JP4392093B2 - High-strength direct patenting wire and method for producing the same - Google Patents
High-strength direct patenting wire and method for producing the same Download PDFInfo
- Publication number
- JP4392093B2 JP4392093B2 JP37131299A JP37131299A JP4392093B2 JP 4392093 B2 JP4392093 B2 JP 4392093B2 JP 37131299 A JP37131299 A JP 37131299A JP 37131299 A JP37131299 A JP 37131299A JP 4392093 B2 JP4392093 B2 JP 4392093B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- wire
- less
- strength
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 37
- 239000010959 steel Substances 0.000 claims description 37
- 229910052799 carbon Inorganic materials 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 239000002344 surface layer Substances 0.000 claims description 14
- 229910000677 High-carbon steel Inorganic materials 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 13
- 229910001562 pearlite Inorganic materials 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 230000037303 wrinkles Effects 0.000 description 9
- 230000003111 delayed effect Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 238000005491 wire drawing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 241000446313 Lamella Species 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高強度のPC鋼線、PWS鋼線、ピアノ線、スチールコード、ホースワイヤ、ビードワイヤ、コントロールケーブル、釣り糸、カットワイヤ、ソーワイヤなどに使用される高強度鋼線を製造可能とする線材とその製造方法に関するものである。
【0002】
【従来の技術】
一般にスチールコードなどに用いる0.6%以上の炭素を含む高炭素鋼からなるワイヤは、熱間圧延により直径5〜16mmに加工された後に、調整冷却により組織調整され線材とされる。一般に線材はコイル状に巻き取られ搬送される。
例えば、特開昭60−204865号公報には、Mn含有量を0.3%未満に規制して鉛パテンティング後の過冷組織の発生を抑え、C,Si,Mn等の元素量を規制することによって、撚り線時の断線が少なく高強度および高靱延性の極細線およびスチールコード用高炭素鋼線材が開示されており、また、特開昭63−24046号公報には、Si含有量を1.00%以上とすることによって鉛パテンティング材の引張強さを高くして伸線加工率を小さくした高靱性高延性極細線用線材が開示されている。
【0003】
このような高強度に用いられる線材は、伸線工程で表面に付けられた疵により断線を引き起こしやすい。このため、従来の線材では、輸送中やコイルの取り扱い時に出来るだけ疵を付けない工夫がなされていた。しかし、このような努力にも限界があり、疵による断線の起こらない線材が必要とされている。
【0004】
【発明が解決しようとする課題】
本発明は上記課題を解決するためになされたもので、熱間圧延された線材の搬送あるいは表面処理加工過程で発生する疵に対する感受性を低減し、疵に強い線材とその製造方法を提供する。
【0005】
【課題を解決するための手段】
本発明の要旨は次のとおりである。
(1)鋼成分が、質量%で、C:0.7〜1.2%、Si:0.1〜1.5%、Mn:0.1〜1.0%、残部Feおよび不可避不純物である高炭素鋼からなり、その表層から300μmまでの層の平均炭素含有量を全断面での平均炭素含有量の0.97倍以下とし、かつ、前記層のビッカース硬度をHv390以下としたことを特徴とする高強度直接パテンティング線材。
【0006】
(2)鋼成分が、質量%で、C:0.7〜1.2%、Si:0.1〜1.5%、Mn:0.1〜1.0%、残部Feおよび不可避不純物である高炭素鋼からなり、その表層から300μmまでの層の平均炭素含有量を全断面での平均炭素含有量の0.97倍以下とし、かつ、前記層内の平均ラメラ間隔を95nm以上としたことを特徴とする高強度直接パテンティング線材。
【0007】
(3)前記高炭素鋼の鋼成分が、更に質量%で、Cr:0.1〜0.5%、V:0.001〜0.2%、Ni:0.05〜1.0%、Mo:0.1〜0.5%、の1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の高強度直接パテンティング線材。
【0008】
(4)前記高炭素鋼の鋼成分が、更に質量%で、Cu:0.05〜0.8%、W:0.05〜0.8%、La:0.0005〜0.01%、Ce:0.0005〜0.01%、の1種または2種以上を含有することを特徴とする上記(1)〜(3)のいずれかに記載の高強度直接パテンティング線材。
【0009】
(5)前記高炭素鋼の鋼成分が、更に質量%で、Al:0.001〜0.06%、B:0.0005〜0.06%、Ti:0.001〜0.06%、Nb:0.001〜0.06%、の1種または2種以上を含有することを特徴とする上記(1)〜(4)のいずれかに記載の高強度直接パテンティング線材。
【0016】
【発明の実施の形態】
まず、鋼成分の限定理由について説明する。成分は全て質量%である。
Cは強化に有効な元素であり高強度の鋼線を得るためにはC量を0.7%以上とすることが必要であるが、高すぎると初析セメンタイトが析出しやすいため、延性が低下し、かつ伸線性が劣化するのでその上限は1.2%とする。
【0017】
Siは鋼の脱酸のために必要な元素であり、従ってその含有量があまりに少ないとき、脱酸効果が不十分になるので0.1%以上添加する。また、Siは熱処理後に形成されるパーライト中のフェライト相に固溶しパテンティング後の強度を上げるが、反面、熱処理性を阻害するので1.5%以下とする。
Mnは鋼の焼き入れ性を確保するために0.1%以上のMnを添加することが望ましい。しかし、多量のMnの添加も溶融亜鉛めっきの際の延性の回復を遅らすので1.0%以下とする。
【0018】
Crはパテンティング後の強度ならびに伸線加工後の強度を向上するために添加する。従って、Crの添加量はその効果が期待できる0.1%以上とし、パテンティング時の変態遅延による熱処理性が悪化することの無い0.5%以下とする。
Vもパテンティング後の強度ならびに伸線加工後の強度を向上するために添加する。添加する場合は、その効果の表れる0.001%以上とし、添加し過ぎると変態が著しく遅れ、生産性に影響を及ぼすので0.2%以下とする。
【0019】
Niもパテンティング後の強度ならびに伸線加工後の強度を向上するために添加する。添加する場合は、その効果の表れる0.05%以上とし、添加し過ぎると変態が著しく遅れ、生産性に影響を及ぼすので1.0%以下とする。
Moもパテンティング後の強度ならびに伸線加工後の強度を向上するために添加する。添加する場合は、その効果の表れる0.1%以上とし、添加し過ぎるとパーライト変態を著しく遅らせ生産性を低下させるので影響の無い0.5%以下とする。
【0020】
Cuは腐食疲労特性を向上するために添加する。添加する場合は、その効果の表れる0.1%以上とし、添加し過ぎるとパーライト変態を著しく遅らせ生産性を低下させる影響の無い0.8%以下とする。
Wは腐食疲労特性を向上するために添加する。添加する場合は、その効果の表れる0.05%以上とし、添加し過ぎるとパーライト変態を著しく遅らせ生産性を低下させる影響の無い0.8%以下とする。また、これらの元素は複合添加するとより効果を発揮する。
【0021】
その他、La,Ceを微量添加(0.0005%〜0.01%)することにより腐食疲労特性を向上することができる。
Alはパーライトブロックサイズを微細にするために添加する。添加する場合は、その効果の表れる0.001%以上添加する。添加量が0.06%を超えるとAl2 O3 などの硬質の介在物が増え伸線加工性を低下させるので上限を0.06%とする。
【0022】
Bはパーライトブロックサイズを微細にするために添加する。添加する場合は、その効果の表れる0.0005%以上添加する。添加元素が多すぎると恒温変態が遅延し、硬質なミクロマルテンサイトが発生しやすくなるため0.06%以下とする。
Tiはパーライトブロックサイズを微細にするため添加する。添加する場合は、その効果の表れる0.001%以上添加する。添加元素が多すぎると恒温変態が遅延し、硬質なミクロマルテンサイトが発生しやすくなるため0.06%以下とする。
【0023】
Nbはパーライトブロックサイズを微細にするため添加する。添加する場合は、その効果の表れる0.001%以上添加する。添加元素が多すぎると恒温変態が遅延し、硬質なミクロマルテンサイトが発生しやすくなるため0.06%以下とする。
Pは偏析することによる脆化組織を生成しやすく、Sは介在物を形成しやすい元素なので悪影響の少なくなる0.02%以下にそれぞれするのが望ましい。
【0024】
次にこれらの本発明の製造方法について説明する。前述の鋼成分に調整された鋼は、溶製された後にブルームあるいはビレットに連続鋳造される。この鋳造時の鋳型内のモールド近傍に純鉄を添加する事により、表層から300μmの炭素濃度を平均の炭素濃度の0.97倍以下とする。0.97倍超の場合では、一般的な製造工程である巻き取り温度850℃以上で巻き取った後、400℃〜570℃の温度で溶融ソルトに浸漬してパーライト組織とした場合、表層から300μmの範囲のビッカース硬度がHv390以下、あるいは平均のラメラ間隔が95nm以上とすることが出来ない。従って表層から300μmの炭素量が断面全体平均濃度の0.97倍以下である必要がある。線材加熱炉では、1000℃から1200℃の間に加熱する。加熱温度が1000℃以下の場合、圧延温度が低くなり圧延が困難となる。また、1200℃以上に加熱すると一般的な燃焼炉内では脱炭層が大きくなるので1200℃以下とする。加熱後、一般的な線径4〜16mmに圧延する。その後、巻き取り温度を900℃以下に調整し必要に応じて巻き取る。巻き取り温度が900℃超になるとスケール厚みが大きく成りすぎるので900℃以下とする。
【0025】
その後、直ちに400℃〜570℃の溶融ソルトに浸漬しパーライト変態を終了させる。溶融塩温度が400℃未満となると組織が微細に成りすぎ表層のビッカース硬度がHv390以下、300μmの平均のラメラ間隔が95nm以上とすることが困難となる。また570℃超とすると操業が困難となるので570℃以下とする。
【0026】
次に線材に疵が入る場合、断線に至る原因について述べる。線材に入る疵の深さは、大きいもので100μm程度である。このとき断線に最も影響を与えるのは、疵が入る際に発生する熱により表層に形成される硬質なマルテンサイト、すなわち擦過マルテンサイトの存在である。断線を引き起こすマルテンサイトの発生を無害化するためには、表層から300μmのビッカース硬度をHv390以下、あるいは表層から300μmの平均のラメラ間隔を95nm以上に調整する必要がある。これらの事により、疵が入る際に形成されるマルテンサイトは、発生しなくなるか無害な程度に薄くなる。
【0027】
【実施例】
表1に試作に用いた本発明鋼および比較鋼の化学成分を示す。本発明鋼ならびに比較鋼を転炉で溶製したのち連続鋳造により500mm×300mmのブルームとした。その後、熱間圧延で122mm角のビレットとした。その後、1100〜1200℃で加熱した後、熱間圧延で直径5.5mmから13mmの線材とした。
【0028】
表2に線材の表層から300μmの炭素濃度を線材全断面積の平均の炭素量で割った炭素量比ならびに熱間圧延終了後の温度をはじめとする製造条件を示した。
得られた線材の表層の硬度ならびに表層のラメラ間隔を同表2に示した。
本発明鋼1〜15は、本発明に従って鋼の化学成分とミクロ組織が調整されている。一方、比較鋼16,17は、鋼の成分と圧延方法は本発明鋼と同じであるが、炭素量比が本発明鋼に比べ高い場合である。
【0029】
これらの線材を用いて、人工的に疵を付け、疵の下に形成されたマルテンサイトの厚み測定した。また、これらの線材の2tのコイルをフォークリフトのフックが線材と擦れあうようにして30回運搬を繰り返し、伸過程における断線回数を調べた。これらの結果を表2に示した。
本発明にしたがって製造された本発明鋼1〜15はマルテンサイトの厚みが薄く、断線回数の少ない良好な結果を示す。一方、比較鋼16〜17は、マルテンサイトの厚みがあつく、断線回数が本発明鋼より高い。
【0030】
【表1】
【0031】
【表2】
【0032】
【発明の効果】
本発明を用いることで、疵による断線の少ない高強度の線材を容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a wire rod capable of producing a high-strength steel wire used for high-strength PC steel wire, PWS steel wire, piano wire, steel cord, hose wire, bead wire, control cable, fishing line, cut wire, saw wire, etc. And its manufacturing method.
[0002]
[Prior art]
Generally, a wire made of high carbon steel containing 0.6% or more of carbon used for a steel cord or the like is processed into a diameter of 5 to 16 mm by hot rolling, and then subjected to a structure adjustment by adjusting cooling to obtain a wire rod. Generally, a wire is wound and conveyed in a coil shape.
For example, in Japanese Patent Application Laid-Open No. 60-204865, the Mn content is restricted to less than 0.3% to suppress the occurrence of supercooled structure after lead patenting, and the amount of elements such as C, Si, Mn is regulated. By doing so, a high-strength and high-toughness ductile ultra-fine wire and a high carbon steel wire for steel cord with less breakage at the time of stranded wire are disclosed, and JP-A 63-24046 discloses a Si content. A high toughness and highly ductile wire for a fine wire in which the tensile strength of the lead patenting material is increased to reduce the wire drawing rate by setting the content to 1.00% or more is disclosed.
[0003]
Such a wire used for high strength is likely to cause breakage due to wrinkles attached to the surface in the wire drawing process. For this reason, the conventional wire has been devised so as not to be wrinkled as much as possible during transportation or handling of the coil. However, there is a limit to such efforts, and there is a need for a wire rod that does not break due to wrinkles.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and provides a wire rod that is resistant to wrinkles and a method for manufacturing the same, which reduces the sensitivity to wrinkles generated during the conveyance of a hot-rolled wire rod or a surface treatment process.
[0005]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) Steel component is mass%, C: 0.7-1.2%, Si: 0.1-1.5%, Mn: 0.1-1.0%, balance Fe and inevitable impurities made from a certain high carbon steel, that the average carbon content of the layer from the surface layer to 300μm and less 0.97 times the average carbon content in the entire cross-section, and that the Vickers hardness of the layer is Hv390 or less High-strength direct patenting wire characterized by
[0006]
(2) Steel component is mass%, C: 0.7-1.2%, Si: 0.1-1.5%, Mn: 0.1-1.0%, balance Fe and inevitable impurities made from a certain high carbon steel, the average carbon content of the layer from the surface layer to 300μm and less 0.97 times the average carbon content in the entire cross-section, and has an average lamellar spacing of the layer not less than 95nm it shall be the characteristic high strength directly patenting wire.
[0007]
( 3 ) The steel component of the high carbon steel is further mass%, Cr: 0.1-0.5%, V: 0.001-0.2%, Ni: 0.05-1.0%, Mo: 0.1 to 0.5%, 1 kind or above characterized by containing two or more (1) or high intensity direct patenting wire according to (2) of the.
[0008]
( 4 ) The steel component of the high carbon steel is further mass%, Cu: 0.05 to 0.8%, W: 0.05 to 0.8%, La: 0.0005 to 0.01%, The high-strength direct patenting wire according to any one of ( 1) to (3 ) above, which contains one or more of Ce: 0.0005 to 0.01%.
[0009]
( 5 ) The steel component of the high-carbon steel is further mass%, Al: 0.001-0.06%, B: 0.0005-0.06%, Ti: 0.001-0.06%, The high-strength direct patenting wire according to any one of ( 1 ) to ( 4 ) above, which contains one or more of Nb: 0.001 to 0.06%.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the steel components will be described. All components are in weight percent.
C is an element effective for strengthening, and in order to obtain a high-strength steel wire, the C content needs to be 0.7% or more. However, if it is too high, proeutectoid cementite is likely to precipitate. The upper limit is set to 1.2% because the wire drawability deteriorates.
[0017]
Si is an element necessary for deoxidation of steel. Therefore, when its content is too small, the deoxidation effect becomes insufficient, so 0.1% or more is added. Further, Si dissolves in the ferrite phase in the pearlite formed after the heat treatment to increase the strength after patenting, but on the other hand, the heat treatment property is hindered, so the content is made 1.5% or less.
It is desirable to add 0.1% or more of Mn to ensure the hardenability of the steel. However, the addition of a large amount of Mn delays the recovery of ductility during hot dip galvanization, so it is made 1.0% or less.
[0018]
Cr is added to improve the strength after patenting and the strength after wire drawing. Therefore, the addition amount of Cr is set to 0.1% or more where the effect can be expected, and is set to 0.5% or less so that the heat treatment property due to the delay of transformation at the time of patenting does not deteriorate.
V is also added to improve the strength after patenting and the strength after wire drawing. If added, the effect is 0.001% or more, and if added too much, transformation is remarkably delayed and affects productivity, so the content is made 0.2% or less.
[0019]
Ni is also added to improve the strength after patenting and the strength after wire drawing. When added, the effect should be 0.05% or more, and if added too much, the transformation is significantly delayed and affects the productivity, so 1.0% or less.
Mo is also added to improve the strength after patenting and the strength after wire drawing. If added, the effect is 0.1% or more, and if added too much, the pearlite transformation is remarkably delayed and productivity is lowered, so the effect is 0.5% or less.
[0020]
Cu is added to improve the corrosion fatigue characteristics. If added, the effect is 0.1% or more, and if added too much, the pearlite transformation is remarkably delayed, and the productivity is not reduced to 0.8% or less.
W is added to improve corrosion fatigue characteristics. If added, the effect is 0.05% or more, and if added too much, the pearlite transformation is remarkably delayed and the productivity is reduced to 0.8% or less. These elements are more effective when added in combination.
[0021]
In addition, corrosion fatigue characteristics can be improved by adding a small amount of La and Ce (0.0005% to 0.01%).
Al is added to make the pearlite block size fine. When added, 0.001% or more where the effect appears. If the added amount exceeds 0.06%, hard inclusions such as Al 2 O 3 increase and the wire drawing workability is lowered, so the upper limit is made 0.06%.
[0022]
B is added to make the pearlite block size fine. When added, 0.0005% or more where the effect appears. If there are too many additive elements, isothermal transformation is delayed and hard micromartensite is likely to be generated, so the content is made 0.06% or less.
Ti is added to make the pearlite block size fine. When added, 0.001% or more where the effect appears. If there are too many additive elements, isothermal transformation is delayed and hard micromartensite is likely to be generated, so the content is made 0.06% or less.
[0023]
Nb is added to make the pearlite block size fine. When added, 0.001% or more where the effect appears. If there are too many additive elements, isothermal transformation is delayed and hard micromartensite is likely to be generated, so the content is made 0.06% or less.
P is liable to generate a brittle structure due to segregation, and S is an element that easily forms inclusions.
[0024]
Next, these production methods of the present invention will be described. The steel adjusted to the steel components described above is continuously casted into a bloom or billet after being melted. By adding pure iron near the mold in the casting mold, the carbon concentration of 300 μm from the surface layer is made 0.97 times or less of the average carbon concentration. In the case of 0.97-fold, after wound by coiling temperature 850 ° C. or higher is a common manufacturing process, when the immersing the pearlite structure to the melting salt at a temperature of 400 ° C. to 5 7 0 ° C., The Vickers hardness in the range of 300 μm from the surface layer cannot be Hv 390 or less, or the average lamella spacing cannot be 95 nm or more. Therefore, the amount of carbon of 300 μm from the surface layer needs to be 0.97 times or less of the entire cross-sectional average concentration. In a wire heating furnace, it heats between 1000 degreeC and 1200 degreeC. When heating temperature is 1000 degrees C or less, rolling temperature becomes low and rolling becomes difficult. In addition, when heated to 1200 ° C. or higher, the decarburized layer becomes large in a general combustion furnace, so the temperature is set to 1200 ° C. or lower. After heating, it is rolled to a general wire diameter of 4 to 16 mm. Thereafter, it wounds as necessary to adjust the coiling temperature to 90 0 ° C. or less. If the winding temperature exceeds 900 ° C., the scale thickness becomes too large, so the temperature is set to 900 ° C. or less.
[0025]
Thereafter, it is immediately immersed in a molten salt at 400 ° C. to 570 ° C. to complete the pearlite transformation. When the molten salt temperature is less than 400 ° C., the structure becomes too fine, and it becomes difficult for the surface layer to have a Vickers hardness of Hv 390 or less and an average lamella spacing of 300 μm to 95 nm or more. Since the operation is difficult and 570 ° C. greater than the 570 ° C. or less.
[0026]
Next, the reason for disconnection when wrinkles enter the wire will be described. The depth of the wrinkles entering the wire is large and is about 100 μm. At this time, it is the presence of hard martensite that is formed on the surface layer by the heat generated when wrinkles enter , that is, scratch martensite, that most affects the disconnection. To detoxify generation of martensite causing disconnection, or less Hv390 Vickers hardness of 300μm from the surface layer, or it is necessary to adjust the surface layer to the average lamellar spacing of 300μm on 95nm or more. By these things, the martensite formed when the soot enters does not occur or becomes thin enough to be harmless.
[0027]
【Example】
Table 1 shows the chemical composition of the steel of the present invention and the comparative steel used in the trial production. The steel of the present invention and the comparative steel were melted in a converter and then made into a 500 mm × 300 mm bloom by continuous casting. Then, it was set as a 122 mm square billet by hot rolling. Then, after heating at 1100-1200 degreeC, it was set as the wire of diameter 5.5mm to 13mm by hot rolling.
[0028]
Table 2 shows the production conditions including the carbon content ratio obtained by dividing the carbon concentration of 300 μm from the surface layer of the wire by the average carbon content of the total cross-sectional area of the wire, and the temperature after hot rolling.
Table 2 shows the hardness of the surface layer of the obtained wire and the lamella spacing of the surface layer.
In the present invention steels 1 to 15, the chemical composition and microstructure of the steel are adjusted according to the present invention. On the other hand, the comparative steels 16 and 17 have the same steel composition and rolling method as the steel of the present invention, but the carbon ratio is higher than that of the steel of the present invention.
[0029]
Using these wires, artificially wrinkled and the thickness of martensite formed under the wrinkles was measured. Further, the 2t coils of these wire rods were repeatedly transported 30 times so that the hooks of the forklifts rub against the wire rods, and the number of breaks in the stretching process was examined. These results are shown in Table 2.
Inventive steels 1 to 15 produced according to the present invention have good martensite thickness and few breaks. On the other hand, the comparative steels 16 to 17 have martensite thickness and the number of disconnections is higher than that of the steel of the present invention.
[0030]
[Table 1]
[0031]
[Table 2]
[0032]
【The invention's effect】
By using the present invention, it is possible to easily obtain a high-strength wire with less disconnection due to wrinkles.
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37131299A JP4392093B2 (en) | 1999-12-27 | 1999-12-27 | High-strength direct patenting wire and method for producing the same |
CN00804128A CN1117171C (en) | 1999-12-22 | 2000-12-22 | Direct patenting high strength wire rod and method for producing same |
KR10-2001-7010640A KR100430068B1 (en) | 1999-12-22 | 2000-12-22 | Direct patenting high strength wire rod and method for producing the same |
PCT/JP2000/009167 WO2001046485A1 (en) | 1999-12-22 | 2000-12-22 | Direct patenting high strength wire rod and method for producing the same |
MYPI20006128A MY128660A (en) | 1999-12-22 | 2000-12-22 | High strength direct patenting wire rod and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37131299A JP4392093B2 (en) | 1999-12-27 | 1999-12-27 | High-strength direct patenting wire and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001181793A JP2001181793A (en) | 2001-07-03 |
JP4392093B2 true JP4392093B2 (en) | 2009-12-24 |
Family
ID=18498497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37131299A Expired - Fee Related JP4392093B2 (en) | 1999-12-22 | 1999-12-27 | High-strength direct patenting wire and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4392093B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4718359B2 (en) | 2005-09-05 | 2011-07-06 | 株式会社神戸製鋼所 | Steel wire rod excellent in drawability and fatigue characteristics and manufacturing method thereof |
KR101309881B1 (en) * | 2009-11-03 | 2013-09-17 | 주식회사 포스코 | Wire Rod For Drawing With Excellent Drawability, Ultra High Strength Steel Wire And Manufacturing Method Of The Same |
US9255306B2 (en) | 2011-03-14 | 2016-02-09 | Nippon Steel & Sumitomo Metal Corporation | Steel wire rod and method of producing same |
KR101869633B1 (en) | 2014-04-24 | 2018-06-20 | 신닛테츠스미킨 카부시키카이샤 | Wire material for high strength steel cord |
EP3144404A4 (en) * | 2014-04-24 | 2018-01-17 | Nippon Steel & Sumitomo Metal Corporation | Filament for high strength steel cord |
CN119144906B (en) * | 2024-11-19 | 2025-03-25 | 江苏省沙钢钢铁研究院有限公司 | 5200MPa grade steel wire, hot-rolled wire rod and production method of wire rod |
-
1999
- 1999-12-27 JP JP37131299A patent/JP4392093B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001181793A (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4842408B2 (en) | Wire, steel wire, and method for manufacturing wire | |
JP2921978B2 (en) | Manufacturing method of high strength and high ductility ultrafine steel wire | |
JP5098444B2 (en) | Method for producing high ductility direct patenting wire | |
JP2007327084A (en) | Wire rod having excellent wire drawability and its production method | |
CN108138285B (en) | Wire rod for wire drawing | |
KR100441412B1 (en) | Wire for high-fatigue-strength steel wire, steel wire and production method therefor | |
JP3601388B2 (en) | Method of manufacturing steel wire and steel for steel wire | |
JP4646850B2 (en) | High carbon steel wire rod with excellent resistance to breakage of copper | |
KR100430068B1 (en) | Direct patenting high strength wire rod and method for producing the same | |
JP3965010B2 (en) | High-strength direct patenting wire and method for producing the same | |
JP3536684B2 (en) | Steel wire with excellent wire drawing workability | |
JP4392093B2 (en) | High-strength direct patenting wire and method for producing the same | |
JP3153618B2 (en) | Manufacturing method of hypereutectoid steel wire | |
JP3277878B2 (en) | Wire drawing reinforced high-strength steel wire and method of manufacturing the same | |
JP4499956B2 (en) | Steel cord manufacturing method | |
JPH06271937A (en) | Production of high strength and high toughness hyper-eutectoid steel wire | |
JP2575544B2 (en) | Manufacturing method of high-strength, high-carbon steel wire rod with excellent drawability | |
US5665182A (en) | High-carbon steel wire rod and wire excellent in drawability and methods of producing the same | |
JP3984393B2 (en) | High-strength steel wire without delamination and method for producing the same | |
JP3548419B2 (en) | High strength steel wire | |
JP3216404B2 (en) | Method of manufacturing wire for reinforced high strength steel wire | |
JP2000345294A (en) | Steel wire, extra fine steel wire and twisted steel wire | |
JP2000001751A (en) | Breaking resistant high strength steel wire | |
JPH06312209A (en) | Ultrafine steel wire excellent in wire drawing workability and fatigue strength and method for producing the same | |
JP2984887B2 (en) | Bainite wire or steel wire for wire drawing and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4392093 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |