[go: up one dir, main page]

JP4389664B2 - Manufacturing method of flexible printed wiring board - Google Patents

Manufacturing method of flexible printed wiring board Download PDF

Info

Publication number
JP4389664B2
JP4389664B2 JP2004148681A JP2004148681A JP4389664B2 JP 4389664 B2 JP4389664 B2 JP 4389664B2 JP 2004148681 A JP2004148681 A JP 2004148681A JP 2004148681 A JP2004148681 A JP 2004148681A JP 4389664 B2 JP4389664 B2 JP 4389664B2
Authority
JP
Japan
Prior art keywords
wiring board
solder
flexible printed
conductive layer
sided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004148681A
Other languages
Japanese (ja)
Other versions
JP2005332907A (en
Inventor
晃治 中島
豊一 吉野
信司 森本
克也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004148681A priority Critical patent/JP4389664B2/en
Priority to US11/131,341 priority patent/US7427717B2/en
Publication of JP2005332907A publication Critical patent/JP2005332907A/en
Application granted granted Critical
Publication of JP4389664B2 publication Critical patent/JP4389664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、種々の表面実装型の電子部品が実装され電子機器に内蔵されるフレキシブルプリント配線板及びその製造方法に関する。   The present invention relates to a flexible printed wiring board on which various surface-mount type electronic components are mounted and built in an electronic device, and a method for manufacturing the same.

近年、携帯電話機や光ディスクドライブ等の電子機器の小型軽量化や多機能化、高性能化等に伴い、それらに内蔵されるフレキシブルプリント配線板の配線の密度は増加する傾向にある。通常、フレキシブルプリント配線板の配線を高密度で形成する方法としては、導体パターンの微細化が挙げられる。しかしながら、導体パターンの微細化だけでは配線の高密度化に限界がある。そこで、導体パターンを形成する導電層を絶縁層を介して複数積層することで配線を高密度で形成する方法が用いられている。なお、各導電層間の電気的接続は、導電層の間にある絶縁層に層間接続部を設け、導電層を上下に接続する方法が用いられている。このようにして絶縁層の両面に導電層を設けたフレキシブルプリント配線板を両面フレキシブルプリント配線板と言い、また、3層以上の導電層を設けたフレキシブルプリント配線板を多層フレキシブルプリント配線板と言い、近年注目されている。   In recent years, as electronic devices such as mobile phones and optical disk drives become smaller and lighter, have more functions, and have higher performance, the wiring density of flexible printed wiring boards incorporated therein tends to increase. Usually, as a method of forming the wiring of the flexible printed wiring board with high density, miniaturization of a conductor pattern can be mentioned. However, there is a limit to increasing the wiring density only by miniaturizing the conductor pattern. Therefore, a method is used in which wiring is formed at a high density by laminating a plurality of conductive layers for forming a conductor pattern via an insulating layer. For electrical connection between the conductive layers, a method in which an interlayer connection portion is provided in an insulating layer between the conductive layers and the conductive layers are connected vertically is used. A flexible printed wiring board in which conductive layers are provided on both sides of the insulating layer in this manner is referred to as a double-sided flexible printed wiring board, and a flexible printed wiring board in which three or more conductive layers are provided is referred to as a multilayer flexible printed wiring board. In recent years, it has attracted attention.

このようなフレキシブルプリント配線板において、導電層間を接続するための層間接続部を形成する方法としては、例えば(特許文献1)に記載されためっきスルーホール法が用いられる。めっきスルーホール法とは、原材料の段階でポリイミドフィルムからなる絶縁層に貫通孔であるスルーホールを設け、このスルーホール壁面に銅めっき膜を形成する方法である。このめっきスルーホール法は、最も一般的な層間接続方法であり、絶縁層に形成したスルーホールの内壁に無電解めっきで銅の下地膜を形成する工程と、電解めっきにより銅の厚付けめっきを行う工程との二つの主な工程からなり、スルーホール内の銅めっき膜とスルーホールが形成されている絶縁層との熱膨張率が略同一であるので、熱に対する接続信頼性に優れている。   In such a flexible printed wiring board, as a method of forming an interlayer connection for connecting conductive layers, for example, a plated through hole method described in (Patent Document 1) is used. The plating through-hole method is a method in which a through-hole which is a through hole is provided in an insulating layer made of a polyimide film at the raw material stage, and a copper plating film is formed on the wall surface of the through-hole. This plated through-hole method is the most common interlayer connection method, and forms a copper base film by electroless plating on the inner wall of the through-hole formed in the insulating layer, and thick plating of copper by electrolytic plating. It consists of two main steps, and the thermal expansion coefficient of the copper plating film in the through hole and the insulating layer in which the through hole is formed are substantially the same, so it has excellent connection reliability against heat .

しかしながら、銅の厚付けめっきを行うと、スルーホールの内壁の銅めっき膜の厚みだけでなく、導電層を形成する銅箔の厚みも増加させ、その後のエッチング処理による導電層の導体パターンの微細化が難しくなるという問題点があった。また、層間接続部を形成するための工程が多工程で且つ複雑であり、生産性に欠けるという問題点があった。   However, when copper thick plating is performed, not only the thickness of the copper plating film on the inner wall of the through hole, but also the thickness of the copper foil forming the conductive layer is increased, and the fineness of the conductive pattern of the conductive layer by the subsequent etching process is increased. There was a problem that it was difficult to convert. Further, the process for forming the interlayer connection portion is multi-step and complicated, and there is a problem that productivity is lacking.

これらの問題点を解決するために、スルーホール内に半田粒子を含むペースト状半田を所定部に印刷し、溶融させてスルーホールに充填した後、固化させる方法が例えば(特許文献2)に記載されている。この方法によれば、上述しためっきスルーホール法と比較して工数が少なく簡単に層間接続部を形成できるので、生産性が高く、また、導電層の形成後に層間接続部を形成するので、銅箔の厚みが増加するという不具合が発生せず、導電層の導体パターンの微細化が図れる。
特開平5−175636号公報 特開平7−176847号公報
In order to solve these problems, for example, (Patent Document 2) describes a method in which paste solder containing solder particles in a through hole is printed on a predetermined portion, melted, filled into the through hole, and then solidified. Has been. According to this method, since the interlayer connection can be easily formed with less man-hours than the plated through hole method described above, the productivity is high and the interlayer connection is formed after the conductive layer is formed. The problem that the thickness of the foil increases does not occur, and the conductor pattern of the conductive layer can be miniaturized.
JP-A-5-175636 JP-A-7-176847

しかしながら上記従来の技術では、以下のような課題を有していた。   However, the above conventional techniques have the following problems.

(1)(特許文献1)に記載されためっきスルーホール法を用いたフレキシブルプリント配線板では、熱に対する接続信頼性に優れているものの、導体パターンの微細化が困難であると共に生産性にも欠けるという課題を有していた。   (1) The flexible printed wiring board using the plated through-hole method described in (Patent Document 1) is excellent in connection reliability against heat, but it is difficult to miniaturize the conductor pattern and also in productivity. It had the problem of lacking.

(2)(特許文献2)に記載された層間接続方法を用いたフレキシブルプリント配線板では、導電層の導体パターンの微細化は図れるが、スルーホールに充填される半田の熱膨張率が絶縁層と比較して大きいため、加熱するとスルーホール内の半田が絶縁層以上に膨張し、絶縁層の表面の導電層と半田との接合界面が剥離し易く電気的接続の信頼性に欠けるという課題を有していた。   (2) In the flexible printed wiring board using the interlayer connection method described in (Patent Document 2), the conductive pattern of the conductive layer can be miniaturized, but the thermal expansion coefficient of the solder filled in the through hole is an insulating layer. Therefore, when heated, the solder in the through-hole expands more than the insulating layer, and the bonding interface between the conductive layer and the solder on the surface of the insulating layer easily peels off, resulting in a lack of reliability in electrical connection. Had.

本発明は上記従来の課題を解決するもので、層間接続部が金属粒子を圧接成形した成形体の間隙に半田を充填した複合体で形成されているので、層間接続部の熱膨張率と絶縁層の熱膨張率を略同一として加熱による接合界面の剥離等を防止でき電気的接続の信頼性に優れ、且つ、層間接続部の機械的強度を高めることができるので変形や亀裂等の発生を防止し、さらに電気的接続の信頼性に優れるフレキシブルプリント配線板を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and since the interlayer connection portion is formed of a composite in which solder is filled in the gap between the compacts formed by press-molding metal particles, the thermal expansion coefficient and insulation of the interlayer connection portion are reduced. Since the thermal expansion coefficient of the layers is almost the same, peeling of the bonding interface due to heating can be prevented, the electrical connection reliability is excellent, and the mechanical strength of the interlayer connection can be increased, so deformation and cracking etc. can occur An object of the present invention is to provide a flexible printed wiring board that is excellent in reliability and electrical connection reliability.

本発明は上記従来の課題を解決するもので、電気的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造でき生産性に優れると共に、導電層を形成した後、層間接続部を形成するので、層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能なフレキシブルプリント配線板の製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and can produce a flexible printed wiring board with high reliability of electrical connection in a simple and few process, and is excellent in productivity, and after forming a conductive layer, an interlayer connection portion is formed. Therefore, the thickness of the conductive layer is not increased by the formation of the interlayer connection portion, the conductive pattern of the conductive layer can be miniaturized, and a flexible printed wiring board manufacturing method capable of increasing the wiring density is provided. For the purpose.

上記課題を解決するために、本発明のフレキシブルプリント配線板の製造方法は、絶縁層の両面に導電層が形成された両面配線板の所定部にスルーホールを形成する工程と、次いで前記スルーホールに金属粒子を充填する工程と、次いで前記両面配線板の上面側及び下面側を狭圧して前記金属粒子を圧接成形する工程と、次いで圧接成形された成形体の上部にペースト状半田を塗布する工程と、次いで塗布した半田を溶融させ前記成形体の間隙に浸透させる工程とを備えることを特徴とする。 In order to solve the above problems, a method for manufacturing a flexible printed wiring board according to the present invention includes a step of forming a through hole in a predetermined portion of a double-sided wiring board in which a conductive layer is formed on both sides of an insulating layer, and then the through hole. Filling the metal particles with each other, then pressing the upper and lower surfaces of the double-sided wiring board to press the metal particles, and then applying paste solder onto the upper part of the pressure-formed molded body a step, then, characterized in that the coated solder is melted and a step of Ru to penetrate the gap between the molded body.

これにより、電気的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造でき生産性に優れると共に、導電層を形成した後、層間接続部を形成するので、層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能なフレキシブルプリント配線板の製造方法を提供することができる。   As a result, a flexible printed wiring board with high electrical connection reliability can be manufactured in a simple and few process, and it is excellent in productivity, and after forming the conductive layer, the interlayer connection portion is formed. It is possible to provide a method for manufacturing a flexible printed wiring board in which the conductive pattern of the conductive layer can be miniaturized and the wiring density can be increased without increasing the thickness of the conductive layer.

請求項に記載の発明によれば、
(1)貫設したスルーホールに金属粒子を充填し、そのまま圧接成形し、上部に半田を
塗布して加熱し圧接成形体の間隙に浸透させるだけで層間接続部を形成できるので、電気
的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造できる生
産性に優れたフレキシブルプリント配線板の製造方法を提供することができる。
According to the invention of claim 1 ,
(1) Filling through-holes with metal particles, press-molding as it is, forming solder by applying solder to the upper part, heating and infiltrating the gaps between the press-formed bodies, so electrical connection It is possible to provide a method for producing a flexible printed wiring board excellent in productivity that can produce a highly reliable flexible printed wiring board with simple and few processes.

(2)従来のめっきスルーホール法と異なり層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能で、電子機器の小型軽量化や多機能化、高性能化が図れるフレキシブルプリント配線板の製造方法を提供することができる。   (2) Unlike conventional plating through-hole methods, the formation of the interlayer connection does not increase the thickness of the conductive layer, the conductive pattern of the conductive layer can be miniaturized, the wiring density can be increased, and the electronic equipment It is possible to provide a method for manufacturing a flexible printed wiring board that can be reduced in size, weight, functionality, and performance.

(3)スルーホールに充填した金属粒子を上下から狭圧して圧接成形することができるので、スルーホールの内部と略同形の圧接成形体を簡単に且つ寸法精度良く成形できるフレキシブルプリント配線板の製造方法を提供することができる。   (3) Since the metal particles filled in the through-holes can be pressure-formed by narrowing from above and below, a flexible printed wiring board that can easily and accurately form a press-formed body approximately the same shape as the inside of the through-hole is manufactured. A method can be provided.

本発明は、電気的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造でき生産性に優れると共に、導電層を形成した後、層間接続部を形成するので、層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能なフレキシブルプリント配線板の製造方法を提供するという目的を、絶縁層の両面に導電層が形成された両面配線板の所定部にスルーホールを形成する工程と、次いで前記スルーホールに金属粒子を充填する工程と、次いで前記両面配線板の上面側及び下面側を狭圧して前記金属粒子を圧接成形する工程と、次いで圧接成形された成形体の上部にペースト状半田を塗布する工程と、次いで塗布した半田を溶融させ前記成形体の間隙に浸透させる工程とを備えることにより実現した。 In the present invention, a flexible printed wiring board with high reliability of electrical connection can be manufactured in a simple and few process, and is excellent in productivity. After forming a conductive layer, an interlayer connection is formed. The purpose of providing a method for producing a flexible printed wiring board capable of miniaturizing the conductive pattern of the conductive layer without increasing the thickness of the conductive layer and increasing the wiring density is provided on both sides of the insulating layer. A step of forming a through hole in a predetermined portion of the double-sided wiring board on which the conductive layer is formed ; a step of filling the through-hole with metal particles ; and then narrowing an upper surface side and a lower surface side of the double-sided wiring board to step and then of penetration into the gap pressure and a step of applying a solder paste on top of the molded green body, and then the green body to melt was applied solder to press molding metal particles It was achieved by providing a that step.

上記課題を解決するためになされた第の発明は、フレキシブルプリント配線板の製造
方法であって、絶縁層の両面に導電層が形成された両面配線板の所定部にスルーホールを形成する工程と、次いで前記スルーホールに金属粒子を充填する工程と、次いで前記両面配線板の上面側及び下面側を狭圧して前記金属粒子を圧接成形する工程と、次いで圧接成形された成形体の上部にペースト状半田を塗布する工程と、次いで塗布した半田を溶融させ前記成形体の間隙に浸透させる工程とを備えることを特徴とする。
1st invention made | formed in order to solve the said subject is a manufacturing method of a flexible printed wiring board, Comprising: The process of forming a through hole in the predetermined part of the double-sided wiring board by which the conductive layer was formed in both surfaces of the insulating layer And then filling the through holes with metal particles , then pressing the upper surface side and lower surface side of the double-sided wiring board and press-molding the metal particles, and then on the upper part of the press-formed molded body characterized in that it comprises the steps of applying a solder paste, and then a step of Ru to penetrate the gap between the molded body is melted was coated solder.

この構成により、以下の作用を有する。   This configuration has the following effects.

(1)貫設したスルーホールに金属粒子を充填し、そのまま圧接成形し、上部に半田を塗布して溶融させ圧接成形体の間隙に浸透させるだけで層間接続部を形成できるので、電気的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造できる。   (1) Filling through-holes with metal particles, press-molding them as they are, forming solder joints on the top, melting and infiltrating the gaps between the press-formed bodies, so that electrical connections can be made. A highly reliable flexible printed wiring board can be manufactured with simple and few processes.

(2)銅箔をエッチングして導電層を形成した後、スルーホールを貫設し、スルーホールに層間接続部を形成するので、従来のめっきスルーホール法と異なり層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能である。   (2) After etching the copper foil to form a conductive layer, a through hole is formed and an interlayer connection is formed in the through hole. Therefore, unlike the conventional plated through hole method, the conductive layer is formed by forming an interlayer connection. Thus, the conductive pattern of the conductive layer can be miniaturized and the wiring density can be increased.

(3)スルーホールに充填した金属粒子を上下から狭圧して圧接成形することができるので、スルーホールの内部と略同形の圧接成形体を簡単に且つ寸法精度良く成形できる。   (3) Since the metal particles filled in the through hole can be pressure-formed by narrowing from above and below, a press-formed body having substantially the same shape as the inside of the through hole can be formed easily and with high dimensional accuracy.

ここで、積層配線板としては、1の絶縁層の両面に導電層が形成された両面配線板であってもよく、2乃至複数の絶縁層を介して3以上の導電層を積層したものであってもよい。なお、両面配線板としては、絶縁層の片面に導電層が形成された2の片面配線板の各々の導電層の反対面同士を接着材を介して接着したものを用いてもよい。また、2乃至複数の片面配線板を積層して内層に1乃至複数の導電層を有する積層配線板を用いてもよい。このように、導電層の導体パターンの微細化が可能な片面配線板を貼り合わせて積層配線板とすることで、配線が高密度に形成された両面フレキシブルプリント配線板や多層フレキシブルプリント配線板を得ることができる。   Here, the laminated wiring board may be a double-sided wiring board in which conductive layers are formed on both sides of one insulating layer, and three or more conductive layers are laminated via two or more insulating layers. There may be. In addition, as a double-sided wiring board, you may use what adhered the opposite surface of each conductive layer of the 2 single-sided wiring board by which the conductive layer was formed in the single side | surface of an insulating layer through the adhesive material. Alternatively, a laminated wiring board in which two or more single-sided wiring boards are stacked and one or more conductive layers are provided in the inner layer may be used. In this way, double-sided flexible printed wiring boards and multilayer flexible printed wiring boards with high-density wiring can be obtained by laminating single-sided wiring boards capable of miniaturizing the conductive pattern of the conductive layer into a laminated wiring board. Obtainable.

スルーホール貫設工程においては、パンチング金型やNCドリルマシン、レーザ加工機等が用いられる。   In the through hole penetration process, a punching die, an NC drill machine, a laser processing machine, or the like is used.

圧接成形工程においては、スクリーン印刷法やディスペンサー法等を用いてスルーホールの上部開口部からその内部に所定量の金属粒子を充填する。また、金属粒子の圧接成形の方法としては、スルーホールに充填した金属粒子をスルーホールの上下の開口部側から狭圧する一対の加圧プレートや加圧エアー等が用いられる。   In the press-contact molding process, a predetermined amount of metal particles is filled into the interior from the upper opening of the through hole using a screen printing method, a dispenser method, or the like. In addition, as a method for press-forming metal particles, a pair of pressure plates, pressurized air, or the like that narrows the metal particles filled in the through holes from the upper and lower opening sides of the through holes is used.

半田塗布工程においては、スクリーン印刷法やディスペンサー法等を用いてスルーホー
ル内部の成形体の上部にペースト状半田を塗布する。
In the solder application step, paste solder is applied to the upper part of the molded body inside the through-hole using a screen printing method, a dispenser method, or the like.

半田浸透工程においては、ペースト状半田を塗布した配線板を該ペースト状半田の融点以上の温度に加熱して溶融させる。なお、半田浸透充填工程の後において、浸透させた半田を適宜冷却して固化させる工程を備える。   In the solder infiltration step, the wiring board coated with the paste solder is heated to a temperature equal to or higher than the melting point of the paste solder and melted. In addition, after the solder penetration filling step, a step of appropriately cooling and solidifying the penetrated solder is provided.

(実施の形態1)
以下、本発明の実施の形態について、各図に基づいて説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1におけるフレキシブルプリント配線板の要部側面断面図である。   1 is a side cross-sectional view of a main part of a flexible printed wiring board according to Embodiment 1 of the present invention.

図1において、1は本実施の形態1におけるフレキシブルプリント配線板、2はポリイミドフィルムからなる絶縁層、3は絶縁層2の上面に貼着された銅箔をエッチングして所
定の導体パターンを形成した上面導電層、4は絶縁層2の下面に貼着された銅箔をエッチングして所定の導体パターンを形成した下面導電層、5は上面導電層3、絶縁層2、及び下面導電層4に貫設されたスルーホール、6はスルーホール5内部に配設された層間接続部、7は金属粒子7aを圧接してスルーホール5と略同形の円柱状に成形した成形体、7aは銅、ニッケル、金、銀、或いはこれらの合金や複合体からなる金属粒子、8は成形体7の間隙に浸透充填された半田、8aはスルーホール5の周囲の上面導電層3及び下面導電層4の表面に被覆された半田被膜である。
In FIG. 1, 1 is a flexible printed wiring board according to the first embodiment, 2 is an insulating layer made of a polyimide film, and 3 is a copper foil attached to the upper surface of the insulating layer 2 to form a predetermined conductor pattern. The upper conductive layer 4 is a lower conductive layer formed by etching a copper foil attached to the lower surface of the insulating layer 2 to form a predetermined conductor pattern, and 5 is an upper conductive layer 3, an insulating layer 2, and a lower conductive layer 4. A through hole provided in the through hole 5, an interlayer connection portion disposed inside the through hole 5, a compact formed by pressing the metal particles 7 a into a cylindrical shape substantially the same shape as the through hole 5, and 7 a copper , Nickel, gold, silver, or metal particles made of an alloy or a composite thereof, 8 is a solder that penetrates and fills the gaps of the molded body 7, and 8 a is an upper surface conductive layer 3 and a lower surface conductive layer 4 around the through hole 5. Solder coated on the surface of It is a membrane.

以上のように構成された本実施の形態1におけるフレキシブルプリント配線板1について、以下その製造方法を図面を用いて説明する。   The manufacturing method of flexible printed wiring board 1 according to the first embodiment configured as described above will be described below with reference to the drawings.

図2(a)は本発明の実施の形態1におけるフレキシブルプリント配線板の製造に用いられる両面銅張積層板の要部側面断面図であり、図2(b)は導電層が形成された両面配線板の要部側面断面図であり、図2(c)はスルーホール貫設工程を示す要部側面断面図であり、図2(d)は圧接成形工程を示す要部側面断面図であり、図2(e)は半田塗布工程を示す要部側面断面図であり、図2(f)は半田浸透充填工程を示す要部側面断面図である。   FIG. 2 (a) is a side sectional view of a main part of a double-sided copper-clad laminate used for manufacturing the flexible printed wiring board in Embodiment 1 of the present invention, and FIG. 2 (b) is a double-sided surface on which a conductive layer is formed. FIG. 2C is a side cross-sectional view of the main part of the wiring board, FIG. 2C is a side cross-sectional view of the main part showing the through hole penetration process, and FIG. 2D is a side cross-sectional view of the main part showing the press-forming process. FIG. 2E is a side sectional view of the main part showing the solder application process, and FIG. 2F is a side sectional view of the main part showing the solder penetration filling process.

図2において、9は両面銅張積層板、10は銅箔、11は銅箔10をエッチングして所定の導体パターンを有する上面導電層3及び下面導電層4を形成した両面配線板、12はパンチング金型、13は加圧プレート、14はペースト状半田である。   In FIG. 2, 9 is a double-sided copper clad laminate, 10 is a copper foil, 11 is a double-sided wiring board in which the copper foil 10 is etched to form a top conductive layer 3 and a bottom conductive layer 4 having a predetermined conductor pattern, A punching die, 13 is a pressure plate, and 14 is paste solder.

まず、図2(a)に示すように、絶縁層2の両面に銅箔10が貼着された両面銅張積層板9を準備する。銅箔10としては電解銅箔や圧延銅箔等を用いることができる。なお、本実施の形態1においては、絶縁層2に接着材3を用いずに銅箔10を接着した両面銅張積層板9を用いているが、これに限られるものではなく、エポキシ系やアクリル系等の合成樹脂からなる接着材を介して接着することもできる。   First, as shown in FIG. 2A, a double-sided copper-clad laminate 9 in which a copper foil 10 is bonded to both sides of an insulating layer 2 is prepared. As the copper foil 10, electrolytic copper foil, rolled copper foil, or the like can be used. In the first embodiment, the double-sided copper-clad laminate 9 in which the copper foil 10 is bonded to the insulating layer 2 without using the adhesive 3 is used. However, the present invention is not limited to this. It can also adhere | attach via the adhesive material which consists of synthetic resins, such as an acryl type.

次に、図2(b)に示すように、所定形状のエッチングレジスト(図示せず)を上下面の銅箔10の表面に形成し、塩化第二鉄溶液や塩化第二銅溶液等のエッチング液を用いてエッチングを行い、エッチングレジストを除去して所定の導体パターンを有する上面導電層3及び下面導電層4を形成した両面配線板11を得る。   Next, as shown in FIG. 2B, an etching resist (not shown) having a predetermined shape is formed on the upper and lower surfaces of the copper foil 10, and etching is performed using a ferric chloride solution, a cupric chloride solution, or the like. Etching is performed using a liquid, and the etching resist is removed to obtain the double-sided wiring board 11 on which the upper conductive layer 3 and the lower conductive layer 4 having a predetermined conductor pattern are formed.

次に、図2(c)に示すように、パンチング金型12を用いて両面配線板11の上面導電層3と下面導電層4とを電気的に接続する位置にスルーホール5を貫設する(スルーホール貫設工程)。   Next, as shown in FIG. 2 (c), a through hole 5 is provided at a position where the upper surface conductive layer 3 and the lower surface conductive layer 4 of the double-sided wiring board 11 are electrically connected using a punching mold 12. (Through hole penetration process).

次に、図2(d)に示すように、スクリーン印刷法等を用いて、スルーホール5の内部に金属粒子7aを充填した後、一対の加圧プレート13により両面配線板11の上面側及び下面側を狭圧して充填した金属粒子7aを圧接し、スルーホール5と同形の円柱状の成形体7を成形する(圧接成形工程)。   Next, as shown in FIG. 2 (d), the metal particles 7 a are filled into the through holes 5 using a screen printing method or the like, and then the upper surface side of the double-sided wiring board 11 and the pair of pressure plates 13. The metal particles 7a filled with a narrow pressure on the lower surface side are pressed to form a cylindrical molded body 7 having the same shape as the through-hole 5 (pressure welding process).

次に、図2(e)に示すように、スルーホール5内部の成形体7の上部にディスペンサー法等を用いて所定量のペースト状半田14を塗布する(半田塗布工程)。   Next, as shown in FIG. 2E, a predetermined amount of paste-like solder 14 is applied to the upper portion of the molded body 7 inside the through hole 5 using a dispenser method or the like (solder application step).

次に、図2(f)に示すように、ペースト状半田14を塗布した両面配線板11をペースト状半田14の融点以上の温度に加熱し、ペースト状半田14を溶融させ、成形体7の間隙及び成形体7とスルーホール5との間隙に浸透させる(半田浸透充填工程)。なお、溶融したペースト状半田14は上面導電層3及び下面導電層4の表面を被覆し半田被膜8aを形成する。浸透させた半田8を適宜冷却して固化させ層間接続部6を形成する。   Next, as shown in FIG. 2 (f), the double-sided wiring board 11 coated with the paste-like solder 14 is heated to a temperature equal to or higher than the melting point of the paste-like solder 14 to melt the paste-like solder 14. It penetrates into the gap and the gap between the molded body 7 and the through hole 5 (solder penetration filling step). The molten paste solder 14 covers the surfaces of the upper conductive layer 3 and the lower conductive layer 4 to form a solder coating 8a. The infiltrated solder 8 is appropriately cooled and solidified to form the interlayer connection 6.

なお、本実施の形態1においては、銅等の金属のみからなる金属粒子7aを用いているが、これに替えて合成樹脂からなる粒子の表面を金属で被覆した金属被覆粒子、或いは金属粒子と金属被覆粒子を混合したものを用いることもできる。これにより、金属のみからなる粒子を用いた場合に比べ層間接続部6のヤング率を低下させることができ、層間接続部6と絶縁層2との熱膨張率の差により生じる応力を層間接続部6で吸収して接合界面の剥離等の発生を防ぐことができ、電気的接続の信頼性に優れる。   In the first embodiment, metal particles 7a made only of metal such as copper are used, but instead of this, metal-coated particles in which the surfaces of particles made of synthetic resin are coated with metal, or metal particles and A mixture of metal-coated particles can also be used. As a result, the Young's modulus of the interlayer connection 6 can be reduced as compared with the case where particles made of only metal are used, and the stress caused by the difference in thermal expansion coefficient between the interlayer connection 6 and the insulating layer 2 is reduced. 6 can prevent the occurrence of peeling of the bonding interface and the like, and is excellent in the reliability of electrical connection.

また、予め金属粒子7aの表面を、金めっき被膜等の酸化防止被膜や半田めっき被膜、合成樹脂による防錆処理被膜等で被覆することもできる。これにより、金属粒子の表面における半田濡れ性を向上させることができるので、成形体7と半田8とが強固に結合し層間接続部6の機械的強度を高めることができる。また、金属粒子7aの表面に半田濡れ性を向上させるフラックス処理を施すことにより、圧接による金属粒子7a同士の接合強度が向上し成形体7の形状が安定して保持されると共に、成形体7の間隙へ溶融半田が浸透し易くなる。   Moreover, the surface of the metal particle 7a can be previously coated with an antioxidant coating such as a gold plating coating, a solder plating coating, a rust prevention coating with a synthetic resin, or the like. Thereby, since the solder wettability on the surface of the metal particles can be improved, the molded body 7 and the solder 8 can be firmly bonded to increase the mechanical strength of the interlayer connection portion 6. Further, by applying a flux treatment for improving the solder wettability to the surface of the metal particles 7a, the bonding strength between the metal particles 7a by pressure welding is improved, the shape of the molded body 7 is stably held, and the molded body 7 It becomes easy for molten solder to penetrate into the gaps.

以上のように本実施の形態1におけるフレキシブルプリント配線板1及びその製造方法は構成されているので、以下のような作用を有する。   As described above, the flexible printed wiring board 1 and the manufacturing method thereof according to the first embodiment are configured and thus have the following operations.

(1)スルーホール5に所定量の金属粒子7aを充填し、そのまま加圧プレート13で上下から狭圧して圧接成形し、上部にペースト状半田14を塗布して加熱し成形体7の間隙に浸透させるだけで層間接続部6を形成できるので、電気的接続の信頼性の高いフレキシブルプリント配線板1を簡単且つ少ない工程で製造できる。   (1) The through hole 5 is filled with a predetermined amount of metal particles 7a and directly pressed by pressure plate 13 from above and below, and paste solder 14 is applied to the upper portion and heated to form gaps in the formed body 7 Since the interlayer connection portion 6 can be formed simply by permeating, the flexible printed wiring board 1 with high electrical connection reliability can be manufactured with simple and few processes.

(2)銅箔10をエッチングして上面導電層3及び下面導電層4を形成した後、スルーホール5を貫設し、スルーホール5に層間接続部6を形成するので、従来のめっきスルーホール法と異なり層間接続部6の形成によって導電層3,4の厚みが増加することがなく、導電層3,4の導体パターンの微細化が図れ、配線の高密度化が可能である。   (2) Since the copper foil 10 is etched to form the upper surface conductive layer 3 and the lower surface conductive layer 4, the through hole 5 is penetrated and the interlayer connection portion 6 is formed in the through hole 5. Unlike the method, the formation of the interlayer connection portion 6 does not increase the thickness of the conductive layers 3 and 4, the conductor pattern of the conductive layers 3 and 4 can be miniaturized, and the wiring density can be increased.

(3)スルーホール5に形成される層間接続部6が金属粒子7aを圧接成形した成形体7の間隙に半田8を充填した複合体で形成されているので、層間接続部6の熱膨張率と絶縁層2の熱膨張率を略同一として加熱による接合界面の剥離等を防止でき、電気的接続の信頼性に優れる。   (3) Since the interlayer connection portion 6 formed in the through hole 5 is formed of a composite in which the gap between the molded body 7 formed by press-molding the metal particles 7a is filled with the solder 8, the coefficient of thermal expansion of the interlayer connection portion 6 Since the thermal expansion coefficient of the insulating layer 2 is substantially the same, peeling of the bonding interface due to heating can be prevented, and the reliability of electrical connection is excellent.

(4)層間接続部6の大部分が金属粒子7aを圧接した成形体7で形成されているので、層間接続部6の機械的強度を高めることができ、変形や亀裂等の発生を防止でき、電気的接続の信頼性に優れる。   (4) Since most of the interlayer connection portion 6 is formed of the molded body 7 in which the metal particles 7a are pressed, the mechanical strength of the interlayer connection portion 6 can be increased and the occurrence of deformation or cracks can be prevented. Excellent electrical connection reliability.

(5)成形体7の間隙に半田8を浸透させているので、固化した半田8によりさらに層間接続部6の機械的強度を高めることができると共に、成形体7とスルーホール5の内壁との間隙にも半田8が充填されるため導電層3,4間の電気的接続を確実にすることができる。   (5) Since the solder 8 is infiltrated into the gap between the molded bodies 7, the solidified solder 8 can further increase the mechanical strength of the interlayer connection portion 6, and the molded body 7 and the inner wall of the through hole 5 Since the solder 8 is also filled in the gap, the electrical connection between the conductive layers 3 and 4 can be ensured.

(6)スルーホール5の周囲の上面導電層3及び下面導電層4の表面に半田被膜8aを形成しているので、接合面積が増加し機械的強度を高めることができる。   (6) Since the solder coating 8a is formed on the surfaces of the upper surface conductive layer 3 and the lower surface conductive layer 4 around the through hole 5, the bonding area can be increased and the mechanical strength can be increased.

(実施の形態2)
図3(a)は本発明の実施の形態2におけるフレキシブルプリント配線板の製造に用いられる接着材付き片面銅張積層板の要部側面断面図であり、図3(b)は導電層が形成された片面配線板の要部側面断面図であり、図3(c)はスルーホール貫設工程を示す要部
側面断面図であり、図3(d)は貼着工程を示す要部側面断面図であり、図3(e)は圧接成形工程を示す要部側面断面図であり、図4(a)は半田塗布工程を示す要部側面断面図であり、図4(b)は半田浸透充填工程を示す要部側面断面図である。
(Embodiment 2)
FIG. 3A is a side cross-sectional view of a main part of a single-sided copper-clad laminate with an adhesive used for manufacturing a flexible printed wiring board according to Embodiment 2 of the present invention, and FIG. FIG. 3 (c) is a side sectional view of a principal part showing a through hole penetration process, and FIG. 3 (d) is a side sectional view of a principal part showing a sticking process. 3 (e) is a side cross-sectional view of the main part showing the press-forming process, FIG. 4 (a) is a side cross-sectional view of the main part showing the solder application process, and FIG. 4 (b) is solder penetration. It is principal part side surface sectional drawing which shows a filling process.

図3及び図4において、15は上面に銅箔10が接着された片面銅張積層板、16は片面銅張積層板15の下面に形成された接着層、17は銅箔10をエッチングして所定の導体パターンを有する導電層3を形成した片面配線板、18は片面配線板17の下面に貼着される導電層4を有する他の片面配線板、19は片面配線板17と他の片面配線板18とを積層して形成された積層配線板、20は片面配線板17に貫設されたスルーホール5の底部を他の片面配線板18で塞いで形成されたブラインドバイアホール、21は本実施の形態2における製造方法で得られたフレキシブルプリント配線板である。なお、実施の形態1において説明したものと同様のものは同一の符号を付けて説明を省略する。   3 and 4, 15 is a single-sided copper-clad laminate with a copper foil 10 bonded to the upper surface, 16 is an adhesive layer formed on the lower surface of the single-sided copper-clad laminate 15, and 17 is an etched copper foil 10. A single-sided wiring board on which a conductive layer 3 having a predetermined conductor pattern is formed, 18 is another single-sided wiring board having a conductive layer 4 attached to the lower surface of the single-sided wiring board 17, and 19 is a single-sided wiring board 17 and another single-sided board. A laminated wiring board 20 formed by laminating the wiring board 18, a blind via hole 20 formed by closing the bottom of the through hole 5 penetrating the single-sided wiring board 17 with another single-sided wiring board 18, 21 It is the flexible printed wiring board obtained with the manufacturing method in this Embodiment 2. FIG. In addition, the thing similar to what was demonstrated in Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.

まず、図3(a)に示すように、絶縁層2の上面に銅箔10が貼着され下面に接着層16が形成された片面銅張積層板15を準備し、図3(b)に示すように、上面の銅箔10のエッチングを行い所定の導体パターンを有する導電層3を形成した片面配線板17を得る。ここで、一般的に、片面配線板17の導電層3の導体パターンは両面配線板の導電層の導体パターンと比較して微細化が可能である。それは、通常、両面配線板の導体パターンの形成においては、両面銅張積層板の両面にある銅箔を同時にエッチング処理するため、エッチング液を両面銅張積層板の上下方向からムラなく均一にあてる必要があるが、両面銅張積層板の上下方向からエッチング液を加圧噴霧した場合、上面に噴霧された後のエッチング液が上面に液だまりをつくりエッチング均一性が保てないという問題があるためである。したがって、両面配線板ではエッチング条件が不安定となり、微細な導体パターンを形成することが困難である。一方、片面配線板の導体パターンの形成においては、下側からの噴霧のみで良いのでエッチング液の液だまりができず、エッチング条件の最適化が図れ、導体パターンを微細化することができる。   First, as shown in FIG. 3 (a), a single-sided copper clad laminate 15 having a copper foil 10 adhered to the upper surface of the insulating layer 2 and an adhesive layer 16 formed on the lower surface is prepared. As shown, the single-sided wiring board 17 having the conductive layer 3 having a predetermined conductor pattern is obtained by etching the copper foil 10 on the upper surface. Here, in general, the conductive pattern of the conductive layer 3 of the single-sided wiring board 17 can be made finer than the conductive pattern of the conductive layer of the double-sided wiring board. Usually, in the formation of the conductive pattern of the double-sided wiring board, the copper foil on both sides of the double-sided copper-clad laminate is simultaneously etched, so that the etching solution is uniformly applied from the vertical direction of the double-sided copper-clad laminate. Although it is necessary, when the etching solution is sprayed from above and below the double-sided copper-clad laminate, the etching solution after spraying on the upper surface forms a pool on the upper surface, and etching uniformity cannot be maintained. Because. Therefore, the etching conditions are unstable in the double-sided wiring board, and it is difficult to form a fine conductor pattern. On the other hand, in the formation of the conductor pattern of the single-sided wiring board, only the spraying from the lower side is required, so that the etching liquid cannot be accumulated, the etching conditions can be optimized, and the conductor pattern can be miniaturized.

次に、図3(c)に示すように、パンチング金型12を用いて片面配線板17の導電層3と後述の導電層4とを電気的に接続する位置にスルーホール5を貫設する(スルーホール貫設工程)。   Next, as shown in FIG. 3C, a through hole 5 is provided at a position where a conductive layer 3 of a single-sided wiring board 17 and a conductive layer 4 described later are electrically connected by using a punching die 12. (Through hole penetration process).

次に、図3(d)に示すように、スルーホール5を貫設した片面配線板17の下面に接着層16を介して、絶縁層2’の上面に導電層4が形成された他の片面配線板18を貼着する(貼着工程)。これにより、上面の表層に導電層3を有し内層に導電層4を有すると共に、スルーホール5の底部が他の片面配線板18で塞がれたブラインドバイアホール20を有する積層配線板19を得る。   Next, as shown in FIG. 3 (d), another conductive layer 4 is formed on the upper surface of the insulating layer 2 'via the adhesive layer 16 on the lower surface of the single-sided wiring board 17 having the through holes 5 formed therethrough. The single-sided wiring board 18 is stuck (sticking process). As a result, the laminated wiring board 19 having the conductive layer 3 on the surface layer on the upper surface and the conductive layer 4 on the inner layer, and the blind via hole 20 in which the bottom of the through hole 5 is closed by the other single-sided wiring board 18 is formed. obtain.

次に、図3(e)に示すように、スクリーン印刷法等を用いて、ブラインドバイアホール20の内部に金属粒子7aを充填した後、一対の加圧プレート13により積層配線板19の上面側及び下面側を狭圧して充填した金属粒子7aを圧接し、ブラインドバイアホール20と同形の円柱状の成形体7を成形する(圧接成形工程)。   Next, as shown in FIG. 3 (e), the metal particles 7a are filled into the blind via hole 20 by using a screen printing method or the like, and then the upper surface side of the laminated wiring board 19 by the pair of pressure plates 13 The metal particles 7a filled with the lower surface side being narrowed are pressed to form a cylindrical molded body 7 having the same shape as the blind via hole 20 (pressure welding process).

次に、図4(a)に示すように、ブラインドバイアホール20内部の成形体7の上部にディスペンサー法等を用いて所定量のペースト状半田14を塗布する(半田塗布工程)。   Next, as shown in FIG. 4A, a predetermined amount of paste solder 14 is applied to the upper portion of the molded body 7 inside the blind via hole 20 by using a dispenser method or the like (solder application step).

次に、図4(b)に示すように、ペースト状半田14を塗布した積層配線板19をペースト状半田14の融点以上の温度に加熱し、ペースト状半田14を溶融させ、成形体7の間隙及び成形体7とブラインドバイアホール20との間隙に浸透させる(半田浸透充填工程)。なお、溶融したペースト状半田14は導電層3の表面を被覆し半田被膜8aを形成する。浸透させた半田8を適宜冷却して固化させ層間接続部6を形成し、表層の導電層3
と内層の導電層4とが層間接続部6で電気的接続されたフレキシブルプリント配線板21を得る。
Next, as shown in FIG. 4B, the laminated wiring board 19 to which the paste-like solder 14 is applied is heated to a temperature equal to or higher than the melting point of the paste-like solder 14 to melt the paste-like solder 14. It penetrates into the gap and the gap between the molded body 7 and the blind via hole 20 (solder penetration filling step). The melted paste solder 14 covers the surface of the conductive layer 3 to form a solder film 8a. The permeated solder 8 is appropriately cooled and solidified to form the interlayer connection portion 6, and the surface conductive layer 3
A flexible printed wiring board 21 is obtained in which the conductive layer 4 and the inner conductive layer 4 are electrically connected by the interlayer connection portion 6.

以上のように本実施の形態2におけるフレキシブルプリント配線板21及びその製造方法は構成されているので、実施の形態1の作用に加え、以下のような作用を有する。   As described above, the flexible printed wiring board 21 and the manufacturing method thereof according to the second embodiment are configured, and thus have the following actions in addition to the actions of the first embodiment.

(1)片面配線板17にスルーホール5を貫設した後、片面配線板17の導電層3の反対面に接着材16を介して他の片面配線板18を貼着するだけで、ブラインドバイアホール20を形成することができる。   (1) After penetrating the through-hole 5 in the single-sided wiring board 17, the blind via is simply bonded to the opposite side of the conductive layer 3 of the single-sided wiring board 17 via the adhesive 16. Holes 20 can be formed.

(2)従来のめっきスルーホール法に比べて内層の導電層4と層間接続部6の接合面積が増加するので、接合強度を高めることができ、電気的接続の信頼性に優れる。   (2) Since the bonding area between the inner conductive layer 4 and the interlayer connection portion 6 is increased as compared with the conventional plated through hole method, the bonding strength can be increased and the reliability of electrical connection is excellent.

(3)導電層3,4の導体パターンの微細化が可能な片面配線板17,18を貼り合わせて積層配線板19とすることで、配線が高密度で形成されたフレキシブルプリント配線板21を簡単且つ少ない工数で得ることができる。   (3) The flexible printed wiring board 21 in which the wiring is formed at a high density is obtained by laminating the single-sided wiring boards 17 and 18 capable of miniaturizing the conductive patterns of the conductive layers 3 and 4 to form the laminated wiring board 19. It can be obtained easily and with less man-hours.

(実施の形態3)
図5(a)は本発明の実施の形態3におけるフレキシブルプリント配線板の製造に用いられる片面銅張積層板の要部側面断面図であり、図5(b)は導電層が形成された片面配線板の要部側面断面図であり、図5(c)はスルーホール貫設工程を示す要部側面断面図であり、図5(d)は圧接成形工程を示す要部側面断面図であり、図5(e)は半田塗布工程を示す要部側面断面図であり、図5(f)は半田浸透充填工程を示す要部側面断面図であり、図6(a)は積層工程及び接合工程を示す要部側面断面図であり、図6(b)は本発明の実施の形態3におけるフレキシブルプリント配線板の製造方法により製造された多層フレキシブルプリント配線板を示す要部側面断面図である。
(Embodiment 3)
FIG. 5A is a side cross-sectional view of a main part of a single-sided copper-clad laminate used for manufacturing a flexible printed wiring board according to Embodiment 3 of the present invention, and FIG. 5B is a single side on which a conductive layer is formed. FIG. 5C is a side cross-sectional view of the main part of the wiring board, FIG. 5C is a cross-sectional side view of the main part showing the through hole penetration process, and FIG. 5D is a side cross-sectional view of the main part showing the press-forming process. 5E is a side sectional view of the main part showing the solder application process, FIG. 5F is a side sectional view of the main part showing the solder penetration filling process, and FIG. 6A is a lamination process and bonding. FIG. 6B is a side sectional view of a main part showing a multilayer flexible printed wiring board manufactured by the method for manufacturing a flexible printed wiring board in Embodiment 3 of the present invention. .

図5及び図6において、22は上面に銅箔10が接着された片面銅張積層板、23は銅箔10をエッチングして所定の導体パターンを有する導電層3を形成した片面配線板、24,24a,24b,24c,24dは層間接続部が形成された片面配線板、25は接着層、26は片面配線板24と片面配線板24aとを接着層25を介して接着して形成された両面フレキシブルプリント配線板、27は片面配線板24,24b,24c,24dを接着層25を介して積層して形成された多層フレキシブルプリント配線板である。なお、実施の形態1において説明したものと同様のものは同一の符号を付けて説明を省略する。   5 and 6, 22 is a single-sided copper-clad laminate having a copper foil 10 bonded to the upper surface, 23 is a single-sided wiring board in which the conductive layer 3 having a predetermined conductor pattern is formed by etching the copper foil 10, 24. 24a, 24b, 24c, and 24d are single-sided wiring boards on which interlayer connection portions are formed, 25 is an adhesive layer, and 26 is formed by bonding the single-sided wiring board 24 and the single-sided wiring board 24a via the adhesive layer 25. A double-sided flexible printed wiring board 27 is a multilayer flexible printed wiring board formed by laminating single-sided wiring boards 24, 24 b, 24 c and 24 d with an adhesive layer 25. In addition, the thing similar to what was demonstrated in Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.

まず、図5(a)に示すように、絶縁層2の片面に銅箔10が貼着された片面銅張積層板22を準備し、図5(b)に示すように、銅箔10の表面のエッチングを行い所定の導体パターンを有する導電層3を形成した片面配線板23を得る。   First, as shown in FIG. 5 (a), a single-sided copper-clad laminate 22 having a copper foil 10 adhered to one side of the insulating layer 2 is prepared. As shown in FIG. The single-sided wiring board 23 in which the conductive layer 3 having a predetermined conductor pattern is formed by etching the surface is obtained.

次に、図5(c)に示すように、パンチング金型12を用いて片面配線板23の導電層3と絶縁層2とを貫通する所定の位置にスルーホール5を貫設する(スルーホール貫設工程)。   Next, as shown in FIG. 5C, through-holes 5 are penetrated at predetermined positions penetrating the conductive layer 3 and the insulating layer 2 of the single-sided wiring board 23 using the punching mold 12 (through-holes). Penetration process).

次に、図5(d)に示すように、スクリーン印刷法等を用いて、スルーホール5の内部に金属粒子7aを充填した後、一対の加圧プレート13により片面配線板23の上面側及び下面側を狭圧して充填した金属粒子7aを圧接し、スルーホール5と同形の円柱状の成形体7を成形する(圧接成形工程)。このとき、成形体7の下端部が絶縁層2の下面から後述の接着層25の厚み程度の長さだけ突出するように、下部側の加圧プレート13に凹部(図示せず)を形成してもよい。   Next, as shown in FIG. 5 (d), the metal particles 7 a are filled into the through holes 5 using a screen printing method or the like, and then the upper surface side of the single-sided wiring board 23 and the pair of pressure plates 13. The metal particles 7a filled by narrowing the lower surface are pressed to form a cylindrical molded body 7 having the same shape as the through-hole 5 (pressure welding process). At this time, a recess (not shown) is formed in the lower pressure plate 13 so that the lower end portion of the molded body 7 protrudes from the lower surface of the insulating layer 2 by the length of the thickness of the adhesive layer 25 described later. May be.

次に、図5(e)に示すように、スルーホール5内部の成形体7の上部にディスペンサー法等を用いて所定量のペースト状半田14を塗布する(半田塗布工程)。   Next, as shown in FIG. 5E, a predetermined amount of paste-like solder 14 is applied to the upper portion of the molded body 7 inside the through hole 5 by using a dispenser method or the like (solder application step).

次に、図5(f)に示すように、ペースト状半田14を塗布した片面配線板23をペースト状半田14の融点以上の温度に加熱し、ペースト状半田14を溶融させ、成形体7の間隙及び成形体7とスルーホール5との間隙に浸透させる(半田浸透充填工程)。さらに、浸透させた半田を適宜冷却して固化させ層間接続部6を形成した片面配線板24を得る。   Next, as shown in FIG. 5 (f), the single-sided wiring board 23 coated with the paste-like solder 14 is heated to a temperature equal to or higher than the melting point of the paste-like solder 14 to melt the paste-like solder 14. It penetrates into the gap and the gap between the molded body 7 and the through hole 5 (solder penetration filling step). Further, the permeated solder is appropriately cooled and solidified to obtain the single-sided wiring board 24 in which the interlayer connection portion 6 is formed.

次に、図6(a)に示すように、上述のように作製された2の片面配線板24,24aを準備し、片面配線板24,24aの各々の層間接続部6が連接するように位置合わせし、各々の導電層3の反対面同士を接着層25を介して接着する(積層工程)。さらに、両面フレキシブルプリント配線板26を半田8の融点以上の温度に再加熱し、半田8を溶融させ、各々の層間接続部6を接合する(接合工程)。接合工程の後、適宜冷却して半田8を固化させ、表層の導電層を電気的に接続した層間接続部6’を有する両面フレキシブルプリント配線板26を得る。   Next, as shown in FIG. 6A, two single-sided wiring boards 24 and 24a prepared as described above are prepared, and the interlayer connection portions 6 of the single-sided wiring boards 24 and 24a are connected to each other. Alignment is performed, and the opposite surfaces of each conductive layer 3 are bonded to each other through the adhesive layer 25 (lamination process). Further, the double-sided flexible printed wiring board 26 is reheated to a temperature equal to or higher than the melting point of the solder 8, the solder 8 is melted, and the respective interlayer connection portions 6 are joined (joining step). After the joining step, the double-sided flexible printed wiring board 26 having the interlayer connection portion 6 ′ in which the surface conductive layers are electrically connected is obtained by appropriately cooling and solidifying the solder 8.

なお、図6(b)に示すように、層間接続部6を形成した片面配線板24,24b,24c,24dを準備し、各々の層間接続部6が連接するように位置合わせし、接着層25を介して積層して貼着した(積層工程)後、再加熱して半田8を溶融させ各々の層間接続部6を接合する(接合工程)。これにより、表層及び内層の複数の導電層を電気的に接続した層間接続部6′を有する多層フレキシブルプリント配線板27を得る。   As shown in FIG. 6B, single-sided wiring boards 24, 24b, 24c, and 24d on which interlayer connection portions 6 are formed are prepared, aligned so that each interlayer connection portion 6 is connected, and an adhesive layer After laminating and pasting via 25 (lamination step), reheating is performed to melt the solder 8 to join the respective interlayer connection parts 6 (joining step). As a result, a multilayer flexible printed wiring board 27 having an interlayer connection portion 6 'in which a plurality of conductive layers on the surface layer and the inner layer are electrically connected is obtained.

以上のように本実施の形態3におけるフレキシブルプリント配線板26,27及びその製造方法は構成されているので、実施の形態1の作用に加え、以下のような作用を有する。   As described above, the flexible printed wiring boards 26 and 27 and the manufacturing method thereof according to the third embodiment are configured, and thus have the following operations in addition to the operations of the first embodiment.

(1)各々に層間接続部6が形成された複数の片面配線板24,24a,24b,24c,24dを各層間接続部6が連接するように貼り合わせることにより、表裏面に導電層を有する両面フレキシブルプリント配線板26、或いは表面と内層に導電層を有する多層フレキシブルプリント配線板27を得ることができる。   (1) A plurality of single-sided wiring boards 24, 24a, 24b, 24c, and 24d, each having an interlayer connection 6 formed thereon, are bonded so that each interlayer connection 6 is connected, thereby having conductive layers on the front and back surfaces. The double-sided flexible printed wiring board 26 or the multilayer flexible printed wiring board 27 having a conductive layer on the surface and the inner layer can be obtained.

(2)導電層の導体パターンの微細化が可能な片面配線板24,24a,24b,24c,24dを貼り合わせているので、配線が高密度で形成されたフレキシブルプリント配線板を簡単且つ少ない工数で得ることができる。   (2) Since the single-sided wiring boards 24, 24a, 24b, 24c, and 24d capable of miniaturizing the conductive pattern of the conductive layer are bonded together, a flexible printed wiring board in which wirings are formed at a high density can be easily and reduced in man-hours. Can be obtained at

(3)片面配線板24,24a,24b,24c,24dを貼り合わせた後、各々の層間接続部6の半田を溶融させるだけで接合して層間接続部6′とすることができるので、簡単な工程のみで表層や内層の導電層を電気的に接続した層間接続部6′を形成することができる。   (3) Since the single-sided wiring boards 24, 24a, 24b, 24c, and 24d are bonded together, it is possible to form the interlayer connection 6 'by simply melting the solder of each interlayer connection 6 to form the interlayer connection 6'. The interlayer connection portion 6 ′ in which the surface layer and the inner conductive layer are electrically connected can be formed by only a simple process.

本発明は、種々の表面実装型の電子部品が実装され電子機器に内蔵されるフレキシブルプリント配線板に関し、特に本発明によれば、層間接続部が金属粒子を圧接成形した成形体の間隙に半田を充填した複合体で形成されているので、層間接続部の熱膨張率と絶縁層の熱膨張率を略同一として加熱による接合界面の剥離等を防止でき電気的接続の信頼性に優れ、且つ、層間接続部の機械的強度を高めることができるので変形や亀裂等の発生を防止し、さらに電気的接続の信頼性に優れるフレキシブルプリント配線板を提供することができる。   The present invention relates to a flexible printed wiring board in which various surface-mount type electronic components are mounted and embedded in an electronic device, and in particular, according to the present invention, an interlayer connection portion is soldered into a gap of a molded body formed by press-forming metal particles. Since the thermal expansion coefficient of the interlayer connection portion and the thermal expansion coefficient of the insulating layer are substantially the same, it is possible to prevent peeling of the bonding interface due to heating, etc., and excellent electrical connection reliability, and In addition, since the mechanical strength of the interlayer connection portion can be increased, it is possible to provide a flexible printed wiring board that prevents the occurrence of deformation, cracks, and the like and that is excellent in electrical connection reliability.

また、本発明は、種々の表面実装型の電子部品が実装され電子機器に内蔵されるフレキシブルプリント配線板の製造方法に関し、特に本発明によれば、電気的接続の信頼性の高いフレキシブルプリント配線板を簡単且つ少ない工程で製造でき生産性に優れると共に、導電層を形成した後、層間接続部を形成するので、層間接続部の形成によって導電層の厚みが増加することがなく、導電層の導体パターンの微細化が図れ、配線の高密度化が可能なフレキシブルプリント配線板の製造方法を提供することができる。   The present invention also relates to a method for manufacturing a flexible printed wiring board in which various surface-mount type electronic components are mounted and embedded in an electronic device. In particular, according to the present invention, flexible printed wiring with high electrical connection reliability is provided. The plate can be manufactured in a simple and few process and has excellent productivity, and after forming the conductive layer, the interlayer connection portion is formed. Therefore, the formation of the interlayer connection portion does not increase the thickness of the conductive layer. The manufacturing method of the flexible printed wiring board which can achieve refinement | miniaturization of a conductor pattern and can increase the density of wiring can be provided.

本発明の実施の形態1におけるフレキシブルプリント配線板の要部側面断面図Side surface sectional drawing of the principal part of the flexible printed wiring board in Embodiment 1 of this invention (a)本発明の実施の形態1におけるフレキシブルプリント配線板の製造に用いられる両面銅張積層板の要部側面断面図、(b)導電層が形成された両面配線板の要部側面断面図、(c)スルーホール貫設工程を示す要部側面断面図、(d)圧接成形工程を示す要部側面断面図、(e)半田塗布工程を示す要部側面断面図、(f)半田浸透充填工程を示す要部側面断面図(A) Main part side surface sectional drawing of the double-sided copper clad laminated board used for manufacture of the flexible printed wiring board in Embodiment 1 of this invention, (b) Main part side surface sectional drawing of the double-sided wiring board in which the conductive layer was formed , (C) Side cross-sectional view of the main part showing the through hole penetration process, (d) Side cross-sectional view of the main part showing the pressure welding forming process, (e) Side cross-sectional view of the main part showing the solder application process, (f) Solder penetration Side sectional view of the main part showing the filling process (a)本発明の実施の形態2におけるフレキシブルプリント配線板の製造に用いられる接着材付き片面銅張積層板の要部側面断面図、(b)導電層が形成された片面配線板の要部側面断面図、(c)スルーホール貫設工程を示す要部側面断面図、(d)貼着工程を示す要部側面断面図、(e)圧接成形工程を示す要部側面断面図(A) Main part side surface sectional drawing of the single-sided copper clad laminated board with an adhesive used for manufacture of the flexible printed wiring board in Embodiment 2 of this invention, (b) The principal part of the single-sided wiring board in which the conductive layer was formed Side cross-sectional view, (c) Main part side cross-sectional view showing through-hole penetration process, (d) Main part side cross-sectional view showing sticking process, (e) Main part side cross-sectional view showing pressure welding molding process (a)半田塗布工程を示す要部側面断面図、(b)半田浸透充填工程を示す要部側面断面図(A) Main part side sectional view showing a solder application process, (b) Main part side sectional view showing a solder penetration filling process (a)本発明の実施の形態3におけるフレキシブルプリント配線板の製造に用いられる片面銅張積層板の要部側面断面図、(b)導電層が形成された片面配線板の要部側面断面図、(c)スルーホール貫設工程を示す要部側面断面図、(d)圧接成形工程を示す要部側面断面図、(e)半田塗布工程を示す要部側面断面図、(f)半田浸透充填工程を示す要部側面断面図(A) principal part side surface sectional drawing of the single-sided copper clad laminated board used for manufacture of the flexible printed wiring board in Embodiment 3 of this invention, (b) principal part side surface sectional view of the single-sided wiring board in which the conductive layer was formed. , (C) Side cross-sectional view of the main part showing the through hole penetration process, (d) Side cross-sectional view of the main part showing the pressure welding forming process, (e) Side cross-sectional view of the main part showing the solder application process, (f) Solder penetration Side sectional view of the main part showing the filling process (a)積層工程及び接合工程を示す要部側面断面図、(b)本発明の実施の形態3におけるフレキシブルプリント配線板の製造方法により製造された多層フレキシブルプリント配線板を示す要部側面断面図(A) Main part side sectional view showing a lamination process and a joining process, (b) Main part side sectional view showing a multilayer flexible printed wiring board manufactured by the method for manufacturing a flexible printed wiring board in Embodiment 3 of the present invention.

符号の説明Explanation of symbols

1 フレキシブルプリント配線板
2 絶縁層
3 導電層(上面導電層)
4 導電層(下面導電層)
5 スルーホール
6 層間接続部
7 成形体
7a 金属粒子
8 半田
8a 半田被膜
9 両面銅張積層板
10 銅箔
11 両面配線板
12 パンチング金型
13 加圧プレート
14 ペースト状半田
15 片面銅張積層板
16 接着層
17 片面配線板
18 他の片面配線板
19 積層配線板
20 ブラインドバイアホール
21 フレキシブルプリント配線板
22 片面銅張積層板
23 片面配線板
24,24a,24b,24c,24d 片面配線板
25 接着層
26 両面フレキシブルプリント配線板
27 多層フレキシブルプリント配線板
DESCRIPTION OF SYMBOLS 1 Flexible printed wiring board 2 Insulating layer 3 Conductive layer (upper surface conductive layer)
4 Conductive layer (lower conductive layer)
DESCRIPTION OF SYMBOLS 5 Through hole 6 Interlayer connection part 7 Molded object 7a Metal particle 8 Solder 8a Solder coating 9 Double-sided copper clad laminated board 10 Copper foil 11 Double-sided wiring board 12 Punching die 13 Pressure plate 14 Paste-like solder 15 Single-sided copper clad laminated board 16 Adhesive layer 17 Single-sided wiring board 18 Other single-sided wiring board 19 Laminated wiring board 20 Blind via hole 21 Flexible printed wiring board 22 Single-sided copper-clad laminated board 23 Single-sided wiring boards 24, 24a, 24b, 24c, 24d Single-sided wiring board 25 Adhesive layer 26 Double-sided flexible printed wiring board 27 Multilayer flexible printed wiring board

Claims (1)

絶縁層の両面に導電層が形成された両面配線板の所定部にスルーホールを形成する工程と、
次いで前記スルーホールに金属粒子を充填する工程と、
次いで前記両面配線板の上面側及び下面側を狭圧して前記金属粒子を圧接成形する工程と、
次いで圧接成形された成形体の上部にペースト状半田を塗布する工程と、
次いで塗布した半田を溶融させ前記成形体の間隙に浸透させる工程とを備えることを特徴とするフレキシブルプリント配線板の製造方法。
Forming a through hole in a predetermined portion of a double-sided wiring board in which a conductive layer is formed on both sides of the insulating layer ;
Next, filling the through holes with metal particles ;
Then, the step of press-molding the metal particles by narrowing the upper surface side and the lower surface side of the double-sided wiring board ,
Next, a paste solder is applied to the upper part of the press-molded molded body ,
Method of manufacturing a flexible printed wiring board characterized that you and a step of Ru to penetrate the gap between the molded body is melted was coated solder then.
JP2004148681A 2004-05-19 2004-05-19 Manufacturing method of flexible printed wiring board Expired - Fee Related JP4389664B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004148681A JP4389664B2 (en) 2004-05-19 2004-05-19 Manufacturing method of flexible printed wiring board
US11/131,341 US7427717B2 (en) 2004-05-19 2005-05-18 Flexible printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148681A JP4389664B2 (en) 2004-05-19 2004-05-19 Manufacturing method of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2005332907A JP2005332907A (en) 2005-12-02
JP4389664B2 true JP4389664B2 (en) 2009-12-24

Family

ID=35487352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148681A Expired - Fee Related JP4389664B2 (en) 2004-05-19 2004-05-19 Manufacturing method of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP4389664B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609072B2 (en) * 2005-01-12 2011-01-12 デジタルパウダー株式会社 Conducting method on both sides of board and wiring board
JP5010236B2 (en) * 2006-10-26 2012-08-29 パナソニック株式会社 Method for manufacturing conductive connection sheet and printed wiring board
JP6835051B2 (en) 2018-09-26 2021-02-24 日亜化学工業株式会社 Circuit boards and component mounting boards, and their manufacturing methods

Also Published As

Publication number Publication date
JP2005332907A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
US7543376B2 (en) Manufacturing method of flexible printed wiring board
US7263769B2 (en) Multi-layered flexible print circuit board and manufacturing method thereof
US7427717B2 (en) Flexible printed wiring board and manufacturing method thereof
KR100832469B1 (en) Wiring board, multilayer wiring board, and method for manufacturing the same
KR20070084635A (en) Multilayer printed wiring board and its manufacturing method
JP2006278774A (en) Method for manufacturing double-sided wiring board, double-sided wiring board, and base board thereof
JP4413522B2 (en) Wiring transfer sheet and manufacturing method thereof, and wiring board and manufacturing method thereof
US20050011677A1 (en) Multi-layer flexible printed circuit board, and method for fabricating it
JPH11204939A (en) Multilayer circuit board and method of manufacturing the same
JP4389664B2 (en) Manufacturing method of flexible printed wiring board
JPH11204943A (en) Electronic circuit board and method of manufacturing the same
JP4389756B2 (en) Manufacturing method of multilayer flexible printed wiring board
JP4554381B2 (en) Manufacturing method of build-up type multilayer circuit board
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3530170B2 (en) Manufacturing method of printed circuit board
JP2005332908A (en) Flexible printed wiring board and its manufacturing method
JP4389769B2 (en) Manufacturing method of flexible printed wiring board
KR20120019144A (en) Method for manufacturing a printed circuit board
JP5593625B2 (en) Manufacturing method of multilayer wiring board
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JP2005136034A (en) Multilayer flexible printed wiring board and its production process
JP2007189125A (en) Double-sided flexible printed circuit board, multilayer flexible printed wiring boards, and method for manufacturing them
JP4389750B2 (en) Manufacturing method of flexible printed wiring board
JP4389751B2 (en) Manufacturing method of flexible printed wiring board
JP4397793B2 (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070517

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees