[go: up one dir, main page]

JP4392812B2 - Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same - Google Patents

Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same Download PDF

Info

Publication number
JP4392812B2
JP4392812B2 JP21731799A JP21731799A JP4392812B2 JP 4392812 B2 JP4392812 B2 JP 4392812B2 JP 21731799 A JP21731799 A JP 21731799A JP 21731799 A JP21731799 A JP 21731799A JP 4392812 B2 JP4392812 B2 JP 4392812B2
Authority
JP
Japan
Prior art keywords
amino
methylbutyric acid
optically active
acid
acid derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21731799A
Other languages
Japanese (ja)
Other versions
JP2001039941A (en
Inventor
英司 尾崎
兼彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP21731799A priority Critical patent/JP4392812B2/en
Publication of JP2001039941A publication Critical patent/JP2001039941A/en
Application granted granted Critical
Publication of JP4392812B2 publication Critical patent/JP4392812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明で得られる新規光学活性4−アミノ−2−メチル酪酸誘導体は、光学活性医農薬合成中間体として様々な用途が期待される有用な化合物である。
【0002】
【従来の技術】
例えば、類縁化合物である光学活性4−アミノ−2−メチル酪酸の製造方法としてはラセミ体4−アミノ−2−メチル酪酸をフタルイミド化した後、キニンを用いて優先晶析する方法が公知である。(Adams R.,Fles D.,J.Am.Chem.Soc.,81,4946−4951(1959))しかしながら、精製には再結晶を繰り返す煩雑な操作が必要であり、回収率は17〜22%程度と低く、光学純度も明らかではない。
【0003】
【発明が解決しようとする課題】
本発明の課題は、新規光学活性4−アミノ−2−メチル酪酸誘導体及びその製造方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、ラセミ体N−置換4−アミノ−2−メチル酪酸エステルに微生物、その処理物、または酵素を作用させることにより該エステルを不斉加水分解し、光学活性4−アミノ−2−メチル酪酸誘導体が得られることを見いだし、本発明を完成した。
【0005】
すなわち、本発明は、一般式、
【化3】

Figure 0004392812
(式中、Xはアルコキシカルボニル基、Rは水素原子または炭素数1から6の直鎖ま若しくは分岐状のアルキル基、*は不斉炭素を示す。)
で表される新規光学活性4−アミノ−2−メチル酪酸誘導体である。
【0006】
また、本発明は、一般式、
【化4】
Figure 0004392812
(式中、Xはアルコキシカルボニル基、Rは炭素数1から6の直鎖若しくは分岐状のアルキル基を示す。)
で表されるラセミ体エステルに該エステルの不斉加水分解反応を触媒する、微生物、その処理物、または酵素を作用させることを特徴とする上記新規光学活性4−アミノ−2−メチル酪酸誘導体の製造方法である。
【0007】
【発明の実施の形態】
上記一般式(I)及び(II)においてXで表されるアルコキシカルボニル基としては、通常、アミノ基の保護に用いるものであり、酵素反応を阻害しないものであれば、特に制限無く使用可能である。例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基及びベンジルオキシカルボニル基等が挙げられる。
【0008】
上記一般式(I)及び(II)においてRで表されるアルキル基としては,炭素数1から6の直鎖または分岐状のアルキル基であり、酵素反応の基質となるものであればよい。例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、イソブチル基、ペンチル基、ヘキシル基及びシクロヘキシル基等が挙げられる。
【0009】
上記一般式(II)で表されるラセミ体N−置換4−アミノ−2−メチル酪酸エステルは、任意の方法で製造可能である。例えば、青酸とメタクリル酸メチルより3−シアノイソ酪酸メチルを得た後(特開平8−291157号公報参照)、アルカリ加水分解で3−シアノイソ酪酸を得る。得られた3−シアノイソ酪酸を適当な溶媒中で、例えば、パラジウム−カーボンなどの触媒存在下、中圧で接触還元を行えば4−アミノ−2−メチル酪酸が得られる。得られた4−アミノ−2−メチル酪酸を適当な溶媒中でアミノ基を保護し、常法に従いエステル化反応を行えば、酵素反応の基質であるラセミ体エステルが得られる。アミノ基の保護には、例えば、クロロギ酸メチル、クロロギ酸エチル、ジ−tert−ブチルジカーボネート等を用いることもできる。エステル化は適当なアルコール、脱水剤と反応させればよい。
【0010】
本発明に使用する微生物、その処理物、または酵素は、一般式(II)で表されるラセミ体エステルを不斉加水分解し、一般式(I)で表される光学活性4−アミノ−2−メチル酪酸誘導体を与えるものであれば特に制限はない。微生物、植物又は動物由来の市販加水分解酵素(エステラーゼ、リパーゼ、プロテアーゼ等)、各種保存菌株の微生物培養菌体及び自然界より新たに単離された微生物等が使用可能である。
【0011】
不斉加水分解酵素を生産する微生物として、例えば、バチルス(Bacillus)属、アスペルギルス(Aspergillus)属、リゾプス(Rhizopus)属、ムコール(Mucor)属、キャンディダ(Candida)属、フミコーラ(Humicola)属、、シュードモナス(Pseudomonas)属、エセリキア(Escherichia)属に属する微生物が挙げられる。バチルス属に属する微生物としては、バチルス ズブチリス(Bacillus subtilis)、バチルス リケニフォルマス(Bacillus licheniformus)、バチルス ポリミキサ(Bacillus polymixa)、アスペルギルス属に属する微生物としては、アスペルギルスオリザエ(Aspergillus oryzae)、アスペルギルス フラバス(Aspergillus flavus)、アスペルギルス フミガタス(Aspergillus fumigatus)、アスペルギルス ニガー(Aspergillus niger)、アスペルギルス ソーユ(Aspergillus sojae)、アスペルギルス サイトイ(Aspergillus saitoi)、リゾプス属に属する微生物としては、リゾプス ジャポニカス(Rhizopus japonicus)、リゾプス デレマー(Rhizopus delemar)、ムコール属に属する微生物としては、ムコール ジャポニカス(Mucor javanicus)、ムコール ミエヘイ(Mucor miehei)、フミコーラ属に属する微生物としては、フミコーラ ラニュギノーザ(Humicola lanuginosa)、シュードモナス属に属する微生物としては、シュードモナス プチダ(Pseudomonas putida)、具体的にはシュードモナス プチダ(Pseudomonas putida)MR−2068(FERM BP−3846)、エセリキア属に属する微生物としてはエセリキア コリ(Escherichia coli)、具体的にはエセリキア コリ(Escherichia coli)MR−2103(FERM BP−3835)等が挙げられる。尚、エセリキアコリ(Escherichia coli)MR−2103(FERM BP−3835)は、シュードモナス プチダ(Pseudomonas putida)MR−2068(FERM BP−3846)由来のエステラーゼ遺伝子で形質転換された株である。
【0012】
また、本発明に使用するエステル不斉加水分解酵素としては、市販の酵素を使用することも可能である。例えば、NOVO社製のアルカラーゼ(Bacillus licheniformis由来)、リポラーゼ(Humicola属由来)及びフラボザイム(Aspergillus属由来)、天野製薬社製のリパーゼPS(Pseudomonas cepacia由来)、リパーゼM−10(Mucor japonicus由来)、ニューラーゼF(Rhizopus属由来)及びリパーゼAY(Candida属由来)、シグマ社製のリパーゼVII(Candida rugosa由来)及びリパーゼXXIII(Aspergillus oryzae由来)等が挙げられる。動物由来の酵素としては、シグマ社製のリパーゼII(Porcine pancrea由来)、ブタやウシの膵臓由来のパンクレアチン、トリプシン及びPPL等が挙げられる。
【0013】
本発明で使用する微生物の培養は、液体培地でも固体培地でも行うことができる。培地としては、微生物が通常資化しうる炭素源、窒素源、ビタミン、ミネラルなどの成分を適宜配合したものを用いる。炭素源としては、例えばグルコース、シュクロース、マルトース等の糖類、酢酸、クエン酸等の有機酸類あるいはその塩、エタノール、グリセロール等のアルコール類を使用できる。窒素源としては、例えば、ペプトン、肉エキス、酵母エキス、廃糖蜜、アミノ酸等の天然窒素源の他、各種無機・有機酸アンモニウム塩等が使用できる。その他、無機塩、微量金属塩、ビタミン等が必要に応じて使用される。微生物の加水分解能を向上させるため、培地に少量のエステルを加えることも有効である。培養は微生物が生育可能である温度、pHで行われるが、使用する菌株の最適培養条件で行えばよい。例えば、pH4〜10、温度20〜50℃の範囲で数時間〜数十時間培養する。微生物の生育を促進させるため、通気攪拌を行っても良い。
【0014】
本発明においては、培養して得られる培養液そのままか、あるいは培養液から遠心分離などの集菌操作によって得られる微生物菌体、もしくはその処理物を用いることもできる。処理物としては、アセトン、トルエン等で処理した菌体、凍結乾燥菌体、菌体破砕物、無細胞抽出物、無細胞抽出物からゲル濾過、イオン交換クロマトグラフィー等の分離操作により得られた粗酵素または精製酵素等が挙げられる。また、微生物菌体または酵素は、架橋したアクリルアミドゲルなどに包括固定化したり、イオン交換樹脂、珪藻土などの固体担体に物理的あるいは化学的に固定化して用いることができる。
【0015】
本発明において一般式(II)で表されるラセミ体エステルの不斉加水分解反応は、次のようにして行うことができる。すなわち、反応媒体に酵素反応基質であるラセミ体エステルを添加し、溶解または懸濁し、触媒となる微生物、その処理物、または酵素を加える。反応媒体としては、例えば、イオン交換水、緩衝液等が用いられる。反応液中の基質濃度は、0.1〜70重量%の間で特に制限はないが、基質の溶解度、変換効率などを考慮すると5〜50重量%で行うの好ましい。また、基質の溶解性を向上させるため、例えば、メタノール、エタノールなどの低級アルコールを系内に添加することも可能である。反応温度は酵素の至適温度と基質の安定性を考慮して、通常5〜70℃、好ましくは10〜50℃で行えばよい。反応液のpHは、通常4.0〜10.0であり、好ましくは6.0〜8.0の範囲である。反応が進行するに従い、生成したカルボン酸によりpHが低下するので適当な中和剤を添加し、最適pHを維持することが望ましい。
【0016】
反応終了液より生成物の分離精製は、次のようにして行うことができる。中性付近で一般的な有機溶媒、例えば、酢酸エチル、ヘキサン、トルエン、ジエチルエーテル、塩化メチレン、クロロホルムなどを用いて抽出操作を行い、未反応の基質を分離することができる。また、抽出残液に硫酸や塩酸等の強酸を加え、pHを2.0程度に調整し、上記と同様の一般的な抽出操作を行うことにより、酵素反応生成物である光学活性N−置換4−アミノ−2−メチル酪酸を抽出分離することができる。
【0017】
本発明で得られる光学活性N−置換4−アミノ−2−メチル酪酸およびその対掌体エステルは、そのまま使用可能であるが、目的に応じて任意の手法で容易に脱保護が可能である。
【0018】
以下、実施例にて本発明を具体的に説明するが、本発明の範囲はこれらの実施例の範囲に限定されるものでは無い。
【0019】
【実施例】
参考例1
ラセミ体N−メトキシカルボニル−4−アミノ−2−メチル酪酸エステルの製造:
特開平8−291157号、実施例1の方法で得られた3−シアノイソ酪酸メチル100gを500mlの3N NaOHに滴下し室温で一晩攪拌した。反応終了液に硫酸を滴下し、pHを2.0に調整し、1/3量の酢酸エチルで2回抽出した。得られた有機相を減圧濃縮し、81.5gの3−シアノイソ酪酸を得た。得られた3−シアノイソ酪酸38gを350mlの酢酸に溶解し、10%パラジウム−カーボンを5g添加し、オートクレーブに仕込み、40℃、水素圧12kg/cmで接触還元を行った。ほぼ理論量の水素が吸収された時点(約4時間後)で反応を終了し、触媒を濾別し、酢酸を減圧留去した。油状残分にイソプロパノールを添加し、冷却し、析出した結晶を回収し、32.0gの白色パウダーを得た。NMRで構造を確認したところ、4−アミノ−2−メチル酪酸と確認された。
【0020】
4−アミノ−2−メチル酪酸10gを50mlの4N NaOHに溶解し、氷冷下クロロギ酸メチル9gを滴下した後、室温で数時間攪拌した。反応終了後、硫酸でpHを酸性とし、酢酸エチルで抽出し、減圧濃縮し、12.3gのN−メトキシカルボニル−4−アミノ−2−メチル酪酸を得た。これを常法によりエステル化し、11.6gのラセミ体N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチルを得た。
【0021】
実施例1
光学活性N−メトキシカルボニル−4−アミノ2−メチル酪酸及びその対掌体エステルの製造:
エセリキア コリ(Escherichia coli)MR−2103(FERM BP−3835)を50μg/mlのアンピシリンを含むLB培地(1%ペプトン、0.5%酵母エキス、0.5%NaCl)50mlに植菌し、37℃、20時間振とう培養した。培養終了後、遠心分離により集菌し、イオン交換水で洗浄した後、全量を50mlの50mMリン酸緩衝液(pH7.0)に懸濁した。この菌体懸濁液に参考例1で得られたラセミ体N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチル5gを加え、30℃にて20時間反応させた。この間、反応液のpHは1N NaOHを用いてpH7.0に調整した。反応終了後、遠心分離により菌体を除き、未反応のN−メトキシカルボニル−4−アミノ−2−メチル酪酸メチルを30mlの酢酸エチルで3回抽出した。得られた有機相を無水硫酸ナトリウムで脱水し、減圧濃縮し、2.01gの残分を得た。このサンプルの物性値及びH−NMRチャート(図1)を以下に示した。次いで抽出残水相のpHを希硫酸で2.0に調整し、酵素反応生成物である光学活性N−メトキシカルボニル−4−アミノ−2−メチル酪酸を30mlの酢酸エチルで3回抽出した。得られた有機相を無水硫酸ナトリウムで脱水し、減圧濃縮し、1.78gの残分を得た。このサンプルの物性値及びH−NMRチャート(図2)を以下に示した。
【0022】
(+)−N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチル
H−NMRスペクトル> DMSO、内部標準TMS(第1図)
1.072〜1.097 (3H,d,−CH
1.459〜1.495 (1H,m,−CH
1.690〜1.746 (1H,m,−CH
2.433〜2.489 (1H,q,−CH)
2.953〜3.018 (2H,dd,−CH
3.517、3.600 (6H,s,−CH
7.072 (1H,s,−NH)
<比旋光度>
[α] 26=+27.48(c=2.22、MeOH)
<光学純度>
99.8%e.e. (カラム;Chiralcel OD, 移動相;ヘキサン/イソプロパノール/トリフルオロ酢酸=90/10/0.1)
【0023】
(−)−N−メトキシカルボニル−4−アミノ−2−メチル酪酸
H−NMRスペクトル> DMSO、内部標準TMS(第2図)
1.061〜1.086 (3H,d,−CH
1.402〜1.504 (1H,m,−CH
1.675〜1.778 (1H,m,−CH
2.312〜2.389 (1H,q,−CH)
2.971〜3.045 (2H,dd,−CH
3.524 (3H,s,−CH
7.050 (1H,s,−NH)
12.0 (1H,br,−OH)
<比旋光度>
[α] 26=−15.07 (c=3.45、MeOH)
<光学純度>
96.8%e.e. (カラム;Chiralcel OD, 移動相;ヘキサン/イソプロパノール/トリフルオロ酢酸=90/10/0.1)
【0024】
実施例2〜7
光学活性N−メトキシカルボニル−4−アミノ−2−メチル酪酸及びその対掌体エステルの製造:
1mlの50mMリン酸緩衝液(pH7.0)に参考例1で得られたラセミ体N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチル10mlを加え、市販の酵素(液体の場合は5ml、粉末の場合は5mg)を加え、30℃にて20時間反応させた。得られた残存エステル及び酸画分の分析結果を表1に示した。なお、括弧内の(+,−)は、サンプルの旋光性を示した。
【0025】
【表1】
Figure 0004392812
【0026】
【発明の効果】
新規光学活性4−アミノ−2−メチル酪酸誘導体は、医農薬合成中間体として有用であり、また本方法により高純度の光学活性体が製造可能である。
【0027】
【図面の簡単な説明】
【図1】 (+)−N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチルのH−NMRスペクトル図を示す。
【図2】 (−)−N−メトキシカルボニル−4−アミノ−2−メチル酪酸のH−NMRスペクトル図を示す。[0001]
BACKGROUND OF THE INVENTION
The novel optically active 4-amino-2-methylbutyric acid derivative obtained in the present invention is a useful compound that is expected to be used in various applications as an optically active medical and agricultural chemical synthesis intermediate.
[0002]
[Prior art]
For example, as a method for producing an optically active 4-amino-2-methylbutyric acid which is a related compound, a method of preferential crystallization using quinine after phthalimidation of racemic 4-amino-2-methylbutyric acid is known. . (Adams R., Fres D., J. Am. Chem. Soc., 81, 4946-4951 (1959)) However, purification requires a complicated operation of repeating recrystallization, and the recovery rate is 17-22. The optical purity is not clear.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel optically active 4-amino-2-methylbutyric acid derivative and a method for producing the same.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, the microorganisms, processed products, or enzymes are allowed to act on racemic N-substituted 4-amino-2-methylbutyric acid esters. Was found to yield an optically active 4-amino-2-methylbutyric acid derivative, thereby completing the present invention.
[0005]
That is, the present invention has the general formula:
[Chemical 3]
Figure 0004392812
(In the formula, X represents an alkoxycarbonyl group, R represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and * represents an asymmetric carbon.)
Is a novel optically active 4-amino-2-methylbutyric acid derivative represented by:
[0006]
The present invention also includes a general formula:
[Formula 4]
Figure 0004392812
(In the formula, X represents an alkoxycarbonyl group, and R represents a linear or branched alkyl group having 1 to 6 carbon atoms.)
Of the novel optically active 4-amino-2-methylbutyric acid derivative described above, characterized by allowing a microorganism, a treated product thereof, or an enzyme to act on the racemic ester represented by It is a manufacturing method.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The alkoxycarbonyl group represented by X in the above general formulas (I) and (II) is usually used for protecting an amino group and can be used without particular limitation as long as it does not inhibit the enzyme reaction. is there. Examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group, and a benzyloxycarbonyl group.
[0008]
In the above general formulas (I) and (II), the alkyl group represented by R is a linear or branched alkyl group having 1 to 6 carbon atoms and may be any substrate that can serve as a substrate for an enzymatic reaction. Examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an isobutyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
[0009]
The racemic N-substituted 4-amino-2-methylbutyric acid ester represented by the general formula (II) can be produced by any method. For example, after obtaining methyl 3-cyanoisobutyrate from hydrocyanic acid and methyl methacrylate (see JP-A-8-291157), 3-cyanoisobutyric acid is obtained by alkaline hydrolysis. When the obtained 3-cyanoisobutyric acid is subjected to catalytic reduction in an appropriate solvent at an intermediate pressure in the presence of a catalyst such as palladium-carbon, 4-amino-2-methylbutyric acid is obtained. When the amino group of the obtained 4-amino-2-methylbutyric acid is protected in an appropriate solvent and an esterification reaction is carried out according to a conventional method, a racemic ester that is a substrate for the enzyme reaction is obtained. For protecting the amino group, for example, methyl chloroformate, ethyl chloroformate, di-tert-butyl dicarbonate and the like can be used. Esterification may be performed by reacting with an appropriate alcohol or dehydrating agent.
[0010]
The microorganism, treated product, or enzyme used in the present invention undergoes asymmetric hydrolysis of the racemic ester represented by the general formula (II) to produce an optically active 4-amino-2 represented by the general formula (I). -There is no restriction | limiting in particular if a methylbutyric acid derivative is given. Commercially available hydrolyzing enzymes (esterases, lipases, proteases, etc.) derived from microorganisms, plants or animals, microbial cultures of various storage strains, microorganisms newly isolated from nature, and the like can be used.
[0011]
Examples of microorganisms that produce asymmetric hydrolase include, for example, the genus Bacillus, the genus Aspergillus, the genus Rhizopus, the genus Mucor, the genus Candida, the genus Humicola, And microorganisms belonging to the genus Pseudomonas and the genus Escherichia. Examples of microorganisms belonging to the genus Bacillus include Bacillus subtilis, Bacillus licheniformus, Bacillus polyvix, and Aspergillus sp. ), Aspergillus fumigatus, Aspergillus niger, Aspergillus sojae, Aspergillus saito, Microorganisms belonging to the genus Aspergillus saitoi As a microorganism belonging to the genus Rhizopus japonicus, Rhizopus delemar, and the genus Mucor, the genus Mucor javnicus, the genus Mucor mihie, As a microorganism belonging to the genus Humicola lanuginosa and Pseudomonas, Pseudomonas putida, specifically, Pseudomonas putida MR-2068 (FERM BP-46, FERM BP-46). Kori (Escherichia coli), concrete The Eserikia coli (Escherichia coli) MR-2103 (FERM BP-3835), and the like. Incidentally, Escherichia coli MR-2103 (FERM BP-3835) is a strain transformed with an esterase gene derived from Pseudomonas putida MR-2068 (FERM BP-3848).
[0012]
Moreover, as the ester asymmetric hydrolase used in the present invention, a commercially available enzyme can also be used. For example, NOVO Alcalase (derived from Bacillus licheniformis), Lipolase (derived from the genus Humicola) and Flavozyme (derived from the genus Aspergillus), Lipase PS (derived from Pseudomonas cepacia), Lipase M-10 (mucorus), pulase M-10 (mucorus) Examples include Neurase F (derived from Rhizopus genus) and lipase AY (derived from Candida genus), lipase VII (derived from Candida rugosa), lipase XXIII (derived from Aspergillus oryzae), and the like. Examples of the animal-derived enzyme include lipase II (derived from Porcine pancreas) manufactured by Sigma, pancreatin derived from porcine and bovine pancreas, trypsin, and PPL.
[0013]
The microorganism used in the present invention can be cultured in a liquid medium or a solid medium. As a culture medium, what mixed suitably components, such as a carbon source, a nitrogen source, a vitamin, and a mineral which microorganisms can normally utilize, is used. As the carbon source, for example, sugars such as glucose, sucrose and maltose, organic acids such as acetic acid and citric acid or salts thereof, and alcohols such as ethanol and glycerol can be used. Examples of the nitrogen source include natural nitrogen sources such as peptone, meat extract, yeast extract, molasses, amino acids, and various inorganic / organic acid ammonium salts. In addition, inorganic salts, trace metal salts, vitamins and the like are used as necessary. In order to improve the hydrolytic ability of microorganisms, it is also effective to add a small amount of ester to the medium. The culture is performed at a temperature and pH at which the microorganism can grow, but may be performed under the optimal culture conditions for the strain to be used. For example, the cells are cultured for several hours to several tens of hours at a pH of 4 to 10 and a temperature of 20 to 50 ° C. In order to promote the growth of microorganisms, aeration and agitation may be performed.
[0014]
In the present invention, a culture solution obtained by culturing can be used as it is, or a microbial cell obtained by a collection operation such as centrifugation from the culture solution, or a processed product thereof can also be used. The treated product was obtained by separation of cells treated with acetone, toluene, etc., freeze-dried cells, disrupted cells, cell-free extract, cell-free extract, such as gel filtration and ion exchange chromatography. Examples include crude enzymes or purified enzymes. In addition, microbial cells or enzymes can be used by being comprehensively immobilized on a cross-linked acrylamide gel or the like, or physically or chemically immobilized on a solid support such as an ion exchange resin or diatomaceous earth.
[0015]
In the present invention, the asymmetric hydrolysis reaction of the racemic ester represented by the general formula (II) can be carried out as follows. That is, a racemic ester as an enzyme reaction substrate is added to a reaction medium, dissolved or suspended, and a microorganism serving as a catalyst, a processed product thereof, or an enzyme is added. As the reaction medium, for example, ion exchange water, a buffer solution or the like is used. The substrate concentration in the reaction solution is not particularly limited between 0.1 and 70% by weight, but it is preferably 5 to 50% by weight in consideration of the solubility of the substrate, the conversion efficiency and the like. In order to improve the solubility of the substrate, for example, a lower alcohol such as methanol or ethanol can be added to the system. The reaction temperature is usually 5 to 70 ° C., preferably 10 to 50 ° C., taking into consideration the optimum temperature of the enzyme and the stability of the substrate. The pH of the reaction solution is usually 4.0 to 10.0, and preferably 6.0 to 8.0. As the reaction proceeds, the pH is lowered by the carboxylic acid produced, so it is desirable to add an appropriate neutralizing agent to maintain the optimum pH.
[0016]
Separation and purification of the product from the reaction completion liquid can be performed as follows. An unreacted substrate can be separated by performing an extraction operation using a common organic solvent such as ethyl acetate, hexane, toluene, diethyl ether, methylene chloride, chloroform, etc. near neutrality. Further, by adding a strong acid such as sulfuric acid or hydrochloric acid to the extraction residual liquid, adjusting the pH to about 2.0, and performing the same general extraction operation as described above, the optically active N-substitution that is the enzyme reaction product is performed. 4-Amino-2-methylbutyric acid can be extracted and separated.
[0017]
The optically active N-substituted 4-amino-2-methylbutyric acid and its enantiomer ester obtained in the present invention can be used as they are, but can be easily deprotected by any method depending on the purpose.
[0018]
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to the range of these Examples.
[0019]
【Example】
Reference example 1
Production of racemic N-methoxycarbonyl-4-amino-2-methylbutyrate:
100 g of methyl 3-cyanoisobutyrate obtained by the method of JP-A-8-291157 and Example 1 was dropped into 500 ml of 3N NaOH and stirred overnight at room temperature. Sulfuric acid was added dropwise to the reaction completion solution, the pH was adjusted to 2.0, and the mixture was extracted twice with 1/3 amount of ethyl acetate. The obtained organic phase was concentrated under reduced pressure to obtain 81.5 g of 3-cyanoisobutyric acid. 38 g of the obtained 3-cyanoisobutyric acid was dissolved in 350 ml of acetic acid, 5 g of 10% palladium-carbon was added, charged into an autoclave, and contact reduction was performed at 40 ° C. and a hydrogen pressure of 12 kg / cm 2 . The reaction was terminated when almost the theoretical amount of hydrogen was absorbed (after about 4 hours), the catalyst was filtered off, and acetic acid was distilled off under reduced pressure. Isopropanol was added to the oily residue, cooled, and the precipitated crystals were collected to obtain 32.0 g of white powder. When the structure was confirmed by NMR, it was confirmed to be 4-amino-2-methylbutyric acid.
[0020]
10 g of 4-amino-2-methylbutyric acid was dissolved in 50 ml of 4N NaOH, and 9 g of methyl chloroformate was added dropwise under ice cooling, followed by stirring at room temperature for several hours. After completion of the reaction, the pH was acidified with sulfuric acid, extracted with ethyl acetate, and concentrated under reduced pressure to obtain 12.3 g of N-methoxycarbonyl-4-amino-2-methylbutyric acid. This was esterified by a conventional method to obtain 11.6 g of racemic methyl N-methoxycarbonyl-4-amino-2-methylbutyrate.
[0021]
Example 1
Production of optically active N-methoxycarbonyl-4-amino 2-methylbutyric acid and its enantiomer ester:
Escherichia coli MR-2103 (FERM BP-3835) was inoculated into 50 ml of LB medium (1% peptone, 0.5% yeast extract, 0.5% NaCl) containing 50 μg / ml ampicillin, 37 Cultured with shaking at 20 ° C. for 20 hours. After completion of the culture, the cells were collected by centrifugation, washed with ion-exchanged water, and then suspended in 50 ml of 50 mM phosphate buffer (pH 7.0). To this bacterial cell suspension, 5 g of racemic N-methoxycarbonyl-4-amino-2-methylbutyrate methyl obtained in Reference Example 1 was added and reacted at 30 ° C. for 20 hours. During this time, the pH of the reaction solution was adjusted to pH 7.0 using 1N NaOH. After completion of the reaction, the cells were removed by centrifugation, and unreacted methyl N-methoxycarbonyl-4-amino-2-methylbutyrate was extracted three times with 30 ml of ethyl acetate. The obtained organic phase was dehydrated with anhydrous sodium sulfate and concentrated under reduced pressure to obtain 2.01 g of residue. The physical property values and 1 H-NMR chart (FIG. 1) of this sample are shown below. Next, the pH of the extracted aqueous phase was adjusted to 2.0 with dilute sulfuric acid, and the optically active N-methoxycarbonyl-4-amino-2-methylbutyric acid, which is an enzyme reaction product, was extracted three times with 30 ml of ethyl acetate. The obtained organic phase was dehydrated with anhydrous sodium sulfate and concentrated under reduced pressure to obtain 1.78 g of residue. The physical property values and 1 H-NMR chart (FIG. 2) of this sample are shown below.
[0022]
Methyl (+)-N-methoxycarbonyl-4-amino-2-methylbutyrate < 1 H-NMR spectrum> DMSO, internal standard TMS (FIG. 1)
d H 1.072~1.097 (3H, d, -CH 3)
d H 1.459~1.495 (1H, m, -CH 2)
d H 1.690~1.746 (1H, m, -CH 2)
d H 2.433~2.489 (1H, q, -CH)
d H 2.953-3.018 (2H, dd, —CH 2 )
d H 3.517, 3.600 (6H, s, —CH 3 )
d H 7.072 (1H, s, —NH)
<Specific rotation>
[Α] D 26 = + 27.48 (c = 2.22, MeOH)
<Optical purity>
99.8% e. e. (Column; Chiralcel OD, mobile phase; hexane / isopropanol / trifluoroacetic acid = 90/10 / 0.1)
[0023]
(−)-N-methoxycarbonyl-4-amino-2-methylbutyric acid < 1 H-NMR spectrum> DMSO, internal standard TMS (FIG. 2)
d H 1.061~1.086 (3H, d, -CH 3)
d H 1.402~1.504 (1H, m, -CH 2)
d H 1.675~1.778 (1H, m, -CH 2)
d H 2.312~2.389 (1H, q, -CH)
d H 2.971~3.045 (2H, dd, -CH 2)
d H 3.524 (3H, s, -CH 3)
d H 7.050 (1H, s, —NH)
d H 12.0 (1H, br, —OH)
<Specific rotation>
[Α] D 26 = -15.07 (c = 3.45, MeOH)
<Optical purity>
96.8% e. e. (Column; Chiralcel OD, mobile phase; hexane / isopropanol / trifluoroacetic acid = 90/10 / 0.1)
[0024]
Examples 2-7
Production of optically active N-methoxycarbonyl-4-amino-2-methylbutyric acid and its enantiomer ester:
10 ml of racemic N-methoxycarbonyl-4-amino-2-methylbutyrate obtained in Reference Example 1 was added to 1 ml of 50 mM phosphate buffer (pH 7.0), and a commercially available enzyme (5 ml in the case of liquid, In the case of powder, 5 mg) was added and reacted at 30 ° C. for 20 hours. The analysis results of the obtained residual ester and acid fraction are shown in Table 1. In addition, (+, −) in parentheses indicates the optical rotation of the sample.
[0025]
[Table 1]
Figure 0004392812
[0026]
【The invention's effect】
The novel optically active 4-amino-2-methylbutyric acid derivative is useful as a pharmaceutical and agrochemical synthesis intermediate, and a highly pure optically active substance can be produced by this method.
[0027]
[Brief description of the drawings]
FIG. 1 shows a 1 H-NMR spectrum of methyl (+)-N-methoxycarbonyl-4-amino-2-methylbutyrate.
FIG. 2 shows a 1 H-NMR spectrum of (−)-N-methoxycarbonyl-4-amino-2-methylbutyric acid.

Claims (1)

一般式(II)
Figure 0004392812
で表されるラセミ体N−メトキシカルボニル−4−アミノ−2−メチル酪酸メチルに、該エステル体の不斉加水分解反応を触媒するシュードモナス プチダ(Pseudomonas putida)MR−2068(FERM BP−3846)若しくはエセリキア コリ(Escherichia coli)MR−2103(FERM BP−3835)、又はその処理物を作用させることを含む、光学活性N−メトキシカルボニル−4−アミノ−2−メチル酪酸誘導体の製造方法。
Formula (II)
Figure 0004392812
Pseudomonas putida MR-2068 (FERM BP-3848) or a racemic N-methoxycarbonyl-4-amino-2-methylbutyrate represented by the formula: A method for producing an optically active N-methoxycarbonyl-4-amino-2-methylbutyric acid derivative, which comprises reacting Escherichia coli MR-2103 (FERM BP-3835) or a processed product thereof.
JP21731799A 1999-07-30 1999-07-30 Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same Expired - Fee Related JP4392812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21731799A JP4392812B2 (en) 1999-07-30 1999-07-30 Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21731799A JP4392812B2 (en) 1999-07-30 1999-07-30 Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001039941A JP2001039941A (en) 2001-02-13
JP4392812B2 true JP4392812B2 (en) 2010-01-06

Family

ID=16702282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21731799A Expired - Fee Related JP4392812B2 (en) 1999-07-30 1999-07-30 Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4392812B2 (en)

Also Published As

Publication number Publication date
JP2001039941A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP3129663B2 (en) Method for producing optically active 3-quinuclidinol derivative
JP4392812B2 (en) Novel optically active 4-amino-2-methylbutyric acid derivative and method for producing the same
JP3819082B2 (en) Optically active 3-N-substituted aminoisobutyric acids and salts thereof and process for producing them
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP4565672B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP4765358B2 (en) Process for producing optically active N-protected-propargylglycine
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
US7439036B2 (en) Process for producing optically active octahydro-1H-indole-2-carboxylic acid
WO1999004028A1 (en) PROCESS FOR PREPARING OPTICALLY ACTIVE α-TRIFLUOROMETHYLLACTIC ACID AND ANTIPODE ESTERS THEREOF AND METHOD OF PURIFICATION THEREOF
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP2003299495A (en) Method for producing optically active 3-methylglutaric acid monoester
EP0745137B1 (en) Enzymatic resolution of substituted 2-methyl-propionic acid
JP4476963B2 (en) Optically active 3-N-substituted aminoisobutyric acids and salts thereof and process for producing them
JPH10337197A (en) Production of optically active 3-hydroxytetrahydrofuran
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JP2007117034A (en) Method for producing optically active nipecotic acid compound
JPH10287620A (en) Optically active methylsuccinic ester, and its production
JP3024361B2 (en) Method for producing optically active pyrrolidines
JP2615768B2 (en) Optically active carboxylic acid derivative and method for producing the same
JPH0965891A (en) Production of optically active alpha-methylalkanoic acid derivative
JPH06319591A (en) Production of optically active norstatin derivative
JPH0751533B2 (en) Process for producing optically active terphenyl derivative
JPS6363396A (en) Production of d-2-(6-methoxy-2-naphthyl)propionic acid
JPH0959211A (en) New optically active dicarboxylic acid derivative and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees