[go: up one dir, main page]

JP4396007B2 - High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same - Google Patents

High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same Download PDF

Info

Publication number
JP4396007B2
JP4396007B2 JP2000217275A JP2000217275A JP4396007B2 JP 4396007 B2 JP4396007 B2 JP 4396007B2 JP 2000217275 A JP2000217275 A JP 2000217275A JP 2000217275 A JP2000217275 A JP 2000217275A JP 4396007 B2 JP4396007 B2 JP 4396007B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
group
less
age hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217275A
Other languages
Japanese (ja)
Other versions
JP2002030385A (en
Inventor
達也 中垣内
章男 登坂
真次郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000217275A priority Critical patent/JP4396007B2/en
Publication of JP2002030385A publication Critical patent/JP2002030385A/en
Application granted granted Critical
Publication of JP4396007B2 publication Critical patent/JP4396007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歪時効硬化特性に優れた高張力高加工性熱延鋼板およびその製造方法に関し、とくに、自動車用鋼板としての用途において好適な歪時効硬化特性に優れた高張力高加工性熱延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
自動車の軽量化が指向される中、成形性に優れる高強度薄鋼板に対する要求が強くなってきている。さらに、経済性に対する配慮も必要とされ、かかる経済性を考慮した場合は、冷延鋼板に比べると熱延鋼板の方が有利である。
上記の現状を背景として、これまでにも成形性を考慮した高強度熱延鋼板が種々開発されている。この種の熱延鋼板として、一つには、フェライト+マルテンサイトの複合組織を有するDual-Phase鋼(以下DP鋼という)があり、強度−伸びバランスの優れた鋼として使用されてきた。
【0003】
さらに、特公平6−41617 号公報、特公平5−65566 号公報および特公平5−67682 号公報には、高加工性高強度熱延鋼板として、フェライト、べイナイトおよび5%以上の残留オーステナイトを含むいわゆるTransformation Induced Plasticity 鋼(以下TRIP鋼という)の製造方法が開示されている。このようなTRIP鋼においては、DP鋼では20000MPa・%程度までであった引張強度(TS)と伸び(El)の積(TS×El)をさらに向上させることが可能となった。しかし、現在、使用者のニーズによりさらなる強度−伸び特性を有する高強度熱延鋼板の開発が望まれている。
【0004】
このような要求に対して、プレス成形後に行われる 170℃×20分程度の塗装焼付け工程で起こる歪時効硬化現象を利用することが有利であると考えられる。例えば、外板パネル用の冷延鋼板では、極低炭素鋼を素材として、最終的に固溶状態で残存するC量を適正範囲に制御する鋼板製造技術が知られている。このような鋼板に塗装焼付け処理を行うことにより、成形後のYSが上昇し耐デント性が向上する。しかし、この技術では、表面欠陥となるストレッチャーストレインの発生を防止する観点から、そのYS上昇量は低く抑えられ、実際の鋼板の薄肉化に寄与するところは小さいという難点があった。
【0005】
また、外観があまり問題とならない用途に対しては、固溶Nを用いて焼付け硬化量をさらに増加させた鋼板(特公平7−30408 号公報)や、組織をフェライトとマルテンサイトからなる複合組織とすることで焼き付け硬化性をよりいっそう向上させた鋼板(特公平8−23048 号公報)が提案されている。
しかし、特公平7−30408 号公報に開示される鋼板では、塗装焼付け後にYSがある程度上昇し高い焼付け硬化量が得られるものの、TSまでは上昇させることはできず、成形後の耐疲労特性、耐衝撃特性の大きな向上が期待できない。このため、耐疲労特性、耐衝撃特性等が要求される使途への適用ができないという問題が残されていた。また、特公平8−23048 号公報に開示される鋼板は、極めて低い温度で巻き取る必要があるため、とくに板厚の薄い鋼板を製造しようとすると安定製造が困難であり、YSの増加量が大きくばらつくなど機械的性質の変動も大きいため、現在要望されている自動車部品の軽量化に寄与できるほどの鋼板の薄肉化が期待できないという問題もあった。さらに、とくに薄肉化を達成するために板厚2.0mm 以下の薄鋼板を製造する場合には、鋼板の形状が大きく乱れるため、プレス成形が著しく困難になるという問題もあった。
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術の限界を打破し、高い成形性と安定した品質特性を有するうえ、自動車部品に成形した後に十分な自動車部品強度が得られ、自動車車体の軽量化に十分寄与できる、歪時効硬化特性に優れた高張力高加工性熱延鋼板およびその製造方法を提供することを目的とする。具体的には、440MPa以上の引張強度(TS)を有し、かつ、5%塑性変形させたのち除荷し、引続き、温度:170 ℃×時間:20分の条件で熱処理する歪時効処理を受けた場合、変形応力増加量(BH)が80MPa 以上でかつ引張強度増加量(ΔTS)が40MPa 以上になる歪時効硬化特性を有する高張力高加工性熱延鋼板を提供することを目的とする。ここに、BH、ΔTSは以下の式で定義される。
【0007】
BH=熱処理後の降伏応力(YS)−除荷前の変形応力
ΔTS=歪時効処理後のTS−歪時効処理前のTS
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために成分および製造方法を種々変えて鋼板を製造し、多くの材料評価を行った。その結果、高加工性が要求される分野ではあまり積極的に利用されることがなかったNを強化元素として、かかる強化元素の作用により発現する大きな歪時効硬化現象を有効に活用することにより、成形性の向上と高強度化を容易に両立させうることを知見した。
【0009】
さらに、本発明者らは、Nによる歪時効硬化現象を有効に活用するためには、Nによる歪時効硬化現象を自動車の塗装焼き付け条件、あるいはさらに積極的に成形後の熱処理条件と有利に結合させる必要があり、このために、熱延条件を適正化して鋼板の微視組織と固溶N量とをある範囲に制御することが有効であることを見いだした。また、Nによる歪時効硬化現象を安定して発現させるためには、組成の面で、特にAl含有量をN含有量に応じて制御することが重要であることも見出した。
【0010】
本発明は、これらの知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)質量百分率で、
C:0.05〜0.40%、 Si:1.0 〜3.0 %、 Mn:0.6 〜3.0 %、
Al:0.02%以下、 N:0.0050〜0.0250%
を含み、かつN/Al:0.30以上、固溶N:0.0010%以上、残部はFeおよび不可避的不純物である組成、および、フェライト:50体積%以上、残留オーステナイト:3.0 体積%以上を含み、前記フェライトの平均結晶粒径が10.0μm以下である組織を有することを特徴とする歪時効硬化特性に優れた高張力高加工性熱延鋼板。
【0011】
(2)前記組成がさらに、下記a群〜c群のうちから選ばれた1群または2群以上を含むことを特徴とする(1)記載の歪時効硬化特性に優れた高張力高加工性熱延鋼板。

a群:Cr:0.2 〜2.0 %、P:0.01〜0.2 %のうちの1種または2種
b群:Ti:0.005 〜0.25%、Nb:0.003 〜0.1 %のうちの1種または2種
c群:Ca:0.001 〜0.01%
なお、N/AlはN含有量(%)/Al含有量(%)を意味する。また、固溶Nは、固溶状態のNを意味する。
【0012】
(3)質量百分率で、
C:0.05〜0.20%、 Si:1.0 〜3.0 %、 Mn:0.6 〜3.0 %、
Al:0.02%以下、 N:0.0050〜0.0250%、
あるいはさらに、下記a群〜c群のうちから選ばれた1群または2群以上
を含み、N/Al:0.3 以上であり、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブを、1000〜1300℃に加熱し、粗圧延後、最終パス圧下率:15%以上および/または後段3パス累積圧下率:50%以上とし、かつ圧延終了温度: 780〜 980℃として仕上圧延し、この仕上圧延終了後、直ちに50℃/s以上の冷却速度で 620〜 780℃の範囲内の第1の温度まで急冷し、ついで該第1の温度に1.0 〜10秒間等温保持するかまたは該第1の温度未満600 ℃以上の範囲内の第2の温度まで20℃/s以下の冷却速度で1.0 〜10秒間徐冷し、ついで50℃/s以上の冷却速度で 300〜500 ℃の範囲内の第3の温度まで急冷してから巻き取ることを特徴とする歪時効硬化特性に優れた高張力高加工性熱延鋼板の製造方法。
