[go: up one dir, main page]

JP4387085B2 - Die attach paste and semiconductor device - Google Patents

Die attach paste and semiconductor device Download PDF

Info

Publication number
JP4387085B2
JP4387085B2 JP2002152240A JP2002152240A JP4387085B2 JP 4387085 B2 JP4387085 B2 JP 4387085B2 JP 2002152240 A JP2002152240 A JP 2002152240A JP 2002152240 A JP2002152240 A JP 2002152240A JP 4387085 B2 JP4387085 B2 JP 4387085B2
Authority
JP
Japan
Prior art keywords
paste
crosslinked
organic resin
powder
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002152240A
Other languages
Japanese (ja)
Other versions
JP2003347322A (en
Inventor
伸樹 田中
敬一郎 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002152240A priority Critical patent/JP4387085B2/en
Publication of JP2003347322A publication Critical patent/JP2003347322A/en
Application granted granted Critical
Publication of JP4387085B2 publication Critical patent/JP4387085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating die-attach paste for a semiconductor excellent in reliability, and a semiconductor device excellent in reliability such as resistance to solder crack or the like. <P>SOLUTION: The insulating resin paste for semiconductor comprises (A) a thermo-setting resin and (B) a filler including organic resin particles. The (B) organic resin particle is preferably fin powder of polyorgano silsesquioxane cured powder having a structure wherein siloxane bond is crosslinked so as to have a shape of a three-dimensional mesh, or/and silicone rubber fine powder having a structure wherein straight chain type dimethyl polysiloxane is crosslinked, and/or the fine powder of silicone rubber which has a structure wherein the straight chain type dimethyl polysiloxane is crosslinked and the surface of which is coated with cured powder of polyorganosilsesquioxane having a structure wherein siloxane bond is crosslinked so as to have a shape of three-dimensional mesh. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、IC、LSI等の半導体素子を金属フレーム、有機基板に接着する絶縁性半導体用樹脂ペーストに関するものである。
【0002】
【従来の技術】
従来、IC等の半導体素子を金属フレーム、有機基板に接着する方法として半導体用樹脂ペーストが一般的に使用されている。近年、環境対応の一環として半導体装置を基板に搭載する際に使用する半田から鉛を除去撤廃するために半田リフロー温度を従来の220〜245℃から260〜270℃にする必要があり、半導体用樹脂ペーストには半田リフロー温度の上昇に伴い発生する熱応力の増加に対する耐性をより一層求められるようになってきている。
【0003】
更に大型半導体素子に対応するため弾性率を小さくして低応力性を重視したダイアッタチペーストの場合、高温での接着力が十分でなく260〜270℃といった高温での半田リフロー時に剥離が発生し、場合によっては半導体素子のクラックに進展し信頼性の点でも不満足なものであった。
【0004】
【発明が解決しようとする課題】
本発明は、信頼性に優れた絶縁性半導体用ダイアタッチペースト及び耐半田クラック性等の信頼性に優れた半導体装置を提供することである。
【0005】
【課題を解決するための手段】
本発明は、
[1](A)熱硬化性樹脂組成物と(B)有機樹脂粒子とを含み、半導体素子を金属フレームや有機基板に接着するダイアタッチペーストであって、
前記(B)有機樹脂粒子がシロキサン結合を三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン粉末であることを特徴とするダイアタッチペースト(無機充填材を含むものを除く)
[2]前記(B)有機樹脂粒子が、平均粒径が0.5〜15μmで且つ最大粒径が50μm以下である[1]記載のダイアタッチペースト、
[3][1]又は[2]記載のダイアタッチペーストを用いて製作されてなる半導体装置
である。
【0006】
【発明の実施の形態】
本発明で用いられる有機樹脂粒子は、無機粒子に比べて軟らかく、樹脂への分散性に優れるという特徴がある。
【0007】
本発明に用いる熱硬化性樹脂組成物(A)は、熱硬化性樹脂、硬化剤、硬化促進剤等からなる一般的な熱硬化性樹脂組成物であり、特に限定されるものではないがペーストを形成する材料であることから室温で液状であることが望ましい。
【0008】
本発明に望ましく用いる液状の樹脂としては、例えば、液状のシアネート樹脂、液状エポキシ樹脂、ラジカル重合性の各種アクリル樹脂、アリール基を有するトリアリールイソシアヌレートなどが挙げられ、液状エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、グリシジルアミン型の液状エポキシ樹脂などが挙げられる。
【0009】
シアネート樹脂の硬化触媒としては、例えば、銅アセチルアセトナート、亜鉛アセチルアセトナート等の金属錯体が挙げられる。
エポキシ樹脂の硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジカルボン酸ジヒドラジド化合物、フェノール樹脂等が例として挙げられる。ジヒドラジド化合物の例としては、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、P-オキシ安息香酸ジヒドラジド等のカルボン酸ジヒドラジドなどが挙げられる。
【0010】
硬化促進剤兼硬化剤としては各種のイミダゾール化合物があり、その例としては、2−メチルイミダゾール,2−エチルイミダゾール,2−フェニルイミダゾール,2−フェニル−4−メチルイミダゾール,2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール,2−フェニル−4,5−ジヒドロキシメチルイミダゾール,2−C1123−イミダゾール等の一般的なイミダゾールやトリアジンやイソシアヌル酸を付加し、保存安定性を付与した2,4−ジアミノ−6−{2−メチルイミダゾール−(1)}−エチル−S−トリアジン、またそのイソシアネート付加物等があり、これらは何れも1種類あるいは複数種と併用して使うことが可能である。
【0011】
本発明においては室温で固体の熱硬化性樹脂成分を特性低下が起きない程度に混合して用いることも充分可能である。例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック類とエピクロルヒドリンとの反応により得られるポリグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の脂肪族エポキシ、ジグリシジルヒダントイン等の複素環式エポキシ、ビニルシクロヘキセンジオキサイド、ジシクロペンタジエンジオキサイド、アリサイクリックジエポキシーアジペイトのような脂環式エポキシがあり、これらの内の1種類あるいは複数種と併用可能である。
【0012】
本発明に用いる(B)有機樹脂粒子には、例えば、シリコーン樹脂、フェノール樹脂、ポリテトラフロロエチレン等のフッ素樹脂、ポリメチルメタクリレート等のアクリル樹脂、ベンゾグアナミンやメラミンとホルムアルデヒドとの架橋物等が挙げられる。さらに好ましくは有機樹脂粒子がシロキサン結合を三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン粉末又は/及び直鎖状のジメチルポリシロキサンを架橋した構造を持つシリコーンゴムの微粉末又は/及び直鎖状のジメチルポリシロキサンを架橋した構造を持つシリコーンゴムの微粉末の表面をシロキサン結合を三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン粉末で被覆した微粉末である。
本発明に用いる(B)有機樹脂粒子の形状としてはフレーク状、鱗片状、樹脂状や球状等が用いられる。必要とするペーストの粘度により、使用する粒径は異なるが、通常平均粒径は0.5〜15μm、最大粒径は50μm程度のものが好ましい。平均粒径が0.5μm未満だと粘度が高くなり、15μmを越えると塗布又は硬化時に樹脂分が流出するのでブリードが発生するため好ましくない。最大粒径が50μmを越えるとディスペンサーでペーストを塗布するときに、ニードルの出口を塞ぎ長時間の連続使用ができない。又比較的粗い有機樹脂粒子と細かい有機樹脂粒子とを混合して用いることもでき、種類、形状についても各種のものを適宜混合してもよい。
尚、本発明に用いる(B)有機樹脂粒子は、予め表面をアルコキシシラン、アシロキシシラン、シラザン、オルガノアミノシラン等のシランカップリング材等で処理したものを用いてもよい。
本発明の半導体用樹脂ペーストは、(A)、(B)成分、及びその他の添加剤等を予備混合し、ロール等を用いて混練した後、真空下脱泡する等の製造方法で得られる。
半導体装置の製造方法は公知の方法を用いることができる。以下実施例を用いて本発明を具体的に説明する。配合割合は重量部で示す。
【0013】
【実施例】
実施例1〜3、比較例1〜2
成分(A)として、ビスフェノールAとエピクロルヒドリンとの反応により得られるジグリシジルビスフェノールA(エポキシ当量180、室温で液体、以下ビスAエポキシ)、クレジルグリシジルエーテル(エポキシ当量185、以下CGE)、フェノールノボラック樹脂(水酸基当量104、軟化点85℃、以下PN)、2−フェニル−4,5−ジヒドロキシメチルイミダゾール(四国化成工業(株)製、キュアゾール2PHZ)、グリシジル基を有するシランカップリング剤(信越化学工業(株)製、KBM−403E)、成分(B)として平均粒径2μm、最大粒径4μmのシロキサン結合を三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン粉末(以下有機樹脂粒子A)、平均粒径5μm、最大粒径10μmの直鎖状のジメチルポリシロキサンを架橋した構造を持つシリコーンゴムの微粉末(以下有機樹脂粒子B)、平均粒径3μm、最大粒径15μmの破砕シリカ粉末(以下無機粒子A)、平均粒径1.5μm、最大粒径7μmの球状シリカ粉末(以下無機粒子B)を表1のように配合し、3本ロールを用いて混練し、脱泡後ペーストを得た。得られたペーストを以下の方法により評価した。評価結果を表1に示す。
【0014】
評価方法
・粘度: E型粘度計(3°コーン)を用い25℃、2.5rpmでの値を測定した。
・弾性率:10x150x0.1mmの試験片を作成し(硬化条件150℃、15分)、引っ張り試験により加重−変位曲線を測定しその初期勾配より弾性率を求めた(測定長:100mm、試験速度:1mm/分、測定温度:25℃)。
・耐半田クラック性:表1に示すペースト組成物を用い、シリコンチップを、下記の硬化条件により硬化し、接着した。その後スミコンEME−G770(住友ベークライト(株)製)の封止材料を用い、封止したパッケージを85℃、相対湿度60%、168時間吸湿処理した後、IRリフロー処理(260℃、10秒、3回リフロー)を行い、処理後のパッケージを超音波探傷装置(透過型)により剥離の程度を測定した。ダイアタッチ部の剥離面積が10%未満の場合を合格とした。
パッケージ:35x35mmBGA
チップサイズ:10×10mm
硬化条件:150C30分
【0015】
【表1】
【0016】
【発明の効果】
本発明のダイアタッチペーストは、信頼性に優れた絶縁性半導体用ダイアタッチペーストであり、その結果耐半田クラック性等の信頼性に優れた半導体装置を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating semiconductor resin paste for bonding a semiconductor element such as an IC or LSI to a metal frame or an organic substrate.
[0002]
[Prior art]
Conventionally, a semiconductor resin paste is generally used as a method for bonding a semiconductor element such as an IC to a metal frame or an organic substrate. In recent years, it has been necessary to change the solder reflow temperature from 220 to 245 ° C. to 260 to 270 ° C. in order to remove and eliminate lead from solder used when mounting a semiconductor device on a substrate as part of environmental measures. Resin pastes are increasingly required to withstand the increase in thermal stress that occurs with increasing solder reflow temperature.
[0003]
Furthermore, in the case of a diattach paste that reduces the elastic modulus and emphasizes low stress in order to cope with large semiconductor elements, the adhesive strength at high temperature is not sufficient and peeling occurs at the time of solder reflow at a high temperature of 260 to 270 ° C. In some cases, however, the semiconductor device has progressed to cracks in the semiconductor element, which is unsatisfactory in terms of reliability.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a semiconductor device having excellent reliability such as a die attach paste for an insulating semiconductor excellent in reliability and solder crack resistance.
[0005]
[Means for Solving the Problems]
The present invention
[1] A die attach paste comprising (A) a thermosetting resin composition and (B) organic resin particles, and bonding a semiconductor element to a metal frame or an organic substrate,
(B) the die attachment paste organic resin particles are characterized by a polyorganosilsesquioxane Powder having a crosslinked structure in the three-dimensional network of siloxane bonds (excluding those containing inorganic fillers),
[2] (B) the organic resin particles is an average particle size of and the maximum grain size of 50μm or less at 0.5 to 15 m [1], wherein the die attachment paste,
[3] A semiconductor device manufactured using the die attach paste according to [1] or [2].
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The organic resin particles used in the present invention are characterized by being softer than inorganic particles and having excellent dispersibility in the resin.
[0007]
The thermosetting resin composition (A) used in the present invention is a general thermosetting resin composition comprising a thermosetting resin, a curing agent, a curing accelerator and the like, and is not particularly limited, but a paste. It is desirable that the material is liquid at room temperature.
[0008]
Examples of the liquid resin desirably used in the present invention include liquid cyanate resin, liquid epoxy resin, various radically polymerizable acrylic resins, triaryl isocyanurate having an aryl group, and the liquid epoxy resin includes bisphenol A. Type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, glycidylamine type liquid epoxy resin, and the like.
[0009]
Examples of the curing catalyst for the cyanate resin include metal complexes such as copper acetylacetonate and zinc acetylacetonate.
Examples of the epoxy resin curing agent include aliphatic amines, aromatic amines, dicyandiamide, dicarboxylic acid dihydrazide compounds, and phenol resins. Examples of dihydrazide compounds include carboxylic acid dihydrazides such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and P-oxybenzoic acid dihydrazide.
[0010]
Examples of the curing accelerator / curing agent include various imidazole compounds, such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-phenyl-4-. methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxy methyl imidazole, 2-C 11 H 23 - adds a generic imidazole or triazine and isocyanuric acid such as imidazole, to impart storage stability 2 , 4-Diamino-6- {2-methylimidazole- (1)}-ethyl-S-triazine, and its isocyanate adduct, etc., all of which can be used in combination with one or more. It is.
[0011]
In the present invention, it is also possible to mix and use a thermosetting resin component that is solid at room temperature to such an extent that characteristic deterioration does not occur. For example, aliphatic epoxies such as polyglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether obtained by the reaction of bisphenol A, bisphenol F, phenol novolak, cresol novolaks and epichlorohydrin, complex such as diglycidyl hydantoin There are alicyclic epoxies such as cyclic epoxy, vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy adipate, and one or more of these can be used in combination.
[0012]
Examples of the (B) organic resin particles used in the present invention include silicone resins, phenol resins, fluororesins such as polytetrafluoroethylene, acrylic resins such as polymethyl methacrylate, benzoguanamine, cross-linked products of melamine and formaldehyde, and the like. It is done. More preferably fine particles of a silicone rubber with a polyorganosilsesquioxane oxa emissions Powder or / and linear dimethylpolysiloxane crosslinked structure having a structure in which organic resin particles to crosslink the siloxane bond in a three-dimensional network or in / and powder coated with polyorganosiloxane silsesquioxane emissions powder having a crosslinked structure of the surface of the fine powder of silicone rubber having a crosslinked structure a straight-chain dimethyl polysiloxane siloxane bond in a three-dimensional network is there.
As the shape of the organic resin particles (B) used in the present invention, flakes, scales, resins, spheres and the like are used. Depending on the viscosity of the required paste, the particle size to be used is different, but it is usually preferable that the average particle size is 0.5 to 15 μm and the maximum particle size is about 50 μm. If the average particle size is less than 0.5 μm, the viscosity will be high, and if it exceeds 15 μm, the resin will flow out during coating or curing, causing bleeding, which is not preferable. When the maximum particle size exceeds 50 μm, when applying the paste with a dispenser, the needle outlet is blocked and continuous use for a long time cannot be performed. Also, relatively coarse organic resin particles and fine organic resin particles can be mixed and used, and various kinds of shapes and shapes may be appropriately mixed.
The (B) organic resin particles used in the present invention may be those obtained by previously treating the surface with a silane coupling material such as alkoxysilane, acyloxysilane, silazane, organoaminosilane, or the like.
The semiconductor resin paste of the present invention can be obtained by a production method such as premixing the components (A) and (B) and other additives, kneading using a roll or the like, and degassing under vacuum. .
A known method can be used as a method of manufacturing the semiconductor device. The present invention will be specifically described below with reference to examples. The blending ratio is indicated by weight.
[0013]
【Example】
Examples 1-3, Comparative Examples 1-2
As component (A), diglycidyl bisphenol A obtained by reaction of bisphenol A and epichlorohydrin (epoxy equivalent 180, liquid at room temperature, hereinafter bis A epoxy), cresyl glycidyl ether (epoxy equivalent 185, hereinafter CGE), phenol novolak Resin (hydroxyl equivalent 104, softening point 85 ° C., hereinafter PN), 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol 2PHZ), silane coupling agent having glycidyl group (Shin-Etsu Chemical) Kogyo KK, KBM-403E), the component (B) the average particle diameter of 2 [mu] m, polyorgano silsesquioxane emissions powder having a siloxane bond was crosslinked three-dimensional network structure of the maximum particle size 4μm as (hereinafter organic Resin particles A), straight chain with an average particle size of 5 μm and a maximum particle size of 10 μm Silicone rubber fine powder (hereinafter referred to as organic resin particle B) having a structure in which dimethylpolysiloxane is crosslinked, crushed silica powder (hereinafter referred to as inorganic particle A) having an average particle diameter of 3 μm, maximum particle diameter of 15 μm, average particle diameter of 1.5 μm, Spherical silica powder (hereinafter referred to as inorganic particles B) having a maximum particle size of 7 μm was blended as shown in Table 1 and kneaded using three rolls to obtain a paste after defoaming. The obtained paste was evaluated by the following method. The evaluation results are shown in Table 1.
[0014]
Evaluation Method / Viscosity: Using an E-type viscometer (3 ° cone), the value at 25 ° C. and 2.5 rpm was measured.
・ Elastic modulus: 10 × 150 × 0.1 mm test piece was prepared (curing condition 150 ° C., 15 minutes), the load-displacement curve was measured by a tensile test, and the elastic modulus was obtained from the initial gradient (measurement length: 100 mm, test speed) 1 mm / min, measurement temperature: 25 ° C.).
Solder crack resistance: Using the paste composition shown in Table 1, the silicon chip was cured and bonded under the following curing conditions. Then, using a sealing material of Sumicon EME-G770 (manufactured by Sumitomo Bakelite Co., Ltd.), the sealed package was subjected to moisture absorption treatment at 85 ° C., relative humidity 60%, 168 hours, and then IR reflow treatment (260 ° C., 10 seconds, (Reflow 3 times), and the degree of peeling of the treated package was measured with an ultrasonic flaw detector (transmission type). The case where the peeling area of the die attach part was less than 10% was regarded as acceptable.
Package: 35x35mm BGA
Chip size: 10x10mm
Curing conditions: 150C30 minutes [0015]
[Table 1]
[0016]
【The invention's effect】
The die attach paste of the present invention is an insulating semiconductor die attach paste excellent in reliability. As a result, a semiconductor device excellent in reliability such as solder crack resistance can be obtained.

Claims (3)

(A)熱硬化性樹脂組成物と(B)有機樹脂粒子とを含み、半導体素子を金属フレームや有機基板に接着するダイアタッチペーストであって、
前記(B)有機樹脂粒子がシロキサン結合を三次元網目状に架橋した構造を持つポリオルガノシルセスキオキサン粉末であることを特徴とするダイアタッチペースト(無機充填材を含むものを除く)
(A) A die attach paste that includes a thermosetting resin composition and (B) organic resin particles, and adheres a semiconductor element to a metal frame or an organic substrate,
(B) the die attachment paste organic resin particles are characterized by a polyorganosilsesquioxane Powder having a crosslinked structure in the three-dimensional network of siloxane bonds (excluding those containing inorganic fillers).
前記(B)有機樹脂粒子が、平均粒径が0.5〜15μmで且つ最大粒径が50μm以下である請求項1記載のダイアタッチペースト。(B) the organic resin particles is an average particle size of and the maximum grain size of 50μm or less in 0.5~15μm claim 1, wherein the die attachment paste. 請求項1又は2記載のダイアタッチペーストを用いて製作されてなる半導体装置。A semiconductor device manufactured using the die attach paste according to claim 1.
JP2002152240A 2002-05-27 2002-05-27 Die attach paste and semiconductor device Expired - Lifetime JP4387085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152240A JP4387085B2 (en) 2002-05-27 2002-05-27 Die attach paste and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152240A JP4387085B2 (en) 2002-05-27 2002-05-27 Die attach paste and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007178615A Division JP5061760B2 (en) 2007-07-06 2007-07-06 Die attach paste and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003347322A JP2003347322A (en) 2003-12-05
JP4387085B2 true JP4387085B2 (en) 2009-12-16

Family

ID=29769616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152240A Expired - Lifetime JP4387085B2 (en) 2002-05-27 2002-05-27 Die attach paste and semiconductor device

Country Status (1)

Country Link
JP (1) JP4387085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277578A (en) * 2007-07-06 2007-10-25 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269922A (en) * 2006-03-30 2007-10-18 Jsr Corp Polysiloxane composite crosslinked particles and resin composition containing the composite crosslinked particles
JP5352970B2 (en) * 2007-07-04 2013-11-27 住友ベークライト株式会社 Resin composition and semiconductor device
KR101485612B1 (en) * 2008-04-25 2015-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 A protective film for semi-conductor wafer
JP5373538B2 (en) * 2009-10-13 2013-12-18 株式会社日本触媒 Curable resin composition
JP6749653B2 (en) 2015-08-03 2020-09-02 ナミックス株式会社 High performance heat conductive surface mount (die attach) adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277578A (en) * 2007-07-06 2007-10-25 Sumitomo Bakelite Co Ltd Die attach paste and semiconductor device

Also Published As

Publication number Publication date
JP2003347322A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP4780041B2 (en) Resin paste for semiconductor and semiconductor device
WO2011129272A1 (en) Attachment material for semiconductor chip bonding, attachment film for semiconductor chip bonding, semiconductor device manufacturing method, and semiconductor device
TWI481685B (en) Adhesive for electronic parts
JP4064090B2 (en) Resin paste for semiconductor and semiconductor device
JP4387085B2 (en) Die attach paste and semiconductor device
JP5157938B2 (en) Resin paste for die bonding, semiconductor device manufacturing method using the resin paste, and semiconductor device obtained by the manufacturing method
JP5061760B2 (en) Die attach paste and semiconductor device
JP4622131B2 (en) Resin paste for semiconductor and semiconductor device
JP4853225B2 (en) Resin composition and semiconductor device produced using resin composition
JP4342772B2 (en) Resin paste for semiconductor and semiconductor device
JP2002284889A (en) Manufacturing method of resin paste for semiconductor, resin paste for semiconductor and semiconductor device
JP3847095B2 (en) Resin paste for semiconductor and semiconductor device
JP2002252235A (en) Resin paste for semiconductor and semiconductor device using it
JP3960515B2 (en) Resin paste for semiconductor and semiconductor device
JP2003335923A (en) Resin paste for semiconductor and semiconductor device
JP2004186525A (en) Area package type semiconductor device
JP3608908B2 (en) Resin paste for semiconductor
JP2012188598A (en) Thermosetting resin composition for semiconductor adhesion, and semiconductor device
JP2004155982A (en) Resin paste for semiconductor and semiconductor device
JP2002134530A (en) Method for producing resin paste for semiconductor, resin paste for semiconductor, and semiconductor device
JP2007063565A (en) Resin paste for semiconductor and semiconductor device
JP4014402B2 (en) Resin paste for semiconductor and semiconductor device
JP7711468B2 (en) Conductive paste and semiconductor device
JP3986894B2 (en) Resin paste for semiconductor and semiconductor device
JP2003213086A (en) Resin paste for semiconductor and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

EXPY Cancellation because of completion of term