ、硫酸水素カリウムで融解する。これを希硝酸で溶解して定溶し、ICP発光分光分析法を用いてY、Ce、Al、Fe、Tiを定量し、さらにそれらをY23、CeO2、Al23、Fe23、TiO2に換算する。
【0019】
また、Na2Oの含有量は、次のようにして求める。すなわち、約0.1gのZrO2粉末を白金るつぼに入れ、硫酸水素カリウムで融解する。これを希硝酸で溶解して定溶し、原子吸光分析法を用いてNaを定量し、さらにそれをNa2Oに換算する。
【0020】
さらに、SO4の含有量は、次のようにして求める。すなわち、水を用いてZrO2粉末から抽出した抽出液をイオンクロマトグラフ法を用いて硫酸化合物として定量し、得られた値をSO4に換算する。
【0021】
また、比表面積は、JIS R 1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に規定される方法に準拠し、BET1点法で求める。
【0022】
さらに、平均二次粒子径は、次のようにして求める。すなわち、300mlのビーカに電気伝導度が5μS/cmの純水210gとZrO2粉末90gとを入れ、よく攪拌した後、超音波発生機に10分間かけて30重量%のスラリーを調製する。しかる後、粒度分布測定器を用いて平均二次粒子径を測定する。なお、平均二次粒子径は、累積分布が50%に相当する、いわゆるメジアン径である。
【0023】
【発明の実施の形態】
本発明の球体は、3〜6重量%の範囲内の安定化剤と、0.36〜0.4重量%または0.1〜0.5重量%の範囲内(製造方法により異なる)のAl23とを含み、かさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあり、かつ、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にある。
【0024】
球体は、3〜6重量%の範囲内の安定化剤を含んでいる。安定化剤を含むことにより、常温で単斜晶であるZrO2の結晶構造は多くが正方晶となり、正方晶から単斜晶への応力誘起変態による強度の向上が期待できるようになる。安定化剤としては、通常、Y23を用いる。Y23はZrO2の強度や靱性を向上させる。Y23を用いる場合、その含有量は3〜6重量%の範囲内とする。含有量が3重量%未満では正方晶が安定化せず、常温で単斜晶の占める割合が多くなって高強度、高靱性にならない。6重量%を超えると、正方晶が完全に安定化されてしまい、常温で応力誘起変態が起こりにくくなって強度が低下する。Y23の好ましい含有量の範囲は4〜6重量%である。また、安定化剤としてCeO2を用いることができる。CeO2は、通常、Y23と併用する。CeO2は、耐衝撃性を向上させるうえに、ごく少量であってもZrO2の熱劣化を抑制し、耐摩耗性を向上させる。Y23と併用する場合、両者の合計量が3〜6重量%の範囲内になるようにする。
【0025】
球体は、また、0.36〜0.4重量%または0.1〜0.5重量%の範囲内のAl23を含んでいる。後述するが、Al23の含有量は、焼結に供するための成形球体の製造を転動造粒法によった場合には0.36〜0.4重量%の範囲内となり、噴霧造粒法によった場合には0.1〜0.5重量%の範囲内となる。ZrO2が高強度であることは、正方晶ZrO2から単斜晶ZrO2への応力誘起変態に起因するが、少量のAl23が含まれていると、一層高強度となる。これは、焼結の際、Al23の収縮量がZrO2のそれにくらべて小さいために、圧縮の内部応力がかかるようになるからである。また、Al23には粒界を強化する作用があるため、耐引張応力が向上する。しかしながら、Al23が多くなりすぎると、靭性が低くなり、耐摩耗性が低下するようになる。本発明においては、得られる球体においてAl23が示す上述の作用と、後述する造粒時におけるAl23の作用とのバランスを考慮し、その範囲を0.36〜0.4重量%または0.1〜0.5重量%の範囲内としている。
【0026】
球体のかさ密度は、理論密度の少なくとも98%である。これにより、耐摩耗性が大きく向上する。すなわち、かさ密度が理論密度の98%未満であるようなものは、内部空隙が多く、摩耗が多くなる。また、強度が不足するようになり、使用時の衝撃で割れたり欠けたりするようになる。かさ密度は、理論密度の99%以上であるのが好ましい。
【0027】
また、球体の耐摩耗性は、平均結晶粒子径にも依存する。すなわち、平均結晶粒子径が0.1μmを下回るようなものは、粒界が多くて腐食が進みやすいために耐摩耗性、耐衝撃性が大きく低下する。また、0.4μmを超えるようなものは、応力誘起変態が起こりにくいために、強度はもちろん、硬度、靱性にも劣り、やはり耐摩耗性、耐衝撃性が大きく低下するようになる。平均結晶粒子径の好ましい範囲は0.15〜0.35μmであり、より好ましい範囲は0.2〜0.35μmである。
【0028】
さらに、耐摩耗性を向上させるためには、平均結晶粒子径が上述の範囲内にあることに加え、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にあることが必要である。たとえば、成形球体の製造を転動造粒法によった場合、得られる球体の平均結晶粒子径は、表面よりも内部のほうが大きくなる傾向にある。そのような球体を粉砕・分散媒体として用いると、初期の段階で摩耗が著しく進行し、不純物の混入量が激増する。また、成形球体の製造を噴霧造粒法によった場合、得られる球体の平均結晶粒子径は、表面付近のほうが内部よりも大きくなる傾向にある。すなわち、内部の平均結晶粒子径は小さく、内部空隙が多くなってその空隙が破壊の起点となるので強度が大きく低下する。そのような球体を粉砕・分散媒体として用いると、衝撃によって容易に割れてしまう。また、内部が表れ始めると摩耗が激しくなり、不純物の混入量が急激に多くなる。このように、平均結晶粒子径の均一性は摩耗の進行に大きく影響する。そして、球体の平均結晶粒子径が0.1〜0.4μmの範囲内にあっても、平均結晶粒子径の比Ci/Csが0.8未満であると、内部の焼結が不十分で粉砕・分散媒体として用いたときに衝撃による割れが発生したり、表面付近が摩耗してきたときの内部の摩耗が激しくなり、また、比Ci/Csが1.2を超えると、初期段階における表面の摩耗が著しくなる。好ましい平均結晶粒子径の比Ci/Csの範囲は、0.9〜1.1である。
【0029】
球体は、表面の算術平均高さRaが0.05μm以下であるのが好ましい。算術平均高さRaが大きすぎると、初期摩耗が増大する。また、衝撃を受けたときに割れやすくなる。好ましい算術平均高さRaは、0.03μm以下である。
【0030】
球体は、また、単斜晶ZrO2の含有量が10重量%以下であるのが好ましい。単斜晶ZrO2の量が多くなりすぎると強度が低下してくるし、衝撃による割れや摩耗が起こりやすくなるからである。
【0031】
上述した本発明の球体は、二つの方法によって製造することができる。焼結に供する成形球体の製造方法の相異による。一つは、成形球体の製造を転動造粒法によるものであり、他の一つは、噴霧造粒法によるものである。前者の転動造粒法を経由する方法は、球径が0.2〜10mm程度の範囲内にある球体を製造するのに適している。また、後者の噴霧造粒法を経由する方法は、球径が0.2mm以下の球体を製造するときに適している。
【0032】
転動造粒法を経由する方法は、3〜6重量%の範囲内の安定化剤と、0.36〜0.4重量%の範囲内のAl23とを含み、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.02重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.001〜0.02重量%の範囲内にあり、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を転動造粒して成形球体を得た後、成形球体を酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結する方法である。
【0033】
転動造粒法は、よく知られているように、回転皿型造粒機や回転ドラム型造粒機等の造粒機を用い、水を造粒剤として粉末を転動させて微細な核を形成するとともに、水と粉末とを添加しながら核を成長させ、圧密化された成形球体を得る方法である。すなわち、この方法は、粉末の自重を利用して圧密化を図りながら成形球体を成長させるものである。
【0034】
さて、この転動造粒法を経由する方法においては、3〜6重量%の範囲内の安定化剤を含む球体を得るために、同量の安定化剤を含むZrO2粉末を用いる。このとき、安定化剤としてY23に加えてCeO2を併用すると、焼結温度を低くすることができるようになる。
【0035】
ZrO2粉末は、また、0.36〜0.4重量%の範囲内のAl23を含むものを用いる。Al23は、造粒時における成形球体の圧密化に関与し、含有量が0.36重量%未満であっても0.4重量%を超えても、核と、その周りに成長する、いわゆる肉部分との密着性が悪くなって圧密化が十分でない部分ができるようになる。
【0036】
また、ZrO2粉末は、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.02重量%の範囲内にあるものを選択、使用する。すなわち、ZrO2粉末には、その原料に起因する金属元素が不純物として含まれている。Feは、ZrO2に固溶するため、その量が多いとZrO2が安定化の方向に向かい、強度が低下するようになる。また、少量でも色調が黄色を呈するようになって球体の商品価値を低下させるため、含有量がFe23換算で0.003重量%以下のものを選択、使用する。Tiは、Al23と反応して化合物を形成し、Al23の上述した造粒作用を阻害するので、含有量がTiO2換算で0.002重量%以下のものを選択、使用する。Naは、少なすぎると、水とのなじみが悪くなって造粒時における圧密化を十分に行えなくなる。また、多すぎると、ZrO2粉末同士がくっつきすぎて形状のよい成形球体が得られなくなるし、後の焼結時に粒子が異常に成長することもある。それゆえ、Naの含有量がNa2O換算で0.001〜0.02重量%の範囲内にあるものを選択、使用する。
【0037】
上述したように、Naは造粒時における成形性を大きく左右するが、このとき、硫酸化合物、たとえば硫酸ナトリウムや硫酸アンモニウムが適量存在していると、Naによる成形性の阻害を抑制することができるようになる。それゆえ、本発明においては、硫酸化合物の含有量がSO4換算で0.001〜0.02重量%の範囲内にあるZrO2粉末を選択、使用する。0.001重量%より少ないと上述した抑制作用が期待できず、0.02重量%よりも多いと圧密化が阻害されるようになる。
【0038】
また、ZrO2粉末は、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるものを選択、使用する。すなわち、本発明の球体は、上述したようにかさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあるが、そのようにかさ密度が高く、平均結晶粒子径の小さな球体を得るためには、低温焼結性に優れたZrO2粉末を用いることが必要になる。しかるに、比表面積が8m2/g未満のものは低温焼結性に劣り、必要なかさ密度とするためには焼結温度を高くしなければならなくなって平均結晶粒子径が上述した範囲を超えてしまう。13m2/gを超えるようなものは、焼結性がよいのでかさ密度や平均結晶粒子径の範囲は満足するものの、造粒時に多くの水が必要となり、粉末同士の付着が激しくなって圧密化が不均一となってしまう。一方、平均二次粒子径を0.3μm未満とするためには粉末の粉砕が必要となるが、粉砕すると単斜晶ZrO2が増えてくるために強度が低くなる。0.6μmを超えるようなものは、低温焼結性に劣り、必要なかさ密度とするためには焼結温度を高くしなければならなくなって平均結晶粒子径が上述した範囲を超えてしまう。
【0039】
上述したようなZrO2粉末自体は、一般に、ZrO2等の原料として塩化物を用い、加水分解法、中和共沈法、熱分解法、水熱法等を用いて粉末を合成した後、900〜1,000℃で焼成し、ボールミル等で湿式粉砕し、さらに乾燥することによって得ることができる。このとき、Al23は合成時に塩化物で添加する方法と、粉砕時に酸化物で添加する方法とがある。また、中和共沈法による場合、Naは、粉末の合成に際して中和剤として添加する方法があり、硫酸化合物は、安定化剤の分布の均一性を向上させるための添加剤として添加する方法がある。いずれも、粉末中に不純物として残存することになるが、その量は焼成後の水洗によって制御することができる。
【0040】
さて、本発明においては、上述した粉末を転造動粒し、得られた成形球体を乾燥した後、酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結し、球体とする。低温焼結性に優れたZrO2粉末を用いて成形球体としているために、1,350〜1,450℃の範囲内の温度で焼結することでかさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にある球体とすることができる。なお、焼結条件、すなわち焼結温度や焼結時間は、成形球体の大きさによって適宜選定する。たとえば、球径が1mm以下の場合には1,350℃〜1,400℃で2時間程度とし、球径がそれよりも大きなものに対しては1,400〜1,450℃で2〜3時間程度とする。
【0041】
焼結後は、表面を研磨してうねりや傷を取り除き、さらに鏡面に仕上げて算術平均高さRaが0.05μm以下になるようにする。研磨には、バレル研磨機を用いることができ、研磨材としてはSiC、Al2 3 等の微粒子を用いることができる。研磨の後は、篩い分けにより、所望の球径にそろえる。
【0042】
一方、噴霧造粒法は、よく知られているように、水と粉末とを含むスラリーをディスク式噴霧乾燥機やノズル式噴霧乾燥機等の噴霧乾燥機内に噴霧し、すなわち、加熱空間に噴霧し、造粒する方法である。本発明においては、成形球体の製造にかかる噴霧造粒法を用いることができる。このとき用いるZrO2粉末は、基本的には上述した転動造粒法による場合と同じものでよい。また、成形球体の焼結、得られる球体の研磨、分級等については転動造粒法による場合と全く同じである。以下においては、転動造粒法による場合と異なる部分についてのみ説明する。
【0043】
ZrO2粉末としては、Al23の含有量が0.1〜0.5重量%の範囲内にあるものを用いる。すなわち、噴霧造粒法による場合、Al23は成形に影響を及ぼさない。したがって、得られる球体の強度の向上に着目してその含有量を決定すればよい。Al23の含有量は、転動造粒法による場合よりも広くてよく、0.1〜0.5重量%の範囲内にあるものを用いることができる。含有量が0.1重量%未満と少ないものは、強度の向上作用が期待できず、得られる球体は耐摩耗性に劣るものとなる。また、0.5重量%を超えるものは、靱性が低くなるため、やはり耐摩耗性に劣るものとなる。
【0044】
また、ZrO2粉末としては、Naの含有量がNa2O換算で0.001〜0.005重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.005〜0.03重量%の範囲内にあるものを用いる。噴霧造粒法による成形球体は、スラリーの性状によるところが大きいが、乾燥中に成形球体の内部に大きな空隙や粗な部分が発生しないようにすることが重要である。乾燥時、内部の水分が表面に移動し、表面から蒸発するが、水分の移動に伴って粒子が移動すると内部に空隙ができたり、内部が粗になるため、粒子が移動しないように粒子同士をある程度の凝集状態におく。この点、NaをNa2O換算で0.001〜0.005重量%の範囲内で含み、硫酸化合物をSO4換算で0.005〜0.03重量%の範囲内で含み、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を用い、これをZrO2粉末の濃度が40〜70重量%程度の範囲内のスラリーにすると、適度な凝集状態が得られ、内部に空隙や粗な部分の非常に少ない成形球体を得ることができるようになる。NaがNa2O換算で0.001重量%未満であると、スラリーの粘度が低くなり、成形球体の内部に空隙や粗な部分が多く発生するようになる。また、0.005重量%を超えると、粒子同士の凝集が強くなって安定した送液ができなくなり、成形球体は形状、球径、内部構造等において均一性の極めて低いものとなる。一方、硫酸化合物がSO4換算で0.005重量%未満であると、凝集を抑制する作用が期待できず、また、0.03重量%を超えると、成形球体の内部に大きな空隙や粗な部分が多く発生するようになる。
【0045】
【実施例および比較例】
以下に示す実施例および比較例において、球体の平均球径と耐摩耗率は次のようにして求めた。
平均球径:
球体を実体顕微鏡で観察して画像を取り込み、画像処理して円相当径を求め、平均円相当径を求めて平均球径とした。n数は100とした。
耐摩耗率:
内容積が660mlのボールミルに球体1.8kgを入れ、20〜30℃に維持した水を循環させながらディスクの周速を12m/秒として40時間とも擦りをさせ、試験前の重量Wbと試験後の重量Waとから次式によって求めた。
【0046】
耐摩耗率(%)=((Wb−Wa)/Wb)×100
実施例1:
ZrOCl2水溶液にYCl3水溶液をY23濃度として4.78重量%となるように加え、さらにAlCl3水溶液をAl23濃度として0.38重量%となるように加え、これに硫酸アンモニウム水溶液を添加した後アンモニア水を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、970℃で2時間焼成して焼成体を得た。
【0047】
次に、得られた焼成体を乾式粉砕し、ボールミルを用いて5時間、純水中にて湿式粉砕し、湿式分級装置で微細粒子と粗大粒子とを除去し、限外ろ過装置を用いて水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去し、脱鉄装置で脱鉄して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が40μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0048】
23の含有量 :4.78重量%
Al23の含有量 :0.38重量%
Fe23の含有量 :0.0002重量%
TiO2の含有量 :0.001重量%
Na2Oの含有量 :0.0011重量%
SO4の含有量 :0.006重量%
比表面積 :9.8m2/g
平均二次粒子径 :0.42μm
単斜晶ZrO2の含有量:30重量%
次に、上記粉末を用いて転動造粒し、成形球体を得た。得られた成形球体を篩い分けした後、大気中にて1,380℃で2時間焼結した。焼結の際、成形球体をAl23製のセッタに載せ、そのセッタをAl23製のこう鉢に入れて蓋をした。得られた焼結体を再度篩い分けし、バレル研磨した。研磨は、SiC研磨材による粗研磨を4時間、Al23研磨材とSiC研磨材による本研磨を4時間、研磨材を用いないとも摺りによる研磨を4時間とした。かくして得られた球体の諸元を以下に示す。
【0049】
平均球径 :0.3mm
23の含有量 :4.78重量%
Al23の含有量 :0.38重量%
かさ密度 :理論密度の99.3%
平均結晶粒子径 :0.28μm
平均結晶粒子径比(ci/Cs):0.96
算術平均高さRa :0.016μm
単斜晶ZrO2の含有量 :6重量%
耐摩耗率 :0.05%
実施例2:
ZrOCl2水溶液にYCl3水溶液をY23濃度として4.70重量%となるように加え、これに硫酸ナトリウム水溶液を添加した後水酸化ナトリウム水溶液を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、980℃で2時間焼成して焼成体を得た。
【0050】
次に、得られた焼成体を乾式粉砕し、Al23粉末を0.37重量%になるように加え、ボールミルを用いて5時間、純水中にて湿式粉砕し、湿式分級装置で微細粒子と粗大粒子とを除去し、限外ろ過装置を用いて水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去し、脱鉄装置で脱鉄して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が180μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0051】
23の含有量 :4.70重量%
Al23の含有量 :0.37重量%
Fe23の含有量 :0.0003重量%
TiO2の含有量 :0.001重量%
Na2Oの含有量 :0.016重量%
SO4の含有量 :0.013重量%
比表面積 :8.5m2/g
平均二次粒子径 :0.46μm
単斜晶ZrO2の含有量:23重量%
次に、上記粉末を用いて転動造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,400℃で2時間焼結した。さらに、実施例1と同様に研磨して球体を得た。かくして得られた球体の諸元を以下に示す。
【0052】
平均球径 :3.0mm
23の含有量 :4.70重量%
Al23の含有量 :0.37重量%
かさ密度 :理論密度の99.3%
平均結晶粒子径 :0.30μm
平均結晶粒子径比(ci/Cs):0.93
算術平均高さRa :0.022μm
単斜晶ZrO2の含有量 :4.3重量%
耐摩耗率 :0.04%
実施例3:
ZrOCl2水溶液にYCl3水溶液をY23濃度として5.16重量%となるように加え、これにAlCl3水溶液をAl23濃度として0.38重量%となるように加え、さらに硫酸アンモニウム水溶液を添加した後アンモニア水を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、950℃で2時間焼成して焼成体を得た。
【0053】
次に、得られた焼成体を乾式粉砕し、ボールミルを用いて5時間、純水中にて湿式粉砕し、湿式分級装置で微細粒子と粗大粒子とを除去し、限外ろ過装置を用いて水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去し、脱鉄装置で脱鉄して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が30μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0054】
23の含有量 :5.16重量%
Al23の含有量 :0.38重量%
Fe23の含有量 :0.0002重量%
TiO2の含有量 :0.001重量%
Na2Oの含有量 :0.0010重量%
SO4の含有量 :0.020重量%
比表面積 :13.0m2/g
平均二次粒子径 :0.42μm
単斜晶ZrO2の含有量:28重量%
次に、上記粉末を濃度が50重量%のスラリーとして噴霧造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,350℃で2時間焼結した。さらに、実施例1と同様に研磨して球体を得た。かくして得られた球体の諸元を以下に示す。
【0055】
平均球径 :0.1mm
23の含有量 :4.78重量%
Al23の含有量 :0.38重量%
かさ密度 :理論密度の99.4%
平均結晶粒子径 :0.27μm
平均結晶粒子径比(ci/Cs):0.98
算術平均高さRa :0.009μm
単斜晶ZrO2の含有量 :2.3重量%
耐摩耗率 :0.06%
実施例4:
ZrOCl2水溶液にYCl3水溶液をY23濃度として5.39重量%となるように加え、これにCeCl4水溶液をCeO2濃度として0.35重量%となるように加え、AlCl3水溶液をAl23濃度として0.26重量%となるように加え、さらに硫酸アンモニウム水溶液を添加した後アンモニア水を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、960℃で2時間焼成して焼成体を得た。
【0056】
次に、得られた焼成体を乾式粉砕し、ボールミルを用いて5時間、純水中にて湿式粉砕し、湿式分級装置で微細粒子と粗大粒子とを除去し、限外ろ過装置を用い水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去し、脱鉄装置で脱鉄して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が50μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0057】
23の含有量 :5.39重量%
CeO2の含有量 :0.35重量%
Al23の含有量 :0.26重量%
Fe23の含有量 :0.0004重量%
TiO2の含有量 :0.0012重量%
Na2Oの含有量 :0.0011重量%
SO4の含有量 :0.025重量%
比表面積 :11.8m2/g
平均二次粒子径 :0.45μm
単斜晶ZrO2の含有量:20重量%
次に、上記粉末を濃度が52重量%のスラリーとして噴霧造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,350℃で2時間焼結した。さらに、実施例1と同様に研磨して球体を得た。かくして得られた球体の諸元を以下に示す。
【0058】
平均球径 :0.1mm
23の含有量 :4.78重量%
Al23の含有量 :0.38重量%
かさ密度 :理論密度の99.0%
平均結晶粒子径 :0.24μm
平均結晶粒子径比(ci/Cs):1.04
算術平均高さRa :0.015μm
単斜晶ZrO2の含有量 :5.7重量%
耐摩耗率 :0.08%
実施例5:
ZrOCl2水溶液にYCl3水溶液をY23濃度として4.75重量%となるように加え、これにAlCl3水溶液をAl23濃度として0.39重量%となるように加え、さらに硫酸ナトリウム水溶液を添加した後水酸化ナトリウム水溶液を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、970℃で2時間焼成して焼成体を得た。
【0059】
次に、得られた焼成体を乾式粉砕し、ボールミルを用いて5時間、純水中にて湿式粉砕し、湿式分級装置で微細粒子と粗大粒子とを除去し、限外ろ過装置を用い水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去し、脱鉄装置で脱鉄して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が100μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0060】
23の含有量 :4.75重量%
Al23の含有量 :0.39重量%
Fe23の含有量 :0.0003重量%
TiO2の含有量 :0.0011重量%
Na2Oの含有量 :0.0035重量%
SO4の含有量 :0.011重量%
比表面積 :10.5m2/g
平均二次粒子径 :0.38μm
単斜晶ZrO2の含有量:22重量%
次に、上記粉末を濃度が52重量%のスラリーとして噴霧造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,370℃で2時間焼結した。さらに、実施例1と同様に研磨して球体を得た。かくして得られた球体の諸元を以下に示す。
【0061】
平均球径 :0.2mm
23の含有量 :4.78重量%
Al23の含有量 :0.38重量%
かさ密度 :理論密度の99.3%
平均結晶粒子径 :0.26μm
平均結晶粒子径比(ci/Cs):0.95
算術平均高さRa :0.008μm
単斜晶ZrO2の含有量 :6.0重量%
耐摩耗率 :0.06%
比較例1:
ZrOCl2水溶液にYCl3水溶液をY23濃度として5.4重量%となるように加え、これに硫酸ナトリウム水溶液を添加した後水酸化ナトリウム水溶液を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、1,050℃で2時間焼成して焼成体を得た。なお、水洗に際しては、遠心分離機で分離される水溶液の電気伝導度が400μs/cmになった時点で水洗を終了した。
【0062】
次に、得られた焼成体を乾式粉砕し、Al23粉末を0.30重量%になるように加え、ボールミルを用いて3時間湿式粉砕し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去して粉末を得た。得られた粉末の諸元は以下のとおりであった。
【0063】
23の含有量 :5.4重量%
Al23の含有量 :0.30重量%
Fe23の含有量 :0.008重量%
TiO2の含有量 :0.01重量%
Na2Oの含有量 :0.03重量%
SO4の含有量 :0.05重量%
比表面積 :6.5m2/g
平均二次粒子径 :1.2μm
単斜晶ZrO2の含有量:12重量%
次に、上記粉末を用いて転動造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,500℃で2時間焼結した。さらに、実施例1と同様に研磨し、球体を得た。かくして得られた球体の諸元を以下に示す。
【0064】
平均球径 :0.3mm
23の含有量 :5.4重量%
Al23の含有量 :0.30重量%
かさ密度 :理論密度の98.3%
平均結晶粒子径 :0.46μm
平均結晶粒子径比(ci/Cs):1.23
算術平均高さRa :0.06μm
単斜晶ZrO2の含有量 :12.3重量%
耐摩耗率 :0.32%
比較例2:
ZrOCl2水溶液にYCl3水溶液をY23濃度として5.0重量%となるように加え、これに水酸化ナトリウム水溶液を添加して水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、950℃で2時間焼成して焼成体を得た。なお、水洗に際しては、遠心分離機で分離される水溶液の電気伝導度が400μs/cmになった時点で水洗を終了した。
【0065】
次に、得られた焼成体を乾式粉砕し、ボールミルを用いて10時間湿式粉砕し、噴霧乾燥して粉末を得た。得られた粉末の諸元は以下のとおりであった。
【0066】
23の含有量 :5.0重量%
Al23の含有量 :0重量%
Fe23の含有量 :0.005重量%
TiO2の含有量 :0.02重量%
Na2Oの含有量 :0.04重量%
SO4の含有量 :0.001重量%
比表面積 :16.0m2/g
平均二次粒子径 :0.30μm
単斜晶ZrO2の含有量:44重量%
次に、上記粉末を濃度が33重量%のスラリーとして噴霧造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,350℃で2時間焼結した。さらに、実施例1と同様に研磨し、球体を得た。かくして得られた球体の諸元を以下に示す。
【0067】
平均球径 :0.1mm
23の含有量 :5.0重量%
Al23の含有量 :0重量%
かさ密度 :理論密度の97.8%
平均結晶粒子径 :0.24μm
平均結晶粒子径比(ci/Cs):0.77
算術平均高さRa :0.08μm
単斜晶ZrO2の含有量 :8.9重量%
耐摩耗率 :0.24%
比較例3:
ZrOCl2水溶液にYCl3 水溶液をY23濃度として5.7重量%となるように加え、これに硫酸アンモニウム水溶液を添加した後アンモニウム水溶液を加えて水酸化物を共沈させ、共沈物を遠心分離機で水洗し、乾燥した後、920℃で2時間焼成して焼成体を得た。
【0068】
次に、得られた焼成体を乾式粉砕し、Al23粉末を0.32重量%になるように加え、ボールミルを用いて10時間湿式粉砕し、限外ろ過装置を用いて水洗し、噴霧乾燥し、さらに乾式分級装置を用いて粗大粒子を除去して粉末を得た。なお、水洗に際しては、限外ろ過装置で分離される水溶液の電気伝導度が5μs/cmになった時点で水洗を終了した。得られた粉末の諸元は以下のとおりであった。
【0069】
23の含有量 :5.7重量%
Al23の含有量 :0.32重量%
Fe23の含有量 :0.008重量%
TiO2の含有量 :0.002重量%
Na2Oの含有量 :0.0004重量%
SO4の含有量 :0.001重量%
比表面積 :18.0m2/g
平均二次粒子径 :0.28μm
単斜晶ZrO2の含有量:45重量%
次に、上記粉末を濃度が35重量%のスラリーとして噴霧造粒し、成形球体を得た。得られた成形球体を篩い分けした後、実施例1と同様にして大気中にて1,350℃で2時間焼結した。さらに、実施例1と同様に研磨し、球体を得た。かくして得られた球体の諸元を以下に示す。
【0070】
平均球径 :0.2mm
23の含有量 :5.7重量%
Al23の含有量 :0.32重量%
かさ密度 :理論密度の97.3%
平均結晶粒子径 :0.23μm
平均結晶粒子径比(ci/Cs):1.23
算術平均高さRa :0.10μm
単斜晶ZrO2の含有量 :8.3重量%
耐摩耗率 :0.22%
【0071】
【発明の効果】
本発明の球体は、3〜6重量%の範囲内の安定化剤と、0.35〜0.4重量%の範囲内または0.1〜0.5重量%の範囲内のAl23とを含み、かさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあり、かつ、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にあるものであるから、実施例と比較例との対比からも明らかなように、耐摩耗性に優れ、耐久性に優れている。そのため、粉砕・分散媒体として好適である。しかも、そのような球体は転動造粒法または噴霧造粒法によって容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a partially stabilized ZrO suitable for use as a grinding / dispersing medium in a ball mill or the like. 2 The present invention relates to a sphere and a manufacturing method thereof.
[0002]
[Prior art]
As is well known, ZrO is used as a grinding and dispersion medium in ball mills and the like. 2 Sphere, Al 2 O Three Ceramic spheres such as spheres are often used. Such a pulverizing / dispersing medium is required to have high purity and low wear during use so that impurities are not mixed and affect the quality and performance of the final product. In recent years, in order to improve the efficiency of pulverization and dispersion, those having a smaller diameter have been demanded.
[0003]
Now, as such a grinding / dispersing medium, at least 50% by weight of Al 2 O Three And 15 to 40 wt%, 0.1 to 5 mol% Y 2 O Three And / or CeO 2 Containing ZrO 2 Are known (for example, see Patent Document 1). However, this conventional grinding media is Al 2 O Three As a main component, the toughness is low, it is easily cracked or chipped by impact during use, and the durability is poor.
[0004]
Moreover, 2-4 mol% Y 2 O Three And 0.05 to 1% by weight of Al 2 O Three And the mirror-finished surface contains monoclinic ZrO 2 Is substantially free of monoclinic ZrO when heat-treated, annealed, and pulverized. 2 Tetragonal ZrO transformed to 2 30% or more, and the balance is cubic ZrO 2 The average crystal particle diameter is 0.5 μm or less, and the bulk density is 5.98 g / cm. Three It is the above and the thing whose wear amount by a ball mill is 0.01% or less is known (for example, refer patent document 2). However, this conventional grinding medium is a cubic ZrO. 2 Therefore, there is a problem that the strength and the hardness are low, the crack is easily broken by an impact during use, and the wear resistance is inferior.
[0005]
Furthermore, mainly ZrO 2 And Y 2 O Three Y in molar ratio 2 O Three / ZrO 2 Is in the range of 1.5 / 98.5 to 2.6 / 97.4, and 0.005 to 4.5% by weight of Al. 2 O Three 1 wt% or less of CaO and / or MgO, and SiO 2 , Na 2 O and K 2 The total amount of O is 0.3% by weight or less, and SiO 2 Is 0.2 wt% or less, Na 2 O is 0.05% by weight or less, K 2 O is 0.05 wt% or less, and tetragonal ZrO 2 60% by volume or more, and bulk density is 5.85 g / cm Three As described above, the average crystal particle size is 0.3 to 0.7 μm, and the wear amount by a ball mill or the like measured under specific conditions is 40 ppm / hour or less (for example, patents) Reference 3). This conventional ceramic sphere contains CaO and MgO to suppress thermal degradation and to increase the crystal grain size in order to reduce grain boundaries. However, its strength and hardness are low. However, there is a problem that it is easily cracked or chipped by an impact during use, and is inferior in wear resistance.
[0006]
[Patent Document 1]
JP-A-10-85619
[0007]
[Patent Document 2]
Japanese Patent Publication No. 8-25798
[0008]
[Patent Document 3]
Japanese Patent No. 2860953
[0009]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a partially stabilized ZrO suitable as a grinding / dispersing medium having excellent wear resistance and durability. 2 Spheres and such partially stabilized ZrO 2 It is in providing the method of manufacturing a sphere easily.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides Y in the range of 3 to 6% by weight. 2 O Three , CeO 2 And a stabilizer within the range of 0.36 to 0.4 wt% or 0.1 to 0.5 wt% 2 O Three The bulk density is at least 98% of the theoretical density, that is, the relative density is at least 98%, and the average crystal grain size is in the range of 0.1 to 0.4 μm. The ratio Ci / Cs of the average crystal particle diameter Cs in the region from the surface to 1/3 of the radius and the average crystal particle diameter Ci in the region from the spherical center to 2/3 of the radius is 0.8 to 1.2. Partially stabilized ZrO, characterized in that 2 Provide a sphere. The arithmetic average height Ra of the surface is preferably 0.05 μm or less. Monoclinic ZrO 2 The content of is preferably 10% by weight or less. In the following, for the sake of convenience, partially stabilized ZrO 2 A sphere is simply called a sphere.
[0011]
In the above, the bulk density is determined by Archimedes method with about 20 g of spheres put in a container. The theoretical density is 6.08 g / cm. Three And
[0012]
In addition, Y as a stabilizer 2 O Three , CeO 2 Content and Al 2 O Three The content of is determined as follows. That is, Y with HIP processing 2 O Three Partially stabilized ZrO 2 The sphere is crushed using a universal testing machine having a crushed portion made of ceramics, and about 0.3 g of the crushed piece is placed in a platinum crucible and melted with potassium hydrogen sulfate. This is dissolved in dilute nitric acid and dissolved, and ICP emission spectroscopic analysis is used to quantify Y, Ce, and Al. 2 O Three , CeO 2 , Al 2 O Three Convert to.
[0013]
Further, the average crystal particle diameters Cs and Ci and their ratio Ci / Cs are obtained as follows. That is, the sphere is embedded and held in a resin, the holding surface is polished until the sphere is substantially hemispherical, the polished surface is mirror finished, and further thermally etched at a temperature 50 ° C. lower than the sintering temperature for 3 hours. Thereafter, the etched surface is observed using a scanning electron microscope, and 30 points for any 3 points in the region from the surface to 1/3 of the radius and 3 points in the region from the spherical center to 2/3 of the radius. Take 1,000,000 photos. Next, an average crystal particle diameter Cs in a region from the surface to 1/3 of the radius from the surface and an average crystal particle diameter Ci in a region from the sphere center to 2/3 of the radius are obtained using an image processing apparatus, and the ratio thereof is further determined. Ci / Cs is obtained.
[0014]
Further, the arithmetic average height Ra of the surface is obtained as follows. That is, a secondary electron beam emitted by observing a sphere with a scanning electron microscope and irradiating an electron beam to any five points using the secondary electron mode surface morphology observation function of the electron beam three-dimensional measurement method. Then, the surface irregularities are measured and simply averaged to obtain the arithmetic average height Ra.
[0015]
In addition, monoclinic ZrO 2 The content of is determined as follows. That is, the sphere is X-ray diffracted and calculated from the diffraction intensity (area of the diffraction peak) by the following equation. However, the value after correction by the Lorentz factor is used for the diffraction intensity. The X-ray is CuKα ray, the voltage is 40 kv, and the current is 20 mA.
[0016]
[Expression 1]
Figure 0004396123
[0017]
The present invention also provides a method for producing the above-mentioned sphere, wherein Y is in the range of 3 to 6% by weight. 2 O Three , CeO 2 And a stabilizer in the range of 0.36 to 0.4% by weight 2 O Three And the Fe content is Fe 2 O Three It is 0.003% by weight or less in terms of conversion, and the Ti content is TiO. 2 It is 0.002% by weight or less in terms of conversion, and the Na content is Na 2 It is within the range of 0.001 to 0.02% by weight in terms of O, and the content of the sulfate compound is SO. Four It is within the range of 0.001 to 0.02% by weight in terms of conversion, and the specific surface area is 8 to 13m. 2 / ZrO in the range of 0.3 to 0.6 μm in average secondary particle diameter 2 Partially-stabilized ZrO, characterized in that, after rolling and granulating the powder to obtain a molded sphere, the molded sphere is sintered at a temperature in the range of 1,300 to 1,450 ° C. in an oxidizing atmosphere. 2 A method of manufacturing a sphere is provided. Y in the range of 3 to 6% by weight 2 O Three , CeO 2 And a stabilizer within the range of 0.1 to 0.5% by weight. 2 O Three And the Fe content is Fe 2 O Three It is 0.003% by weight or less in terms of conversion, and the Ti content is TiO. 2 It is 0.002% by weight or less in terms of conversion, and the Na content is Na 2 It is within the range of 0.001 to 0.005% by weight in terms of O, and the content of the sulfate compound is SO. Four It is within the range of 0.005 to 0.03% by weight in terms of conversion, and the specific surface area is 8 to 13 m. 2 / ZrO in the range of 0.3 to 0.6 μm in average secondary particle diameter 2 Partially stabilized ZrO, characterized by spraying and granulating the powder to obtain a molded sphere, and then sintering the molded sphere in an oxidizing atmosphere at a temperature in the range of 1,300 to 1,450 ° C. 2 A method of manufacturing a sphere is provided.
[0018]
In the above, Y 2 O Three , CeO 2 , Al 2 O Three , Fe 2 O Three TiO 2 The content of is determined as follows. That is, about 0.5 g of ZrO 2 Place the powder in a platinum crucible and melt with potassium hydrogen sulfate. This is dissolved in dilute nitric acid and dissolved, ICP emission spectroscopic analysis is used to quantify Y, Ce, Al, Fe, and Ti. 2 O Three , CeO 2 , Al 2 O Three , Fe 2 O Three TiO 2 Convert to.
[0019]
Na 2 The O content is determined as follows. That is, about 0.1 g of ZrO 2 Place the powder in a platinum crucible and melt with potassium hydrogen sulfate. This was dissolved in dilute nitric acid and fixed, and Na was quantified using atomic absorption spectrometry. 2 Convert to O.
[0020]
In addition, SO Four The content of is determined as follows. That is, using water, ZrO 2 The extract extracted from the powder was quantified as a sulfate compound using ion chromatography, and the obtained value was determined as SO. Four Convert to.
[0021]
The specific surface area is determined by the BET 1-point method in accordance with the method defined in JIS R 1626 “Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method”.
[0022]
Further, the average secondary particle size is determined as follows. That is, 210 g of pure water having an electric conductivity of 5 μS / cm and ZrO in a 300 ml beaker. 2 After adding 90 g of powder and stirring well, a 30 wt% slurry is prepared in an ultrasonic generator over 10 minutes. Thereafter, the average secondary particle size is measured using a particle size distribution analyzer. The average secondary particle diameter is a so-called median diameter corresponding to a cumulative distribution of 50%.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The spheres of the present invention comprise a stabilizer in the range of 3 to 6% by weight and Al in the range of 0.36 to 0.4% by weight or 0.1 to 0.5% by weight (depending on the production method). 2 O Three The average crystal particle in the region from the surface to 1/3 of the radius, the bulk density is at least 98% of the theoretical density, the average crystal particle diameter is in the range of 0.1 to 0.4 μm The ratio Ci / Cs between the diameter Cs and the average crystal particle diameter Ci in the region from the spherical center to 2/3 of the radius is in the range of 0.8 to 1.2.
[0024]
The sphere contains a stabilizer in the range of 3-6% by weight. By containing a stabilizer, ZrO is monoclinic at room temperature. 2 Most of the crystal structure is tetragonal, and it is expected that the strength is improved by stress-induced transformation from tetragonal to monoclinic. As a stabilizer, usually Y 2 O Three Is used. Y 2 O Three Is ZrO 2 Improves strength and toughness. Y 2 O Three When is used, the content is within the range of 3 to 6% by weight. If the content is less than 3% by weight, the tetragonal crystals will not be stabilized, and the proportion of monoclinic crystals will increase at room temperature and will not have high strength and high toughness. If it exceeds 6% by weight, the tetragonal crystal is completely stabilized, and stress-induced transformation hardly occurs at room temperature, resulting in a decrease in strength. Y 2 O Three The preferred content range is 4 to 6% by weight. CeO as a stabilizer 2 Can be used. CeO 2 Is usually Y 2 O Three Used together. CeO 2 In addition to improving impact resistance, ZrO even in very small amounts 2 Suppresses thermal degradation of the material and improves wear resistance. Y 2 O Three When used together, the total amount of both is in the range of 3 to 6% by weight.
[0025]
The spheres are also Al within the range of 0.36 to 0.4 wt% or 0.1 to 0.5 wt%. 2 O Three Is included. As will be described later, Al 2 O Three The content of is in the range of 0.36 to 0.4% by weight when the rolling sphere method is used to produce molded spheres for sintering, and when the spray granulation method is used. Is in the range of 0.1 to 0.5% by weight. ZrO 2 The high strength of tetragonal ZrO 2 To monoclinic ZrO 2 Due to the stress-induced transformation to 2 O Three If it is contained, the strength becomes even higher. This is because during sintering, Al 2 O Three Shrinkage amount of ZrO 2 This is because the internal stress of compression is applied because it is smaller than the above. Al 2 O Three Has the effect of strengthening the grain boundary, so that the tensile stress resistance is improved. However, Al 2 O Three If the amount is too large, the toughness is lowered and the wear resistance is lowered. In the present invention, in the resulting sphere, Al 2 O Three The above-mentioned action shown by, and Al during granulation described later 2 O Three In consideration of the balance with the above action, the range is set within the range of 0.36 to 0.4% by weight or 0.1 to 0.5% by weight.
[0026]
The bulk density of the sphere is at least 98% of the theoretical density. Thereby, the wear resistance is greatly improved. That is, when the bulk density is less than 98% of the theoretical density, there are many internal voids and wear increases. In addition, the strength becomes insufficient, and it is cracked or chipped by an impact during use. The bulk density is preferably 99% or more of the theoretical density.
[0027]
The wear resistance of the sphere also depends on the average crystal particle size. That is, when the average crystal grain size is less than 0.1 μm, the wear resistance and impact resistance are greatly lowered because there are many grain boundaries and corrosion is likely to proceed. In addition, when the thickness exceeds 0.4 μm, stress-induced transformation is unlikely to occur, so that not only strength but also hardness and toughness are inferior, and wear resistance and impact resistance are also greatly reduced. A preferable range of the average crystal particle diameter is 0.15 to 0.35 μm, and a more preferable range is 0.2 to 0.35 μm.
[0028]
Further, in order to improve the wear resistance, in addition to the average crystal particle diameter being in the above-mentioned range, the average crystal particle diameter Cs in the region from the surface to 1/3 of the radius and 2 / The ratio Ci / Cs to the average crystal particle diameter Ci in the region up to 3 needs to be in the range of 0.8 to 1.2. For example, when the molded spheres are produced by the rolling granulation method, the average crystal particle diameter of the obtained spheres tends to be larger on the inside than on the surface. When such a sphere is used as a pulverizing / dispersing medium, wear progresses remarkably at the initial stage, and the amount of impurities mixed increases drastically. Further, when the molded spheres are produced by the spray granulation method, the average crystal particle diameter of the obtained spheres tends to be larger near the surface than inside. In other words, the average crystal particle diameter inside is small, the number of internal voids increases, and the voids become the starting point of fracture, so the strength is greatly reduced. When such a sphere is used as a pulverizing / dispersing medium, it is easily broken by impact. Moreover, when the inside begins to appear, wear becomes intense, and the amount of impurities mixed in increases rapidly. Thus, the uniformity of the average crystal particle size greatly affects the progress of wear. And even if the average crystal particle diameter of the sphere is in the range of 0.1 to 0.4 μm, if the ratio Ci / Cs of the average crystal particle diameter is less than 0.8, the internal sintering is insufficient. When used as a pulverization / dispersion medium, cracks due to impacts occur, internal wear becomes severe when the surface is worn, and if the ratio Ci / Cs exceeds 1.2, the surface in the initial stage Wear becomes remarkable. A preferred range of the average crystal particle diameter ratio Ci / Cs is 0.9 to 1.1.
[0029]
The sphere preferably has a surface arithmetic average height Ra of 0.05 μm or less. If the arithmetic average height Ra is too large, the initial wear increases. Moreover, it becomes easy to crack when it receives an impact. A preferable arithmetic average height Ra is 0.03 μm or less.
[0030]
The sphere is also monoclinic ZrO 2 The content of is preferably 10% by weight or less. Monoclinic ZrO 2 This is because if the amount is too large, the strength decreases, and cracks and wear due to impacts are likely to occur.
[0031]
The sphere of the present invention described above can be manufactured by two methods. This is due to the difference in the manufacturing method of the molded spheres used for sintering. One is the production of molded spheres by rolling granulation, and the other is by spray granulation. The former method using the rolling granulation method is suitable for producing a sphere having a sphere diameter in the range of about 0.2 to 10 mm. The latter method via the spray granulation method is suitable for producing a sphere having a sphere diameter of 0.2 mm or less.
[0032]
The method via the rolling granulation method consists of a stabilizer in the range of 3 to 6% by weight and Al in the range of 0.36 to 0.4% by weight. 2 O Three And the Fe content is Fe 2 O Three It is 0.003% by weight or less in terms of conversion, and the Ti content is TiO. 2 It is 0.002% by weight or less in terms of conversion, and the Na content is Na 2 It is within the range of 0.001 to 0.02% by weight in terms of O, and the content of the sulfate compound is SO. Four It is within the range of 0.001 to 0.02% by weight in terms of conversion, and the specific surface area is 8 to 13m. 2 / ZrO in the range of 0.3 to 0.6 μm in average secondary particle diameter 2 In this method, the powder is rolled and granulated to obtain a molded sphere, and then the molded sphere is sintered in an oxidizing atmosphere at a temperature in the range of 1,300 to 1,450 ° C.
[0033]
As is well known, the rolling granulation method uses a granulator such as a rotary dish granulator or a rotary drum granulator, and rolls the powder using water as a granulating agent. This is a method of forming a nucleus and growing the nucleus while adding water and powder to obtain a compacted molded sphere. That is, in this method, a molded sphere is grown while compacting by utilizing the weight of the powder.
[0034]
Now, in the method via the rolling granulation method, ZrO containing the same amount of stabilizer is used in order to obtain a sphere containing the stabilizer in the range of 3 to 6% by weight. 2 Use powder. At this time, Y as a stabilizer 2 O Three In addition to CeO 2 When used together, the sintering temperature can be lowered.
[0035]
ZrO 2 The powder is also Al within the range of 0.36 to 0.4% by weight. 2 O Three Use the one containing. Al 2 O Three Is involved in the compaction of the molded spheres during granulation, and the so-called meat portion grows around the core regardless of whether the content is less than 0.36% by weight or more than 0.4% by weight. As a result, the adhesiveness becomes poor and a part where the consolidation is not sufficient can be formed.
[0036]
ZrO 2 The powder has an Fe content of Fe 2 O Three It is 0.003% by weight or less in terms of conversion, and the Ti content is TiO. 2 It is 0.002% by weight or less in terms of conversion, and the Na content is Na 2 A substance in the range of 0.001 to 0.02% by weight in terms of O is selected and used. That is, ZrO 2 The powder contains metal elements derived from the raw materials as impurities. Fe is ZrO 2 When the amount is large, ZrO 2 Goes in the direction of stabilization, and the strength decreases. In addition, even in a small amount, the color tone becomes yellow and the commercial value of the sphere is reduced, so the content is Fe 2 O Three Select and use 0.003% by weight or less in terms of conversion. Ti is Al 2 O Three Reacts to form a compound, Al 2 O Three Since the above-mentioned granulation action is inhibited, the content is TiO. 2 Select and use 0.002% by weight or less in terms of conversion. If the amount of Na is too small, the familiarity with water deteriorates and consolidation during granulation cannot be performed sufficiently. If too much, ZrO 2 The powders stick together so that a molded sphere with a good shape cannot be obtained, and the particles may grow abnormally during subsequent sintering. Therefore, the Na content is Na 2 A substance in the range of 0.001 to 0.02% by weight in terms of O is selected and used.
[0037]
As described above, Na greatly affects the moldability during granulation. At this time, if an appropriate amount of a sulfate compound such as sodium sulfate or ammonium sulfate is present, inhibition of moldability by Na can be suppressed. It becomes like this. Therefore, in the present invention, the content of the sulfate compound is SO. Four ZrO in the range of 0.001 to 0.02% by weight in terms of conversion 2 Select and use powder. When the amount is less than 0.001% by weight, the above-described suppressing action cannot be expected, and when the amount is more than 0.02% by weight, consolidation is inhibited.
[0038]
ZrO 2 The powder has a specific surface area of 8-13m 2 / G and an average secondary particle diameter in the range of 0.3 to 0.6 μm are selected and used. That is, as described above, the sphere of the present invention has a bulk density of at least 98% of the theoretical density and an average crystal particle diameter in the range of 0.1 to 0.4 μm. In order to obtain a sphere with a small average crystal particle diameter, ZrO excellent in low-temperature sinterability 2 It is necessary to use powder. However, the specific surface area is 8m. 2 If it is less than / g, the low-temperature sinterability is inferior, and in order to obtain the required bulk density, the sintering temperature must be increased, and the average crystal grain size exceeds the above range. 13m 2 If it exceeds / g, the sinterability is good, so the bulk density and the average crystal particle size range are satisfied, but a lot of water is required during granulation, and the adhesion between the powders becomes intense and compaction occurs. It becomes non-uniform. On the other hand, in order to make the average secondary particle diameter less than 0.3 μm, it is necessary to pulverize the powder, but when pulverized, monoclinic ZrO 2 The strength decreases because of the increase. Those exceeding 0.6 μm are inferior in low-temperature sinterability, and in order to obtain the required bulk density, the sintering temperature must be increased, and the average crystal particle diameter exceeds the above-mentioned range.
[0039]
ZrO as described above 2 The powder itself is generally ZrO 2 Using chloride as a raw material, etc., after synthesizing powder using hydrolysis method, neutralization coprecipitation method, thermal decomposition method, hydrothermal method, etc., it is fired at 900-1,000 ° C. and wet by ball mill etc. It can be obtained by grinding and further drying. At this time, Al 2 O Three There are a method of adding with chloride during synthesis and a method of adding with oxide during grinding. In the case of the neutralization coprecipitation method, there is a method in which Na is added as a neutralizing agent in the synthesis of the powder, and a sulfuric acid compound is added as an additive for improving the uniformity of the distribution of the stabilizer. There is. Any of these will remain as impurities in the powder, but the amount can be controlled by washing with water after firing.
[0040]
In the present invention, the above-mentioned powder is rolled and granulated, and the obtained molded sphere is dried and then sintered at a temperature in the range of 1,300 to 1,450 ° C. in an oxidizing atmosphere. A sphere. ZrO with excellent low-temperature sinterability 2 Since the powder is formed into a molded sphere, the bulk density is at least 98% of the theoretical density by sintering at a temperature within the range of 1,350 to 1,450 ° C., and the average crystal particle diameter is 0.1 to The sphere can be in the range of 0.4 μm. The sintering conditions, that is, the sintering temperature and the sintering time are appropriately selected depending on the size of the molded sphere. For example, when the sphere diameter is 1 mm or less, it is about 2 hours at 1,350 ° C. to 1,400 ° C., and for those with a larger sphere diameter, it is 2 to 3 at 1,400 to 1,450 ° C. About time.
[0041]
After sintering, the surface is polished to remove undulations and scratches, and further finished to a mirror surface so that the arithmetic average height Ra is 0.05 μm or less. For polishing, a barrel polishing machine can be used. As the abrasive, SiC, Al 2 O Three Fine particles such as these can be used. After polishing, the desired sphere diameter is obtained by sieving.
[0042]
On the other hand, the spray granulation method, as is well known, sprays a slurry containing water and powder into a spray dryer such as a disk type spray dryer or a nozzle type spray dryer, that is, sprays into a heating space. And granulating. In the present invention, a spray granulation method for producing a molded sphere can be used. ZrO used at this time 2 The powder may be basically the same as that obtained by the rolling granulation method described above. The sintering of the molded spheres, the polishing of the resulting spheres, the classification, etc. are exactly the same as in the rolling granulation method. Below, only a different part from the case by a rolling granulation method is demonstrated.
[0043]
ZrO 2 As powder, Al 2 O Three Is used in a range of 0.1 to 0.5% by weight. That is, when spray granulation is used, Al 2 O Three Does not affect the molding. Therefore, what is necessary is just to determine the content paying attention to the improvement of the intensity | strength of the obtained sphere. Al 2 O Three The content of may be wider than that by the rolling granulation method, and those in the range of 0.1 to 0.5% by weight can be used. If the content is less than 0.1% by weight, an effect of improving the strength cannot be expected, and the resulting sphere is inferior in wear resistance. Moreover, since the toughness will become low if it exceeds 0.5% by weight, it will also be inferior in wear resistance.
[0044]
ZrO 2 As the powder, the Na content is Na 2 It is within the range of 0.001 to 0.005% by weight in terms of O, and the content of the sulfate compound is SO. Four The thing in the range of 0.005-0.03 weight% in conversion is used. Molded spheres by spray granulation are largely dependent on the properties of the slurry, but it is important to prevent large voids and rough parts from being generated inside the molded spheres during drying. During drying, the internal moisture moves to the surface and evaporates from the surface, but if the particles move as the moisture moves, voids are created inside and the interior becomes rough, so the particles do not move. To a certain degree of aggregation. In this regard, Na is Na 2 In the range of 0.001 to 0.005% by weight in terms of O, the sulfuric acid compound is SO Four ZrO in the range of 0.005 to 0.03% by weight in terms of average secondary particle diameter in the range of 0.3 to 0.6 μm 2 Use powder and replace this with ZrO 2 When the slurry has a powder concentration in the range of about 40 to 70% by weight, an appropriate agglomerated state is obtained, and a molded sphere with very few voids and rough portions can be obtained. Na is Na 2 If it is less than 0.001% by weight in terms of O, the viscosity of the slurry becomes low, and many voids and rough parts are generated inside the molded sphere. On the other hand, if it exceeds 0.005% by weight, aggregation of particles becomes strong and stable liquid feeding cannot be performed, and the molded sphere has extremely low uniformity in shape, sphere diameter, internal structure and the like. On the other hand, sulfate compounds are SO Four If the amount is less than 0.005% by weight, the effect of suppressing aggregation cannot be expected, and if it exceeds 0.03% by weight, many large voids and rough parts are generated inside the molded sphere. Become.
[0045]
Examples and Comparative Examples
In the following examples and comparative examples, the average sphere diameter and wear resistance of the spheres were determined as follows.
Average sphere diameter:
The sphere was observed with a stereomicroscope, the image was captured, image processing was performed to determine the equivalent circle diameter, and the average equivalent circle diameter was determined as the average spherical diameter. The n number was 100.
Wear resistance:
Place 1.8 kg of spheres in a ball mill with an internal volume of 660 ml, rub the disc at a speed of 12 m / sec for 40 hours while circulating water maintained at 20 to 30 ° C., and weight Wb before test and after test From the weight Wa of this, it calculated | required by following Formula.
[0046]
Abrasion resistance (%) = ((Wb−Wa) / Wb) × 100
Example 1:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three The concentration is 4.78% by weight, and further AlCl is added. Three Alkaline solution 2 O Three A concentration of 0.38 wt% was added, an aqueous ammonium sulfate solution was added thereto, ammonia water was added to coprecipitate the hydroxide, the coprecipitate was washed with a centrifuge and dried, then 970 A fired body was obtained by firing at 0 ° C. for 2 hours.
[0047]
Next, the obtained fired body is dry-pulverized, wet-pulverized in pure water for 5 hours using a ball mill, fine particles and coarse particles are removed using a wet classifier, and an ultrafiltration apparatus is used. After washing with water, spray drying, coarse particles were removed using a dry classifier, and iron was removed using a deironing device to obtain a powder. In the water washing, the water washing was terminated when the electric conductivity of the aqueous solution separated by the ultrafiltration device reached 40 μs / cm. The specifications of the obtained powder were as follows.
[0048]
Y 2 O Three Content: 4.78% by weight
Al 2 O Three Content: 0.38% by weight
Fe 2 O Three Content: 0.0002% by weight
TiO 2 Content: 0.001% by weight
Na 2 O content: 0.0011% by weight
SO Four Content: 0.006% by weight
Specific surface area: 9.8 m 2 / G
Average secondary particle size: 0.42 μm
Monoclinic ZrO 2 Content: 30% by weight
Next, rolling granulation was performed using the above powder to obtain a molded sphere. The obtained molded spheres were sieved and then sintered in air at 1,380 ° C. for 2 hours. During sintering, the molded sphere is made of Al. 2 O Three Place the setter on the aluminum setter 2 O Three It was put in a metal pot and covered. The obtained sintered body was sieved again and barrel-polished. For polishing, rough polishing with a SiC abrasive for 4 hours, Al 2 O Three The main polishing with the abrasive and the SiC abrasive was 4 hours, and the polishing by rubbing was 4 hours without using the abrasive. The specifications of the sphere thus obtained are shown below.
[0049]
Average sphere diameter: 0.3 mm
Y 2 O Three Content: 4.78% by weight
Al 2 O Three Content: 0.38% by weight
Bulk density: 99.3% of theoretical density
Average crystal particle size: 0.28 μm
Average crystal particle size ratio (ci / Cs): 0.96
Arithmetic mean height Ra: 0.016 μm
Monoclinic ZrO 2 Content: 6% by weight
Wear resistance: 0.05%
Example 2:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three It was added to a concentration of 4.70% by weight, an aqueous sodium sulfate solution was added thereto, an aqueous sodium hydroxide solution was added to coprecipitate the hydroxide, and the coprecipitate was washed with water in a centrifuge and dried. Then, it baked at 980 degreeC for 2 hours, and obtained the sintered body.
[0050]
Next, the fired body obtained was dry-ground and Al 2 O Three Add the powder to 0.37% by weight, wet pulverize in pure water for 5 hours using a ball mill, remove fine particles and coarse particles with a wet classifier, and use an ultrafiltration device. After washing with water, spray drying, coarse particles were removed using a dry classifier, and iron was removed using a deironing device to obtain a powder. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the ultrafiltration device reached 180 μs / cm. The specifications of the obtained powder were as follows.
[0051]
Y 2 O Three Content: 4.70% by weight
Al 2 O Three Content: 0.37% by weight
Fe 2 O Three Content: 0.0003 wt%
TiO 2 Content: 0.001% by weight
Na 2 O content: 0.016% by weight
SO Four Content: 0.013% by weight
Specific surface area: 8.5 m 2 / G
Average secondary particle size: 0.46 μm
Monoclinic ZrO 2 Content: 23% by weight
Next, rolling granulation was performed using the above powder to obtain a molded sphere. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,400 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the sphere. The specifications of the sphere thus obtained are shown below.
[0052]
Average sphere diameter: 3.0 mm
Y 2 O Three Content: 4.70% by weight
Al 2 O Three Content: 0.37% by weight
Bulk density: 99.3% of theoretical density
Average crystal particle size: 0.30 μm
Average crystal particle size ratio (ci / Cs): 0.93
Arithmetic mean height Ra: 0.022 μm
Monoclinic ZrO 2 Content: 4.3% by weight
Abrasion resistance: 0.04%
Example 3:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three The concentration is 5.16% by weight, and AlCl Three Alkaline solution 2 O Three After adding an aqueous ammonium sulfate solution to a concentration of 0.38% by weight, ammonia water was added to coprecipitate the hydroxide, and the coprecipitate was washed with a centrifuge and dried, and then 950 ° C. Was fired for 2 hours to obtain a fired body.
[0053]
Next, the obtained fired body is dry-pulverized, wet-pulverized in pure water for 5 hours using a ball mill, fine particles and coarse particles are removed using a wet classifier, and an ultrafiltration apparatus is used. After washing with water, spray drying, coarse particles were removed using a dry classifier, and iron was removed using a deironing device to obtain a powder. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the ultrafiltration device reached 30 μs / cm. The specifications of the obtained powder were as follows.
[0054]
Y 2 O Three Content: 5.16% by weight
Al 2 O Three Content: 0.38% by weight
Fe 2 O Three Content: 0.0002% by weight
TiO 2 Content: 0.001% by weight
Na 2 O content: 0.0010% by weight
SO Four Content: 0.020% by weight
Specific surface area: 13.0m 2 / G
Average secondary particle size: 0.42 μm
Monoclinic ZrO 2 Content: 28% by weight
Next, the powder was spray-granulated as a slurry having a concentration of 50% by weight to obtain molded spheres. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,350 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the sphere. The specifications of the sphere thus obtained are shown below.
[0055]
Average sphere diameter: 0.1 mm
Y 2 O Three Content: 4.78% by weight
Al 2 O Three Content: 0.38% by weight
Bulk density: 99.4% of theoretical density
Average crystal particle size: 0.27 μm
Average crystal particle size ratio (ci / Cs): 0.98
Arithmetic mean height Ra: 0.009 μm
Monoclinic ZrO 2 Content: 2.3% by weight
Abrasion resistance: 0.06%
Example 4:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three The concentration is 5.39 wt%, and CeCl Four Aqueous solution of CeO 2 In addition to the concentration of 0.35% by weight, AlCl Three Alkaline solution 2 O Three After adding an aqueous ammonium sulfate solution to a concentration of 0.26 wt%, ammonia water was added to coprecipitate the hydroxide, and the coprecipitate was washed with water by a centrifuge and dried, then 960 ° C. Was fired for 2 hours to obtain a fired body.
[0056]
Next, the fired body obtained is dry-pulverized, wet-pulverized in pure water for 5 hours using a ball mill, fine particles and coarse particles are removed with a wet classifier, and washed with water using an ultrafiltration device. Then, the particles were spray-dried, coarse particles were removed using a dry classifier, and iron was removed using a deironing device to obtain a powder. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the ultrafiltration device reached 50 μs / cm. The specifications of the obtained powder were as follows.
[0057]
Y 2 O Three Content: 5.39% by weight
CeO 2 Content: 0.35% by weight
Al 2 O Three Content: 0.26% by weight
Fe 2 O Three Content: 0.0004% by weight
TiO 2 Content: 0.0012% by weight
Na 2 O content: 0.0011% by weight
SO Four Content: 0.025% by weight
Specific surface area: 11.8m 2 / G
Average secondary particle size: 0.45 μm
Monoclinic ZrO 2 Content: 20% by weight
Next, the powder was spray-granulated as a slurry having a concentration of 52% by weight to obtain molded spheres. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,350 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the sphere. The specifications of the sphere thus obtained are shown below.
[0058]
Average sphere diameter: 0.1 mm
Y 2 O Three Content: 4.78% by weight
Al 2 O Three Content: 0.38% by weight
Bulk density: 99.0% of theoretical density
Average crystal particle size: 0.24 μm
Average crystal particle size ratio (ci / Cs): 1.04
Arithmetic average height Ra: 0.015 μm
Monoclinic ZrO 2 Content: 5.7% by weight
Abrasion resistance: 0.08%
Example 5:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three The concentration is 4.75% by weight, and AlCl is added thereto. Three Alkaline solution 2 O Three After adding a sodium sulfate aqueous solution after adding 0.39% by weight as a concentration, sodium hydroxide aqueous solution was added to coprecipitate the hydroxide, and the coprecipitate was washed with a centrifuge and dried. Baked at 970 ° C. for 2 hours to obtain a fired body.
[0059]
Next, the fired body obtained is dry-pulverized, wet-pulverized in pure water for 5 hours using a ball mill, fine particles and coarse particles are removed with a wet classifier, and washed with water using an ultrafiltration device. Then, it was spray dried, coarse particles were removed using a dry classifier, and iron was removed using a deironing device to obtain a powder. In the water washing, the water washing was terminated when the electric conductivity of the aqueous solution separated by the ultrafiltration device reached 100 μs / cm. The specifications of the obtained powder were as follows.
[0060]
Y 2 O Three Content: 4.75% by weight
Al 2 O Three Content: 0.39% by weight
Fe 2 O Three Content: 0.0003 wt%
TiO 2 Content: 0.0011% by weight
Na 2 O content: 0.0035% by weight
SO Four Content: 0.011% by weight
Specific surface area: 10.5m 2 / G
Average secondary particle size: 0.38 μm
Monoclinic ZrO 2 Content: 22% by weight
Next, the powder was spray-granulated as a slurry having a concentration of 52% by weight to obtain molded spheres. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,370 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the sphere. The specifications of the sphere thus obtained are shown below.
[0061]
Average sphere diameter: 0.2 mm
Y 2 O Three Content: 4.78% by weight
Al 2 O Three Content: 0.38% by weight
Bulk density: 99.3% of theoretical density
Average crystal particle size: 0.26 μm
Average crystal particle size ratio (ci / Cs): 0.95
Arithmetic mean height Ra: 0.008 μm
Monoclinic ZrO 2 Content: 6.0% by weight
Abrasion resistance: 0.06%
Comparative Example 1:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three The concentration was 5.4% by weight, an aqueous sodium sulfate solution was added thereto, and then an aqueous sodium hydroxide solution was added to coprecipitate the hydroxide, and the coprecipitate was washed with water in a centrifuge and dried. Thereafter, it was fired at 1,050 ° C. for 2 hours to obtain a fired body. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the centrifuge reached 400 μs / cm.
[0062]
Next, the fired body obtained was dry-ground and Al 2 O Three The powder was added to 0.30% by weight, wet pulverized for 3 hours using a ball mill, spray-dried, and coarse particles were removed using a dry classifier to obtain a powder. The specifications of the obtained powder were as follows.
[0063]
Y 2 O Three Content: 5.4% by weight
Al 2 O Three Content: 0.30% by weight
Fe 2 O Three Content: 0.008% by weight
TiO 2 Content: 0.01% by weight
Na 2 O content: 0.03% by weight
SO Four Content: 0.05% by weight
Specific surface area: 6.5 m 2 / G
Average secondary particle size: 1.2 μm
Monoclinic ZrO 2 Content: 12% by weight
Next, rolling granulation was performed using the above powder to obtain a molded sphere. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,500 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the spherical body. The specifications of the sphere thus obtained are shown below.
[0064]
Average sphere diameter: 0.3 mm
Y 2 O Three Content: 5.4% by weight
Al 2 O Three Content: 0.30% by weight
Bulk density: 98.3% of theoretical density
Average crystal particle size: 0.46 μm
Average crystal particle size ratio (ci / Cs): 1.23
Arithmetic mean height Ra: 0.06 μm
Monoclinic ZrO 2 Content: 12.3% by weight
Abrasion resistance: 0.32%
Comparative Example 2:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three A concentration of 5.0% by weight was added, and a sodium hydroxide aqueous solution was added thereto to coprecipitate the hydroxide. The coprecipitate was washed with a centrifuge and dried, and then at 950 ° C., 2%. A fired body was obtained by firing for a period of time. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the centrifuge reached 400 μs / cm.
[0065]
Next, the obtained fired body was dry-ground, wet-ground for 10 hours using a ball mill, and spray-dried to obtain a powder. The specifications of the obtained powder were as follows.
[0066]
Y 2 O Three Content: 5.0% by weight
Al 2 O Three Content: 0% by weight
Fe 2 O Three Content: 0.005% by weight
TiO 2 Content: 0.02% by weight
Na 2 O content: 0.04% by weight
SO Four Content: 0.001% by weight
Specific surface area: 16.0 m 2 / G
Average secondary particle size: 0.30 μm
Monoclinic ZrO 2 Content: 44% by weight
Next, the powder was spray-granulated as a slurry having a concentration of 33% by weight to obtain a molded sphere. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,350 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the spherical body. The specifications of the sphere thus obtained are shown below.
[0067]
Average sphere diameter: 0.1 mm
Y 2 O Three Content: 5.0% by weight
Al 2 O Three Content: 0% by weight
Bulk density: 97.8% of theoretical density
Average crystal particle size: 0.24 μm
Average crystal particle size ratio (ci / Cs): 0.77
Arithmetic mean height Ra: 0.08 μm
Monoclinic ZrO 2 Content: 8.9% by weight
Wear resistance: 0.24%
Comparative Example 3:
ZrOCl 2 YCl in aqueous solution Three Y 2 O Three A concentration of 5.7% by weight was added, an aqueous ammonium sulfate solution was added thereto, an aqueous ammonium solution was added to coprecipitate the hydroxide, and the coprecipitate was washed with water in a centrifuge and dried, then 920 A fired body was obtained by firing at 0 ° C. for 2 hours.
[0068]
Next, the fired body obtained was dry-ground and Al 2 O Three Add the powder to 0.32% by weight, wet pulverize for 10 hours using a ball mill, wash with water using an ultrafiltration device, spray dry, and remove coarse particles using a dry classifier. A powder was obtained. In the water washing, the water washing was terminated when the electrical conductivity of the aqueous solution separated by the ultrafiltration device reached 5 μs / cm. The specifications of the obtained powder were as follows.
[0069]
Y 2 O Three Content: 5.7% by weight
Al 2 O Three Content: 0.32% by weight
Fe 2 O Three Content: 0.008% by weight
TiO 2 Content: 0.002% by weight
Na 2 O content: 0.0004% by weight
SO Four Content: 0.001% by weight
Specific surface area: 18.0 m 2 / G
Average secondary particle size: 0.28 μm
Monoclinic ZrO 2 Content: 45% by weight
Next, the powder was spray-granulated as a slurry having a concentration of 35% by weight to obtain molded spheres. The obtained molded spheres were sieved and then sintered in the atmosphere at 1,350 ° C. for 2 hours in the same manner as in Example 1. Furthermore, it grind | polished like Example 1 and obtained the spherical body. The specifications of the sphere thus obtained are shown below.
[0070]
Average sphere diameter: 0.2 mm
Y 2 O Three Content: 5.7% by weight
Al 2 O Three Content: 0.32% by weight
Bulk density: 97.3% of theoretical density
Average crystal particle size: 0.23 μm
Average crystal particle size ratio (ci / Cs): 1.23
Arithmetic mean height Ra: 0.10 μm
Monoclinic ZrO 2 Content: 8.3% by weight
Wear resistance: 0.22%
[0071]
【The invention's effect】
The spheres of the present invention comprise a stabilizer in the range of 3-6% by weight and Al in the range of 0.35-0.4% by weight or in the range of 0.1-0.5% by weight. 2 O Three The average crystal particle in the region from the surface to 1/3 of the radius, the bulk density is at least 98% of the theoretical density, the average crystal particle diameter is in the range of 0.1 to 0.4 μm Since the ratio Ci / Cs between the diameter Cs and the average crystal particle diameter Ci in the region from the sphere center to 2/3 of the radius is in the range of 0.8 to 1.2, the examples and comparative examples As is clear from the comparison, it has excellent wear resistance and durability. Therefore, it is suitable as a pulverizing / dispersing medium. Moreover, such spheres can be easily obtained by rolling granulation or spray granulation.

Claims (7)

3〜6重量%の範囲内の安定化剤と、0.36〜0.4重量%の範囲内のAl23とを含み、かさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあり、かつ、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にあることを特徴とする部分安定化ZrO2球体。A stabilizing agent in the range of 3-6 wt%, and a Al 2 O 3 in the range of 0.36 to 0.4 wt%, bulk density of at least 98% of the theoretical density, average crystal grain The average crystal particle diameter Cs in the region from 0.1 to 0.4 μm in diameter and from the surface to 1/3 of the radius and the average crystal particle size Ci in the region from the sphere center to 2/3 of the radius. A partially stabilized ZrO 2 sphere, wherein the ratio Ci / Cs is in the range of 0.8 to 1.2. 3〜6重量%の範囲内の安定化剤と、0.1〜0.5重量%の範囲内のAl23とを含み、かさ密度が理論密度の少なくとも98%であり、平均結晶粒子径が0.1〜0.4μmの範囲内にあり、かつ、表面から半径の1/3までの領域における平均結晶粒子径Csと球心から半径の2/3までの領域における平均結晶粒子径Ciとの比Ci/Csが0.8〜1.2の範囲内にあることを特徴とする部分安定化ZrO2球体。Average crystal grains comprising a stabilizer in the range of 3-6% by weight and Al 2 O 3 in the range of 0.1-0.5% by weight, the bulk density being at least 98% of the theoretical density The average crystal particle diameter Cs in the region from 0.1 to 0.4 μm in diameter and from the surface to 1/3 of the radius and the average crystal particle size Ci in the region from the sphere center to 2/3 of the radius. A partially stabilized ZrO 2 sphere, wherein the ratio Ci / Cs is in the range of 0.8 to 1.2. 表面の算術平均高さRaが0.05μm以下である、請求項1または2に記載の部分安定化ZrO2球体。The partially stabilized ZrO 2 sphere according to claim 1 or 2, wherein the arithmetic average height Ra of the surface is 0.05 µm or less. 単斜晶ZrO2の含有量が10重量%以下である、請求項1〜3のいずれかに記載の部分安定化ZrO2球体。The partially stabilized ZrO 2 sphere according to any one of claims 1 to 3, wherein the content of monoclinic ZrO 2 is 10% by weight or less. 請求項1〜4のいずれかに記載の部分安定化ZrO2球体からなる粉砕・分散媒体。A pulverizing / dispersing medium comprising the partially stabilized ZrO 2 sphere according to claim 1. 3〜6重量%の範囲内の安定化剤と、0.36〜0.4重量%の範囲内のAl23とを含み、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.02重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.001〜0.02重量%の範囲内にあり、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を転動造粒して成形球体を得た後、成形球体を酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結することを特徴とする部分安定化ZrO2球体の製造方法。It contains a stabilizer in the range of 3 to 6% by weight and Al 2 O 3 in the range of 0.36 to 0.4% by weight, and the Fe content is 0.003% in terms of Fe 2 O 3 % Or less, the Ti content is 0.002% by weight or less in terms of TiO 2 , the Na content is in the range of 0.001 to 0.02% by weight in terms of Na 2 O, and the sulfuric acid compound Is in the range of 0.001 to 0.02% by weight in terms of SO 4 , the specific surface area is in the range of 8 to 13 m 2 / g, and the average secondary particle size is 0.3 to 0.00. After rolling and granulating ZrO 2 powder in the range of 6 μm to obtain molded spheres, the molded spheres are sintered in an oxidizing atmosphere at a temperature in the range of 1,300 to 1,450 ° C. A method for producing a partially stabilized ZrO 2 sphere characterized by 3〜6重量%の範囲内の安定化剤と、0.1〜0.5重量%の範囲内のAl23とを含み、Feの含有量がFe23換算で0.003重量%以下であり、Tiの含有量がTiO2換算で0.002重量%以下であり、Naの含有量がNa2O換算で0.001〜0.005重量%の範囲内にあり、硫酸化合物の含有量がSO4換算で0.005〜0.03重量%の範囲内にあり、比表面積が8〜13m2/gの範囲内にあり、平均二次粒子径が0.3〜0.6μmの範囲内にあるZrO2粉末を噴霧造粒して成形球体を得た後、成形球体を酸化性雰囲気中にて1,300〜1,450℃の範囲内の温度で焼結することを特徴とする部分安定化ZrO2球体の製造方法。It contains a stabilizer in the range of 3 to 6% by weight and Al 2 O 3 in the range of 0.1 to 0.5% by weight, and the Fe content is 0.003% in terms of Fe 2 O 3 And the content of Ti is 0.002% by weight or less in terms of TiO 2 , the content of Na is in the range of 0.001 to 0.005% by weight in terms of Na 2 O, and the sulfuric acid compound Is in the range of 0.005 to 0.03% by weight in terms of SO 4 , the specific surface area is in the range of 8 to 13 m 2 / g, and the average secondary particle size is 0.3 to 0.00. After spray granulating ZrO 2 powder in the range of 6 μm to obtain a molded sphere, sintering the molded sphere at a temperature in the range of 1,300 to 1,450 ° C. in an oxidizing atmosphere. A method for producing a partially stabilized ZrO 2 sphere characterized.
JP2003107469A 2003-04-11 2003-04-11 Partially stabilized ZrO2 sphere and method for producing the same Expired - Lifetime JP4396123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107469A JP4396123B2 (en) 2003-04-11 2003-04-11 Partially stabilized ZrO2 sphere and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107469A JP4396123B2 (en) 2003-04-11 2003-04-11 Partially stabilized ZrO2 sphere and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004315246A JP2004315246A (en) 2004-11-11
JP4396123B2 true JP4396123B2 (en) 2010-01-13

Family

ID=33469292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107469A Expired - Lifetime JP4396123B2 (en) 2003-04-11 2003-04-11 Partially stabilized ZrO2 sphere and method for producing the same

Country Status (1)

Country Link
JP (1) JP4396123B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143551A (en) * 2004-11-24 2006-06-08 Toray Ind Inc Zirconia powder
JP2006298711A (en) * 2005-04-22 2006-11-02 Toray Ind Inc ZrO2 SINTERED COMPACT AND ITS MANUFACTURING METHOD, MEMBER OF CRUSHER, AND CRUSHER
JP7287060B2 (en) * 2018-03-29 2023-06-06 東レ株式会社 ceramic ball
CN119013101A (en) 2022-04-25 2024-11-22 株式会社日化陶 Zirconia media, bearing balls, and methods for producing these

Also Published As

Publication number Publication date
JP2004315246A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5578784B2 (en) Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
JP2012528782A (en) Sintered products based on alumina and zirconia
JP5356665B2 (en) Zirconia sintered body
JP3368507B2 (en) Zirconia powder and method for producing the same
TWI628271B (en) Abrasive material, method for producing the same, and polishing slurry containing the same
JP4396123B2 (en) Partially stabilized ZrO2 sphere and method for producing the same
JP4660905B2 (en) Method for producing zirconia microspheres
JP5356639B2 (en) Zirconia fine powder and method for producing the same
KR102683221B1 (en) sintered zircon beads
JP4254222B2 (en) Zirconia powder
JP4253877B2 (en) Zirconia fine powder and method for producing the same
JP2021155328A (en) Ceramic spherical body
CN114206803A (en) Wear-resistant aluminum oxide sintered body
JPH08337473A (en) Member for dispersing-pulverizing machine made of zirconia
JP3284244B2 (en) Zirconium oxide powder and method for producing the same
JP2011121153A (en) Abrasive
JP2004075425A (en) Partially stabilized zirconia sintered compact
JP3298206B2 (en) Zirconia powder composition for tumbling granulation
JP2006298711A (en) ZrO2 SINTERED COMPACT AND ITS MANUFACTURING METHOD, MEMBER OF CRUSHER, AND CRUSHER
CN116669856A (en) magnetic ball
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JPH0813704B2 (en) Material for crusher
JP4507859B2 (en) Zirconium oxide bed powder
JP3257095B2 (en) Method for producing zirconia powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4396123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

EXPY Cancellation because of completion of term