[go: up one dir, main page]

JP4382784B2 - Diamond-like carbon film deposition equipment - Google Patents

Diamond-like carbon film deposition equipment Download PDF

Info

Publication number
JP4382784B2
JP4382784B2 JP2006222230A JP2006222230A JP4382784B2 JP 4382784 B2 JP4382784 B2 JP 4382784B2 JP 2006222230 A JP2006222230 A JP 2006222230A JP 2006222230 A JP2006222230 A JP 2006222230A JP 4382784 B2 JP4382784 B2 JP 4382784B2
Authority
JP
Japan
Prior art keywords
bottle
external electrode
plastic container
shaped plastic
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006222230A
Other languages
Japanese (ja)
Other versions
JP2006316354A (en
Inventor
富 男 内
少 歩 蔡
Original Assignee
ふくはうちテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ふくはうちテクノロジー株式会社 filed Critical ふくはうちテクノロジー株式会社
Priority to JP2006222230A priority Critical patent/JP4382784B2/en
Publication of JP2006316354A publication Critical patent/JP2006316354A/en
Application granted granted Critical
Publication of JP4382784B2 publication Critical patent/JP4382784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、飲料用ボトルや食品用・医薬品用の容器等として使用されるボトル形プラスチック容器の内面にダイヤモンドライクカーボン膜(DLC膜)を形成する製膜装置に関する。   The present invention relates to a film forming apparatus for forming a diamond-like carbon film (DLC film) on the inner surface of a bottle-shaped plastic container used as a beverage bottle or a food / pharmaceutical container.

ペットボトル等のプラスチック容器は、酸素や二酸化炭素のような低分子ガスを透過しやすいため、その容器に入れた果汁飲料や野菜ジュース等の酸化劣化が短期間で進行し、炭酸飲料は炭酸ガスが逸出して気が抜けたものとなる。特に、ビールは、酸化劣化の進行が速く、約1週間で黒く変色してしまうので、軽量・安価で再生利用が可能なペットボトル等のプラスチック容器を使用することができなかった。また、プラスチック容器は、その内容物中に人体に有害な環境ホルモン物質が溶け出すおそれがある。   Plastic containers such as plastic bottles are easy to permeate low-molecular gases such as oxygen and carbon dioxide, so the oxidative degradation of fruit juices and vegetable juices in the containers proceeds in a short period of time. Escapes and feels out of place. In particular, beer has a rapid progress of oxidative deterioration and turns black in about one week, so that it has not been possible to use plastic containers such as plastic bottles that are lightweight, inexpensive, and recyclable. In addition, there is a risk that environmental hormone substances harmful to the human body will dissolve in the contents of the plastic container.

このような事情に鑑みて、プラスチック容器の内面にガスバリヤー性等に優れたDLC膜を形成する試みがなされている。   In view of such circumstances, attempts have been made to form a DLC film excellent in gas barrier properties and the like on the inner surface of a plastic container.

DLC膜は、炭素間のSP結合を主体としたアモルファスな炭素で、硬度が高く、絶縁性に優れ、高屈折率で非常に滑らかなモルフォロジを有する硬質炭素膜であって、この膜が内面に形成されたペットボトルに試験的に充填したビールは、缶入りビールと遜色ない賞味期限を有することが確認されている。 The DLC film is an amorphous carbon mainly composed of SP 3 bonds between carbons, and is a hard carbon film having high hardness, excellent insulation, high refractive index, and very smooth morphology. It has been confirmed that the beer experimentally filled in the plastic bottle formed in has a shelf life comparable to canned beer.

図2は、飲料用ボトルとして使用するボトル形プラスチック容器の内面にDLC膜を形成する製膜装置の従来例であって、真空チャンバとなる外部電極30の内部に収容されたボトル形プラスチック容器31の口32からその容器31内に管状の内部電極33を挿入すると共にその管状の内部電極33に連結された原料ガス供給管34から脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類等の炭素系ガスで成る原料ガスを導入し、整合器35を介して高周波電源36に接続された外部電極30と内部電極33との間に出力50〜1000Wの高周波を印加してプラズマを発生させることにより、絶縁された外部電極30の内面に電子が蓄積してその外部電極30が負電位に自己バイアスされ、外部電極30側に蓄積電子による500〜1000V程度の電位効果が生じ、このときプラズマ中に炭素源となる原料ガスが存在することにより、プラスにイオン化された炭素源が外部電極30の内面に沿うように位置するボトル形プラスチック容器31の内面に加速的に衝突し、近接する炭素同士が結合して緻密なDLC膜が形成されるようになっている(特許文献1及び2参照)。
特開平8−53116号公報 特開平8−53117号公報
FIG. 2 is a conventional example of a film forming apparatus for forming a DLC film on the inner surface of a bottle-shaped plastic container used as a beverage bottle, and a bottle-shaped plastic container 31 accommodated in an external electrode 30 serving as a vacuum chamber. A tubular internal electrode 33 is inserted into the container 31 from the mouth 32 of the gas, and aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons are fed from a source gas supply pipe 34 connected to the tubular internal electrode 33. A raw material gas composed of a carbon-based gas such as nitrogen-containing hydrocarbons is introduced, and a high frequency of 50 to 1000 W is output between the external electrode 30 and the internal electrode 33 connected to the high frequency power source 36 via the matching unit 35. To generate plasma, electrons are accumulated on the inner surface of the insulated external electrode 30 and the external electrode 30 is self-biased to a negative potential and stored on the external electrode 30 side. An electric potential effect of about 500 to 1000 V is generated by electrons, and at this time, a source gas serving as a carbon source is present in the plasma, so that a positively ionized carbon source is positioned along the inner surface of the external electrode 30. It collides with the inner surface of the plastic container 31 at an accelerated speed, and adjacent carbons are bonded together to form a dense DLC film (see Patent Documents 1 and 2).
JP-A-8-53116 JP-A-8-53117

図2の従来装置は、外部電極30と内部電極33との間隔をボトル形プラスチック容器31のあらゆる位置において10〜50mmの範囲内で略均一に保たなければ、容器31の内面に衝突するイオンのエネルギーが不均一となって、その内面に全体的に均一なDLC膜を形成することができないため、図示の如く、外部電極30の内部形状が、その内部に収容するボトル形プラスチック容器31と略相似形で且つ該容器31よりも僅かに大きい空所を形成する形状に成形されると共に、プラスチック容器31の内部に挿入する内部電極33の外部形状が、プラスチック容器31と略相似形で且つ該容器31の口32からその内部へ挿入可能な形状に成形されている。   2 does not collide with the inner surface of the container 31 unless the distance between the outer electrode 30 and the inner electrode 33 is kept substantially uniform within a range of 10 to 50 mm at any position of the bottle-shaped plastic container 31. As shown in the figure, the internal shape of the external electrode 30 is the same as that of the bottle-shaped plastic container 31 accommodated therein. It is formed in a shape that is substantially similar and forms a space that is slightly larger than the container 31, and the external shape of the internal electrode 33 that is inserted into the plastic container 31 is substantially similar to the plastic container 31 and The container 31 is formed into a shape that can be inserted into the inside thereof from the mouth 32.

また、プラズマを発生させた際に外部電極30内に空気が存在すると、その空気が高温に熱せられてボトル形プラスチック容器31に熱変形等を生ずるおそれがあるので、外部電極30の内部に連通する排気管37を通じてその内部の空気を真空ポンプで排気するようになっている。   Further, if air is present in the external electrode 30 when the plasma is generated, the air may be heated to a high temperature and the bottle-shaped plastic container 31 may be thermally deformed. The air inside the exhaust pipe 37 is exhausted by a vacuum pump.

しかしながら、ボトル形プラスチック容器31は、その種類によって形やサイズが様々に異なるので、外部電極30の内部形状と内部電極33の外部形状をボトル形プラスチック容器31と相似形に成形する従来技術によれば、該容器31の種類に応じて外部電極30と内部電極33の形や大きさを変えなければならず、その電極30、33の成形コストが嵩むという問題があった。   However, since the shape and size of the bottle-shaped plastic container 31 varies depending on the type, the conventional shape of the internal shape of the external electrode 30 and the external shape of the internal electrode 33 is similar to that of the bottle-shaped plastic container 31. For example, the shape and size of the external electrode 30 and the internal electrode 33 must be changed according to the type of the container 31, and there is a problem that the molding cost of the electrodes 30 and 33 increases.

また、ボトル形プラスチック容器31が、口32の内径に比べて胴部38の内径が著しく大きい胴太形状のものであるときは、その口32から挿入する内部電極33を容器31と相似形に成形にすることができない。つまり、胴太形状のボトル形プラスチック容器と相似形を成す内部電極は、その容器の口から挿入することができないため、胴太形状のボトル形プラスチック容器に挿入する内部電極は、外部電極との間に均一な間隔を保てない非相似形状にせざるを得ず、したがって、プラスチック容器の内面に全体的に均一なDLC膜を形成することが困難となる。   Further, when the bottle-shaped plastic container 31 has a body shape that has a significantly larger inner diameter of the body portion 38 than the inner diameter of the mouth 32, the internal electrode 33 inserted from the mouth 32 has a similar shape to the container 31. It cannot be molded. In other words, since the internal electrode that is similar to the thick bottle-shaped plastic container cannot be inserted from the mouth of the container, the internal electrode that is inserted into the thick bottle-shaped plastic container is connected to the external electrode. Therefore, it is inevitably required to have a non-similar shape that cannot maintain a uniform interval therebetween, and thus it becomes difficult to form an entirely uniform DLC film on the inner surface of the plastic container.

また、図2の従来装置は、外部電極30と内部電極33とを電気的に絶縁するためにセラミック製の絶縁材39を用いているが、その絶縁材39が外部電極30内に露出していると、プラズマ発生の際に生ずる真空蒸着作用によって不純物が増加し、DLC膜の品質低下を招くおそれがある。   2 uses a ceramic insulating material 39 to electrically insulate the external electrode 30 and the internal electrode 33 from each other, but the insulating material 39 is exposed in the external electrode 30. If so, impurities may increase due to the vacuum deposition effect that occurs when plasma is generated, which may lead to a decrease in the quality of the DLC film.

また、ボトル形プラスチック容器31の内面にDLC膜を形成するDLCコーティングは、所要時間が数秒〜十数秒程度の高速コーティングであるから、外部電極30内の空気を排気管37に接続した真空ポンプで高速排気することが要求されるが、その高速排気により、外部電極30内の排気管37が連結された箇所や、プラスチック容器31の口32の付近で乱流が生じて、外部電極30内の局部プラズマ放電が悪くなるため、コーティング効果が良くないという問題があった。   The DLC coating for forming a DLC film on the inner surface of the bottle-shaped plastic container 31 is a high-speed coating with a required time of several seconds to several tens of seconds. Therefore, a vacuum pump in which the air in the external electrode 30 is connected to the exhaust pipe 37 is used. Although high-speed exhaust is required, the high-speed exhaust causes a turbulent flow at a location where the exhaust pipe 37 in the external electrode 30 is connected or in the vicinity of the mouth 32 of the plastic container 31, so Since the local plasma discharge is deteriorated, there is a problem that the coating effect is not good.

なお、DLC膜の生産効率を高めるために、外部電極の外側に該電極の長さ方向に沿って一定の間隔で配置した複数のリング状磁石により、外部電極の内部に収容されたボトル形プラスチック容器の内面近傍に磁場を発生させて、該容器の内面に形成されるDLC膜の生成速度を速める発明が提案されている(特許文献3参照)。   In order to increase the production efficiency of the DLC film, a bottle-shaped plastic housed inside the external electrode by a plurality of ring magnets arranged at regular intervals along the length direction of the external electrode. An invention has been proposed in which a magnetic field is generated in the vicinity of the inner surface of a container to increase the generation rate of the DLC film formed on the inner surface of the container (see Patent Document 3).

また、本願発明者の一人は、図2の製膜装置によって形成されるDLC膜はその品質に問題があり、ボトル形プラスチックの内径が一様でない部分(テーパー部分)の内面には良質なDLC膜を形成することができず、その部分のDLC膜が、容器の内面から剥がれやすかったり、微小クラックを生ずるなどして、ガスバリア性が損なわれるおそれがあったことから、DLC膜の品質を高めるために、外部電極の周囲にリング状磁石を設けて、外部電極の中心軸と一致する向きの磁界を形成することにより、ボトル形プラスチック容器の内面全体に良質なDLC膜を形成する発明を提案した(特許文献4参照)。
特開平11−256331号公報 特開2000−185997号
In addition, one of the inventors of the present application has a problem in the quality of the DLC film formed by the film forming apparatus of FIG. 2, and a good quality DLC is formed on the inner surface of the bottle-shaped plastic where the inner diameter is not uniform (tapered portion). Since the film could not be formed and the DLC film in that part was easily peeled off from the inner surface of the container or caused microcracks, the gas barrier property might be impaired, so the quality of the DLC film was improved. Therefore, an invention is proposed in which a good quality DLC film is formed on the entire inner surface of a bottle-shaped plastic container by providing a ring-shaped magnet around the outer electrode and forming a magnetic field in a direction matching the central axis of the outer electrode. (See Patent Document 4).
JP-A-11-256331 JP 2000-185997 A

しかし、特許文献3に記載された発明は、DLC膜の高速コーティングを可能にするものであり、また、特許文献4に記載された発明は、DLC膜の品質を向上させるものであり、両文献に記載された製膜装置はいずれも、図2の製膜装置と同様、外部電極の内部形状と内部電極の外部形状をボトル形プラスチック容器の形状と略相似形に成形して、該容器と外部電極及び内部電極との距離を均等にすることにより、容器内面に全体的に均一なDLC膜を形成するものであるから、容器の種類に応じて外部電極と内部電極の形や大きさを変えなければならず、電極の成形コストが嵩むという問題は依然として未解決であった。   However, the invention described in Patent Document 3 enables high-speed coating of the DLC film, and the invention described in Patent Document 4 improves the quality of the DLC film. 2, as in the film forming apparatus of FIG. 2, the internal shape of the external electrode and the external shape of the internal electrode are formed into a shape substantially similar to the shape of the bottle-shaped plastic container. By uniforming the distance between the external electrode and the internal electrode, a uniform DLC film is formed on the inner surface of the container. Therefore, depending on the type of container, the shape and size of the external electrode and the internal electrode can be changed. The problem of increasing the molding cost of the electrode had to be changed.

本発明は、外部電極の内部形状と内部電極の外部形状をボトル形プラスチック容器と相似形に成形して両電極の間隔を均一に保たなくても、該容器の内面に全体的に均一なDLC膜を形成できるようにすると共に、外部電極内の空気を高速排気する際に、その高速排気によりボトル形プラスチック容器の口の付近で乱流が生じてコーティング効果が損なわれないようにすることを技術的課題としている。   The present invention provides a uniform overall inner surface of the container without forming the internal shape of the external electrode and the external shape of the internal electrode similar to those of a bottle-shaped plastic container and keeping the distance between the electrodes uniform. Make it possible to form a DLC film, and when exhausting the air inside the external electrode at a high speed, the high-speed exhaustion will not cause a turbulent flow near the mouth of the bottle-shaped plastic container, thereby impairing the coating effect. Is a technical issue.

上記の課題を解決するために、本発明は、真空チャンバとなる外部電極の内部に収容されたボトル形プラスチック容器の口からその容器内に内部電極を挿入すると共に原料ガスを導入し、前記外部電極と内部電極との間に高周波を印加してプラズマを発生させることにより、前記ボトル形プラスチック容器の内面にダイヤモンドライクカーボン膜を形成する製膜装置において、前記外部電極の内部形状が、前記ボトル形プラスチック容器を該容器の底部側から収容可能な形状に成形され、当該外部電極の内部に収容された前記ボトル形プラスチック容器の軸方向と略平行に磁界を印加する磁界印加手段が、前記ボトル形プラスチック容器の縮径部に対して集中的に磁界を印加するか、もしくはその縮径部に対して他の部分よりも強い磁界を印加するように構成され、前記外部電極とその内部の空気を排気する排気管との間に、複数の貫通孔を通じて前記外部電極の内部に連通せられる排気流緩和用真空チャンバが介装されていることを特徴としている。   In order to solve the above-described problems, the present invention inserts an internal electrode into a container from the mouth of a bottle-shaped plastic container accommodated in the external electrode serving as a vacuum chamber and introduces a source gas into the container. In the film forming apparatus for forming a diamond-like carbon film on the inner surface of the bottle-shaped plastic container by applying a high frequency between the electrode and the internal electrode to generate plasma, the internal shape of the external electrode is the bottle Magnetic field applying means for applying a magnetic field substantially parallel to the axial direction of the bottle-shaped plastic container formed into a shape that can accommodate the shape-shaped plastic container from the bottom side of the container and accommodated inside the external electrode, Apply a magnetic field intensively to the reduced diameter part of the plastic container or apply a stronger magnetic field to the reduced diameter part than other parts. An exhaust flow relaxation vacuum chamber that is communicated with the inside of the external electrode through a plurality of through holes is interposed between the external electrode and an exhaust pipe that exhausts air inside the external electrode. It is characterized by that.

本発明によれば、外部電極の内部形状が、ボトル形プラスチック容器を該容器の底部側から収容可能な形状に成形されるので、従来の如く外部電極の内部形状をその内部に収容するボトル形プラスチック容器と相似形に成形する場合に比べて、外部電極の成形コストを大幅に低減することができる。また、外部電極の内部形状が、ボトル形プラスチック容器を該容器の底部側から収容可能な形状に成形されていると、外部電極の内部に収容されたボトル形プラスチック容器の縮径部は、他の部分よりも外部電極の内面から遠い距離にあるが、その縮径部に対して、ボトル形プラスチック容器の軸方向と略平行な磁界が集中的に印加されるか、もしくは他の部分よりも強く印加されることにより、他の部分と遜色のない膜厚のDLC膜が形成されて、容器の内面全体に均一なDLC膜が形成される。また、外部電極の内部の空気を排気管から高速排気する際に、その排気管と外部電極との間に介装された排気流緩和用チャンバ内で乱流が生じて、外部電極内における乱流の発生が抑制されることにより、外部電極内の局部プラズマ放電が良好となり、DLC膜のコーティング効果が向上する。   According to the present invention, since the internal shape of the external electrode is formed into a shape that can accommodate the bottle-shaped plastic container from the bottom side of the container, the bottle shape that accommodates the internal shape of the external electrode therein as in the prior art. The molding cost of the external electrode can be greatly reduced as compared with the case of molding in a shape similar to a plastic container. In addition, when the internal shape of the external electrode is formed so that the bottle-shaped plastic container can be accommodated from the bottom side of the container, the reduced-diameter portion of the bottle-shaped plastic container accommodated inside the external electrode The magnetic field substantially parallel to the axial direction of the bottle-shaped plastic container is concentratedly applied to the reduced-diameter portion, or farther from the inner surface of the external electrode than the other portion. When strongly applied, a DLC film having a thickness comparable to other portions is formed, and a uniform DLC film is formed on the entire inner surface of the container. Further, when the air inside the external electrode is exhausted from the exhaust pipe at a high speed, turbulent flow is generated in the exhaust flow reducing chamber interposed between the exhaust pipe and the external electrode, and the turbulence in the external electrode is generated. By suppressing the generation of the flow, the local plasma discharge in the external electrode becomes good, and the coating effect of the DLC film is improved.

以下、本発明の裁量の実施形態を図面によって具体的に説明する。
図1は本発明に係る製膜装置の一例を示す断面図である。
Hereinafter, the discretionary embodiment of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a film forming apparatus according to the present invention.

図1の製膜装置は、真空チャンバとなる外部電極1が、ボトル形プラスチック容器2をその底部側から収容できる一定の内径を有した円筒形のチャンバで成り、該外部電極1の内部に収容されたボトル形プラスチック容器2の口3から該容器2の内部に挿入する内部電極4が、一定の外径を有した円筒管で形成され、これら外部電極1と内部電極4は、セラミックス等で成る絶縁材5により電気的に絶縁されて、整合器6及び高周波電源7に接続されている。   In the film forming apparatus of FIG. 1, the external electrode 1 serving as a vacuum chamber is formed of a cylindrical chamber having a constant inner diameter capable of accommodating the bottle-shaped plastic container 2 from the bottom side, and is accommodated inside the external electrode 1. The internal electrode 4 inserted into the inside of the container 2 from the mouth 3 of the bottle-shaped plastic container 2 is formed of a cylindrical tube having a constant outer diameter. The external electrode 1 and the internal electrode 4 are made of ceramics or the like. The insulating material 5 is electrically insulated and connected to the matching unit 6 and the high frequency power source 7.

外部電極1の内部には、その内部に収容するボトル形プラスチック容器2の底部を嵌合させて該容器2を内部電極4の挿入可能な定位置に保持する位置決め用治具8が着脱自在に設けられている。   A positioning jig 8 that fits the bottom of a bottle-shaped plastic container 2 accommodated in the external electrode 1 and holds the container 2 at a fixed position where the internal electrode 4 can be inserted is detachable. Is provided.

位置決め用治具8は、ステンレス等の難真空蒸着材によって外部電極1の開口部9からその内部に挿入可能な形状及び大きさに成形されている。なお、図示は省略するが、治具8は、外形の異なる各種ボトル形プラスチック容器2の底部形状に応じて各々の底部と嵌り合う形状に成形されたものを複数個用意し、それらをボトル形プラスチック容器2の種類に応じて交換することにより、いずれのボトル形プラスチック容器2もその口3から内部電極4を挿入可能な外部電極1の中心位置に保持するようになっている。   The positioning jig 8 is formed in a shape and size that can be inserted into the inside of the opening portion 9 of the external electrode 1 from a difficult vacuum deposition material such as stainless steel. In addition, although illustration is abbreviate | omitted, the jig | tool 8 prepares two or more what was shape | molded in the shape which fits each bottom part according to the bottom part shape of various bottle-shaped plastic containers 2 from which an external shape differs, and these are bottle-shaped. By exchanging depending on the type of the plastic container 2, any bottle-shaped plastic container 2 is held at the center position of the external electrode 1 into which the internal electrode 4 can be inserted from its mouth 3.

ボトル形プラスチック容器2を該容器の底部側から出し入れする外部電極1の開口部9は、その開口部9に対して進退自在な絶縁材5で閉塞されるようになっており、絶縁材5の外部電極1内に表出する面は、ステンレス板等の難真空蒸着材10で被覆されている。   The opening 9 of the external electrode 1 through which the bottle-shaped plastic container 2 is taken in and out from the bottom side of the container is closed with an insulating material 5 that can be moved forward and backward with respect to the opening 9. The surface exposed in the external electrode 1 is covered with a difficult vacuum deposition material 10 such as a stainless steel plate.

また、外部電極1とその内部の空気を真空ポンプで排気する排気管11との間には、絶縁材5に穿設された複数の貫通孔12を通じて外部電極1の内部に連通せられる排気流緩和用真空チャンバ13が介装されている。なお、該チャンバ13は、絶縁材5と一体的に設けられ、これらチャンバ13と絶縁材5の中心を貫通するように管状の内部電極4が取り付けられている。   Further, an exhaust flow communicated with the inside of the external electrode 1 through a plurality of through holes 12 formed in the insulating material 5 between the external electrode 1 and an exhaust pipe 11 for exhausting air inside the external electrode 1 with a vacuum pump. A relaxation vacuum chamber 13 is interposed. The chamber 13 is provided integrally with the insulating material 5, and a tubular internal electrode 4 is attached so as to pass through the center of the chamber 13 and the insulating material 5.

絶縁材5の中心には、内部電極4を非接触に挿通する貫通孔14が穿設され、排気流緩和用真空チャンバ13の中心には、内部電極4を貫通状態で気密に固定する貫通孔15が設けられている。また、チャンバ13の貫通孔15から突出する内部電極4の端部には、その内部電極4の管内を通じてプラスチック容器2の内部に炭素系ガスと水素ガスとの混合ガスで成る原料ガスを導入する原料ガス供給管16が接続されている。   A through-hole 14 is formed in the center of the insulating material 5 so as to pass through the internal electrode 4 in a non-contact manner. A through-hole for fixing the internal electrode 4 in an airtight manner in the center of the exhaust flow reducing vacuum chamber 13. 15 is provided. In addition, a raw material gas composed of a mixed gas of carbon-based gas and hydrogen gas is introduced into the plastic container 2 through the tube of the internal electrode 4 at the end of the internal electrode 4 protruding from the through hole 15 of the chamber 13. A source gas supply pipe 16 is connected.

そして、これら内部電極4、排気流緩和用真空チャンバ13及び絶縁材5は、複動型シリンダ等により外部電極1の開口部9に対して一体的に進退せられるようになっている。   The internal electrode 4, the exhaust flow relaxation vacuum chamber 13, and the insulating material 5 are integrally moved forward and backward with respect to the opening 9 of the external electrode 1 by a double-acting cylinder or the like.

更に、図1に示す製膜装置は、外部電極1の内部に収容されたボトル形プラスチック容器2の軸方向と略平行に磁界Mを印加する磁界印加手段17を備えている。この磁界印加手段17は、外部電極1の外周を囲うように配設された環状の永久磁石もしくは直流コイルで成り、外部電極1と内部電極4との間に高周波を印加する際に、円筒形チャンバで成る外部電極1の内面から比較的遠い距離にあるボトル形プラスチック容器2の縮径部18に対して集中的に磁界Mを印加するか、あるいは縮径部18に対して磁界を強く印加し、その他の部分に対して磁界を弱く印加するようになっている。   Further, the film forming apparatus shown in FIG. 1 includes magnetic field applying means 17 that applies a magnetic field M substantially parallel to the axial direction of the bottle-shaped plastic container 2 housed inside the external electrode 1. The magnetic field applying means 17 is composed of an annular permanent magnet or a direct current coil disposed so as to surround the outer periphery of the external electrode 1, and is cylindrical when applying a high frequency between the external electrode 1 and the internal electrode 4. A magnetic field M is intensively applied to the reduced diameter portion 18 of the bottle-shaped plastic container 2 which is relatively far from the inner surface of the external electrode 1 formed of a chamber, or a strong magnetic field is applied to the reduced diameter portion 18. However, the magnetic field is weakly applied to the other portions.

以上が、図1に示す製膜装置の構成であり、次にその使用方法について説明する。まず、ボトル形プラスチック容器2を外部電極1の内部に収容する際は、一体化構造の内部電極4、絶縁材5及び排気流緩和用真空チャンバ13を図1で見て上方に後退させて外部電極1の開口部9を開放し、その開口部9から外部電極1の内部に予め位置決め用治具8を装填しておく。   The above is the configuration of the film forming apparatus shown in FIG. First, when the bottle-shaped plastic container 2 is accommodated inside the external electrode 1, the internal electrode 4, the insulating material 5, and the exhaust flow relaxation vacuum chamber 13 having an integrated structure are retracted upward as viewed in FIG. The opening 9 of the electrode 1 is opened, and a positioning jig 8 is loaded in advance into the external electrode 1 from the opening 9.

この状態で、ボトル形プラスチック容器2をその底部側から外部電極1の内部に入れると、該容器2の底部が位置決め用治具8に嵌合して、該容器2は、その口3から内部電極4を挿入できる外部電極1内の中心位置に自動的に保持される。   In this state, when the bottle-shaped plastic container 2 is inserted into the external electrode 1 from the bottom side, the bottom of the container 2 is fitted into the positioning jig 8, and the container 2 is connected to the inside from the mouth 3. It is automatically held at the center position in the external electrode 1 where the electrode 4 can be inserted.

このようにして、ボトル形プラスチック容器2を外部電極1の内部に収容すると、上方に後退させていた内部電極4、絶縁材5及び排気流緩和用真空チャンバ13を下方に進出させて、図1の如く、内部電極4をボトル形プラスチック容器2の口3からその内部に挿入すると同時に、絶縁材5を外部電極1の開口部9の周囲に圧し当ててその絶縁材5で開口部9を閉塞すると同時に、その絶縁材と排気流緩和用真空チャンバ13とで外部電極1の内部を気密状態にする。   When the bottle-shaped plastic container 2 is accommodated in the external electrode 1 in this way, the internal electrode 4, the insulating material 5, and the exhaust flow relaxation vacuum chamber 13, which have been retracted upward, are advanced downward, and FIG. As shown, the internal electrode 4 is inserted into the inside of the bottle-shaped plastic container 2 through the mouth 3, and at the same time, the insulating material 5 is pressed around the opening 9 of the external electrode 1 to close the opening 9 with the insulating material 5. At the same time, the inside of the external electrode 1 is brought into an airtight state by the insulating material and the exhaust flow relaxation vacuum chamber 13.

次いで、真空ポンプに接続した排気管11から排気流緩和用真空チャンバ13を介して外部電極1内の空気を高速排気すると共に、原料ガス供給管16から管状の内部電極4を通じてボトル形プラスチック容器2の内部に原料ガスを供給する。   Next, the air inside the external electrode 1 is exhausted from the exhaust pipe 11 connected to the vacuum pump through the exhaust flow relaxation vacuum chamber 13 at a high speed, and the bottle-shaped plastic container 2 is passed from the source gas supply pipe 16 through the tubular internal electrode 4. The source gas is supplied into

そして、高周波電源7により外部電極1と内部電極4との間に高周波を印加すると共に、磁界印加手段17により外部電極1の内部に収容されたボトル形プラスチック容器2の軸方向と平行に磁界Mを印加する。   Then, a high frequency is applied between the external electrode 1 and the internal electrode 4 by the high frequency power source 7, and the magnetic field M is parallel to the axial direction of the bottle-shaped plastic container 2 accommodated inside the external electrode 1 by the magnetic field applying means 17. Apply.

これにより、外部電極1と内部電極4との間にプラズマが発生して外部電極1の内面が負電位に自己バイアスされ、ボトル形プラスチック容器2の内部に導入した原料ガス中のプラスにイオン化された炭素源が該容器2の内面に衝突して、その内面にDLC膜が形成される。   As a result, plasma is generated between the external electrode 1 and the internal electrode 4, the inner surface of the external electrode 1 is self-biased to a negative potential, and is ionized positively in the raw material gas introduced into the bottle-shaped plastic container 2. The carbon source collides with the inner surface of the container 2, and a DLC film is formed on the inner surface.

また、この際、ボトル形プラスチック容器2の縮径部18に磁界Mを印加して、該縮径部18の内面に向かうイオンのエネルギーを増大させることにより、外部電極1の内面から比較的遠い距離にある縮径部18にも他の部分と遜色のない均一なDLC膜を形成することができるので、図2の従来例の如く外部電極の内部形状や内部電極の外部形状をボトル形プラスチック容器と相似形に成形する必要がない。   At this time, the magnetic field M is applied to the reduced diameter portion 18 of the bottle-shaped plastic container 2 to increase the energy of ions directed toward the inner surface of the reduced diameter portion 18, thereby being relatively far from the inner surface of the external electrode 1. A uniform DLC film comparable to other portions can be formed on the reduced diameter portion 18 at a distance, so that the internal shape of the external electrode and the external shape of the internal electrode can be changed to a bottle-shaped plastic as in the conventional example of FIG. There is no need to mold the container into a similar shape.

したがって、図1の如く、外部電極1の内部形状をボトル形プラスチック容器2をその底部側から収容可能で且つ外形が異なる他種ボトル形プラスチック容器も収容可能な円筒形に成形することによって、その外部電極1の成形コストを従来に比べて大幅に低減することができる。また、内部電極4の外部形状も単純な管状に成形して、その成形コストを低減することができる。   Therefore, as shown in FIG. 1, the internal shape of the external electrode 1 is formed into a cylindrical shape capable of accommodating the bottle-shaped plastic container 2 from the bottom side and accommodating other types of bottle-shaped plastic containers having different external shapes. The molding cost of the external electrode 1 can be significantly reduced compared to the conventional case. Also, the external shape of the internal electrode 4 can be formed into a simple tubular shape, and the forming cost can be reduced.

また、外部電極1内に挿入する位置決め用治具8は、難真空蒸着材で成形され、絶縁材5も、外部電極1内に表出する面が難真空蒸着材10で被覆されているので、プラズマ発生の際にDLC膜の品質を損なわしめる不純物を生ずるおそれがない。   Further, the positioning jig 8 to be inserted into the external electrode 1 is formed of a hardly vacuum deposition material, and the insulating material 5 is also covered with the hardly vacuum deposition material 10 on the surface exposed in the external electrode 1. There is no risk of generating impurities that impair the quality of the DLC film during plasma generation.

また、外部電極1とその内部の空気を高速排気する排気管11との間に排気流緩和用真空チャンバ13が介装されているため、外部電極1内やボトル形プラスチック容器2の口3付近でプラズマ放電及び高速コーティングに悪影響を及ぼす乱流を生ずるおそれがなくなる。   Further, since the exhaust flow relaxation vacuum chamber 13 is interposed between the external electrode 1 and the exhaust pipe 11 for exhausting the air in the interior at high speed, the external electrode 1 and the vicinity of the mouth 3 of the bottle-shaped plastic container 2 are disposed. This eliminates the possibility of creating turbulence that adversely affects plasma discharge and high-speed coating.

また、炭素系ガスと水素ガスとの混合ガスを用いて製膜したDLC膜は、炭素系ガスのみで製膜したものに比べてガスバリア性が優れており、例えば、炭素系ガスCHと水素ガスHの混合比が1:1の原料ガスを用いてDLC膜を製膜したペットボトルは、酸素透過率が約1/15となる。また、CH:H=3:1では、酸素透過率が約1/12となり、CH:H=1:3では、約1/8となり、炭素系ガスのみで製膜されたダイヤモンドライクカーボン膜よりもガスバリア性が良い。 In addition, a DLC film formed using a mixed gas of carbon-based gas and hydrogen gas has an excellent gas barrier property compared to a film formed using only a carbon-based gas. For example, carbon-based gas CH 4 and hydrogen A PET bottle in which a DLC film is formed using a source gas having a gas H 2 mixing ratio of 1: 1 has an oxygen permeability of about 1/15. Further, when CH 4 : H 2 = 3: 1, the oxygen permeability is about 1/12, and when CH 4 : H 2 = 1: 3, it is about 1/8, and the diamond is formed only with a carbon-based gas. It has better gas barrier properties than the like carbon film.

なお、水素ガスの比率が、CH:H=3:1より小さくなるに従って、ガスバリア性が急速に低下し、炭素系ガスのみで成るDLC膜と格段の差はなくなる。また、水素ガスの比率が、CH:H=1:3より大きくなるに従って製膜が困難となる傾向を示し、1:6では製膜不能となる。したがって、炭素系ガスと水素ガスとの混合比は、3:1〜1:3の範囲内に選定するのが好ましい。 Note that as the ratio of hydrogen gas becomes smaller than CH 4 : H 2 = 3: 1, the gas barrier property is rapidly lowered, and there is no significant difference from a DLC film made of only carbon-based gas. Further, as the ratio of hydrogen gas becomes larger than CH 4 : H 2 = 1: 3, it tends to become difficult to form a film, and at 1: 6, film formation becomes impossible. Therefore, the mixing ratio of the carbon-based gas and the hydrogen gas is preferably selected within the range of 3: 1 to 1: 3.

本発明は、DLC膜の生産性向上と加工コスト低減に資するものである。   The present invention contributes to improving the productivity of DLC films and reducing processing costs.

本発明に係る製膜装置の一例を示す図The figure which shows an example of the film forming apparatus which concerns on this invention 従来の製膜装置を示す図A diagram showing a conventional film forming apparatus

符号の説明Explanation of symbols

1 外部電極
2 ボトル形プラスチック容器
3 ボトル形プラスチック容器の口
4 内部電極
5 絶縁材
11 排気管
12 貫通孔
13 排気流緩和用真空チャンバ
17 磁界印加手段
M 磁界
18 ボトル形プラスチック容器の縮径部
DESCRIPTION OF SYMBOLS 1 External electrode 2 Bottle-shaped plastic container 3 Port of bottle-shaped plastic container 4 Internal electrode 5 Insulation material 11 Exhaust pipe 12 Through-hole 13 Exhaust flow relaxation vacuum chamber 17 Magnetic field applying means M Magnetic field 18 Reduced diameter portion of bottle-shaped plastic container

Claims (1)

真空チャンバとなる外部電極の内部に収容されたボトル形プラスチック容器の口からその容器内に内部電極を挿入すると共に原料ガスを導入し、前記外部電極と内部電極との間に高周波を印加してプラズマを発生させることにより、前記ボトル形プラスチック容器の内面にダイヤモンドライクカーボン膜を形成する製膜装置において、前記外部電極の内部形状が、前記ボトル形プラスチック容器を該容器の底部側から収容可能な形状に成形され、当該外部電極の内部に収容された前記ボトル形プラスチック容器の軸方向と略平行に磁界を印加する磁界印加手段が、前記ボトル形プラスチック容器の縮径部に対して集中的に磁界を印加するか、もしくはその縮径部に対して他の部分よりも強い磁界を印加するように構成され、前記外部電極とその内部の空気を排気する排気管との間に、複数の貫通孔を通じて前記外部電極の内部に連通せられる排気流緩和用真空チャンバが介装されていることを特徴とする製膜装置。 An internal electrode is inserted into the container from the opening of a bottle-shaped plastic container housed inside the external electrode serving as a vacuum chamber, and a raw material gas is introduced, and a high frequency is applied between the external electrode and the internal electrode. In the film forming apparatus for forming a diamond-like carbon film on the inner surface of the bottle-shaped plastic container by generating plasma, the inner shape of the external electrode can accommodate the bottle-shaped plastic container from the bottom side of the container. Magnetic field applying means for applying a magnetic field substantially in parallel with the axial direction of the bottle-shaped plastic container that is molded into a shape and accommodated inside the external electrode is concentrated on the reduced diameter portion of the bottle-shaped plastic container. It is configured to apply a magnetic field, or to apply a stronger magnetic field to the reduced diameter portion than the other portions, and Between the exhaust pipe for exhausting the air inside, film forming apparatus, wherein the internal exhaust stream relaxation vacuum chamber to be passed, with the said external electrodes are disposed through the plurality of through holes.
JP2006222230A 2006-08-17 2006-08-17 Diamond-like carbon film deposition equipment Expired - Lifetime JP4382784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222230A JP4382784B2 (en) 2006-08-17 2006-08-17 Diamond-like carbon film deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222230A JP4382784B2 (en) 2006-08-17 2006-08-17 Diamond-like carbon film deposition equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001004490A Division JP3880797B2 (en) 2001-01-12 2001-01-12 Diamond-like carbon film deposition equipment

Publications (2)

Publication Number Publication Date
JP2006316354A JP2006316354A (en) 2006-11-24
JP4382784B2 true JP4382784B2 (en) 2009-12-16

Family

ID=37537277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222230A Expired - Lifetime JP4382784B2 (en) 2006-08-17 2006-08-17 Diamond-like carbon film deposition equipment

Country Status (1)

Country Link
JP (1) JP4382784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286553B2 (en) * 2008-02-05 2013-09-11 東洋製罐株式会社 High frequency plasma processing apparatus and high frequency plasma processing method
RU2476953C2 (en) * 2008-03-12 2013-02-27 Алитус Корпорейшн, С.А. Plasma system

Also Published As

Publication number Publication date
JP2006316354A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP5355860B2 (en) Barrier film forming apparatus, barrier film forming method, and barrier film coating container
JP2008174793A (en) Film-forming apparatus and film-forming method
JPH11256331A (en) Method and apparatus for forming diamond-like carbon film
JP2016083658A (en) Plasma generator
WO2003085165A1 (en) Plasma cvd film forming apparatus and method for manufacturing cvd film coating plastic container
JP4382784B2 (en) Diamond-like carbon film deposition equipment
JP2016511911A (en) Plasma chemical vapor deposition (PECVD) source
JP2005290561A (en) Method for depositing diamond-like carbon film
JP3880797B2 (en) Diamond-like carbon film deposition equipment
JPWO2009078361A1 (en) Plasma sterilizer
JP6446289B2 (en) Barrier film forming apparatus and barrier film forming method
JP2005105294A (en) Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film
JP2016016354A (en) Barrier thin film post-processing method, and cleaning device
JP3643813B2 (en) Apparatus for forming carbon film on inner surface of plastic container and method for manufacturing inner surface carbon film-coated plastic container
JP2007314842A (en) Plasma-generating device and sputtering source using the same
JP4854983B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP3868403B2 (en) Apparatus for forming barrier film on inner surface of plastic container and manufacturing method of inner surface barrier film-coated plastic container
JP2005113202A (en) Plasma cvd film deposition system
JP7584864B2 (en) Film formation method
JP6086826B2 (en) Barrier film forming equipment
JP6949426B2 (en) Barrier membrane forming device and barrier membrane forming method
JP5233333B2 (en) Hollow container deposition system
JP6625656B2 (en) Film forming equipment
JP3746725B2 (en) Manufacturing method of coated container
JP4131730B2 (en) Coated container manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term