[go: up one dir, main page]

JP4391221B2 - High frequency heating balloon catheter - Google Patents

High frequency heating balloon catheter Download PDF

Info

Publication number
JP4391221B2
JP4391221B2 JP2003425214A JP2003425214A JP4391221B2 JP 4391221 B2 JP4391221 B2 JP 4391221B2 JP 2003425214 A JP2003425214 A JP 2003425214A JP 2003425214 A JP2003425214 A JP 2003425214A JP 4391221 B2 JP4391221 B2 JP 4391221B2
Authority
JP
Japan
Prior art keywords
balloon
vibration
fluid
frequency
balloon catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003425214A
Other languages
Japanese (ja)
Other versions
JP2005177293A (en
Inventor
竹 修太郎 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electel Inc
Original Assignee
Japan Electel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electel Inc filed Critical Japan Electel Inc
Priority to JP2003425214A priority Critical patent/JP4391221B2/en
Priority to EP04771970A priority patent/EP1698296A4/en
Priority to CA002545295A priority patent/CA2545295A1/en
Priority to PCT/JP2004/012009 priority patent/WO2005060848A1/en
Priority to AU2004305345A priority patent/AU2004305345B2/en
Priority to US10/571,599 priority patent/US8231617B2/en
Publication of JP2005177293A publication Critical patent/JP2005177293A/en
Application granted granted Critical
Publication of JP4391221B2 publication Critical patent/JP4391221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00375Ostium, e.g. ostium of pulmonary vein or artery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Description

本発明は、高周波加温バルーンカテーテルに係り、特に循環器疾患を治療するために用いられる高周波温熱治療用のバルーンカテーテルに関する。   The present invention relates to a high-frequency warming balloon catheter, and more particularly, to a high-frequency thermotherapy balloon catheter used for treating cardiovascular diseases.

不整脈発生源や動脈硬化等の病変に対して、収縮自在なバルーンの内部に高周波通電用電極を配設し、ここから高周波電界を放射してバルーンと接触する組織を加温し治療する方法が提案されている(例えば、本出願人による特許第2538375号、特許第2510428号、特許第2574119号公報、米国特許No.6,491,710B2号公報)。
特開2003−102850号公報
There is a method for treating a lesion such as an arrhythmia source or arteriosclerosis by arranging a high-frequency energizing electrode inside a contractible balloon and radiating a high-frequency electric field from here to heat the tissue in contact with the balloon. Have been proposed (for example, Japanese Patent No. 2538375, Japanese Patent No. 2510428, Japanese Patent No. 2574119, US Pat. No. 6,491,710B2 by the present applicant).
JP 2003-102850 A

バルーンと接触する組織を加温し良好に治療するためには、組織をできるだけ均一の温度で加温する必要がある。   In order to warm the tissue in contact with the balloon and treat it well, it is necessary to warm the tissue at as uniform a temperature as possible.

バルーン内に配設された高周波通電用電極をバルーン内に完全に均一に配設することはできない。   The high-frequency energizing electrode disposed in the balloon cannot be disposed completely and uniformly in the balloon.

従来の高周波加温バルーンカテーテルでは、バルーン内に配設された電極の形状により不均一に加熱されることに基づき、また、バルーン内の液体中に熱の対流が生じることに基づき、バルーン内に温度むらが生じることが避けがたく、バルーンと接触する組織を均一の温度に加温できないという問題があった。   In a conventional high-frequency warming balloon catheter, heat is generated unevenly due to the shape of the electrode disposed in the balloon, and heat convection is generated in the liquid in the balloon. There is a problem that temperature unevenness cannot be avoided, and the tissue in contact with the balloon cannot be heated to a uniform temperature.

上記問題を解決するために、バルーン内の液体を攪拌することが本願出願人により提案されている(特開2003−102850号公報)。   In order to solve the above problem, it has been proposed by the present applicant to stir the liquid in the balloon (Japanese Patent Laid-Open No. 2003-102850).

しかしながら、単純にバルーン内の液体を撹拌しただけでは、バルーン内に渦が上下方向のみならず水平方向にも生じる。これに対し、本願発明の発明者は、対流熱により重力方向に対しバルーン内に上下方向に温度格差が生じ、このために、対流熱によりバルーン内の上部の温度が下部に比べて高くなり、上下間に形成される温度格差を確実に解消させることができないという問題がある、という知見を得た。本願発明は、上記のような本願発明の発明者による知見に基づくものである。   However, if the liquid in the balloon is simply stirred, vortices are generated in the balloon not only in the vertical direction but also in the horizontal direction. On the other hand, the inventor of the present invention creates a temperature difference in the vertical direction in the balloon relative to the direction of gravity due to convection heat, and for this reason, the temperature of the upper part in the balloon is higher than the lower part due to convection heat, It was found that there was a problem that the temperature gap formed between the upper and lower sides could not be resolved reliably. The present invention is based on the knowledge of the inventors of the present invention as described above.

ここで、バルーン内の上下間に形成される上下間の温度格差とは、バルーンカテーテルを治療手術等のために使用している状態において重力方向を下方向といい、重力方向の反対方向を上方向という。   Here, the temperature difference between the upper and lower sides formed between the upper and lower sides in the balloon refers to the downward direction of gravity in the state where the balloon catheter is used for therapeutic surgery etc., and the upward direction opposite to the direction of gravity. It is called direction.

そこで、本発明の目的は、上記従来技術の有する問題を解消し、バルーン内の対流熱による上下間温度格差を確実に解消でき、バルーンと接触する組織を均一に至適温度で加温して、患部を安全に温熱治療する高周波バルーンカテーテルを提供することである。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, reliably eliminate the temperature difference between the upper and lower sides due to convection heat in the balloon, and uniformly warm the tissue in contact with the balloon at the optimum temperature. An object of the present invention is to provide a high-frequency balloon catheter that safely heats an affected area.

上記目的を達成するために、本発明の高周波加温バルーンカテーテルは、外筒シャフトと内筒シャフトとからなるカテーテルシャフトと、膨張した状態で標的病変部に接触可能な形状を有する前記外筒シャフトの先端部と前記内筒シャフトの先端部近傍との間に設置されたバルーンと、高周波電力を伝送可能な前記バルーンの壁内又はバルーン内に配設された高周波通電用電極と、前記高周波通電用電極に電気的に接続されるリード線と、前記バルーン内の温度をモニター可能な温度センサーと、前記バルーン内に導入された流体内に対流熱により前記バルーン内の上下間に形成される上下間温度格差を解消するように、前記バルーン内の流体を前記上下間で旋回させ渦を形成する渦形成手段と、を備えることを特徴とする。   In order to achieve the above object, the high-frequency warming balloon catheter of the present invention includes a catheter shaft composed of an outer tube shaft and an inner tube shaft, and the outer tube shaft having a shape capable of contacting a target lesion in an expanded state. A balloon installed between the distal end of the inner cylindrical shaft and the vicinity of the distal end of the inner cylindrical shaft, a high-frequency energizing electrode disposed in or inside the balloon wall capable of transmitting high-frequency power, and the high-frequency energizing A lead wire electrically connected to the electrode for use, a temperature sensor capable of monitoring the temperature in the balloon, and upper and lower formed between the upper and lower sides in the balloon by convection heat in the fluid introduced into the balloon Vortex forming means for swirling the fluid in the balloon between the upper and lower sides to form a vortex so as to eliminate the inter-temperature difference.

また、前記渦形成手段は、前記外筒シャフトの内周と前記内筒シャフトの外周との間に形成される振動伝播流路にある流体を介して前記バルーン内の流体に振動を伝播させるための振動駆動手段と、前記振動伝播流路の端部の前記バルーンの入口部近傍に設けられ、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の下方向または上方向へ偏向させる振動伝播偏向手段と、を備えることを特徴とする。   In addition, the vortex forming means propagates vibration to the fluid in the balloon via the fluid in the vibration propagation flow path formed between the inner circumference of the outer cylinder shaft and the outer circumference of the inner cylinder shaft. The vibration drive means and an end of the vibration propagation channel near the entrance of the balloon, and the vibration propagating from the vibration propagation channel into the balloon is deflected downward or upward in the balloon And vibration propagation deflecting means.

また、前記振動駆動手段による振動の周期は前記バルーン内の流体を駆出する駆出期間と前記バルーン内の流体を吸引する吸引期間とからなり、前記駆出期間は前記吸引期間よりも短くかつ前記駆出期間の単位時間当たりの流体駆出量は前記吸引期間の単位時間当たりの流体吸引量より大きいか、または前記駆出期間は前記吸引期間よりも長くかつ前記駆出期間の単位時間当たりの流体駆出量は前記吸引期間の単位時間当たりの流体吸引量より小さいかであることを特徴とする。   The period of vibration by the vibration driving means includes a ejection period for ejecting the fluid in the balloon and a suction period for sucking the fluid in the balloon, and the ejection period is shorter than the suction period. The fluid ejection amount per unit time of the ejection period is greater than the fluid suction amount per unit time of the suction period, or the ejection period is longer than the suction period and per unit time of the ejection period The fluid ejection amount is smaller than the fluid suction amount per unit time of the suction period.

また、前記駆出期間と前記流体駆出量との積は前記吸引期間と前記流体吸引量との積とは等しいことを特徴とする。   The product of the ejection period and the fluid ejection amount is equal to the product of the suction period and the fluid suction amount.

また、前記振動伝播偏向手段は、前記内筒シャフトを挟んで前記入口部近傍に配設された一対の翼板を有し、前記一対の翼板の各々は、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の下方向または上方向へ偏向させるように傾斜して配設されていることを特徴とする。   Further, the vibration propagation deflecting means has a pair of blades disposed in the vicinity of the inlet portion with the inner cylinder shaft interposed therebetween, and each of the pair of blades is connected to the balloon from the vibration propagation channel. It is arranged to be inclined so as to deflect the vibration propagating inward downward or upward in the balloon.

また、前記振動伝播偏向手段は、一端に開口部と他端に底部と側部に第1孔部及び第2孔部とを有する筒部を備え、前記内筒シャフトは前記筒部の側面を前記第1孔部と前記第2孔部とを上下に位置して貫通しており、前記筒部は、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の下方向または上方向へ偏向させるように傾斜して配設されていることを特徴とする。   The vibration propagation deflecting means includes a cylindrical portion having an opening at one end, a bottom portion at the other end, and a first hole portion and a second hole portion at a side portion, and the inner cylindrical shaft has a side surface of the cylindrical portion. The first hole part and the second hole part are vertically positioned and penetrated, and the cylinder part transmits vibration propagating from the vibration propagation flow path into the balloon downward or upward in the balloon. It is arranged to be inclined so as to be deflected in the direction.

また、前記振動伝播偏向手段は、前記内筒シャフトを上下に挟んで前記入口部近傍に配設された一対の一方向弁を有し、一方の一方向弁は前記バルーン内へ流体を押し出すように開閉し、他方の一方向弁は前記バルーン内から流体を吸引すように開閉することを特徴とする。   The vibration propagation deflecting means has a pair of one-way valves disposed in the vicinity of the inlet portion with the inner cylinder shaft sandwiched between the upper and lower sides, and one of the one-way valves pushes the fluid into the balloon. The other one-way valve opens and closes so as to suck fluid from the inside of the balloon.

また、前記振動伝播偏向手段は、前記外筒シャフトに延設された先端が閉鎖された延長管部を有し、前記延長管部の下側または上側のいずれか一方の側面に開口部が形成されていることを特徴とする。   Further, the vibration propagation deflecting means has an extension pipe portion extending at the outer cylinder shaft and closed at a tip, and an opening is formed on either the lower side or the upper side of the extension pipe portion. It is characterized by being.

また、前記振動伝播偏向手段は、前記外筒シャフトに延設された先端が閉鎖された延長管部と、前記管部の下側または上側のいずれか一方の側面から延びる枝管とを有することを特徴とする。   In addition, the vibration propagation deflecting unit includes an extension pipe part extending from the outer cylinder shaft and closed at a tip, and a branch pipe extending from either the lower side or the upper side of the pipe part. It is characterized by.

また、前記バルーンの前記上下間の上下方向位置を識別するための目印が設けられていることを特徴とする。   In addition, a mark for identifying a vertical position between the upper and lower sides of the balloon is provided.

また、前記目印は、前記カテーテルシャフトに付加されたエックス線不透過マーカーであることを特徴とする。   In addition, the mark is an X-ray opaque marker added to the catheter shaft.

また、前記高周波通電用電極は、前記内筒シャフトの回りに螺旋状に巻設されていることを特徴とする。   Further, the high-frequency energization electrode is spirally wound around the inner cylindrical shaft.

また、前記バルーンは抗血栓性であり耐熱性であり弾力性であるレジンよりなることを特徴とする。   The balloon is made of a resin that is antithrombotic, heat resistant, and elastic.

本発明の構成によれば、バルーン内に導入された流体内に対流熱によりバルーン内の上下間に形成される上下間温度格差を解消するように、バルーン内の流体を上下間で旋回させ渦を形成する渦形成手段を備えるので、バルーン内の対流熱による上下間温度格差を確実に解消でき、バルーンと接触する組織を均一に至適温度で加温して、患部を安全に温熱治療する高周波バルーンカテーテルを提供することができる。   According to the configuration of the present invention, the fluid in the balloon is swung between the upper and lower sides to eliminate the temperature difference between the upper and lower sides formed in the balloon by the convection heat in the fluid introduced into the balloon. The temperature difference between the upper and lower sides due to the convection heat in the balloon can be surely eliminated, and the tissue in contact with the balloon is uniformly heated at the optimum temperature to safely treat the affected area with heat. A radio frequency balloon catheter can be provided.

この結果、 バルーンの組織接触部温度を60〜65℃に3〜5分間保てば、血栓形成や組織の蒸散による潰瘍化なく、接触部に貫壁性の壊死層を三次元的に安全に形成することができる。これによって不整脈の発生源を焼灼治療することができる。肺静脈口のアイソレーションと肺静脈口周囲心房筋の焼灼を施行すると、この部位を発生源とする多くの心房細動の根治治療が可能となる。また右心室流出路を円周上に貫壁性に焼灼しうるので、この部位を発生源とする心室頻拍や心室細動の根治も可能となる。   As a result, if the balloon tissue contact temperature is maintained at 60 to 65 ° C. for 3 to 5 minutes, a transmural necrosis layer is safely formed in the contact area in three dimensions without ulceration due to thrombus formation or tissue evaporation. Can be formed. As a result, the source of arrhythmia can be cauterized. By performing isolation of the pulmonary vein opening and cauterization of the atrial muscle surrounding the pulmonary vein opening, it becomes possible to cure many atrial fibrillations originating from this site. In addition, since the right ventricular outflow tract can be cauterized on the circumference of the circumference, it is possible to cure ventricular tachycardia and ventricular fibrillation originating from this site.

また、動脈硬化病変組織を43〜45℃で20分以上加温すると、内皮細胞のような正常組織に影響をあたえず、不安定化因子であるマクロファージなどの炎症細胞のアポトーシスをおこし、動脈硬化病変を安定化させることができる。   In addition, when an arteriosclerotic lesion tissue is heated at 43 to 45 ° C. for 20 minutes or more, it does not affect normal tissues such as endothelial cells, but induces apoptosis of inflammatory cells such as macrophages that are destabilizing factors, thereby causing arteriosclerosis. Lesions can be stabilized.

また、ガンの局所的な温熱療法にも適応させることができる。ガン細胞も20分以上の43〜45℃の加温により抑制ないし消滅することが知られている。気管支癌、胆管癌、肝臓癌や前立腺癌などに本願発明に係る高周波バルーンカテーテルを有用に適用することが可能になる。   It can also be applied to local hyperthermia for cancer. It is known that cancer cells are also suppressed or eliminated by heating at 43 to 45 ° C. for 20 minutes or more. The high-frequency balloon catheter according to the present invention can be effectively applied to bronchial cancer, bile duct cancer, liver cancer, prostate cancer, and the like.

以下に本発明に係る肺静脈高周波加温バルーンカテーテルの実施の形態を添付した図面を参照して説明する。   Embodiments of a pulmonary vein high-frequency warming balloon catheter according to the present invention will be described below with reference to the accompanying drawings.

まず、図1及び図2を参照して心房細動治療用の肺静脈口電気的隔離用の高周波加温バルーンカテーテルである第1の実施の形態について説明する。
バルーンカテーテルは、外筒シャフト1と内筒シャフト2とからなるカテーテルシャフト3と、膨張した状態で標的病変部に接触可能な形状を有し、外筒シャフト1の先端部と内筒シャフト2の先端部近傍との間に設置されたバルーン4と、体表面に配設される対極板5との間で高周波電力を伝送可能なバルーン4の壁内又はバルーン4内に配設された高周波通電用電極6と、高周波通電用電極6と電気的に接続される電極リード線7と、バルーン4内の温度をモニター可能な温度センサー8と、温度センサー用リード線9と、バルーン4内に導入された流体内に対流熱によりバルーン4内の上下間に形成される上下間温度格差を解消するように、バルーン4内の流体を上下間で旋回させ渦10を形成する渦形成手段12と、を備えている。
First, a first embodiment which is a high-frequency warming balloon catheter for pulmonary vein electrical isolation for the treatment of atrial fibrillation will be described with reference to FIGS.
The balloon catheter has a shape that allows contact with a target lesion in an expanded state, and includes a catheter shaft 3 including an outer tube shaft 1 and an inner tube shaft 2, and a distal end portion of the outer tube shaft 1 and the inner tube shaft 2. High-frequency energization disposed in the wall of the balloon 4 or in the balloon 4 capable of transmitting high-frequency power between the balloon 4 disposed between the vicinity of the tip and the counter electrode 5 disposed on the body surface. Electrode 6, electrode lead 7 electrically connected to high-frequency energizing electrode 6, temperature sensor 8 capable of monitoring the temperature in balloon 4, temperature sensor lead 9, and introduction into balloon 4 Vortex forming means 12 for swirling the fluid in the balloon 4 between the upper and lower sides to form a vortex 10 so as to eliminate the temperature difference between the upper and lower sides formed in the upper and lower sides in the balloon 4 by convection heat in the generated fluid It has.

ここで、流体とは生理的食塩水等の液体や炭酸ガス等のガスである。また、バルーン4内に形成される上下間の上下間温度格差とは、高周波加温バルーンカテーテルの通常の使用状態におけるバルーン4の姿勢において、重力方向を下方向といい反対方向を上方向という。対流熱により形成される上下間温度格差は、重力方向を基準にして上下に形成される。   Here, the fluid is a liquid such as physiological saline or a gas such as carbon dioxide. In addition, the vertical temperature difference between the upper and lower sides formed in the balloon 4 is such that the gravity direction is the downward direction and the opposite direction is the upward direction in the posture of the balloon 4 in the normal use state of the high-frequency heating balloon catheter. The temperature difference between the upper and lower sides formed by convection heat is formed up and down with respect to the direction of gravity.

バルーン4の対流熱により温度格差が生じている上下間のその上下方向位置を識別するための目印として、外筒シャフト1の外周一側にエックス線不透過マーカー30が取り付けられている。X線装置でエックス線不透過マーカー30を検出することにより、使用状態におけるバルーン5における渦形成手段12の振動伝播偏向手段20の位置姿勢を検出することができる。   An X-ray opaque marker 30 is attached to one side of the outer periphery of the outer cylindrical shaft 1 as a mark for identifying the vertical position between the upper and lower sides where the temperature difference is caused by the convective heat of the balloon 4. By detecting the X-ray opaque marker 30 with the X-ray apparatus, the position and orientation of the vibration propagation deflecting means 20 of the vortex forming means 12 in the balloon 5 in the used state can be detected.

高周波通電用電極6は、内筒シャフト2の外壁の回りに螺旋状に巻設されている。なお、後述のように高周波通電用電極6を外筒シャフト1の延長管の外壁の周りに巻設することも可能である。高周波通電用電極6と対極板5には電極リード線7を介して高周波発生器13によって高周波電力が供給される。高周波発生器13によって供給される高周波電力量は、温度センサー8によって検出されるバルーン4内の温度に基づき、バルーン4内の温度が適温になるように制御される。   The high-frequency energizing electrode 6 is spirally wound around the outer wall of the inner cylindrical shaft 2. As will be described later, the high-frequency energizing electrode 6 can be wound around the outer wall of the extension tube of the outer cylinder shaft 1. High frequency power is supplied to the high frequency energizing electrode 6 and the counter electrode plate 5 by the high frequency generator 13 through the electrode lead wire 7. The amount of high-frequency power supplied by the high-frequency generator 13 is controlled based on the temperature in the balloon 4 detected by the temperature sensor 8 so that the temperature in the balloon 4 becomes an appropriate temperature.

バルーン4は抗血栓性であり耐熱性であり弾力性であるレジンより構成されている。高周波加温バルーンカテーテルを肺静脈口(15〜30mmの直径)の周囲心房筋に圧着するようにして焼灼する場合には、バルーン4の拡張径は20〜40mmと大きいものが用いられる。   The balloon 4 is made of a resin that is antithrombotic, heat resistant, and elastic. When cauterization is performed by crimping the high-frequency warming balloon catheter to the peripheral atrial muscle of the pulmonary vein opening (15 to 30 mm diameter), the balloon 4 having an expanded diameter of 20 to 40 mm is used.

バルーン4は互いにスライド可能な内筒シャフト2先端部と外筒シャフト1先端部の間に設置され、肺静脈口周囲心房筋に密着する形状であって例えばたまねぎ型を有する。   The balloon 4 is installed between the distal end portion of the inner cylindrical shaft 2 and the distal end portion of the outer cylindrical shaft 1 that are slidable with respect to each other, has a shape that closely contacts the atrial muscle around the pulmonary vein opening, and has an onion shape, for example.

内筒シャフト2内にはガイドワイアー15の挿入や薬液注入が可能である。   A guide wire 15 can be inserted into the inner cylinder shaft 2 and a chemical solution can be injected.

渦形成手段12は、外筒シャフト1の内周1aと内筒シャフト2の外周2aとの間に形成される振動伝播流路14にある流体を介してバルーン3内の流体に振動を伝播させるための振動駆動手段16と、振動伝播流路14の端部のバルーンの入口部18の近傍に設けられ、振動伝播流路14からバルーン4内に伝搬する振動をバルーン4内の下方向または上方向へ偏向させる振動伝播偏向手段20と、を備えている。   The vortex forming means 12 propagates vibration to the fluid in the balloon 3 via the fluid in the vibration propagation channel 14 formed between the inner circumference 1a of the outer cylinder shaft 1 and the outer circumference 2a of the inner cylinder shaft 2. The vibration drive means 16 for driving and the balloon propagating channel 14 is provided in the vicinity of the balloon inlet 18 and the vibration propagating from the vibration propagating channel 14 into the balloon 4 is directed downward or upward in the balloon 4. Vibration propagation deflecting means 20 for deflecting in the direction.

振動駆動手段16は約1秒の周期を有する振動発生器からなり、図12、図13に示すように、振動駆動手段16による振動の周期はバルーン4内の流体を駆出する駆出期間22とバルーン4内の流体を吸引する吸引期間23とからなる。図12に示すように、振動駆動手段16は、駆出期間22は吸引期間23よりも短くかつ駆出期間22の単位時間当たりの流体駆出量24は吸引期間23の単位時間当たりの流体吸引量25より大きく、駆出期間22と流体駆出量24との積と吸引期間23と流体吸引量25との積とは、ほぼ等しくなるように制御されている。符合26はバルーン4の容積の時間変化を示す。このように、駆出期間22と流体駆出量24との積と吸引期間23と流体吸引量25との積とがほぼ等しくなるように制御されるので、バルーン4内に流体が過剰に蓄積して破裂する危険を無くすることができる。前述のようにバルーン4は弾性材で構成されているので、駆出期間22と流体駆出量24との積と吸引期間23と流体吸引量25との積とが多少異なっても支障はない。図12において、(a)は時間波形を示し、(b)は駆出期間におけるバルーン4の体積変化を示し、(c)は吸引期間におけるバルーン4の体積変化を示す。   The vibration driving means 16 comprises a vibration generator having a period of about 1 second. As shown in FIGS. 12 and 13, the vibration period of the vibration driving means 16 is an ejection period 22 for ejecting the fluid in the balloon 4. And a suction period 23 for sucking the fluid in the balloon 4. As shown in FIG. 12, the vibration driving means 16 is configured so that the ejection period 22 is shorter than the suction period 23 and the fluid ejection amount 24 per unit time of the ejection period 22 is the fluid suction per unit time of the suction period 23. The product of the ejection period 22 and the fluid ejection quantity 24 and the product of the suction period 23 and the fluid suction quantity 25 are controlled to be substantially equal to each other. A symbol 26 indicates a time change of the volume of the balloon 4. As described above, the product of the ejection period 22 and the fluid ejection amount 24 and the product of the suction period 23 and the fluid suction amount 25 are controlled so as to be substantially equal, so that excessive fluid is accumulated in the balloon 4. The risk of bursting can be eliminated. Since the balloon 4 is made of an elastic material as described above, there is no problem even if the product of the ejection period 22 and the fluid ejection amount 24 and the product of the suction period 23 and the fluid suction amount 25 are slightly different. . 12A shows a time waveform, FIG. 12B shows the volume change of the balloon 4 during the ejection period, and FIG. 12C shows the volume change of the balloon 4 during the suction period.

図12に示すように、駆出期間22は吸引期間23よりも短くかつ駆出期間22の単位時間当たりの流体駆出量24は吸引期間23の単位時間当たりの流体吸引量25より大きいというように、振動駆動手段16が駆出期間22と吸引期間23とにおいて非対称の振動波形を駆動することによって、バルーン4内に一方向性の回転エネルギーを伝達させることが可能になる。   As shown in FIG. 12, the ejection period 22 is shorter than the suction period 23 and the fluid ejection amount 24 per unit time of the ejection period 22 is larger than the fluid suction amount 25 per unit time of the suction period 23. In addition, the vibration driving means 16 drives the asymmetric vibration waveform during the ejection period 22 and the suction period 23, whereby it is possible to transmit unidirectional rotational energy into the balloon 4.

なお、図13に示すように、駆出期間22は吸引期間23よりも長くかつ駆出期間22の単位時間当たりの流体駆出量24は吸引期間23の単位時間当たりの流体吸引量25より小さく、駆出期間22と流体駆出量24との積と吸引期間23と流体吸引量25との積とは、ほぼ等しくなるように制御する事も可能である。この場合、渦10の方向は図12に示す場合と逆になる。   As shown in FIG. 13, the ejection period 22 is longer than the suction period 23, and the fluid ejection amount 24 per unit time of the ejection period 22 is smaller than the fluid suction amount 25 per unit time of the suction period 23. The product of the ejection period 22 and the fluid ejection amount 24 and the product of the suction period 23 and the fluid suction amount 25 can be controlled to be substantially equal. In this case, the direction of the vortex 10 is opposite to that shown in FIG.

渦形成手段10における振動伝播偏向手段20は、振動駆動手段16によって駆動され振動伝播流路14を直線的に伝播した振動の伝播方向を、バルーン4内の下方向または上方向のいずれかの方向へ偏向させるものである。振動伝播偏向手段20により振動の伝播を偏向させ、バルーン4に上下に旋回する渦10が形成され、バルーン4内に対流熱により生じる上下間温度格差が解消される。   The vibration propagation deflecting means 20 in the vortex forming means 10 is driven by the vibration driving means 16 and the propagation direction of the vibration linearly propagated through the vibration propagation flow path 14 is either the downward direction or the upward direction in the balloon 4. To be deflected. The vibration propagation deflecting means 20 deflects the propagation of the vibration, and the vortex 10 swirling up and down is formed in the balloon 4, thereby eliminating the temperature difference between the upper and lower sides caused by the convection heat in the balloon 4.

本実施の形態においては、図1及び図2に示すように、渦形成手段10における振動伝播偏向手段20は、内筒シャフト2を挟んで入口部18近傍に配設された一対の楕円状の翼板32、34を有する。翼板32、34の々は、振動伝播流路14からバルーン4内に伝搬する振動をバルーン4内の下方向へ偏向させるように傾斜して、内筒シャフト2の外壁に突設されている。なお、翼板32、34の々は、振動伝播流路14からバルーン4内に伝搬する振動をバルーン4内の上方向へ偏向させるように傾斜させるようにしてもよく、この場合、図1に示す場合とは逆方向に渦10が形成される。   In the present embodiment, as shown in FIGS. 1 and 2, the vibration propagation deflecting means 20 in the vortex forming means 10 is a pair of elliptical shapes disposed in the vicinity of the inlet portion 18 with the inner cylinder shaft 2 interposed therebetween. It has vanes 32 and 34. The blades 32 and 34 are inclined to deflect the vibration propagating into the balloon 4 from the vibration propagation flow path 14 downward in the balloon 4, and project from the outer wall of the inner cylindrical shaft 2. . The blades 32 and 34 may be inclined so as to deflect the vibration propagating from the vibration propagation channel 14 into the balloon 4 in the upward direction in the balloon 4. A vortex 10 is formed in the opposite direction to that shown.

振動駆動手段16によって駆動された振動は振動伝播流路14に満たされた流体を介して伝播し、翼板32、34によって振動の伝播方向が下方へ偏向される。なお、ここで、原理的には振動伝播流路14の流体がバルーン4内に移動するのではなく、振動伝播流路14内の流体を介して振動が伝播する。そして、図12に示すように、駆出期間22は吸引期間23よりも短くかつ駆出期間22の単位時間当たりの流体駆出量24は吸引期間23の単位時間当たりの流体吸引量25より大きいというように、駆出期間22における駆動形態と吸引期間23における吸引形態とを非対称にしているので、バルーン4内には主に一方向の渦10が形成される。この結果、バルーン4内の流体が攪拌され、対流熱でバルーン4内に形成された上下間温度格差を解消させることができる。   The vibration driven by the vibration driving means 16 propagates through the fluid filled in the vibration propagation flow path 14, and the vibration propagation direction is deflected downward by the blade plates 32 and 34. Here, in principle, the fluid in the vibration propagation channel 14 does not move into the balloon 4, but the vibration propagates through the fluid in the vibration propagation channel 14. As shown in FIG. 12, the ejection period 22 is shorter than the suction period 23, and the fluid ejection amount 24 per unit time of the ejection period 22 is larger than the fluid suction amount 25 per unit time of the suction period 23. As described above, since the drive form in the ejection period 22 and the suction form in the suction period 23 are asymmetric, a vortex 10 mainly in one direction is formed in the balloon 4. As a result, the fluid in the balloon 4 is agitated, and the temperature difference between the upper and lower sides formed in the balloon 4 by convection heat can be eliminated.

高周波発生器13よりバルーン4内の高周波通電用電極6と体表の対極板5との間で通電すると容量結合型加熱により、バルーン4とバルーン4に接触する組織が加温される。温度センサー8でバルーン4内の温度をモニターし高周波出力を調節してバルーン4内の温度を至適温度に一定に保つと、バルーン4と接触する肺静脈口周囲左心房40の焼灼部41は均一に至適温度で加熱焼灼される。   When energized between the high-frequency energizing electrode 6 in the balloon 4 and the counter electrode 5 on the body surface from the high-frequency generator 13, the tissue in contact with the balloon 4 and the balloon 4 is heated by capacitive coupling heating. When the temperature in the balloon 4 is monitored by the temperature sensor 8 and the high-frequency output is adjusted to keep the temperature in the balloon 4 at an optimum temperature, the cauterization part 41 of the left atrium 40 around the pulmonary vein opening that contacts the balloon 4 is obtained. It is heated and cauterized uniformly at the optimum temperature.

図9は高周波バルーンカテーテルによる肺静脈口周囲心房側の患部をアブレーション(焼灼)することを示す。   FIG. 9 shows ablation (cauterization) of the affected area on the atrial side around the pulmonary vein opening using a high-frequency balloon catheter.

バルーン4内を外筒シャフト1の注入口より何度もポンプ46により生理食塩水で注入吸引をくりかえして、空気抜きを行う。カテーテルを血管に挿入時はバルーン4を収縮させながら内筒シャフト2をスライドさせて前方に限界までおしだす。このとき内筒シャフト1先端部と外筒シャフト2先端部の間がひろがるので、バルーン4の径は最小となる。この状態でバルーン4を大腿静脈内へガイドワイヤー15とガイヂングシースを用いて挿入する。カテーテルを操作して、経心房中隔的に肺静脈口に近づけたところで、内筒シャフト2をひきながらバルーン4を造影剤と生理食塩水を注入して肺静脈口の大きさより5〜10mm大きく拡張させ、さらにカテーテルを細かく操作してバルーン4を肺静脈口周囲左心房40の標的組織に接触させる。さらにバルーン4の上下方向を識別するためのエックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転する。これによって、振動伝播流路14からバルーン4内に伝搬する振動が下方向へ偏向されるように、翼板32、34の傾斜方向を調節する。すなわち、図1における下方向が重力方向と一致しているとしたときに、翼板32、34を図1に示すようになるように、バルーンカテーテルを回転する。   The inside of the balloon 4 is repeatedly infused and sucked with physiological saline by the pump 46 from the inlet of the outer cylinder shaft 1 to release air. When inserting the catheter into the blood vessel, the inner cylinder shaft 2 is slid while the balloon 4 is deflated and pushed forward to the limit. At this time, the space between the distal end portion of the inner cylindrical shaft 1 and the distal end portion of the outer cylindrical shaft 2 is expanded, so that the diameter of the balloon 4 is minimized. In this state, the balloon 4 is inserted into the femoral vein using the guide wire 15 and the guiding sheath. When the catheter is operated to approach the pulmonary vein opening in the transatrial septum, the balloon 4 is infused with contrast medium and physiological saline while pulling the inner tube 2 and is 5 to 10 mm larger than the size of the pulmonary vein opening. The balloon 4 is further expanded and the balloon 4 is brought into contact with the target tissue in the left atrium 40 around the pulmonary vein opening. Further, the balloon catheter is rotated so that the radiopaque marker 30 for identifying the vertical direction of the balloon 4 is at a predetermined position. Thus, the inclination direction of the blade plates 32 and 34 is adjusted so that the vibration propagating from the vibration propagation channel 14 into the balloon 4 is deflected downward. That is, when it is assumed that the downward direction in FIG. 1 coincides with the direction of gravity, the balloon catheter is rotated so that the blades 32 and 34 are as shown in FIG.

実際に、対象とする焼灼部41に対して翼板32、34を図1に示すように下方向を重力方向としてバルーンカテーテルを使用するようにしても、バルーンカテーテルで焼灼部41を焼灼する上で不都合はない。従って、エックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転しても、バルーンカテーテルの使用上における一般性を失わない。   Actually, even if a balloon catheter is used with the vanes 32 and 34 as a target in the gravitational direction as shown in FIG. There is no inconvenience. Therefore, even if the balloon catheter is rotated so that the radiopaque marker 30 is located at a predetermined position, the generality in use of the balloon catheter is not lost.

バルーンカテーテルの具体的な操作は次のように行う。
まず、振動駆動手段16を連結管で外筒シャフト1につなぎ、外筒シャフト1の内周1aと内筒シャフト2の外周2aとの間に形成される振動伝播流路14およびバルーン4内を流体で満たし、電源を入れると振動36は振動伝播流路14を伝播して伝わって、バルーン4の入口部18の近傍に配設された翼板32、34に至り、振動は翼板32、34によってバルーン4の下方向へ偏向され、バルーン4内の流体にたいして上下方向の回転力を与える。振動駆動手段16によって振動数と振幅を図12に示すように調節すると、バルーン4内を上下に旋回する渦10が形成され、バルーン4内の流体が攪拌される。次に、高周波発生器13により超高周波電流(13.56MHz)を高周波通電用電極6と対極板5に流すと容量結合型加熱が生じ、バルーン4およびバルーン4と接触する組織(焼灼部)41が高周波加熱されるが、バルーン内温度分布は通常であれば対流熱により上下の温度格差があるが、上下に旋回する渦10により攪拌されてこの温度格差が解消される。この結果、バルーンと接触する組織は均一に加温される。
The specific operation of the balloon catheter is performed as follows.
First, the vibration driving means 16 is connected to the outer cylinder shaft 1 with a connecting pipe, and the inside of the vibration propagation flow path 14 and the balloon 4 formed between the inner circumference 1a of the outer cylinder shaft 1 and the outer circumference 2a of the inner cylinder shaft 2 are connected. When the fluid is filled and the power is turned on, the vibration 36 propagates through the vibration propagation channel 14 and reaches the blades 32 and 34 disposed near the inlet 18 of the balloon 4. 34 is deflected downward by the balloon 4, and gives a vertical rotational force to the fluid in the balloon 4. When the vibration drive means 16 adjusts the vibration frequency and amplitude as shown in FIG. 12, a vortex 10 swirling up and down in the balloon 4 is formed, and the fluid in the balloon 4 is agitated. Next, when an ultrahigh frequency current (13.56 MHz) is passed through the high frequency energizing electrode 6 and the counter electrode plate 5 by the high frequency generator 13, capacitive coupling heating occurs, and the tissue (cautery) 41 that contacts the balloon 4 and the balloon 4. However, if the temperature distribution in the balloon is normal, there is a temperature difference between the upper and lower sides due to convection heat, but the temperature difference is eliminated by stirring by the vortex 10 swirling up and down. As a result, the tissue in contact with the balloon is uniformly heated.

肺静脈口の径が20mmの時、バルーン4の拡張径は25mmでカテーテルシャフト3の長さが70cmのカテーテルを使用すると、振動駆動手段16によって振動数1.5Hzで一回の流体の拍出量を約2.5ccの振動を送れば、バルーン4内には回転流体に対して上下方向に旋回する渦10が形成され、対流熱による上下の温度格差を解消する。高周波発生器13により供給する高周波出力が約100〜150Wでバルーン4の中心温度を約75℃に保つと、バルーン4内に攪拌のない時は上下間に10〜15℃の温度差があるが、本実施形態によれば、バルーン4内に渦10を形成した攪拌を行うと上下間の温度差を2℃以内にすることができることが確認された。この結果、バルーン4の中心温度―接触組織間の温度格差は約10℃であるが、組織接触温度は65℃±2℃とすることができ、3〜5分間の通電で肺静脈周囲心房側を円周状に貫壁性にアブレーションすることができる。肺静脈42を電気的に隔離しかつ肺静脈口周囲左心房40を焼灼して肺静脈および肺静脈口の周囲を起源とする心房細動を適正に治療することが可能になる。   When the diameter of the pulmonary vein opening is 20 mm and a catheter with an expanded diameter of the balloon 4 of 25 mm and a length of the catheter shaft 3 of 70 cm is used, a single fluid is pumped out by the vibration driving means 16 at a frequency of 1.5 Hz. If an amount of vibration of about 2.5 cc is sent, the vortex 10 that swirls in the vertical direction with respect to the rotating fluid is formed in the balloon 4, and the upper and lower temperature difference due to convection heat is eliminated. When the high frequency output supplied by the high frequency generator 13 is about 100 to 150 W and the central temperature of the balloon 4 is kept at about 75 ° C., there is a temperature difference of 10 to 15 ° C. between the upper and lower sides when there is no stirring in the balloon 4. According to the present embodiment, it was confirmed that the temperature difference between the upper and lower sides can be kept within 2 ° C. when stirring with the vortex 10 formed in the balloon 4 is performed. As a result, the temperature difference between the central temperature of the balloon 4 and the contact tissue is about 10 ° C., but the tissue contact temperature can be 65 ° C. ± 2 ° C. Can be ablated circumferentially in a transmural manner. By electrically isolating the pulmonary vein 42 and cauterizing the left atrium 40 around the pulmonary vein opening, it becomes possible to appropriately treat atrial fibrillation originating from the pulmonary vein and the pulmonary vein opening.

次に、図3及び図4を参照して、本願発明の高周波加温バルーンカテーテルの第2の実施の形態について説明する。振動駆動手段16による流体駆出量24や流体吸引量25等の制御等、第1の実施の形態と重複する部分については説明を省略する。
第2の実施の形態においては、振動伝播偏向手段20は入口部18近傍に筒部50を備えている。筒部50は、一端に開口部51が形成され他端は底部で閉鎖されており、筒部50の同じ側の側部には第1孔部52と第2孔部53が形成されている。内筒シャフト2は筒部50の側面を稠密に貫通しており、第1孔部52と第2孔部53とは内筒シャフトを挟んで反対側に位置している。また、図4に示すように、筒部50は外筒シャフト1の内周壁に取り付けられた嵌め板55によって保持されている。嵌め板55によって外筒シャフト1内が塞がれているために、振動伝播流路14とバルーン4内とは、筒部50の開口部51と第1孔部52と第2孔部53とのみを介して連通している。筒部50は、振動伝播流路14からバルーン4内に伝搬する振動をバルーン4内の下方向(図3に示す場合)へ偏向させるように傾斜して配設されている。
Next, a second embodiment of the high-frequency warming balloon catheter of the present invention will be described with reference to FIGS. The description of the same parts as those in the first embodiment, such as the control of the fluid ejection amount 24 and the fluid suction amount 25 by the vibration driving means 16, is omitted.
In the second embodiment, the vibration propagation deflecting means 20 includes a cylindrical portion 50 in the vicinity of the inlet portion 18. The cylindrical part 50 has an opening 51 formed at one end and the other end closed at the bottom, and a first hole 52 and a second hole 53 are formed on the same side of the cylindrical part 50. . The inner cylinder shaft 2 penetrates the side surface of the cylinder part 50 densely, and the first hole part 52 and the second hole part 53 are located on the opposite side across the inner cylinder shaft. Further, as shown in FIG. 4, the cylinder portion 50 is held by a fitting plate 55 attached to the inner peripheral wall of the outer cylinder shaft 1. Since the inside of the outer cylinder shaft 1 is blocked by the fitting plate 55, the vibration propagation channel 14 and the inside of the balloon 4 are connected to the opening 51, the first hole 52, and the second hole 53 of the cylinder 50. Communicated only through. The cylindrical portion 50 is disposed so as to be inclined so as to deflect the vibration propagating from the vibration propagation channel 14 into the balloon 4 in the downward direction in the balloon 4 (in the case shown in FIG. 3).

本実施の形態においても、エックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転し、これによって、振動伝播流路14からバルーン4内に伝搬する振動が下方向へ偏向されるように、筒部50の傾斜方向を調節する。すなわち、図3における下方向が重力方向と一致しているとしたときに、筒部50を図3に示すようになるように、バルーンカテーテルを回転すればよい。バルーン内温度分布は通常であれば対流熱により上下の温度格差があるが、上下に旋回する渦10により攪拌されてこの温度格差が解消され、バルーンと接触する組織41を均一に加温させることが可能になる。   Also in the present embodiment, the balloon catheter is rotated so that the X-ray opaque marker 30 is located at a predetermined position, whereby the vibration propagating from the vibration propagation channel 14 into the balloon 4 is deflected downward. Thus, the inclination direction of the cylinder part 50 is adjusted. That is, when it is assumed that the downward direction in FIG. 3 coincides with the direction of gravity, the balloon catheter may be rotated so that the cylindrical portion 50 becomes as shown in FIG. Normally, the temperature distribution in the balloon has an upper and lower temperature difference due to convection heat, but is stirred by the swirling vortex 10 to eliminate the temperature difference and uniformly warm the tissue 41 in contact with the balloon. Is possible.

次に、図5及び図6を参照して、本願発明の高周波加温バルーンカテーテルの第3の実施の形態について説明する。振動駆動手段16による流体駆出量24や流体吸引量25等の制御等、第1の実施の形態と重複する部分については説明を省略する。
第3の実施の形態においては、振動伝播偏向手段20は入口部18近傍に一対の一方向弁62、63を備えている。入口部18近傍には内筒シャフト2の外周部に保持具64が取り付けられており、一方向弁62、63は保持具64と外筒シャフト1の内壁との間に取り付けられている。一方向弁62、63は内筒シャフト2を上下に挟んで配設されている。一方向弁61はバルーン4内へ向かって流体を押し出すように開閉し、一方向弁62はバルーン4内から流体を吸引するように開閉するものである。
Next, with reference to FIG.5 and FIG.6, 3rd Embodiment of the high frequency heating balloon catheter of this invention is described. The description of the same parts as those in the first embodiment, such as the control of the fluid ejection amount 24 and the fluid suction amount 25 by the vibration driving means 16, is omitted.
In the third embodiment, the vibration propagation deflecting means 20 includes a pair of one-way valves 62 and 63 in the vicinity of the inlet 18. A holder 64 is attached to the outer peripheral portion of the inner cylindrical shaft 2 in the vicinity of the inlet 18, and the one-way valves 62 and 63 are attached between the holder 64 and the inner wall of the outer cylindrical shaft 1. The one-way valves 62 and 63 are arranged with the inner cylinder shaft 2 sandwiched up and down. The one-way valve 61 opens and closes to push the fluid into the balloon 4, and the one-way valve 62 opens and closes to suck the fluid from the balloon 4.

本実施の形態においても、エックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転し、一方向弁62、63が上下の位置関係になるようにする。これによって、振動伝播流路14からバルーン4内に伝搬する振動が下部にある一方向弁61を介して下方向へ偏向され、渦10を形成し、また、一方向弁62を介してバルーン4内から振動伝播流路14へ伝播する。本実施の形態においても、バルーン内温度分布は通常であれば対流熱により上下の温度格差があるが、上下に旋回する渦10により攪拌されてこの温度格差が解消され、バルーンと接触する組織41を均一に加温させることが可能になる。   Also in the present embodiment, the balloon catheter is rotated so that the radiopaque marker 30 is at a predetermined position so that the one-way valves 62 and 63 are in a vertical positional relationship. As a result, the vibration propagating from the vibration propagation flow path 14 into the balloon 4 is deflected downward via the one-way valve 61 at the bottom, forming a vortex 10, and the balloon 4 via the one-way valve 62. Propagates from inside to the vibration propagation channel 14. Also in this embodiment, if the temperature distribution in the balloon is normal, there is a vertical temperature difference due to convection heat, but the temperature difference is eliminated by stirring by the vortex 10 swirling up and down, and the tissue 41 in contact with the balloon Can be uniformly heated.

次に、図7を参照して、本願発明の高周波加温バルーンカテーテルの第4の実施の形態について説明する。振動駆動手段16による流体駆出量24や流体吸引量25等の制御等、第1の実施の形態と重複する部分については説明を省略する。
図7に示す高周波バルーンカテーテルにおいては、互いにスライド可能な内筒シャフト2と外筒シャフト1の遠位端間には右心室流出路を閉塞しうる拡張径25〜35mmの大型のバルーン4が設置されている。
Next, a fourth embodiment of the high-frequency warming balloon catheter of the present invention will be described with reference to FIG. The description of the same parts as those in the first embodiment, such as the control of the fluid ejection amount 24 and the fluid suction amount 25 by the vibration driving means 16, is omitted.
In the high-frequency balloon catheter shown in FIG. 7, a large balloon 4 having an expanded diameter of 25 to 35 mm that can block the right ventricular outflow passage is installed between the distal ends of the inner tube shaft 2 and the outer tube shaft 1 that can slide with each other. Has been.

第4の実施の形態においては、振動伝播偏向手段20は、外筒シャフト1に延設された先端が閉鎖された延長管部70を有し、延長管部70の下側側面に開口部71が形成されている。本実施の形態においては、一対の高周波通電用電極6a、6bが延長管部70の外周に巻かれており、体表面に配設される対極板5は用いられていない。高周波通電用電極6a、6bの各々は、外筒シャフト1内を通る電極リード線7a、7bを介して高周波発生器13に接続されている。   In the fourth embodiment, the vibration propagation deflecting means 20 has an extension pipe portion 70 that extends from the outer cylinder shaft 1 and has a closed end, and an opening 71 is provided on the lower side surface of the extension pipe portion 70. Is formed. In the present embodiment, the pair of high-frequency energizing electrodes 6a and 6b are wound around the outer periphery of the extension tube portion 70, and the counter electrode plate 5 disposed on the body surface is not used. Each of the high-frequency energizing electrodes 6a and 6b is connected to the high-frequency generator 13 via electrode lead wires 7a and 7b passing through the outer cylinder shaft 1.

本実施の形態においても、エックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転し、開口部71が下方位置になるようにする。これによって、振動伝播流路14からバルーン4内に伝搬する振動が下部にある開口部71を介して下方向へ偏向され、渦10を形成し、開口部71を介してバルーン4内から振動伝播流路14へ伝播する。本実施の形態においても、バルーン内温度分布は通常であれば対流熱により上下の温度格差があるが、上下に旋回する渦10により攪拌されてこの温度格差が解消され、バルーン4と接触する組織41を均一に加温させることが可能になる。   Also in the present embodiment, the balloon catheter is rotated so that the X-ray opaque marker 30 is located at a predetermined position so that the opening 71 is at the lower position. As a result, the vibration propagating from the vibration propagation channel 14 into the balloon 4 is deflected downward through the lower opening 71 to form a vortex 10, and the vibration propagation from the balloon 4 through the opening 71 is performed. Propagates to the flow path 14. Also in this embodiment, if the temperature distribution in the balloon is normal, there is an upper and lower temperature difference due to convection heat, but this temperature difference is eliminated by stirring by the swirling vortex 10 up and down, and the tissue in contact with the balloon 4 It becomes possible to heat 41 uniformly.

次に、図7に示す高周波バルーンカテーテルを右心室流出路起源の心室頻拍と心室細動の治療に適用した例を、図10を参照して説明する。   Next, an example in which the high-frequency balloon catheter shown in FIG. 7 is applied to the treatment of ventricular tachycardia and ventricular fibrillation originating from the right ventricular outflow tract will be described with reference to FIG.

内筒シャフト2を押し出して外筒シャフト1と内筒シャフト2との間でバルーン4を付着させた距離(バルーン付着端間距離)を延長し、バルーン4を収縮させる。大腿静脈より経皮的にガイドワイアー15を肺動脈内に挿入する。高周波バルーンカテーテルをガイドワイアー15にそって大腿静脈より右心室流出路に挿入したあと、反対側の大腿静脈より肺血流灌流用のカテーテル75の先端を肺動脈内に挿入する。バルーンカテーテルを回して、エックス線不透過マーカー30が下にくるようにする。内筒シャフト2を引き抜きながらバルーン付着端間距離を短縮しつつ、バルーンを生理食塩水希釈の造影剤で拡張し、バルーン壁を右心室流出路に圧着する。次に振動発生器13を作動させ、振動数と振幅を調節しながら、振動を振動伝播流路14へ送る。延長管部70の下側側面に形成された開口部71よりバルーン4内に下方斜め向きに振動が伝播され、バルーン4内で上下の渦10を発生させる。バルーン4内温度をモニターしながら、高周波出力を調節して、バルーン4中心温度を約75℃に保つ。この時、ポンプ46を用いて冷却水を内筒シャフト2に注入し、高周波通電用電極6、6の過熱を防ぐ。バルーン4の接触温度は約65℃となり、3〜5分間通電して右心室流出路の不整脈発生源を均一かつ貫壁性に焼灼して、この不整脈を根治する。   The inner cylinder shaft 2 is pushed out to extend the distance at which the balloon 4 is adhered between the outer cylinder shaft 1 and the inner cylinder shaft 2 (the distance between the balloon adhesion ends), and the balloon 4 is contracted. The guide wire 15 is inserted into the pulmonary artery percutaneously from the femoral vein. The high-frequency balloon catheter is inserted into the right ventricular outflow tract from the femoral vein along the guide wire 15, and the distal end of the pulmonary blood flow perfusion catheter 75 is inserted into the pulmonary artery from the opposite femoral vein. Turn the balloon catheter so that the radiopaque marker 30 is on the bottom. While shortening the distance between the balloon adhering ends while pulling out the inner cylinder shaft 2, the balloon is expanded with a contrast medium diluted with physiological saline, and the balloon wall is crimped to the right ventricular outflow passage. Next, the vibration generator 13 is operated, and the vibration is sent to the vibration propagation channel 14 while adjusting the frequency and amplitude. Vibration is propagated obliquely downward into the balloon 4 from the opening 71 formed on the lower side surface of the extension pipe 70, and the upper and lower vortices 10 are generated in the balloon 4. While monitoring the temperature inside the balloon 4, the high-frequency output is adjusted to keep the center temperature of the balloon 4 at about 75 ° C. At this time, cooling water is injected into the inner cylinder shaft 2 using the pump 46 to prevent overheating of the high-frequency energizing electrodes 6 and 6. The contact temperature of the balloon 4 is about 65 ° C., and the arrhythmia is cauterized uniformly and transmurally by energizing for 3 to 5 minutes to cure the arrhythmia.

次に、図8を参照して、本願発明の高周波加温バルーンカテーテルの第5の実施の形態について説明する。振動駆動手段16による流体駆出量24や流体吸引量25等の制御等、第1の実施の形態と重複する部分については説明を省略する。
第5の実施の形態においては、振動伝播偏向手段20は、外筒シャフト1に延設された先端が閉鎖された延長管部80を有し、延長管部80の下側側面に延びる枝管82が形成されている。延長管部80の先端部はバルーン4の先端部から突き出ており、バルーン4の先端部は延長管部80の先端部側に取り付けられている。内筒シャフト2の先端部は延長管部80の先端部に結合されている。本実施形態のおいては、バルーン4は外筒シャフト1と内筒シャフト2との間にスライド可能には取り付けられていないので、外筒シャフト1と内筒シャフト2とをスライドさせることによってはバルーン4を伸縮させることはできないが、血管内の動脈硬化の患部を焼灼する場合には支障がない。
Next, a fifth embodiment of the high-frequency warming balloon catheter of the present invention will be described with reference to FIG. The description of the same parts as those in the first embodiment, such as the control of the fluid ejection amount 24 and the fluid suction amount 25 by the vibration driving means 16, is omitted.
In the fifth embodiment, the vibration propagation deflecting means 20 has an extension pipe portion 80 extending from the outer cylinder shaft 1 and closed at the tip, and extending to the lower side surface of the extension pipe portion 80. 82 is formed. The distal end portion of the extension tube portion 80 protrudes from the distal end portion of the balloon 4, and the distal end portion of the balloon 4 is attached to the distal end portion side of the extension tube portion 80. The distal end portion of the inner cylindrical shaft 2 is coupled to the distal end portion of the extension pipe portion 80. In the present embodiment, the balloon 4 is not slidably mounted between the outer cylinder shaft 1 and the inner cylinder shaft 2, so that by sliding the outer cylinder shaft 1 and the inner cylinder shaft 2, Although the balloon 4 cannot be expanded and contracted, there is no problem when cauterizing the affected part of arteriosclerosis in the blood vessel.

本実施の形態においても、エックス線不透過マーカー30が定められた位置にくるようにバルーンカテーテルを回転し、枝管82が下方位置になるようにする。これによって、振動伝播流路14からバルーン4内に伝搬する振動が下部にある枝管82を介して下方向へ偏向され、渦10を形成し、枝管82を介してバルーン4内から振動伝播流路14へ伝播する。本実施の形態においても、バルーン内温度分布は通常であれば対流熱により上下の温度格差があるが、上下に旋回する渦10により攪拌されてこの温度格差が解消され、バルーン4と接触する血管内の動脈硬化が起きた組織41を均一に加温させることが可能になる。   Also in the present embodiment, the balloon catheter is rotated so that the X-ray opaque marker 30 is at a predetermined position so that the branch tube 82 is at the lower position. As a result, the vibration propagating from the vibration propagation flow path 14 into the balloon 4 is deflected downward through the lower branch pipe 82 to form the vortex 10, and the vibration propagation from the balloon 4 through the branch pipe 82. Propagates to the flow path 14. Also in this embodiment, if the temperature distribution in the balloon is normal, there is an upper and lower temperature difference due to convection heat, but this temperature difference is eliminated by stirring by the vortex 10 swirling up and down, and the blood vessel in contact with the balloon 4 It becomes possible to uniformly warm the tissue 41 in which the arteriosclerosis has occurred.

次に、図8に示す高周波バルーンカテーテルを動脈硬化病変の治療に適用した例を、図11を参照して説明する。   Next, an example in which the high-frequency balloon catheter shown in FIG. 8 is applied to the treatment of an arteriosclerotic lesion will be described with reference to FIG.

図8は頚動脈に適用する高周波バルーンカテーテルの形状を示す。頚動脈内径を閉塞しうる拡張径のバルーン4の径は5〜10mmである。   FIG. 8 shows the shape of a high-frequency balloon catheter applied to the carotid artery. The diameter of the balloon 4 having an expanded diameter that can close the inner diameter of the carotid artery is 5 to 10 mm.

バルーン4の収縮した状態で大腿動脈より挿入された高周波バルーンカテーテルのバルーン4を頚動脈病変部41に接触させる。この位置で外筒シャフト注入口より送液路を介して造影剤希釈生理食塩水を注入すると、バルーン4は膨張し狭窄部に圧着する。この状態でバルーン4内の高周波通電用電極6と背部の対極板5との間で温度をモニターしながら高周波通電を開始する。同時に振動駆動手段16により振動伝播流路14へ振動を伝播させる。これによって、振動伝播流路14からバルーン4内に伝搬する振動が下部にある枝管82を介して下方向へ偏向され、上下に旋回する渦10が形成される。この渦10によって、バルーン4内に形成された対流熱による上下温度格差を解消し、バルーン内温度を均一化を図ることができる。また、ポンプ46を用いて、冷却水を内筒シャフト2内に注入し、頚動脈遠位の焼灼を防ぐ。バルーン4の接触温度を約43.5℃。に保って約20分以上加温すると、バルーン4と接触する動脈硬化病変内のマクロファージなどの炎症細胞はアポトーシスをおこして、動脈硬化病変の安定化につながる。狭窄が高度な場合は、バルーン4内を高圧加圧すると狭窄部は拡張される。容易に拡張しない時はバルーン4内の温度を50〜60℃に上昇させ加圧すると硬化した狭窄部も拡張される。次に、バルーン4を収縮させて、高周波バルーンカテーテルを抜去する。   The balloon 4 of the high-frequency balloon catheter inserted from the femoral artery with the balloon 4 contracted is brought into contact with the carotid artery lesion 41. When contrast medium-diluted physiological saline is injected from the outer cylinder shaft injection port via the liquid feeding path at this position, the balloon 4 is inflated and pressed against the stenosis. In this state, high-frequency energization is started while monitoring the temperature between the high-frequency energization electrode 6 in the balloon 4 and the counter electrode plate 5 at the back. At the same time, vibration is propagated to the vibration propagation channel 14 by the vibration driving means 16. As a result, the vibration propagating from the vibration propagation flow path 14 into the balloon 4 is deflected downward through the branch pipe 82 at the lower portion, and the vortex 10 swirling up and down is formed. By this vortex 10, the temperature difference between the upper and lower temperatures due to the convection heat formed in the balloon 4 can be eliminated, and the temperature in the balloon can be made uniform. In addition, the pump 46 is used to inject cooling water into the inner cylinder shaft 2 to prevent cauterization of the distal carotid artery. The contact temperature of the balloon 4 is about 43.5 ° C. When heated for about 20 minutes or more, inflammatory cells such as macrophages in the arteriosclerotic lesion contacting the balloon 4 undergo apoptosis and lead to stabilization of the arteriosclerotic lesion. When the stenosis is advanced, the stenosis is expanded by pressurizing the inside of the balloon 4 with high pressure. When the balloon 4 is not easily expanded, the cured stenosis is expanded when the temperature in the balloon 4 is raised to 50 to 60 ° C. and pressurized. Next, the balloon 4 is deflated and the high-frequency balloon catheter is removed.

本発明の高周波加温バルーンカテーテルの第1の実施形態を示す図であり、高周波バルーンカテーテルによる肺静脈口周囲心房側を焼灼する例を示す。It is a figure which shows 1st Embodiment of the high frequency heating balloon catheter of this invention, and shows the example which cauterizes the pulmonary vein periphery surrounding atrium side by a high frequency balloon catheter. バルーンカテーテルの振動伝播偏向手段を示し、図1のA−Aにおける断面図。Sectional drawing in AA of FIG. 1 which shows the vibration propagation deflection | deviation means of a balloon catheter. 本発明の高周波加温バルーンカテーテルの第2の実施形態を示す図であり、高周波バルーンカテーテルによる肺静脈口周囲心房側を焼灼する例を示す。It is a figure which shows 2nd Embodiment of the high frequency heating balloon catheter of this invention, and shows the example which cauterizes the pulmonary vein periphery surrounding atrium side by a high frequency balloon catheter. バルーンカテーテルの振動伝播偏向手段を示し、図3のB−Bにおける断面図。Sectional drawing in BB of FIG. 3 which shows the vibration propagation deflection | deviation means of a balloon catheter. 本発明の高周波加温バルーンカテーテルの第3の実施形態を示す図であり、高周波バルーンカテーテルによる肺静脈口周囲心房側を焼灼する例を示す。It is a figure which shows 3rd Embodiment of the high frequency heating balloon catheter of this invention, and shows the example which cauterizes the pulmonary vein periphery surrounding atrium side by a high frequency balloon catheter. バルーンカテーテルの振動伝播偏向手段を示し、図5のC−Cにおける断面図。Sectional drawing in CC of FIG. 5 which shows the vibration propagation deflection | deviation means of a balloon catheter. 本発明の高周波加温バルーンカテーテルの第4の実施形態を示す図であり、高周波バルーンカテーテルにより右心室流出路起源の心室頻拍と心室細動の治療に適用した例を示す。It is a figure which shows 4th Embodiment of the high frequency heating balloon catheter of this invention, and shows the example applied to the treatment of the ventricular tachycardia and ventricular fibrillation originating in the right ventricular outflow tract by the high frequency balloon catheter. 本発明の高周波加温バルーンカテーテルの第5の実施形態を示す図であり、高周波バルーンカテーテルを動脈硬化病変の治療に適用した例を示す。It is a figure which shows 5th Embodiment of the high frequency heating balloon catheter of this invention, and shows the example which applied the high frequency balloon catheter to the treatment of an arteriosclerotic lesion. 図1乃至図6に示す高周波バルーンカテーテルによる肺静脈口周囲心房側の患部を焼灼することを示す図。The figure which shows cauterizing the affected part of the pulmonary vein opening circumference | surroundings atrium side by the high frequency balloon catheter shown in FIG. 1 thru | or FIG. 図7に示す高周波バルーンカテーテルを右心室流出路起源の心室頻拍と心室細動の治療に適用した例を示す図。The figure which shows the example which applied the high frequency balloon catheter shown in FIG. 7 to the treatment of the ventricular tachycardia and ventricular fibrillation originating in the right ventricular outflow tract. 図8に示す高周波バルーンカテーテルを動脈硬化病変の治療に適用した例を示す図。The figure which shows the example which applied the high frequency balloon catheter shown in FIG. 8 to the treatment of an arteriosclerosis lesion. 振動駆動手段による駆動される振動の時間波形とバルーンの形状の時間変化を示し、(a)は時間波形を示し、(b)は駆出期間におけるバルーンの体積変化とバルーン内の流れを示し、(c)は吸引期間におけるバルーンの体積変化とバルーン内の流れを示す。The time waveform of the vibration driven by the vibration driving means and the time change of the shape of the balloon are shown, (a) shows the time waveform, (b) shows the volume change of the balloon and the flow in the balloon during the ejection period, (C) shows the volume change of the balloon and the flow in the balloon during the suction period. 振動駆動手段による駆動される振動の時間波形とバルーン内の流れの他の例を示し、(a)は時間波形を示し、(b)は吸引期間におけるバルーン内の流れを示し、(c)は駆出期間におけるバルーン内の流れを示す。The time waveform of the vibration driven by the vibration drive means and another example of the flow in the balloon are shown, (a) shows the time waveform, (b) shows the flow in the balloon during the suction period, (c) shows The flow in the balloon during the ejection period is shown.

符号の説明Explanation of symbols

1 外筒シャフト
2 内筒シャフト
3 カテーテルシャフト
4 バルーン
5 対極板
6 高周波通電用電極
7 電極リード線
8 温度センサー
9 温度センサー用リード線
10 渦
12 渦形成手段
14 振動伝播流路
16 振動駆動手段
18 バルーンの入口部
20 振動伝播偏向手段
22 駆出期間
23 吸引期間
24 流体駆出量
25 流体吸引量
30 エックス線不透過マーカー
32、34 翼板
41 焼灼部(組織)
46 ポンプ
50 筒部
52 第1孔部
53 第2孔部
55 嵌め板
62、63 一方向弁
64 保持具
70 延長管部
71 開口部
80 延長管部
82 枝管
DESCRIPTION OF SYMBOLS 1 Outer cylinder shaft 2 Inner cylinder shaft 3 Catheter shaft 4 Balloon 5 Counter electrode 6 Electrode for high frequency energization 7 Electrode lead wire 8 Temperature sensor 9 Temperature sensor lead wire 10 Vortex 12 Vortex formation means 14 Vibration propagation channel 16 Vibration drive means 18 Balloon inlet 20 Vibration propagation deflecting means 22 Ejection period 23 Suction period 24 Fluid ejection quantity 25 Fluid suction quantity 30 X-ray impermeable markers 32, 34 Wing plate 41 Ablation part (tissue)
46 Pump 50 Tube portion 52 First hole portion 53 Second hole portion 55 Fitting plates 62, 63 One-way valve 64 Holder 70 Extension pipe portion 71 Opening portion 80 Extension pipe portion 82 Branch pipe

Claims (11)

外筒シャフトと内筒シャフトとからなるカテーテルシャフトと、
膨張した状態で標的病変部に接触可能な形状を有する前記外筒シャフトの先端部と前記内筒シャフトの先端部近傍との間に設置されたバルーンと、
高周波電力を伝送可能な前記バルーンの壁内又はバルーン内に配設された高周波通電用電極と、
前記高周波通電用電極に電気的に接続されるリード線と、
前記バルーン内の温度をモニター可能な温度センサーと、
前記バルーン内に導入された流体内に対流熱により前記バルーン内の重力方向に平行な上下方向における上下間に形成される上下間温度格差を解消するように、前記バルーン内の流体を前記上下方向における前記上下間で旋回させ渦を形成する渦形成手段と、
を備え
前記渦形成手段は、
前記外筒シャフトの内周と前記内筒シャフトの外周との間に形成される振動伝播流路にある流体を介して前記バルーン内の流体に振動を伝播させるための振動駆動手段と、
前記振動伝播流路の端部の前記バルーンの入口部近傍に設けられ、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の前記上下方向における下方向または上方向へ偏向させる振動伝播偏向手段と、
を備え、
前記バルーンの前記上下間の前記上下方向における位置を識別するための目印が設けられており、
前記振動伝播偏向手段により偏向させる方向は、前記目印を参照することによって前記重力方向に対して調整可能である
ことを特徴とする高周波加温バルーンカテーテル。
A catheter shaft comprising an outer tube shaft and an inner tube shaft;
A balloon installed between the distal end portion of the outer cylindrical shaft and the vicinity of the distal end portion of the inner cylindrical shaft having a shape capable of contacting the target lesion in an expanded state;
A high-frequency energization electrode disposed in the wall of the balloon or in the balloon capable of transmitting high-frequency power;
A lead wire electrically connected to the high-frequency energizing electrode;
A temperature sensor capable of monitoring the temperature in the balloon;
So as to eliminate the vertical interval temperature difference formed between the upper and lower in parallel up and down by convection heat in the introduced fluid in the gravity direction in the balloon in the balloon, said vertical fluid in the balloon and vortex forming means for forming a vortex swirled between the upper and lower in,
Equipped with a,
The vortex forming means includes
Vibration driving means for propagating vibration to the fluid in the balloon via the fluid in the vibration propagation flow path formed between the inner circumference of the outer cylinder shaft and the outer circumference of the inner cylinder shaft;
Vibration that is provided near the entrance of the balloon at the end of the vibration propagation channel and deflects the vibration propagating from the vibration propagation channel into the balloon downward or upward in the vertical direction in the balloon. Propagation deflection means;
With
A mark for identifying the position in the vertical direction between the upper and lower sides of the balloon is provided,
The high-frequency warming balloon catheter characterized in that the direction of deflection by the vibration propagation deflection means can be adjusted with respect to the direction of gravity by referring to the mark .
前記振動駆動手段による振動の周期は前記バルーン内の流体を駆出する駆出期間と前記バルーン内の流体を吸引する吸引期間とからなり、
前記駆出期間は前記吸引期間よりも短くかつ前記駆出期間の単位時間当たりの流体駆出量は前記吸引期間の単位時間当たりの流体吸引量より大きいか、または前記駆出期間は前記吸引期間よりも長くかつ前記駆出期間の単位時間当たりの流体駆出量は前記吸引期間の単位時間当たりの流体吸引量より小さいかである
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The period of vibration by the vibration driving means includes a ejection period for ejecting the fluid in the balloon and a suction period for sucking the fluid in the balloon,
The ejection period is shorter than the suction period and the fluid ejection amount per unit time of the ejection period is greater than the fluid suction amount per unit time of the suction period, or the ejection period is the suction period The high-frequency warming balloon catheter according to claim 1, wherein the fluid ejection amount per unit time of the ejection period is smaller than the fluid suction amount per unit time of the suction period. .
前記駆出期間と前記流体駆出量との積は前記吸引期間と前記流体吸引量との積とは等しい
ことを特徴とする請求項2に記載の高周波加温バルーンカテーテル。
The high-frequency warming balloon catheter according to claim 2, wherein the product of the ejection period and the fluid ejection amount is equal to the product of the suction period and the fluid suction amount.
前記振動伝播偏向手段は、前記内筒シャフトを挟んで前記入口部近傍に配設された一対の翼板を有し、前記一対の翼板の各々は、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の下方向または上方向へ偏向させるように傾斜して配設されている
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The vibration propagation deflecting means has a pair of blades disposed in the vicinity of the inlet portion across the inner cylinder shaft, and each of the pair of blades is inserted into the balloon from the vibration propagation channel. The high-frequency warming balloon catheter according to claim 1, wherein the high-frequency warming balloon catheter is disposed so as to be inclined so as to deflect the propagating vibration downward or upward in the balloon.
前記振動伝播偏向手段は、一端に開口部と他端に底部と側部に第1孔部及び第2孔部とを有する筒部を備え、前記内筒シャフトは前記筒部の側面を前記第1孔部と前記第2孔部とを上下に位置して貫通しており、前記筒部は、前記振動伝播流路から前記バルーン内に伝搬する振動を前記バルーン内の下方向または上方向へ偏向させるように傾斜して配設されている
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The vibration propagation deflecting means includes a cylindrical portion having an opening at one end, a bottom portion at the other end, and a first hole portion and a second hole portion at a side portion, and the inner cylindrical shaft has a side surface of the cylindrical portion at the first side. The first hole and the second hole are vertically positioned and penetrated, and the cylindrical part transmits vibration propagating from the vibration propagation channel into the balloon downward or upward in the balloon. The high-frequency warming balloon catheter according to claim 1, wherein the high-frequency warming balloon catheter is disposed so as to be deflected.
前記振動伝播偏向手段は、前記内筒シャフトを上下に挟んで前記入口部近傍に配設された一対の一方向弁を有し、一方の一方向弁は前記バルーン内へ流体を押し出すように開閉し、他方の一方向弁は前記バルーン内から流体を吸引すように開閉する
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The vibration propagation deflecting means has a pair of one-way valves disposed in the vicinity of the inlet portion with the inner cylindrical shaft sandwiched between the upper and lower sides, and the one-way valve opens and closes to push the fluid into the balloon. The high-frequency warming balloon catheter according to claim 1, wherein the other one-way valve opens and closes to suck fluid from the balloon.
前記振動伝播偏向手段は、前記外筒シャフトに延設された先端が閉鎖された延長管部を有し、前記延長管部の下側または上側のいずれか一方の側面に開口部が形成されている
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The vibration propagation deflecting means has an extension pipe part extending from the outer cylinder shaft and closed at a tip, and an opening is formed on either the lower side or the upper side of the extension pipe part. The high-frequency warming balloon catheter according to claim 1, wherein:
前記振動伝播偏向手段は、前記外筒シャフトに延設された先端が閉鎖された延長管部と、前記管部の下側または上側のいずれか一方の側面から延びる枝管とを有する
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The vibration propagation deflecting unit has an extension pipe part extending from the outer cylinder shaft and closed at a tip, and a branch pipe extending from either the lower side or the upper side of the pipe part. The high-frequency warming balloon catheter according to claim 1.
前記目印は、前記カテーテルシャフトに付加されたエックス線不透過マーカーである
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The high-frequency warming balloon catheter according to claim 1, wherein the mark is an X-ray opaque marker added to the catheter shaft.
前記高周波通電用電極は、前記内筒シャフトの回りに螺旋状に巻設されている
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The high-frequency warming balloon catheter according to claim 1, wherein the high-frequency energizing electrode is spirally wound around the inner cylindrical shaft.
前記バルーンは抗血栓性であり耐熱性であり弾力性であるレジンよりなる
ことを特徴とする請求項1に記載の高周波加温バルーンカテーテル。
The high-frequency warming balloon catheter according to claim 1, wherein the balloon is made of a resin that is antithrombotic, heat resistant, and elastic.
JP2003425214A 2003-12-22 2003-12-22 High frequency heating balloon catheter Expired - Lifetime JP4391221B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003425214A JP4391221B2 (en) 2003-12-22 2003-12-22 High frequency heating balloon catheter
EP04771970A EP1698296A4 (en) 2003-12-22 2004-08-20 High-frequency heating balloon catheter
CA002545295A CA2545295A1 (en) 2003-12-22 2004-08-20 High-frequency heating balloon catheter
PCT/JP2004/012009 WO2005060848A1 (en) 2003-12-22 2004-08-20 High-frequency heating balloon catheter
AU2004305345A AU2004305345B2 (en) 2003-12-22 2004-08-20 High-frequency heating balloon catheter
US10/571,599 US8231617B2 (en) 2003-12-22 2004-08-20 Radio-frequency thermal balloon catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425214A JP4391221B2 (en) 2003-12-22 2003-12-22 High frequency heating balloon catheter

Publications (2)

Publication Number Publication Date
JP2005177293A JP2005177293A (en) 2005-07-07
JP4391221B2 true JP4391221B2 (en) 2009-12-24

Family

ID=34708813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425214A Expired - Lifetime JP4391221B2 (en) 2003-12-22 2003-12-22 High frequency heating balloon catheter

Country Status (6)

Country Link
US (1) US8231617B2 (en)
EP (1) EP1698296A4 (en)
JP (1) JP4391221B2 (en)
AU (1) AU2004305345B2 (en)
CA (1) CA2545295A1 (en)
WO (1) WO2005060848A1 (en)

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
DE202004021946U1 (en) 2003-09-12 2013-05-29 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
ES2565342T3 (en) 2005-03-28 2016-04-04 Vessix Vascular, Inc. Intraluminal electrical characterization of tissue and regulated RF energy for selective treatment of atheroma and other target tissues
WO2007052341A1 (en) 2005-11-01 2007-05-10 Japan Electel Inc. Balloon catheter system
JP2007229095A (en) * 2006-02-28 2007-09-13 Toray Ind Inc Balloon catheter
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
JP2009183312A (en) * 2006-07-14 2009-08-20 Katsutoshi Tabuse Microwave induction heating device
EP2455035B1 (en) 2006-10-18 2015-11-25 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
ES2407329T3 (en) 2006-10-18 2013-06-12 Vessix Vascular, Inc. System to induce desirable temperature effects on body tissue
EP2076193A4 (en) 2006-10-18 2010-02-03 Minnow Medical Inc Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
US8469950B2 (en) 2007-02-15 2013-06-25 Cardionova Ltd. Intra-atrial apparatus and method of use thereof
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
JP2010526598A (en) * 2007-05-11 2010-08-05 ボエッジ メディカル, インコーポレイテッド Visual electrode ablation system
US9387036B2 (en) * 2007-05-14 2016-07-12 Pyrexar Medical Inc. Apparatus and method for selectively heating a deposit in fatty tissue in a body
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
EP2320821B2 (en) 2008-05-09 2020-12-30 Nuvaira, Inc. Systems for treating a bronchial tree
WO2010017231A1 (en) * 2008-08-04 2010-02-11 Hariharan Alleppey V Method to convert waste silicon to high purity silicon
JP4649506B2 (en) * 2008-09-16 2011-03-09 有限会社日本エレクテル High frequency heating balloon catheter
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
WO2010042461A1 (en) 2008-10-06 2010-04-15 Sharma Virender K Method and apparatus for tissue ablation
CA2743992A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
CA2733241C (en) * 2008-12-19 2016-08-16 Japan Electel Inc. Balloon catheter system
JP5376579B2 (en) * 2009-04-01 2013-12-25 有限会社日本エレクテル High frequency heating balloon catheter system
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
CN112089394A (en) 2009-10-27 2020-12-18 努瓦拉公司 Delivery device with coolable energy emitting assembly
AU2010319477A1 (en) 2009-11-11 2012-05-24 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
EP2555699B1 (en) 2010-04-09 2019-04-03 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
EP4282363A3 (en) 2011-01-19 2024-01-10 Fractyl Health, Inc. Devices for the treatment of tissue
KR20130131471A (en) 2011-04-08 2013-12-03 코비디엔 엘피 Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
CN103930061B (en) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 Relevant low temperature sacculus for restricted conduit wall cryogenic ablation limits the device and method disposed
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
CN103813829B (en) 2011-07-22 2016-05-18 波士顿科学西美德公司 There is the neuromodulation system of the neuromodulation element that can be positioned in spiral guiding piece
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
EP3366250A1 (en) 2011-11-08 2018-08-29 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
EP2793724B1 (en) 2011-12-23 2016-10-12 Vessix Vascular, Inc. Apparatuses for remodeling tissue of or adjacent to a body passage
CN104135958B (en) 2011-12-28 2017-05-03 波士顿科学西美德公司 By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
KR102086184B1 (en) * 2012-02-27 2020-03-06 프랙틸 래브러토리스 인코포레이티드 Heat ablation systems,devices and methods for the treatment of tissue
AU2013249043B2 (en) 2012-04-19 2017-04-27 Fractyl Health, Inc. Tissue expansion devices, system and methods
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US9387310B2 (en) 2012-07-05 2016-07-12 Japan Electel Inc. Balloon catheter system
EP2879605A4 (en) 2012-07-30 2016-04-06 Fractyl Lab Inc Electrical energy ablation systems, devices and methods for the treatment of tissue
WO2014026055A1 (en) 2012-08-09 2014-02-13 Fractyl Laboratories Inc. Ablation systems, devices and methods for the treatment of tissue
WO2014032016A1 (en) 2012-08-24 2014-02-27 Boston Scientific Scimed, Inc. Intravascular catheter with a balloon comprising separate microporous regions
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
EP2903626A4 (en) 2012-10-05 2016-10-19 Fractyl Lab Inc Methods, systems and devices for performing multiple treatments on a patient
CN104869930B (en) 2012-10-10 2020-12-25 波士顿科学国际有限公司 Renal neuromodulation apparatus and methods
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
EP2945556A4 (en) 2013-01-17 2016-08-31 Virender K Sharma Method and apparatus for tissue ablation
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US20140276051A1 (en) * 2013-03-13 2014-09-18 Gyrus ACM, Inc. (d.b.a Olympus Surgical Technologies America) Device for Minimally Invasive Delivery of Treatment Substance
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9358042B2 (en) 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
EP2967725B1 (en) 2013-03-15 2019-12-11 Boston Scientific Scimed, Inc. Control unit for detecting electrical leakage between electrode pads and system comprising such a control unit
CN105473090B (en) 2013-03-15 2019-05-03 波士顿科学国际有限公司 Method and apparatus for reconstructing tissue of or adjacent to a body passage
EP3003461B1 (en) 2013-06-04 2019-05-01 Fractyl Laboratories, Inc. Systems and devices for reducing the luminal surface area of the gastrointestinal tract
JP2016524949A (en) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation having a rotatable shaft
CN105473091B (en) 2013-06-21 2020-01-21 波士顿科学国际有限公司 Renal denervation balloon catheter with co-movable electrode supports
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
AU2014284558B2 (en) 2013-07-01 2017-08-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
WO2015006480A1 (en) 2013-07-11 2015-01-15 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
WO2015013301A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
EP4049605A1 (en) 2013-08-22 2022-08-31 Boston Scientific Scimed Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
WO2015038973A1 (en) 2013-09-12 2015-03-19 Fractyl Laboratories, Inc. Systems, methods and devices for treatment of target tissue
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
CN105592778B (en) 2013-10-14 2019-07-23 波士顿科学医学有限公司 High-resolution cardiac mapping electrod-array conduit
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
CN105636537B (en) 2013-10-15 2018-08-17 波士顿科学国际有限公司 Medical instrument sacculus
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
EP3060153A1 (en) 2013-10-25 2016-08-31 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
EP3071286B1 (en) 2013-11-22 2024-01-03 Fractyl Health, Inc. Systems for the creation of a therapeutic restriction in the gastrointestinal tract
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
EP3424453A1 (en) 2014-02-04 2019-01-09 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US10959774B2 (en) 2014-03-24 2021-03-30 Fractyl Laboratories, Inc. Injectate delivery devices, systems and methods
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US11185367B2 (en) 2014-07-16 2021-11-30 Fractyl Health, Inc. Methods and systems for treating diabetes and related diseases and disorders
WO2016011269A1 (en) 2014-07-16 2016-01-21 Fractyl Laboratories, Inc. Methods and systems for treating diabetes and related diseases and disorders
US9757535B2 (en) 2014-07-16 2017-09-12 Fractyl Laboratories, Inc. Systems, devices and methods for performing medical procedures in the intestine
US10449336B2 (en) 2015-08-11 2019-10-22 The Spectranetics Corporation Temporary occlusions balloon devices and methods for preventing blood flow through a vascular perforation
US10499892B2 (en) 2015-08-11 2019-12-10 The Spectranetics Corporation Temporary occlusion balloon devices and methods for preventing blood flow through a vascular perforation
JPWO2017104023A1 (en) * 2015-12-16 2018-04-12 有限会社日本エレクテル High frequency balloon catheter system
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10905329B2 (en) 2016-06-09 2021-02-02 Biosense Webster (Israel) Ltd. Multi-function conducting elements for a catheter
US11400205B2 (en) 2016-11-23 2022-08-02 Biosense Webster (Israel) Ltd. Balloon-in-balloon irrigation balloon catheter
US10912609B2 (en) 2017-01-06 2021-02-09 St. Jude Medical, Cardiology Division, Inc. Pulmonary vein isolation balloon catheter
CN110267615B (en) 2017-01-06 2023-03-31 圣犹达医疗用品心脏病学部门有限公司 Pulmonary vein isolation balloon catheter
WO2018194980A1 (en) * 2017-04-21 2018-10-25 Boston Scientific Scimed, Inc. Lithotripsy angioplasty devices and methods
US12029545B2 (en) 2017-05-30 2024-07-09 Biosense Webster (Israel) Ltd. Catheter splines as location sensors
NL2019807B1 (en) 2017-10-26 2019-05-06 Boston Scient Scimed Inc Shockwave generating device
US11103262B2 (en) 2018-03-14 2021-08-31 Boston Scientific Scimed, Inc. Balloon-based intravascular ultrasound system for treatment of vascular lesions
CN113015494A (en) 2018-06-01 2021-06-22 圣安娜技术有限公司 Multi-stage steam ablation therapy method and steam generation and delivery system
US12102781B2 (en) 2018-06-29 2024-10-01 Biosense Webster (Israel) Ltd. Reinforcement for irrigated electrophysiology balloon catheter with flexible-circuit electrodes
US11071585B2 (en) 2018-09-14 2021-07-27 Biosense Webster (Israel) Ltd. Systems and methods of ablating cardiac tissue
WO2020086361A1 (en) 2018-10-24 2020-04-30 Boston Scientific Scimed, Inc. Photoacoustic pressure wave generation for intravascular calcification disruption
USD969138S1 (en) 2019-05-31 2022-11-08 Biosense Webster (Israel) Ltd. Display screen with a graphical user interface
USD968422S1 (en) 2019-05-31 2022-11-01 Biosense Webster (Israel) Ltd. Display screen with transitional graphical user interface
USD968421S1 (en) 2019-05-31 2022-11-01 Biosense Webster (Israel) Ltd. Display screen with a graphical user interface
US11717139B2 (en) 2019-06-19 2023-08-08 Bolt Medical, Inc. Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium
WO2020256898A1 (en) 2019-06-19 2020-12-24 Boston Scientific Scimed, Inc. Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions
US11660427B2 (en) 2019-06-24 2023-05-30 Boston Scientific Scimed, Inc. Superheating system for inertial impulse generation to disrupt vascular lesions
US12280223B2 (en) 2019-06-26 2025-04-22 Boston Scientific Scimed, Inc. Focusing element for plasma system to disrupt vascular lesions
US11633228B2 (en) 2019-10-04 2023-04-25 Biosense Webster (Israel) Ltd. Identifying pulmonary vein occlusion by dimension deformations of balloon catheter
US11583339B2 (en) 2019-10-31 2023-02-21 Bolt Medical, Inc. Asymmetrical balloon for intravascular lithotripsy device and method
US12137967B2 (en) 2019-11-12 2024-11-12 Biosense Webster (Israel) Ltd. Accurate positioning and shape visualization of balloon catheter ablation tags
US12102384B2 (en) 2019-11-13 2024-10-01 Bolt Medical, Inc. Dynamic intravascular lithotripsy device with movable energy guide
US12274497B2 (en) 2019-12-18 2025-04-15 Bolt Medical, Inc. Multiplexer for laser-driven intravascular lithotripsy device
US11672599B2 (en) 2020-03-09 2023-06-13 Bolt Medical, Inc. Acoustic performance monitoring system and method within intravascular lithotripsy device
US20210290286A1 (en) 2020-03-18 2021-09-23 Bolt Medical, Inc. Optical analyzer assembly and method for intravascular lithotripsy device
JPWO2021201079A1 (en) * 2020-03-31 2021-10-07
US11707323B2 (en) 2020-04-03 2023-07-25 Bolt Medical, Inc. Electrical analyzer assembly for intravascular lithotripsy device
US12295654B2 (en) 2020-06-03 2025-05-13 Boston Scientific Scimed, Inc. System and method for maintaining balloon integrity within intravascular lithotripsy device with plasma generator
US12207870B2 (en) 2020-06-15 2025-01-28 Boston Scientific Scimed, Inc. Spectroscopic tissue identification for balloon intravascular lithotripsy guidance
US12239364B2 (en) 2020-10-07 2025-03-04 Biosense Webster (Israel) Ltd. Printed proximal electrodes of an expandable catheter for use as a common electrode
US11974803B2 (en) 2020-10-12 2024-05-07 Biosense Webster (Israel) Ltd. Basket catheter with balloon
US12016610B2 (en) 2020-12-11 2024-06-25 Bolt Medical, Inc. Catheter system for valvuloplasty procedure
JP2024504606A (en) 2021-01-12 2024-02-01 ボルト メディカル インコーポレイテッド Balloon assembly for annuloplasty catheter system
US11672585B2 (en) 2021-01-12 2023-06-13 Bolt Medical, Inc. Balloon assembly for valvuloplasty catheter system
US11957852B2 (en) 2021-01-14 2024-04-16 Biosense Webster (Israel) Ltd. Intravascular balloon with slidable central irrigation tube
US11849995B2 (en) 2021-02-18 2023-12-26 Biosense Webster (Israel) Ltd. Detection of balloon catheter tissue contact using optical measurement
US11648057B2 (en) 2021-05-10 2023-05-16 Bolt Medical, Inc. Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device
US11806075B2 (en) 2021-06-07 2023-11-07 Bolt Medical, Inc. Active alignment system and method for laser optical coupling
US12114905B2 (en) 2021-08-27 2024-10-15 Biosense Webster (Israel) Ltd. Reinforcement and stress relief for an irrigated electrophysiology balloon catheter with flexible-circuit electrodes
US11839391B2 (en) 2021-12-14 2023-12-12 Bolt Medical, Inc. Optical emitter housing assembly for intravascular lithotripsy device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955377A (en) * 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
JP2538375B2 (en) 1990-03-01 1996-09-25 修太郎 佐竹 Balloon catheter
US5624392A (en) * 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
JP2510428B2 (en) 1991-01-31 1996-06-26 修太郎 佐竹 Balloon catheter
US5571153A (en) * 1991-09-20 1996-11-05 Wallst+E,Acu E+Ee N; Hans I. Device for hyperthermia treatment
US6620188B1 (en) * 1998-08-24 2003-09-16 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
JP2574119B2 (en) 1993-10-05 1997-01-22 佐竹 修太郎 Balloon catheter
JPH0898857A (en) 1994-09-30 1996-04-16 Fukuda Denshi Co Ltd Hot balloon angioplasty device
SE508792C2 (en) * 1994-11-21 1998-11-09 Wallsten Medical Sa Balloon catheter for performing heat treatment in a body cavity or duct
US5603720A (en) * 1995-01-27 1997-02-18 Kieturakis; Maciej J. Surgical method for use with transluminal dilation catheter
US5954714A (en) 1996-11-20 1999-09-21 Gynecare, Inc. Heated balloon having rotary fluid impeller
US5827269A (en) * 1996-12-31 1998-10-27 Gynecare, Inc. Heated balloon having a reciprocating fluid agitator
US8128595B2 (en) * 1998-04-21 2012-03-06 Zoll Circulation, Inc. Method for a central venous line catheter having a temperature control system
US6126684A (en) * 1998-04-21 2000-10-03 The Regents Of The University Of California Indwelling heat exchange catheter and method of using same
US6530946B1 (en) * 1998-04-21 2003-03-11 Alsius Corporation Indwelling heat exchange heat pipe catheter and method of using same
US20030060761A1 (en) * 1998-04-21 2003-03-27 Evans Scott M. Kit of parts including a heat exchange catheter for treating heart malady
US6254564B1 (en) * 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6019783A (en) * 1999-03-02 2000-02-01 Alsius Corporation Cooling system for therapeutic catheter
US20020077693A1 (en) * 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
JP2002078809A (en) 2000-09-07 2002-03-19 Shutaro Satake Balloon catheter for electrically isolating pulmonary vein
JP3607231B2 (en) * 2001-09-28 2005-01-05 有限会社日本エレクテル High frequency heating balloon catheter
JP3632129B2 (en) 2001-10-17 2005-03-23 草竹コンクリート工業株式会社 Valve switch and valve opening / closing method
JP2003305076A (en) 2002-04-12 2003-10-28 Nihon Medix Balloon catheter apparatus

Also Published As

Publication number Publication date
WO2005060848A1 (en) 2005-07-07
US8231617B2 (en) 2012-07-31
AU2004305345A1 (en) 2005-07-07
JP2005177293A (en) 2005-07-07
EP1698296A1 (en) 2006-09-06
CA2545295A1 (en) 2005-07-07
US20070060990A1 (en) 2007-03-15
AU2004305345B2 (en) 2010-04-01
EP1698296A4 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4391221B2 (en) High frequency heating balloon catheter
US11871979B2 (en) Methods and devices for controlling ablation therapy
JP4988044B2 (en) Balloon catheter system
JP6195920B2 (en) Ablation device having an expandable chamber for anchoring the ablation device to tissue
US7591794B2 (en) Therapy probe
US9981108B2 (en) Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
JP2022511318A (en) Heated steam ablation system and method for treating heart disease
JP2020503144A (en) Pulmonary vein isolation balloon catheter
US20220296294A1 (en) Heated Vapor Ablation Systems and Methods for Treating Cardiac Conditions
EP0858302A1 (en) Method and system for direct heating of fluid solution in a hollow body organ
KR20210033443A (en) Inferred maximum temperature monitoring for irrigation ablation therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term