【0013】

a群:Cr:0.2 〜2.0 %、P:0.01〜0.2 %のうちの1種または2種
b群:Ti:0.005 〜0.25%、Nb:0.003 〜0.1 %のうちの1種または2種
c群:Ca:0.001 〜0.01%
【0014】
【発明の実施の形態】
まず、本発明鋼板の組成(化学組成)について説明する。なお、以後、化学成分含有量については、質量百分率を%と略記する。
C:0.05〜0.40%
Cは、鋼の強化に寄与するだけでなく、残留オーステナイトを得るうえでも有効な元素であるが、0.05%未満ではその効果に乏しく、一方、0.40%を超えると延性および溶接性を低下させるので、0.05〜0.40%とした。なお、好ましくは0.10〜0.25%である。
【0015】
Si:1.0 〜3.0 %
Siは、残留オーステナイトの生成に不可欠な元素であり、そのためには少なくとも1.0 %の添加含有を必要とするが、3.0 %を超えると延性の低下を招くだけでなくスケール性状を低下させ表面品質上も問題となるので、1.0 〜3.0 %とした。なお、好ましくは1.0 〜2.0 %である。
【0016】
Mn:0.6 〜3.0 %
Mnは、鋼の強化元素として有用なだけでなく、残留オーステナイトを得るうえでも有効な元素であるが、0.6 %未満ではその効果に乏しく、一方、3.0 %を超えると延性の低下を招くので、0.6 〜3.0 %とした。なお、熱延条件の変動に対する鋼板の機械的性質および歪時効硬化特性のばらつきをより小さくしてさらなる品質安定化を図る観点からは、Mn量は1.2 %以上が好ましく、さらに好ましくは1.5 %以上である。
【0017】
Al:0.02%以下
Al含有量の抑制は本発明において特に重要である。Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有効な元素であり、鋼の組織微細化のためにも添加が望ましい元素である。しかし、本発明では、過剰のAl添加は表面性状の悪化につながり、また固溶Nを確保し難くする。また、固溶Nを確保できたとしても、Alが0.02%を超えると、製造条件の変動による歪時効硬化特性のばらつきが大きくなる。そのため、Alは0.02%以下に制限される。なお、材質安定性の観点からは、Al:0.001 〜0.015 %が望ましい。
【0018】
N:0.0050〜0.0250%
Nは、本発明において最も重要な添加元素である。すなわち、Nを適量添加して製造条件を制御することにより、母板(熱延まま状態の鋼板)で固溶Nを必要かつ十分な量だけ確保することができ、それによって固溶強化と歪時効硬化での強度(YS,TS)の上昇効果が十分に発揮され、TS 440MPa 以上,BH80MPa 以上、ΔTS40MPa 以上の目標特性を安定して達成することができる。また、Nは鋼の変態点(Ar3 )を降下させる効果もあり、薄物で変態点を大きく割り込んだ圧延が忌避される状況下での操業安定化にも有効である。さらに、Nはオーステナイト安定化元素であり、残留オーステナイトの生成にも有効な元素である。
【0019】
Nが0.0050%未満では、上記の諸々の効果が安定して現れにくい。一方、Nが0.0250%を超えると、鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどが多発するようになる。よって、N含有量は0.0050〜0.0250%に限定した。なお、製造工程全体を考慮した材質の安定性・歩留り向上の観点からは、0.0070〜0.0170%が好ましい。なお、本発明範囲内のN量であれば、溶接性や熱間加工性への悪影響はまったくない。
【0020】
固溶N:0.0010%以上
母板で十分な強度が確保され、さらにNによる歪時効硬化が十分に大きく発現するには、固溶Nが0.0010%以上の量で存在する必要がある。ここで、固溶N量は、鋼中の全N量から析出N量を差し引いて求める。析出Nの抽出法、すなわち地鉄を溶解する方法としては、酸分解法、ハロゲン法および電解法があるが、本発明者らがこれら抽出法について比較検討した結果、電解法は炭化物、窒化物等の極めて不安定な析出物を分解することなく、安定して地鉄のみを溶解できる。このため、本発明では電解法により析出Nを抽出するものとする。また、電解液としてアセチル・アセトン系を用い、定電位にて電解する。以上の電解法により抽出した残渣を化学分析して、残渣中のN量を求め、これを析出Nとする。
【0021】
なお、より高位のBH、ΔTSを達成するには、固溶Nは0.0020%以上、さらに高位の場合は、0.0030%以上が好ましい。
N/Al:0.30以上
前述のように、製造条件の変動によらず安定して母板に固溶Nを0.0010%以上存在させるには、Nを強力に固定する元素であるAlの量を制限する必要があり、Alを0.02%以下とする必要がある。本発明の組成範囲内でN量とAl量の組合せ広範囲に変えた鋼について熱延後の固溶Nが0.0010%以上になる条件を探索した結果、かかる条件が、N/Alを0.30%以上として仕上圧延後の冷却条件および巻取温度条件を適正範囲に収めることにあると判明した。したがって、N/Alは0.30以上とする。
【0022】
Cr:0.2 〜2.0 %、P:0.01〜0.2 %
CrおよびPは、いずれも残留オーステナイト生成元素として有用であり、必要に応じて何れか一方または両方を添加することができるが、Crは0.2 %、Pは0.01%に満たないとその効果に乏しく、一方、Crが2.0 %を超えると粗大なCr炭化物が生成して延性が阻害され、Pが0.2 %を超えると耐二次加工性が劣化するので、添加する場合はCrは0.2 〜2.0 %、Pは0.01〜0.2 %が望ましい。
【0023】
Ti:0.005 〜0.25%、Nb:0.003 〜0.1 %
TiおよびNbはいずれも、組織の基地相であるフェライトを細粒化させることによって強度の向上に寄与するので、必要に応じて何れか一方または両方を添加することができるが、含有量があまりに少ないとその添加効果に乏しく、一方、過度の添加は延性の低下を招くので、添加する場合はそれぞれ上記の範囲で含有させることが望ましい。
【0024】
Ca:0.001 〜0.01%
Caは、伸びフランジ性向上のために添加することができるが、0.001 %に満たないとその効果に乏しく、一方、0.01%を超えると耐食性の劣化を招くので、添加する場合は0.001 〜0.01%が望ましい。
本発明鋼板の組成では、上記の成分以外の残部は実質的にFe、すなわちFeおよび不可避的不純物である。なお、不可避的不純物としては、S:0.01%以下、O:0.01%以下が許容できる。
【0025】
なお、Cr,P,Ti,Nb,Caについても、不可避的不純物として、上述した下限値未満の範囲で含有されていてもかまわない。
つぎに、本発明鋼板の組織について説明する。
フェライト:50体積%以上
フェライトが50体積%に満たない組織では、自動車用鋼板としての加工性を確保できないので、フェライトは50体積%以上とする。なお、好ましくは70体積%以上である。ここで、フェライトとしては、通常の意味のフェライト(ポリゴナルフェライト)のみならず、炭化物を含まないベイニティックフェライト、アシキュラーフェライトをも含むものとする。
【0026】
残留オーステナイト:3.0 体積%以上
残留オーステナイトは、組織の一構成相とすることにより鋼の伸び特性を向上させる効果があるが、3.0 体積%に満たないとその効果に乏しいので、3.0 体積%以上とする。なお、好ましくは5.0 体積%以上である。
フェライトの平均結晶粒径(フェライト粒径と略記する):10.0μm以下
本発明では平均結晶粒径として、断面組織写真からASTMに規定された求積法により算出した値と、同じく切断法により求めた公称粒径(例えば梅本ら:熱処理24(1984)334 に解説有り)のうち、より大きい方を採用する。
【0027】
本発明では、製品(母板)段階で固溶Nを確保するが、本発明者らの実験・検討結果によれば、固溶N量を一定に保ってもフェライト粒径が10.0μmを超えると歪時効硬化特性に大きなばらつきが生じる。この理由は、詳細な機構は不明であるが、結晶粒界への合金元素の偏析と析出、さらにはこれらに及ぼす加工、熱処理の影響に関係するものと推定されるが、理由はさておき、歪時効硬化特性の安定化を図るには、フェライト粒径は10.0μm以下とする必要がある。なお、BHおよびΔTSのさらなる高位安定化の観点からは、フェライト粒径は8.0 μm以下が好ましい。
【0028】
なお、本発明鋼板の組織において、上記のフェライトと残留オーステナイトを除いた残部の相は、特に規定はしないがベイナイトあるいはマルテンサイトであること好ましい。
つぎに、本発明鋼板が具備すべき歪時効硬化特性について説明する。
〔5%の塑性変形(予歪)〕
歪時効硬化特性を規定する場合、予歪(予変形)量は重要な因子である。本発明者らは、自動車用鋼板が適用される変形様式を想定して、歪時効硬化特性に及ぼす予歪量の影響について調査し、その結果、▲1▼極めて深い絞り加工以外は概ね1軸相当歪(引張歪)量で整理できること、▲2▼実部品ではこの1軸相当歪量が概ね5%を上回っていること、▲3▼部品強度(実部品の強度)が、予歪5%の歪時効処理後に得られる強度とよく対応することを突き止めた。この知見をもとに、本発明では、歪時効処理の予歪量を5%引張歪とした時に、後述する大きさのBH,ΔTSが得られるものとする。
【0029】
なお、本発明鋼板は、予歪量が5%を超える歪時効処理を受けた場合にも、高いBHおよびΔTSが得られる。
〔熱処理の温度(加熱温度)と時間(保持時間)〕
従来の塗装焼付け処理では、標準の熱処理条件として 170℃×20分が採用されている。したがって、前述の5%予歪付与後の時効処理条件として 170℃×20分で、後述する大きさのBH,ΔTSが得られるものとする。なお、多量の固溶Nが残存する本発明鋼板では、より緩やかな(低温側の)熱処理でも硬化が達成され、言いかえれば、時効条件をより幅広くとることができる。また、一般に、硬化量を稼ぐには、軟化させない限りにおいて、より高温により長時間保持することが有利である。
【0030】
本発明鋼板の場合、具体的には、予変形後に硬化が顕著となる加熱温度の下限は100 ℃である。一方、加熱温度が300 ℃を超えると硬化が頭打ちとなり、逆にやや軟化する傾向が現れるほか、熱歪やテンパーカラーの発生が目立つようになる。また、保持時間については、加熱温度200 ℃程度のとき30秒程度以上とすれば略十分な硬化が達成される。さらに大きな安定した硬化を得るには、保持時間を60秒以上とするのが好ましい。しかし、20分を超える保持では、さらなる硬化を望みえないばかりか、生産効率も著しく低下して実用面では不利である。これらの点を考慮して、本発明鋼を用いる場合には、歪時効処理の熱処理条件を、加熱温度=100 〜300 ℃、保持時間=30秒〜20分とすることが好ましい。
【0031】
すなわち、本発明鋼板には、従来の塗装焼付け型鋼板では十分な硬化が達成されない低温加熱・短時間保持の時効処理条件下でも、大きな硬化が得られるという利点がある。なお、加熱の仕方はとくに制限されず、例えば誘導加熱や無酸化炎、レーザ、プラズマなどによる加熱などの何れも好ましく用いうる。
も当然有効となる。従来の焼き付け硬化型鋼板では十分な硬化が達成されない低温、短時間でも本発明鋼では大きな硬化が達成される。
【0032】
〔BH:80MPa 以上、ΔTS:40MPa 以上〕
自動車用の部品強度は外部からの複雑な応力負荷に抗しうる必要があり、それゆえ素材鋼板では小さな歪域での強度特性だけでなく大きな歪域での強度特性も重要となる。本発明者らはこの点に鑑み、自動車部品の素材となりうる本発明鋼板が達成すべきBHを80MPa 以上、ΔTSを40MPa 以上と定めた。なお、より好ましくは、BHでは100MPa以上、ΔTSでは50MPa 以上である。
【0033】
また、本発明鋼板には、成形加工後に、加熱による加速時効(人工的な時効)を行わずとも、室温で放置しておくだけで、最低限でも完全時効時の40%程度に相当する強度増加が期待でき、しかも、一方において、成形加工されない状態では、室温で長時間放置されても時効劣化(YSが増加しかつElが減少する現象)は起こらないという、従来にない利点が備わっている。
【0034】
つぎに、本発明鋼板の好ましい製造方法について説明する。
〔スラブの加熱〕
スラブ加熱温度(SRT ):1000〜1300℃
SRT は、1000℃に満たないと初期の固溶N量が少なくなって母板での必要値(0.0010%以上)を満たせず、一方、1300℃を超えると鋼の結晶粒が粗大化して材質均質性および延性の劣化を招くため、1000〜1300℃とする。なお、スラブ加熱時間は、特に限定されないが、あまり長いと結晶粒が粗大化するので、60分以下とするのが好ましい。
【0035】
〔粗圧延〕
粗圧延は通常の方法で行えばよい。
〔仕上圧延〕
最終パス圧下率:15%以上および/または後段3パス累積圧下率:50%以上
このような後段パス強圧下圧延を行なうことにより、鋼中に歪みが残存し、これが駆動力となって再結晶が促進される(再結晶の核が多数存在する中で再結晶が進行する)ため、結晶粒が効果的に微細化する。逆に、最終パス圧下率が15%未満および後段3パス累積圧下率が50%未満であると、歪の蓄積が不十分なため、上述のような再結晶が十分には進行しない。よって、本発明では、熱間仕上圧延の後段パスについては、最終パス圧下率:15%以上および/または後段3パス累積圧下率:50%以上とする。
【0036】
仕上圧延終了温度(FDT ): 780〜 980℃
FDT が780 ℃に満たないと鋼中に加工組織が残存して延性の劣化を招き、さらに圧延温度が低いと圧延中にNがAlN として析出してしまい、固溶Nの確保が困難となる。一方、FDT が980 ℃を超えると組織が粗大化し、フェライト変態の遅延に起因して成形性の低下を招くので、 FDTは 780〜 980℃とする。
【0037】
〔ホットラン冷却および巻取〕
仕上圧延後の鋼板はホットラン冷却を経て巻き取られる。本発明では、このホットラン冷却および巻取工程において図1に示す温度パターンで板温制御を行なう。すなわち、仕上圧延終了後、直ちに▲1▼冷却速度CR1 を50℃/s以上として第1の温度T1= 620〜 780℃まで急冷し、第1の温度T1に時間t1=1.0 〜10秒だけ等温保持(パターンI)するか、または冷却速度CR2 =20℃/s以下で第2の温度T2=第1の温度T1未満600 ℃以上まで徐冷時間t1'= 1.0〜10秒間徐冷(パターンII)し、ついで▲2▼冷却速度CR3 =50℃/s以上で第3の温度T3= 300〜500 ℃まで急冷してから巻き取る。この第3の温度T3は巻取温度(CT)に相当する。
【0038】
▲1▼の制御は、フェライト変態が起こる温度域まで急冷して、その後、等温保持するかまたは徐冷して、フェライトの析出を促進するためのものである。ここで、急冷の冷却速度CR1 を50℃/s以上としたことにより、結晶粒が微細となりかつAlN の析出が抑制され、母板での固溶Nを有効に確保することができる。なお、仕上圧延終了後直ちに▲1▼を開始するが、この「直ちに」は「0.5 秒以内に」の意である。
【0039】
また、第1の温度T1=620 〜780 ℃、等温保持の時間t1または徐冷時間t1' =1.0 〜10秒、第2の温度(徐冷の終点温度)T2=T1未満〜600 ℃、徐冷の冷却速度CR2 =20℃/s以下としたことにより、フェライト変態が最もスムーズに進行し、所望量のフェライト(初析フェライト)を得ることができる。
▲2▼の制御は、残留オーステナイトを確保するためのものである。ここで、急冷の冷却速度CR3 が50℃/s未満であると、冷却中にパーライト変態が生じて残留オーステナイトが得られなくなる可能性があるため、CR3 を50℃/s以上とした。また、T3=CT= 300〜500 ℃の温度範囲で巻取ることによりオーステナイト相がべイナイト変態するとともに、未変態のオーステナイト相にCが濃縮し、所望量の残留オーステナイトが得られる。しかし、CTが300 ℃未満であるとべイナイト変態がほとんど進行せず、一方、500 ℃を超えると過度にべイナイト変態が進行するため残留オーステナイトが得られない。よって、T3=CT= 300〜500 ℃とした。
【0040】
【実施例】
(実施例1)
表1に示す種々の鋼組成になるスラブをSRT =1200℃に加熱後、粗圧延し、ついで、仕上圧延条件を最終パス圧下率=20%、後段3パス累積圧下率=60%、FDT =880 ℃として仕上圧延し、その後直ちに図1の等温保持パターンIに従い、ホットラン冷却・巻取条件をCR1 =60℃/s、T1=700 ℃、t1=5秒、CR3 =60℃/s、T3=CT=400 ℃としてホットラン冷却後巻き取って、板厚2.0mm の熱延鋼板(コイル)となした。これらのコイルについて、固溶N、微視組織、引張特性および歪時効硬化特性を調査した。
【0041】
固溶N量は前記した方法により測定した。
微視組織は、C断面(圧延方向に直交する断面)の板厚中心部について、腐食現出組織の拡大像を画像解析して調査した。
引張特性と歪時効硬化特性の調査に係わる引張試験はJIS 5号試験片を用いてJIS Z 2241に準拠した方法で行った。
【0042】
歪時効処理条件は、予歪量:5%、熱処理条件:170 ℃×20分とした。
結果を表2に示す。ここに、Vαはフェライト相分率、Vγは残留オーステナイト相分率、dαはフェライト粒径である。また、フェライト、残留オーステナイト以外の相はベイナイトであった。
表2より明らかなように、本発明例では比較例よりも格段に高いEl,TS×El,BH,ΔTSを呈する。
【0043】
【表1】

Figure 0004396007
【0044】
【表2】
Figure 0004396007
【0045】
(実施例2)
表1に示した各スラブを表3に示す条件で加熱後、粗圧延し、ついで、表3に示す条件で仕上圧延し、その後直ちに図1の等温保持パターンIあるいは徐冷パターンIIに従い表3に示す条件でホットラン冷却後巻き取って、板厚2.0mm の熱延鋼板(コイル)となした。これらのコイルについて、実施例1と同様に固溶N、微視組織、引張特性および歪時効硬化特性を調査した。なお、表3のP1は仕上圧延最終3パスの累積圧下率、P2は同最終パスの圧下率である。
【0046】
結果を表4に示す。ここに、Vαはフェライト相分率、Vγは残留オーステナイト相分率、dαはフェライト粒径である。また、フェライト、残留オーステナイト以外の相はベイナイトまたはマルテンサイトであった。
表4より明らかなように、本発明例では比較例よりも格段に高いEl,TS×El,BH,ΔTSを呈する。
【0047】
【表3】
Figure 0004396007
【0048】
【表4】
Figure 0004396007
【0049】
【発明の効果】
本発明の高張力高加工性熱延鋼板は、化学組成、熱延条件の適正化により、固溶Nを活用して歪時効硬化特性の大幅向上を達成し、かつ、残留オーステナイトを含む微細組織として延性・加工性の向上を達成したものであるので、自動車車体の軽量化推進に大きく寄与するという効果を奏する。
【図面の簡単な説明】
【図1】ホットラン冷却・巻取の板温制御方法を示す温度パターン図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile high-workability hot-rolled steel sheet excellent in strain-age hardening characteristics and a method for producing the same, and in particular, high-tensile high-workability hot-rolling excellent in strain age-hardening characteristics suitable for use as a steel sheet for automobiles. It is related with a steel plate and its manufacturing method.
[0002]
[Prior art]
With the trend toward lighter automobiles, there is an increasing demand for high-strength thin steel sheets with excellent formability. Furthermore, consideration is required for economy, and when considering such economy, the hot-rolled steel sheet is more advantageous than the cold-rolled steel sheet.
Various high-strength hot-rolled steel sheets that have been considered for formability have been developed against the background described above. One type of hot-rolled steel sheet of this type is dual-phase steel (hereinafter referred to as DP steel) having a composite structure of ferrite and martensite, which has been used as a steel having an excellent strength-elongation balance.
[0003]
Further, in Japanese Patent Publication No. 6-41617, Japanese Patent Publication No. 5-65566 and Japanese Patent Publication No. 5-67682, high workability and high strength hot-rolled steel sheets include ferrite, bainite and 5% or more of retained austenite. A method for producing so-called Transformation Induced Plasticity steel (hereinafter referred to as TRIP steel) is disclosed. In such TRIP steel, it was possible to further improve the product (TS × El) of tensile strength (TS) and elongation (El), which was up to about 20000 MPa ·% in DP steel. However, at present, development of a high-strength hot-rolled steel sheet having further strength-elongation characteristics is desired according to the needs of users.
[0004]
In response to such a requirement, it is considered advantageous to use a strain age hardening phenomenon that occurs in a baking process of 170 ° C. × 20 minutes performed after press molding. For example, for cold-rolled steel sheets for outer panel, a steel sheet manufacturing technique is known in which ultra-low carbon steel is used as a raw material, and finally the amount of C remaining in a solid solution state is controlled within an appropriate range. By performing a paint baking process on such a steel plate, the YS after forming increases and the dent resistance is improved. However, with this technique, from the viewpoint of preventing the occurrence of stretcher strains that become surface defects, the amount of increase in YS is kept low, and there is a problem that the portion that contributes to the actual thinning of the steel sheet is small.
[0005]
For applications where the appearance is not a major problem, a steel sheet (Japanese Patent Publication No. 7-30408) in which the amount of bake hardening is further increased by using solute N, or a composite structure composed of ferrite and martensite. Therefore, a steel plate (Japanese Patent Publication No. 8-23048) having further improved bake hardenability has been proposed.
However, in the steel sheet disclosed in Japanese Examined Patent Publication No. 7-30408, although YS increases to some extent after baking and a high bake hardening amount is obtained, it cannot be increased to TS, and fatigue resistance after forming, No significant improvement in impact resistance can be expected. For this reason, the problem that it cannot apply to the use for which fatigue resistance, impact resistance, etc. are requested | required remained. In addition, the steel sheet disclosed in Japanese Patent Publication No. 8-23048 needs to be wound at an extremely low temperature, so that it is difficult to stably manufacture a steel sheet with a particularly small thickness. There is also a problem that the thickness of the steel sheet cannot be expected to be thin enough to contribute to the weight reduction of the automobile parts currently requested because the fluctuation of mechanical properties such as large variation is large. Furthermore, in particular, when manufacturing a thin steel sheet having a thickness of 2.0 mm or less in order to achieve thinning, the shape of the steel sheet is greatly disturbed, so that press forming becomes extremely difficult.
[0006]
[Problems to be solved by the invention]
The present invention overcomes the limitations of the prior art described above, has high moldability and stable quality characteristics, and provides sufficient strength for automobile parts after molding into automobile parts, which can sufficiently contribute to weight reduction of automobile bodies. An object of the present invention is to provide a high-tensile, high-workability hot-rolled steel sheet excellent in strain age hardening characteristics and a method for producing the same. Specifically, it has a tensile aging treatment with a tensile strength (TS) of 440 MPa or more, unloading after 5% plastic deformation, and subsequently heat-treating under conditions of temperature: 170 ° C. x time: 20 minutes. The purpose of the present invention is to provide a high-strength, high-workability hot-rolled steel sheet having strain age hardening characteristics in which the deformation stress increase amount (BH) is 80 MPa or more and the tensile strength increase amount (ΔTS) is 40 MPa or more. . Here, BH and ΔTS are defined by the following equations.
[0007]
BH = yield stress after heat treatment (YS) −deformation stress before unloading ΔTS = TS after strain aging treatment−TS before strain aging treatment
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors manufactured steel sheets by changing various components and manufacturing methods, and performed many material evaluations. As a result, by effectively utilizing the large strain age hardening phenomenon expressed by the action of the strengthening element, N, which has not been actively used in fields requiring high workability, It has been found that improvement of moldability and high strength can be easily achieved.
[0009]
Furthermore, in order to effectively utilize the strain age hardening phenomenon due to N, the present inventors advantageously combine the strain age hardening phenomenon due to N with the paint baking conditions of the automobile or more actively with the heat treatment conditions after molding. For this reason, it has been found effective to optimize the hot rolling conditions and control the microstructure and the amount of solute N in the steel sheet within a certain range. It has also been found that in order to stably develop the strain age hardening phenomenon due to N, it is important to control the Al content according to the N content, particularly in terms of composition.
[0010]
The present invention has been made based on these findings, and the gist thereof is as follows.
(1) By mass percentage,
C: 0.05 to 0.40%, Si: 1.0 to 3.0%, Mn: 0.6 to 3.0%,
Al: 0.02% or less, N: 0.0050-0.0250%
N / Al: 0.30 or more, solid solution N: 0.0010% or more, the balance is a composition of Fe and inevitable impurities , and ferrite: 50% by volume or more, retained austenite: 3.0% by volume or more, A high-tensile, high-workability hot-rolled steel sheet excellent in strain age hardening characteristics, characterized by having a structure in which the average crystal grain size of ferrite is 10.0 μm or less.
[0011]
(2) The composition further includes one group or two or more groups selected from the following groups a to c: high tensile high workability excellent in strain age hardening characteristics according to (1) Hot rolled steel sheet.
Group a: Cr: 0.2 to 2.0%, P: One or two of 0.01 to 0.2% b Group: Ti: 0.005 to 0.25%, Nb: One or two of 0.003 to 0.1% c Group: Ca: 0.001 to 0.01%
N / Al means N content (%) / Al content (%). Further, solid solution N means N in a solid solution state.
[0012]
(3) By mass percentage,
C: 0.05 to 0.20%, Si: 1.0 to 3.0%, Mn: 0.6 to 3.0%,
Al: 0.02% or less, N: 0.0050 to 0.0250%,
Or further comprises one or more groups or two groups selected from among the following group a ~c group, N / Al: 0.3 or der is, a steel slab having a composition balance ing of Fe and unavoidable impurities , Heated to 1000-1300 ° C., and after rough rolling, the final pass reduction ratio: 15% or more and / or the final three-pass cumulative reduction ratio: 50% or more, and finish rolling at a rolling end temperature: 780-980 ° C., Immediately after the finish rolling is completed, the steel sheet is rapidly cooled to a first temperature within a range of 620 to 780 ° C. at a cooling rate of 50 ° C./s or more, and then is kept isothermally at the first temperature for 1.0 to 10 seconds. Slow cooling for 1.0 to 10 seconds at a cooling rate of 20 ° C / s or less to a second temperature within the range of 600 ° C or more below the temperature of 1, then within 300 to 500 ° C at a cooling rate of 50 ° C / s or more High-tensile, high-workability hot-rolled steel with excellent strain age hardening characteristics, characterized by rapid cooling to the third temperature The method of production.
[0013]
Group a: Cr: 0.2 to 2.0%, P: One or two of 0.01 to 0.2% b Group: Ti: 0.005 to 0.25%, Nb: One or two of 0.003 to 0.1% c Group: Ca: 0.001 to 0.01%
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the composition (chemical composition) of the steel sheet of the present invention will be described. Hereinafter, the mass percentage is abbreviated as% for the chemical component content.
C: 0.05-0.40%
C is an element effective not only for strengthening steel but also for obtaining retained austenite. However, if it is less than 0.05%, its effect is poor. On the other hand, if it exceeds 0.40%, ductility and weldability are lowered. 0.05 to 0.40%. In addition, Preferably it is 0.10 to 0.25%.
[0015]
Si: 1.0-3.0%
Si is an indispensable element for the formation of retained austenite. For this purpose, it is necessary to add at least 1.0%. However, if it exceeds 3.0%, not only the ductility is lowered but also the scale properties are lowered and the surface quality is reduced. Therefore, 1.0 to 3.0% is set. In addition, Preferably it is 1.0 to 2.0%.
[0016]
Mn: 0.6 to 3.0%
Mn is not only useful as a strengthening element for steel, but is also an effective element for obtaining retained austenite. However, if it is less than 0.6%, its effect is poor, while if it exceeds 3.0%, ductility is reduced. 0.6 to 3.0%. From the viewpoint of further reducing the variation in mechanical properties and strain age hardening characteristics of the steel sheet with respect to fluctuations in hot rolling conditions to further stabilize the quality, the Mn content is preferably 1.2% or more, more preferably 1.5% or more. It is.
[0017]
Al: 0.02% or less
The suppression of the Al content is particularly important in the present invention. Al is added as a deoxidizing element for steel and is an effective element for improving the cleanliness of steel, and is also an element that is desirable to be added to refine the structure of steel. However, in the present invention, excessive addition of Al leads to deterioration of the surface properties and makes it difficult to ensure solid solution N. Even if solid solution N can be secured, if Al exceeds 0.02%, variation in strain age hardening characteristics due to fluctuations in manufacturing conditions increases. Therefore, Al is limited to 0.02% or less. From the viewpoint of material stability, Al: 0.001 to 0.015% is desirable.
[0018]
N: 0.0050-0.0250%
N is the most important additive element in the present invention. That is, by controlling the production conditions by adding an appropriate amount of N, it is possible to secure a necessary and sufficient amount of solid solution N on the base plate (steel plate in a hot-rolled state). The effect of increasing the strength (YS, TS) by age hardening is sufficiently exhibited, and the target characteristics of TS 440 MPa or more, BH 80 MPa or more, ΔTS 40 MPa or more can be stably achieved. N also has the effect of lowering the transformation point (Ar 3 ) of the steel, and is effective in stabilizing the operation in the situation where rolling with a thin material that greatly interrupts the transformation point is avoided. Furthermore, N is an austenite stabilizing element and is an element effective for the production of retained austenite.
[0019]
When N is less than 0.0050%, the above-mentioned various effects are not likely to appear stably. On the other hand, if N exceeds 0.0250%, the rate of occurrence of internal defects in the steel sheet increases, and slab cracking during continuous casting occurs frequently. Therefore, the N content is limited to 0.0050 to 0.0250%. In addition, from the viewpoint of improving the stability and yield of the material considering the entire manufacturing process, 0.0070 to 0.0170% is preferable. If the N amount is within the range of the present invention, there is no adverse effect on weldability and hot workability.
[0020]
Solid solution N: 0.0010% or more In order that sufficient strength is secured with a base plate, and in order that strain age hardening by N is sufficiently large, solid solution N needs to be present in an amount of 0.0010% or more. Here, the solute N amount is obtained by subtracting the precipitated N amount from the total N amount in the steel. There are acid decomposition method, halogen method and electrolysis method as the extraction method of precipitated N, that is, the method of dissolving the base iron. As a result of comparison of these extraction methods by the present inventors, the electrolysis method is a carbide, nitride. Without dissolving the extremely unstable precipitates such as, it is possible to stably dissolve only the base iron. For this reason, in this invention, precipitation N shall be extracted by the electrolytic method. Further, electrolysis is performed at a constant potential using an acetyl / acetone system as an electrolytic solution. The residue extracted by the above electrolytic method is chemically analyzed to determine the amount of N in the residue, and this is defined as precipitated N.
[0021]
In order to achieve higher levels of BH and ΔTS, the solid solution N is preferably 0.0020% or more, and in the case of higher levels, 0.0030% or more is preferable.
N / Al: 0.30 or more As described above, the amount of Al, which is an element that strongly fixes N, is limited in order to allow solid solution N to exist in the base plate in a stable amount of 0.0010% or more regardless of fluctuations in manufacturing conditions. It is necessary to make the Al content 0.02% or less. As a result of searching for a condition in which the solid solution N after hot rolling is 0.0010% or more for a steel in which the combination of N amount and Al amount is changed in a wide range within the composition range of the present invention, such a condition is N / Al 0.30% or more. As a result, it was found that the cooling condition and the coiling temperature condition after finish rolling were within the appropriate ranges. Therefore, N / Al is 0.30 or more.
[0022]
Cr: 0.2-2.0%, P: 0.01-0.2%
Both Cr and P are useful as residual austenite-forming elements, and either or both of them can be added as needed. However, Cr is less effective if it is less than 0.2% and P is less than 0.01%. On the other hand, if Cr exceeds 2.0%, coarse Cr carbide is formed and the ductility is inhibited, and if P exceeds 0.2%, the secondary workability deteriorates, so when added, Cr is 0.2 to 2.0%. , P is preferably 0.01 to 0.2%.
[0023]
Ti: 0.005 to 0.25%, Nb: 0.003 to 0.1%
Both Ti and Nb contribute to improvement of strength by refining the ferrite that is the base phase of the structure, so either one or both can be added if necessary, but the content is too high If the amount is too small, the effect of addition is poor. On the other hand, excessive addition leads to a decrease in ductility.
[0024]
Ca: 0.001 to 0.01%
Ca can be added to improve stretch flangeability, but if it is less than 0.001%, its effect is poor. On the other hand, if it exceeds 0.01%, corrosion resistance will be deteriorated, so if added, 0.001 to 0.01% Is desirable.
In the composition of the steel sheet of the present invention, the balance other than the above components is substantially Fe, that is, Fe and inevitable impurities. Inevitable impurities include S: 0.01% or less and O: 0.01% or less.
[0025]
Note that Cr, P, Ti, Nb, and Ca may also be contained as inevitable impurities in a range less than the lower limit value described above.
Next, the structure of the steel sheet of the present invention will be described.
Ferrite: 50% by volume or more In a structure where ferrite is less than 50% by volume, workability as a steel sheet for automobiles cannot be ensured, so ferrite is made 50% by volume or more. In addition, Preferably it is 70 volume% or more. Here, the ferrite includes not only ferrite in the normal sense (polygonal ferrite) but also bainitic ferrite and acicular ferrite not containing carbide.
[0026]
Residual austenite: 3.0% by volume or more Residual austenite has the effect of improving the elongation properties of steel by making it a constituent phase of the structure. However, if it is less than 3.0% by volume, the effect is poor. To do. In addition, Preferably it is 5.0 volume% or more.
Average crystal grain size of ferrite (abbreviated as ferrite grain size): 10.0 μm or less In the present invention, the average crystal grain size is calculated by the quadrature method prescribed in ASTM from the cross-sectional structure photograph and also by the cutting method. The larger of the nominal particle sizes (for example, Umemoto et al .: Explained in Heat Treatment 24 (1984) 334) is used.
[0027]
In the present invention, solid solution N is ensured at the product (base plate) stage, but according to the results of experiments and examinations by the present inventors, the ferrite grain size exceeds 10.0 μm even if the amount of solid solution N is kept constant. There is a large variation in strain age hardening characteristics. Although the detailed mechanism is unknown, it is presumed that it is related to the segregation and precipitation of alloy elements at the grain boundaries, as well as the effects of processing and heat treatment on these, but the reasons are not limited. In order to stabilize age-hardening characteristics, the ferrite particle size must be 10.0 μm or less. From the viewpoint of further stabilization of BH and ΔTS, the ferrite particle diameter is preferably 8.0 μm or less.
[0028]
In the structure of the steel sheet of the present invention, the remaining phase excluding the ferrite and retained austenite is preferably bainite or martensite, although not particularly specified.
Next, the strain age hardening characteristics that the steel sheet of the present invention should have will be described.
[5% plastic deformation (pre-strain)]
The amount of pre-strain (pre-deformation) is an important factor when defining strain age hardening characteristics. The present inventors investigated the influence of the pre-strain amount on the strain age hardening characteristics assuming the deformation mode to which the steel sheet for automobiles is applied. As a result, (1) except for extremely deep drawing, it is generally uniaxial. Can be organized by the equivalent strain (tensile strain) amount, (2) The uniaxial equivalent strain amount in actual parts exceeds 5%, and (3) Part strength (strength of actual parts) is 5% pre-strain. It was found that it corresponds well with the strength obtained after the strain aging treatment. Based on this knowledge, in the present invention, when the pre-strain amount of the strain aging treatment is 5% tensile strain, BH and ΔTS of the sizes described later are obtained.
[0029]
The steel sheet of the present invention can obtain high BH and ΔTS even when subjected to a strain aging treatment in which the pre-strain amount exceeds 5%.
[Heat treatment temperature (heating temperature) and time (holding time)]
In the conventional baking process, 170 ℃ x 20 minutes is adopted as the standard heat treatment condition. Therefore, it is assumed that BH and ΔTS of the size described later can be obtained at 170 ° C. × 20 minutes as the aging treatment conditions after applying the 5% pre-strain. In the steel sheet of the present invention in which a large amount of solute N remains, hardening can be achieved even by a milder (low temperature side) heat treatment, in other words, a wider range of aging conditions can be taken. In general, in order to earn a hardened amount, it is advantageous to hold at a higher temperature for a longer time unless softening is performed.
[0030]
In the case of the steel sheet of the present invention, specifically, the lower limit of the heating temperature at which hardening becomes significant after pre-deformation is 100 ° C. On the other hand, when the heating temperature exceeds 300 ° C., the curing reaches its peak, and on the contrary, there is a tendency to slightly soften, and the occurrence of thermal distortion and temper color becomes conspicuous. Further, if the holding time is about 30 seconds or more when the heating temperature is about 200 ° C., substantially sufficient curing is achieved. In order to obtain a larger and more stable curing, the holding time is preferably 60 seconds or longer. However, if the holding time exceeds 20 minutes, further curing cannot be expected, and the production efficiency is significantly reduced, which is disadvantageous in practical use. Considering these points, when the steel of the present invention is used, it is preferable that the heat treatment conditions of the strain aging treatment are heating temperature = 100 to 300 ° C. and holding time = 30 seconds to 20 minutes.
[0031]
In other words, the steel sheet of the present invention has an advantage that a large degree of hardening can be obtained even under the aging treatment conditions of low temperature heating and short time holding, in which sufficient hardening cannot be achieved with the conventional paint baking type steel sheet. Note that the heating method is not particularly limited, and any of heating by induction heating, non-oxidizing flame, laser, plasma, etc. can be preferably used.
Of course, it becomes effective. Large hardening can be achieved with the steel of the present invention even at a low temperature and for a short time, in which sufficient hardening cannot be achieved with conventional bake-hardened steel sheets.
[0032]
[BH: 80 MPa or more, ΔTS: 40 MPa or more]
The strength of parts for automobiles must be able to withstand complex stress loads from the outside. Therefore, in a steel plate, not only strength characteristics in a small strain range but also strength characteristics in a large strain range are important. In view of this point, the present inventors have determined that BH to be achieved by the steel sheet of the present invention that can be a material for automobile parts is 80 MPa or more and ΔTS is 40 MPa or more. More preferably, BH is 100 MPa or more, and ΔTS is 50 MPa or more.
[0033]
In addition, the steel sheet according to the present invention has a strength equivalent to at least about 40% of the complete aging when it is left at room temperature without being subjected to accelerated aging (artificial aging) by heating after forming. On the other hand, in the state where molding is not performed, there is an unprecedented advantage that aging deterioration (a phenomenon in which YS increases and El decreases) does not occur even when left for a long time at room temperature. Yes.
[0034]
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
[Slab heating]
Slab heating temperature (SRT): 1000-1300 ℃
If SRT is less than 1000 ° C, the initial amount of dissolved N will be small and the required value (0.0010% or more) of the base plate will not be met. In order to cause deterioration of homogeneity and ductility, the temperature is set to 1000 to 1300 ° C. The slab heating time is not particularly limited, but if it is too long, the crystal grains become coarse, so it is preferably 60 minutes or less.
[0035]
[Rough rolling]
Rough rolling may be performed by a normal method.
[Finish rolling]
Final pass reduction ratio: 15% or more and / or subsequent three-pass cumulative reduction ratio: 50% or more By performing such subsequent pass strong rolling, strain remains in the steel, which becomes the driving force for recrystallization. Is promoted (recrystallization proceeds in the presence of many recrystallization nuclei), so that the crystal grains are effectively refined. On the contrary, when the final pass reduction ratio is less than 15% and the subsequent three-pass cumulative reduction ratio is less than 50%, the accumulation of strain is insufficient, and thus the recrystallization as described above does not proceed sufficiently. Therefore, in the present invention, the final pass rolling reduction: 15% or more and / or the subsequent three-pass cumulative rolling reduction: 50% or more for the latter pass of hot finish rolling.
[0036]
Finishing rolling finish temperature (FDT): 780 ~ 980 ℃
If the FDT is less than 780 ° C, the processed structure remains in the steel, resulting in deterioration of ductility. Further, if the rolling temperature is low, N precipitates as AlN during rolling, making it difficult to secure solute N. . On the other hand, if the FDT exceeds 980 ° C., the structure becomes coarse and the formability is reduced due to the delay of ferrite transformation, so the FDT is set to 780 to 980 ° C.
[0037]
[Hot run cooling and winding]
The steel sheet after finish rolling is wound up through hot run cooling. In the present invention, the plate temperature control is performed with the temperature pattern shown in FIG. 1 in the hot run cooling and winding process. That is, immediately after finishing rolling, (1) the cooling rate CR1 is set to 50 ° C./s or more, the first temperature T1 is rapidly cooled to 620 to 780 ° C., and the first temperature T1 is isothermal for the time t1 = 1.0 to 10 seconds. Hold (Pattern I), or cooling rate CR2 = 20 ° C / s or less, 2nd temperature T2 = 1st temperature less than T1, 600 ° C or more, slow cooling time t1 '= 1.0 to 10 seconds (Pattern II) Then, (2) Cooling rate CR3 = 50 ° C./s or more and rapidly cooling to the third temperature T3 = 300 to 500 ° C. This third temperature T3 corresponds to the coiling temperature (CT).
[0038]
The control (1) is for rapid cooling to a temperature range where ferrite transformation occurs, and then maintaining the temperature isothermally or gradually cooling to promote ferrite precipitation. Here, by setting the rapid cooling rate CR1 to 50 ° C./s or more, the crystal grains become fine and the precipitation of AlN is suppressed, so that the solid solution N in the base plate can be effectively secured. In addition, (1) starts immediately after finishing rolling, but this “immediately” means “within 0.5 seconds”.
[0039]
Also, the first temperature T1 = 620 to 780 ° C., the isothermal holding time t1 or the slow cooling time t1 ′ = 1.0 to 10 seconds, the second temperature (slow cooling end point temperature) T2 = less than T1 to 600 ° C., and gradually By setting the cooling rate CR2 to 20 ° C./s or less, the ferrite transformation proceeds most smoothly, and a desired amount of ferrite (pre-deposited ferrite) can be obtained.
The control (2) is for securing retained austenite. Here, if the rapid cooling rate CR3 is less than 50 ° C./s, pearlite transformation may occur during cooling and residual austenite may not be obtained, so CR3 was set to 50 ° C./s or more. Further, by winding in the temperature range of T3 = CT = 300 to 500 ° C., the austenite phase undergoes bainite transformation, and C is concentrated in the untransformed austenite phase, whereby a desired amount of retained austenite is obtained. However, when the CT is less than 300 ° C., the bainite transformation hardly proceeds. On the other hand, when the CT exceeds 500 ° C., the bainite transformation proceeds excessively, so that retained austenite cannot be obtained. Therefore, T3 = CT = 300 to 500 ° C.
[0040]
【Example】
Example 1
Slabs with various steel compositions shown in Table 1 are heated to SRT = 1200 ° C. and then roughly rolled, and then finish rolling conditions are final pass reduction ratio = 20%, subsequent three-pass cumulative reduction ratio = 60%, FDT = Finishing and rolling at 880 ° C, and immediately following the isothermal holding pattern I in Fig. 1, the hot run cooling and winding conditions are CR1 = 60 ° C / s, T1 = 700 ° C, t1 = 5 seconds, CR3 = 60 ° C / s, T3 = CT = 400 ° C, rolled up after hot-run cooling to obtain a hot-rolled steel sheet (coil) with a thickness of 2.0 mm. These coils were examined for solute N, microstructure, tensile properties and strain age hardening properties.
[0041]
The amount of solute N was measured by the method described above.
The microstructure was examined by image analysis of an enlarged image of the corrosion appearing structure at the center of the thickness of the C section (cross section orthogonal to the rolling direction).
The tensile test related to the investigation of the tensile properties and strain age hardening properties was performed by a method based on JIS Z 2241 using JIS No. 5 test pieces.
[0042]
Strain aging treatment conditions were pre-strain amount: 5%, heat treatment condition: 170 ° C. × 20 minutes.
The results are shown in Table 2. Here, Vα is the ferrite phase fraction, Vγ is the retained austenite phase fraction, and dα is the ferrite grain size. The phases other than ferrite and retained austenite were bainite.
As is clear from Table 2, the inventive examples exhibit much higher El, TS × El, BH, and ΔTS than the comparative examples.
[0043]
[Table 1]
Figure 0004396007
[0044]
[Table 2]
Figure 0004396007
[0045]
(Example 2)
Each slab shown in Table 1 is heated under the conditions shown in Table 3 and then roughly rolled, then finish-rolled under the conditions shown in Table 3, and immediately thereafter according to the isothermal holding pattern I or slow cooling pattern II shown in FIG. It was wound up after hot-run cooling under the conditions shown in (2) to obtain a hot-rolled steel sheet (coil) having a thickness of 2.0 mm. For these coils, the solute N, microstructure, tensile properties and strain age hardening properties were investigated in the same manner as in Example 1. In Table 3, P1 is the cumulative rolling reduction ratio of the final finishing pass 3 passes, and P2 is the rolling reduction ratio of the final pass.
[0046]
The results are shown in Table 4. Here, Vα is the ferrite phase fraction, Vγ is the retained austenite phase fraction, and dα is the ferrite grain size. The phases other than ferrite and retained austenite were bainite or martensite.
As is apparent from Table 4, the inventive example exhibits significantly higher El, TS × El, BH, and ΔTS than the comparative example.
[0047]
[Table 3]
Figure 0004396007
[0048]
[Table 4]
Figure 0004396007
[0049]
【The invention's effect】
The high-strength, high-workability hot-rolled steel sheet of the present invention achieves a significant improvement in strain age hardening characteristics by utilizing solid solution N by optimizing the chemical composition and hot-rolling conditions, and has a microstructure containing residual austenite As a result, the improvement in ductility and workability is achieved, and the effect of greatly contributing to the promotion of weight reduction of the automobile body is achieved.
[Brief description of the drawings]
FIG. 1 is a temperature pattern diagram showing a plate temperature control method for hot run cooling and winding.

Claims (3)

質量百分率で、
C:0.05〜0.40%、 Si:1.0 〜3.0 %、 Mn:0.6 〜3.0 %、
Al:0.02%以下、 N:0.0050〜0.0250%
を含み、かつN/Al:0.30以上、固溶N:0.0010%以上、残部はFeおよび不可避的不純物である組成、および、フェライト:50体積%以上、残留オーステナイト:3.0 体積%以上を含み、前記フェライトの平均結晶粒径が10.0μm以下である組織を有することを特徴とする歪時効硬化特性に優れた高張力高加工性熱延鋼板。
In mass percentage,
C: 0.05 to 0.40%, Si: 1.0 to 3.0%, Mn: 0.6 to 3.0%,
Al: 0.02% or less, N: 0.0050-0.0250%
N / Al: 0.30 or more, solid solution N: 0.0010% or more, the balance is a composition of Fe and inevitable impurities , and ferrite: 50% by volume or more, retained austenite: 3.0% by volume or more, A high-tensile, high-workability hot-rolled steel sheet excellent in strain age hardening characteristics, characterized by having a structure in which the average crystal grain size of ferrite is 10.0 μm or less.
前記組成がさらに、下記a群〜c群のうちから選ばれた1群または2群以上を含むことを特徴とする請求項1記載の歪時効硬化特性に優れた高張力高加工性熱延鋼板。

a群:Cr:0.2 〜2.0 %、P:0.01〜0.2 %のうちの1種または2種
b群:Ti:0.005 〜0.25%、Nb:0.003 〜0.1 %のうちの1種または2種
c群:Ca:0.001 〜0.01%
The high-strength, high-workability hot-rolled steel sheet having excellent strain age hardening characteristics according to claim 1, wherein the composition further comprises one group or two or more groups selected from the following groups a to c. .
Group a: Cr: 0.2 to 2.0%, P: one or two of 0.01 to 0.2% b group: Ti: 0.005 to 0.25%, Nb: one or two of 0.003 to 0.1% c Group: Ca: 0.001 to 0.01%
質量百分率で、
C:0.05〜0.20%、 Si:1.0 〜3.0 %、 Mn:0.6 〜3.0 %、
Al:0.02%以下、 N:0.0050〜0.0250%、
あるいはさらに、下記a群〜c群のうちから選ばれた1群または2群以上
を含み、N/Al:0.3 以上であり、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブを、1000〜1300℃に加熱し、粗圧延後、最終パス圧下率:15%以上および/または後段3パス累積圧下率:50%以上とし、かつ圧延終了温度: 780〜 980℃として仕上圧延し、この仕上圧延終了後、直ちに50℃/s以上の冷却速度で 620〜 780℃の範囲内の第1の温度まで急冷し、ついで該第1の温度に1.0 〜10秒間等温保持するかまたは該第1の温度未満600 ℃以上の範囲内の第2の温度まで20℃/s以下の冷却速度で1.0 〜10秒間徐冷し、ついで50℃/s以上の冷却速度で 300〜500 ℃の範囲内の第3の温度まで急冷してから巻き取ることを特徴とする歪時効硬化特性に優れた高張力高加工性熱延鋼板の製造方法。

a群:Cr:0.2 〜2.0 %、P:0.01〜0.2 %のうちの1種または2種
b群:Ti:0.005 〜0.25%、Nb:0.003 〜0.1 %のうちの1種または2種
c群:Ca:0.001 〜0.01%
In mass percentage,
C: 0.05 to 0.20%, Si: 1.0 to 3.0%, Mn: 0.6 to 3.0%,
Al: 0.02% or less, N: 0.0050 to 0.0250%,
Or further comprises one or more groups or two groups selected from among the following group a ~c group, N / Al: 0.3 or der is, a steel slab having a composition balance ing of Fe and unavoidable impurities , Heated to 1000-1300 ° C., and after rough rolling, the final pass reduction ratio: 15% or more and / or the final three-pass cumulative reduction ratio: 50% or more, and finish rolling at a rolling end temperature: 780-980 ° C., Immediately after the finish rolling is completed, the steel sheet is rapidly cooled to a first temperature within a range of 620 to 780 ° C. at a cooling rate of 50 ° C./s or more, and then is kept isothermally at the first temperature for 1.0 to 10 seconds. Slow cooling for 1.0 to 10 seconds at a cooling rate of 20 ° C / s or less to a second temperature within the range of 600 ° C or more below the temperature of 1, then within 300 to 500 ° C at a cooling rate of 50 ° C / s or more High-tensile, high-workability hot-rolled steel with excellent strain age hardening characteristics, characterized by rapid cooling to the third temperature The method of production.
Group a: Cr: 0.2 to 2.0%, P: one or two of 0.01 to 0.2% b group: Ti: 0.005 to 0.25%, Nb: one or two of 0.003 to 0.1% c Group: Ca: 0.001 to 0.01%
JP2000217275A 2000-07-18 2000-07-18 High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same Expired - Fee Related JP4396007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217275A JP4396007B2 (en) 2000-07-18 2000-07-18 High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217275A JP4396007B2 (en) 2000-07-18 2000-07-18 High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002030385A JP2002030385A (en) 2002-01-31
JP4396007B2 true JP4396007B2 (en) 2010-01-13

Family

ID=18712411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217275A Expired - Fee Related JP4396007B2 (en) 2000-07-18 2000-07-18 High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4396007B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692018B2 (en) * 2004-03-22 2011-06-01 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same
JP4555694B2 (en) * 2005-01-18 2010-10-06 新日本製鐵株式会社 Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
KR20240080209A (en) 2022-11-28 2024-06-07 주식회사 포스코 Hot rolled steel sheet having excellent formability for multi-stage press process, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2002030385A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5609383B2 (en) High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5040197B2 (en) Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR101515730B1 (en) High strength cold rolled steel sheet having excellent stretch flangeability and method for manufacturing the same
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
KR101600731B1 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP6460258B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
KR102098482B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP4206642B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JPH11189842A (en) High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JP7585370B2 (en) Manufacturing method for high-strength hot-rolled steel sheet with excellent formability
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4396007B2 (en) High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP2024542247A (en) HOT-ROLLED STEEL SHEET AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees