JP4380037B2 - High strength high toughness welded steel pipe - Google Patents
High strength high toughness welded steel pipe Download PDFInfo
- Publication number
- JP4380037B2 JP4380037B2 JP2000247295A JP2000247295A JP4380037B2 JP 4380037 B2 JP4380037 B2 JP 4380037B2 JP 2000247295 A JP2000247295 A JP 2000247295A JP 2000247295 A JP2000247295 A JP 2000247295A JP 4380037 B2 JP4380037 B2 JP 4380037B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- less
- weld metal
- strength
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 69
- 239000010959 steel Substances 0.000 title claims description 69
- 239000002184 metal Substances 0.000 claims description 74
- 229910052751 metal Inorganic materials 0.000 claims description 74
- 239000000463 material Substances 0.000 claims description 24
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- -1 mass% Inorganic materials 0.000 claims 1
- 239000000126 substance Substances 0.000 description 30
- 230000000694 effects Effects 0.000 description 19
- 238000003466 welding Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 239000010953 base metal Substances 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、母材と溶接部の降伏強さが551MPa以上であり、優れたSR特性を示すことが可能な高強度高靭性溶接鋼管に関する。
【0002】
【従来の技術】
パイプラインの敷設においては、多量の合金元素を含む鍛造品をライザー等の溶接鋼管と接合することがある。これらの配管材料を現地で円周溶接にて接合する場合、溶接に起因する鍛造品の残留応力の除去を目的として、SR(応力除去焼鈍)が行われる。しかし材質面では、このSRにより、ライザー等の溶接鋼管のシーム溶接部の特性、特に靭性が劣化する。そこで、このようなSRが施される溶接鋼管については、SR前後で溶接部特性の劣化が小さいこと、即ち耐SR特性が高いことが要求される。
【0003】
また、近年、溶接鋼管においては薄肉化に伴う高強度化の傾向があり、ライザー等の溶接鋼管においてもX80グレード以上の鋼板の需要が増加している。このように耐SR特性を有する高強度溶接鋼管の製造技術に関しては、例えば、特公昭57−29540号公報、特開平11−50188号公報等、いくつかの技術が提案されている。
【0004】
高強度溶接鋼管のシーム溶接部に関しては、特公昭57−27800号公報、特開平9−49055号公報に、溶接部の良好な低温靭性を得るために、Ti,Bを含有した溶接金属を形成させる技術が提案されている。特に、上記特公昭57−27800号公報には、耐SR脆性に優れた溶接金属に関する技術が記載されている。
【0005】
また、特開平9−314379号公報には、高強度鋼板のシーム溶接に関してNiを4.0〜6.5mass%含むワイヤを用いる技術が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、特公昭57−29540号公報記載の技術は、主にX70グレードの鋼板に関する技術であり、シーム溶接部の組成については言及していない。、特開平11−50188号公報記載の技術は、X80グレードの鋼板に関する技術ではあるが、SR後の靭性劣化が問題となるシーム溶接部の組成や特性については検討していない。
【0007】
また、特公昭57−27800号公報、特開平9−49055号公報記載の技術のように、X80グレードの鋼板に用いられる溶接金属は、焼入性が十分確保されており、溶接後の冷却過程ではフェライト変態しにくい。従って、フェライトの生成を抑制する目的でTiとBの複合添加を行っても、溶接部の靭性の改善効果は小さい。
【0008】
さらに、特開平9−49055号公報および特開平9−314379号公報では、SR後の溶接部の特性について言及していない。
【0009】
本発明は、これらの従来技術の問題点を解決し、母材と溶接部の降伏強さが551MPa以上(API 5L X80グレード)であり、優れたSR特性を示すことが可能な高強度高靭性溶接鋼管を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題は、次の発明により解決される。その発明は、mass%で、C:0.03〜0.09%、Si:0.05〜0.20%、Mn:1.2〜2.0%、P:0.02%以下、S:0.002%以下、Nb:0.005〜0.05%、Ti:0.005〜0.02%、Al:0.01〜0.04%を含有し、残部がFeおよび不可避的不純物からなる降伏強さ551MPa以上の母材部と、mass%で、C:0.07〜0.12%、Si:0.05〜0.30%、Mn:1.2〜2.0%、P:0.02%以下、S:0.005%以下、Ni:0.5〜2.5%、Mo:0.3〜1.0%、Ti:0.005〜0.04%、O:0.015〜0.035%を含有し、残部がFeおよび不可避的不純物からなる降伏強さ551MPa以上の溶接金属と、を有する高強度高靭性溶接鋼管である。
【0011】
ここで、溶接金属の化学成分には、更に、B:0.0005〜0.002%、Cu:0.5%以下、Cr:1.0%以下のうち1種以上を含有することもできる。
【0012】
また、母材部の化学成分には、更に、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.3%以下、Ca:0.0005〜0.0025%のうち1種以上を含有することもできる。
【0013】
これらの発明は、高強度高靭性溶接鋼管の母材部及びシーム溶接部について、耐SR特性に及ぼす化学成分の影響を検討した結果なされたものである。試験により母材及び溶接金属の化学成分を変化させ、溶接まま及びSR後の強度と靭性を調査した。特に、母材中のSiに着目して調査する中で、この元素を低減し且つVフリーとすることで、母材部及び溶接熱影響部のSR前後における靭性を確保できることを見出した。
【0014】
また、溶接金属中のOを低減しNiを高めると共にBフリーでもTiを添加することにより、溶接金属のSR前後における靭性を確保できるとの知見を得た。以下、化学成分の限定理由について示す。
【0015】
まず、母材部の化学成分の限定理由について説明する。
【0016】
C:0.03〜0.09%
Cは、強化元素として必要であり、0.03%未満ではX80の所定の強度を確保することが困難となる。一方、0.09%を超える過剰な添加は、鋼板及び溶接熱影響部の靱性の劣化を招く。また、溶接性及び溶接金属の耐SR特性の観点からも、C量の低減が望ましい。従って、C量を0.03〜0.09%の範囲内とする。
【0017】
Si:0.05〜0.20%
Siは脱酸のために添加されるが、0.05%未満では十分な脱酸効果が得られない。一方、0.20%を超えると、溶接熱影響部の靱性及び溶接性の劣化を引き起こす。従って、Si量を0.05〜0.20%の範囲内とする。
【0018】
Mn:1.2〜2.0%
Mnは鋼板の強度と靭性の向上に有効な元素であり、1.2%未満ではその効果が小さい。一方、2.0%を超えてMnを添加すると、溶接性、溶接熱影響部の靱性、及び溶接金属の耐SR特性が劣化する。従って、Mn量を1.2〜2.0%の範囲内とする。
【0019】
P:0.02%以下
Pは不純物として含まれ、靱性を低下させるので、極力低減することが望ましい。しかしながら、製鋼工程における過度の脱Pは製造コストを上昇させるので、通常の転炉精錬レベルでよい。P量が0.02%を超えると、母材及び溶接熱影響部の靱性を確保することが困難となる。従って、P量を0.02%以下とする。
【0020】
S:0.002%以下
Sは不純物として含まれ、靱性を低下させるので、極力低減することが望ましい。一般に、Ca添加により粒化物をMnSからCaSへ形態制御を行うことで介在物を微細化できるが、X80グレードの高強度鋼においては、微細に分散したCaS系介在物も靭性劣化の原因となり得る。この傾向は、Sが0.002%を超えると顕著となり、靭性が劣化する。従って、S量を0.002%以下とする。
【0021】
Nb:0.005〜0.05%
Nbは、スラブの加熱及び圧延の際、結晶粒の成長を抑制してミクロ組織を微細化し、十分な靭性を付与する元素である。そのため、高靭性鋼にはNbが必要であり、その効果は0.005%以上で顕著となる。一方、Nb量が0.05%を超えると、その効果が飽和すると共に、溶接熱影響部の靱性及び溶接金属の耐SR特性を劣化させる。また、従って、Nb量を0.005〜0.05%の範囲内とする。
【0022】
Ti:0.005〜0.02%
Tiは、TiNを形成してスラブ加熱時のスラブや溶接熱影響部の結晶粒の成長を抑制する。その結果、Tiは、ミクロ組織を微細化して靭性を改善し、その効果は0.005%以上で顕著となる。一方、Ti量が0.02%を超えると、却って靭性を劣化させる。従って、Ti量を0.005〜0.02%の範囲内とする。
【0023】
Al:0.01〜0.04
Alは脱酸剤として添加され、0.01%以上の添加でその効果が顕著である。Alの添加量が0.01%を超えると、溶接熱影響部の靭性を劣化させる。従って、Al量は0.01〜0.04%の範囲内とする。
【0024】
さらにこの発明では、任意添加元素として、Cu,Ni,Cr,Mo,Caのうち1種以上を添加することができる。以下、それらの元素について説明する。
【0025】
Cu: 0.5%以下
Cuは、靱性の改善と強度の上昇に有効な元素の1つであるが、0.5%を超えると溶接性を阻害する。従って、Cuを添加する場合は、Cu量を0.5%以下とする。
【0026】
Ni:0.5%以下
Niは、靱性の改善と強度の上昇に有効な元素の1つであるが、0.5%を超えると、効果が飽和する。また、添加元素としては高価であり、必要以上の添加は経済的にも好ましくない。従って、Niを添加する場合は、Ni量を0.5%以下とする。
【0027】
Cr:0.5%以下
Crは、Mnと共に低Cでも十分な強度を得るために有効な元素の1つであるが、0.5%を超えると、溶接性に悪影響を与える。従って、Crを添加する場合は、Cr量を0.5%以下とする。
【0028】
Mo:0.3%以下
Moは、靱性の改善と強度の上昇に有効な元素の1つであるが、0.3%を超えると、効果が飽和するばかりか、溶接性や耐HIC性を阻害する。従って、Moを添加する場合はMo量を0.3%以下とする。
【0029】
Ca:0.0005〜0.0025%
Caは、硫化物系介在物の形態を制御して、溶接熱影響部の靱性を改善する。この効果は、0.0005%以上の添加で現れる。しかし、0.0025%を超えると、効果が飽和するばかりか、清浄度を低下させて溶接熱影響部の靱性を劣化させる。従って、Ca量を0.0005〜0.0025%の範囲内とする。
【0030】
次に溶接金属の化学成分の限定理由について説明する。なお、溶接金属とは溶接により溶融して凝固した部分であり、溶接金属の化学成分は、用いたワイヤが溶融した母材により希釈されたものとなる。
【0031】
溶接金属のC:0.07〜0.12%
Cは、0.07%未満ではX80の所定の強度を確保することが難しくなる。一方、溶接性の観点からは、C量の低減が望ましく、0.12%を超える添加は、溶接金属の靱性ならびに耐SR特性の劣化を招く。従って、溶接金属のC量を0.07〜0.12%の範囲内とする。
【0032】
溶接金属のSi:0.05〜0.3%
Siは、溶接金属の脱酸および良好な作業性を確保するために必要であり、0.05%未満では十分な脱酸効果が得られない。一方、0.3%を超えると、溶接熱影響部の靱性及び溶接性の劣化を引き起こす。従って、溶接金属のSi量を0.05〜0.30%の範囲内とする。
【0033】
溶接金属のMn:1.2〜2.0%
Mnは、溶接金属の強度と靭性の向上に有効な元素として添加されるが、1.2%未満では、X80以上のの所定の強度を確保することが困難となる。一方、2.0%を超えてMnを添加すると、靱性並びに耐SR特性、さらには溶接性を著しく劣化させる。従って、溶接金属のMn量を1.2〜2.0%の範囲内とする。
【0034】
溶接金属のP:0.02%以下
Pは、溶接金属の粒界に偏析して靱性を劣化させ、0.02%を超えると、この傾向が顕著となる。従って、溶接金属のP量を0.02%以下とする。
【0035】
溶接金属のS:0.005%以下
Sは、溶接金属の粒界に偏析して靱性を劣化させ、0.005%を超えると、この傾向が顕著となる。従って、溶接金属のS量を0.005%以下とする。
【0036】
溶接金属のNi:0.5〜2.5%
Niは、溶接金属の靱性の改善と強度の上昇に有効な元素であり、特にSR後の靱性の改善に有効である。しかし、0.5%未満ではその効果が発揮されず、溶接金属の耐SR特性も劣る。一方、Niを2.5%超えて添加しても、耐SR特性に対する効果が飽和する。従って、溶接金属のNi量を0.5〜2.5%の範囲内とする。
【0037】
溶接金属のMo:0.3〜1.0%
Moは、焼戻し軟化抵抗が高く、SR後の強度の確保に有効な元素であるが、0.3%未満ではSR後の強度が得られない。一方、1.0%を超えると、効果が飽和し、溶接性を阻害する。従って、溶接金属のMo量を0.3〜1.0%の範囲内とする。
【0038】
溶接金属のTi:0.005〜0.04%
Tiの添加は、組織の微細化により靭性の改善をもたらす。Ti量が0.005%未満では、その効果は小さい。Ti量が0.04%を超えると、却って靭性を劣化させる。従って、溶接金属のTi量を0.005〜0.04%の範囲内とする。
【0039】
溶接金属のO(酸素):0.015〜0.035%
Oは、低減することにより靭性が改善されるが、0.015%未満に低下させると却って靭性が劣化する傾向を示す。一方、O量が0.035%を超えると、靱性が劣化する。従って、溶接金属のO量(酸素量)を、0.015〜0.035%の範囲内とする。
【0040】
さらに、この発明では、溶接金属の任意添加元素として、B,Cu,Crのうち1種以上を添加することができる。以下、それらの元素の成分範囲と限定理由について説明する。
【0041】
溶接金属のB:0.0005〜0.002%
Bは、Tiとの共存下では溶接金属の焼入性の向上により、強度の上昇および靭性の改善をもたらす。B量が0.0005%未満ではその効果は小さい。B量が0.002%を超えると、却って靭性の劣化をもたらす。従って、溶接金属にBを添加する場合は、B量を0.0005〜0.002%の範囲内とする。
【0042】
溶接金属のCu:0.5%以下
Cuは、溶接金属においても靱性の改善と強度の上昇に有効な元素の1つであるが、0.5%を超える添加は溶接性を阻害する。従って、溶接金属にCuを添加する場合は、Cu量を0.5%以下とする。
【0043】
溶接金属のCr:1.0%以下
Crは、溶接金属においても十分な強度を得るために有効な元素であるが、1.0%を超えて添加すると溶接性に悪影響を与える。従って、溶接金属にCrを添加する場合は、Cr量を0.5%以下とする。
【0044】
なお、これらの手段において「残部が実質的に鉄である」とは、本発明の作用効果を損なわない限り、不可避的不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0045】
【発明の実施の形態】
以上のように、本発明の化学成分の母材を用い、本発明の化学成分の溶接金属を形成させることにより、SR前後において母材部及び溶接部共に高強度で且つ高靭性である溶接鋼管を製造することができる。
【0046】
本発明の鋼は、転炉、電気炉、その他、化学成分を発明の範囲内に制御できる製造方法であれば、いずれの方法を用いても溶製することができる。溶製された鋼はスラブ等の形状に鋳造し、厚板ミルや熱延ミルで溶接鋼管の母材となる鋼板を製造することができる。なお、本発明においては、鋼板の製造方法は特に限定されるものではない。
【0047】
この鋼板を、UOE成形、プレスベンド成形、ロール成形等により成形し、その後、溶接・接合して溶接鋼管を製造する。溶接・接合は、サブマージドアーク溶接を用いることが好ましい。なお、本発明においては、鋼管の製造方法は冷間加工である限り、特に限定されるものではない。また、溶接方法についても、溶接金属の化学成分が発明の範囲を満たす限り、特に限定されるものではない。
【0048】
なお、溶接金属は溶接中の溶融部分であり、その化学成分はワイヤと母材希釈により決まる。従って、溶接金属の化学成分を本発明の範囲内に調整するには、母材およびワイヤの化学成分、溶接方法、および溶接条件(溶接入熱量)による化学成分の希釈率を考慮して、鋼管を製造する必要がある。
【0049】
【実施例】
表1に示す化学成分の鋼を用い、熱間圧延により鋼板を製造した。表1の鋼A〜Fは発明鋼、鋼G〜Jは比較鋼をそれぞれ示す。これらの鋼板を冷間成形した後、シーム溶接により鋼管を製造した。シーム溶接には、鋼管の内外面ともサブマージドアーク溶接(入熱量:20〜60kJ/cm)を用いた。
【0050】
【表1】
【0051】
これらの鋼管について、溶接まま及びSR(600℃×2hr)後の母材の強度と靭性、並びにシーム溶接熱影響部(HAZ)の靭性を調査した。これらの調査結果を表2に示す。ここで、強度は降伏強さYS(単位MPa)と引張強さTS(単位MPa)、靭性は−20℃でのシャルピー吸収エネルギーvE-20(単位J)で示す。
【0052】
【表2】
【0053】
母材の強度については、溶接まま及びSR後とも、降伏強さが551MPa以上、引張強さが620MPa以上で良好と判定した。母材の靭性については、溶接まま及びSR後とも、シャルピー吸収エネルギーが100J以上で良好と判定した。熱影響部(HAZ)の靭性については、溶接まま及びSR後とも、シャルピー吸収エネルギーが80J以上で良好と判定した。
【0054】
表2に示すように、本発明の範囲内の化学成分の鋼A〜Fを用いた鋼管は、十分な強度と良好な靭性並びに優れた耐SR特性が得られた。一方、本発明範囲から外れた化学成分の鋼G〜Iを用いた鋼管では、SR前後における母材あるいは熱影響部(HAZ)の靭性が十分ではなく、また、鋼Jでは母材の強度が十分ではない。
【0055】
表1に示した一部の鋼(鋼A,F,H)を用いた鋼管について、溶接金属を数種類ずつ変えて鋼管を製造した。溶接金属の化学成分を表3に示す。
【0056】
【表3】
【0057】
発明鋼Aを用いた鋼管1〜4は溶接金属A-1〜A-4の化学成分も本発明の範囲内であり、発明鋼管である。発明鋼Fを用いた鋼管5,6は、溶接金属F-1,F-2の化学成分も本発明の範囲内であり発明鋼管である。鋼管7〜9は、溶接金属F-3〜F-5の化学成分が本発明範囲から外れており比較鋼管である。比較鋼Hを用いた鋼管10〜12は溶接金属H-1〜H-3の化学成分も本発明範囲から外れており、比較鋼管である。
【0058】
これらの鋼管について、溶接まま及びSR(600℃×2hr)後の溶接金属の強度と靭性、並びにシーム溶接熱影響部(HAZ)の靭性を調査した。これらの調査結果を表4に示す。
【0059】
【表4】
【0060】
強度と靱性の判定については、溶接まま及びSR後とも、降伏強さが551MPa以上、引張強さが620MPa以上、シャルピー吸収エネルギーが80J以上で良好とした。表4に示すように、母材、溶接金属ともに発明範囲を満たす化学成分の発明鋼管1〜6の溶接金属A1〜F2は、十分な強度と靱性を示している。
【0061】
一方、溶接金属が発明範囲から外れている比較鋼管7〜12(溶接金属F3〜H3)は、いずれもSR前後における靭性が十分ではなく、また、SR前後における強度が十分ではない鋼管7,9,11(溶接金属F3,F5,H2)もあった。
【0062】
このように、母材並びに溶接金属が本発明の化学成分の範囲内の鋼管において初めて、母材部、溶接部共に良好な性能が得られることが分かる。母材が本発明の化学成分の範囲内でも、溶接金属が本発明の化学成分の範囲にない鋼管、及び、母材、溶接金属共に本発明の化学成分の範囲にない鋼管では、十分な機械的性質が得られないことが分かる。
【0063】
【発明の効果】
本発明では、母材中のSiを低減し、母材部及び溶接熱影響部のSR前後における靭性を確保し、溶接金属中のOを低減しNiを高めると共にBフリーでもTiを添加することにより、溶接金属のSR前後における靭性を確保することができる。このように、母材及び溶接金属の化学成分を規定することにより、母材部及び溶接部とも、耐SR特性に優れ、降伏強さが551MPa以上の高強度高靭性溶接鋼管を製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength, high-toughness welded steel pipe having a yield strength of a base material and a welded portion of 551 MPa or more and capable of exhibiting excellent SR characteristics.
[0002]
[Prior art]
In laying a pipeline, a forged product containing a large amount of alloy elements may be joined to a welded steel pipe such as a riser. When these piping materials are joined locally by circumferential welding, SR (stress relief annealing) is performed for the purpose of removing residual stress of the forged product resulting from welding. However, in terms of material, this SR deteriorates the characteristics, particularly toughness, of the seam welded portion of the welded steel pipe such as a riser. Therefore, a welded steel pipe to which such SR is applied is required to have a small deterioration in welded part characteristics before and after SR, that is, a high SR resistance.
[0003]
In recent years, welded steel pipes have a tendency to increase in strength due to thinning, and demand for steel sheets of X80 grade or higher is also increasing in welded steel pipes such as risers. As described above, several techniques have been proposed for manufacturing a high-strength welded steel pipe having SR resistance, such as Japanese Patent Publication No. 57-29540 and Japanese Patent Application Laid-Open No. 11-50188.
[0004]
As for the seam welded portion of high strength welded steel pipe, a weld metal containing Ti and B is formed in JP-B-57-27800 and JP-A-9-49055 in order to obtain good low temperature toughness of the welded portion. Techniques to make it have been proposed. In particular, the above Japanese Patent Publication No. 57-27800 describes a technique relating to a weld metal having excellent SR brittleness resistance.
[0005]
Japanese Patent Laid-Open No. 9-314379 proposes a technique using a wire containing 4.0 to 6.5 mass% of Ni for seam welding of a high-strength steel plate.
[0006]
[Problems to be solved by the invention]
However, the technique described in Japanese Patent Publication No. 57-29540 is a technique mainly related to X70 grade steel sheets, and does not mention the composition of seam welds. The technique described in Japanese Patent Laid-Open No. 11-50188 is a technique related to an X80 grade steel sheet, but does not examine the composition and characteristics of the seam weld where deterioration of toughness after SR becomes a problem.
[0007]
Further, as in the techniques described in Japanese Patent Publication Nos. 57-27800 and 9-49055, the weld metal used for the X80 grade steel sheet has a sufficient hardenability, and the cooling process after welding. Then, ferrite transformation is difficult. Accordingly, even if Ti and B are added together for the purpose of suppressing the formation of ferrite, the effect of improving the toughness of the welded portion is small.
[0008]
Furthermore, Japanese Patent Application Laid-Open No. 9-49055 and Japanese Patent Application Laid-Open No. 9-314379 do not mention the characteristics of the welded portion after SR.
[0009]
The present invention solves these problems of the prior art, the yield strength of the base material and the welded portion is 551 MPa or more (API 5L X80 grade), and high strength and high toughness capable of exhibiting excellent SR characteristics It aims at providing a welded steel pipe.
[0010]
[Means for Solving the Problems]
The above problems are solved by the following invention. The invention is mass%, C: 0.03-0.09%, Si: 0.05-0.20%, Mn: 1.2-2.0%, P: 0.02% or less, S : 0.002% or less, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.02%, Al: 0.01 to 0.04%, the balance being Fe and inevitable impurities A base material portion having a yield strength of 551 MPa or more, and in mass%, C: 0.07 to 0.12%, Si: 0.05 to 0.30%, Mn: 1.2 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ni: 0.5-2.5%, Mo: 0.3-1.0%, Ti: 0.005-0.04%, O : containing 0.015 to 0.035%, high strength and high toughness weld with a weld metal or yield strength 551MPa balance consisting of Fe and unavoidable impurities It is a tube.
[0011]
Here, the chemical component of the weld metal may further contain one or more of B: 0.0005 to 0.002%, Cu: 0.5% or less, and Cr: 1.0% or less. .
[0012]
Further, the chemical components of the base material part further include Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.3% or less, Ca: 0.0005. It is also possible to contain one or more of ˜0.0025%.
[0013]
These inventions have been made as a result of examining the influence of chemical components on the SR resistance characteristics of the base metal part and the seam welded part of a high-strength, high-toughness welded steel pipe. The chemical composition of the base metal and the weld metal was changed by the test, and the strength and toughness as-welded and after SR were investigated. In particular, during the investigation focusing on Si in the base material, it was found that the toughness before and after SR of the base material part and the weld heat affected zone can be secured by reducing this element and making it V-free.
[0014]
Moreover, the knowledge that the toughness before and after SR of a weld metal was securable was acquired by reducing O in a weld metal, raising Ni, and adding Ti even if it is B free. Hereinafter, the reasons for limiting the chemical components will be described.
[0015]
First, the reasons for limiting the chemical components of the base material will be described.
[0016]
C: 0.03-0.09%
C is necessary as a strengthening element, and if it is less than 0.03%, it is difficult to ensure a predetermined strength of X80. On the other hand, excessive addition exceeding 0.09% leads to deterioration of the toughness of the steel plate and the weld heat affected zone. Also, from the viewpoint of weldability and SR resistance characteristics of the weld metal, it is desirable to reduce the C content. Therefore, the C content is set in the range of 0.03 to 0.09%.
[0017]
Si: 0.05-0.20%
Si is added for deoxidation, but if it is less than 0.05%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.20%, the toughness and weldability of the weld heat affected zone are deteriorated. Therefore, the Si amount is set in the range of 0.05 to 0.20%.
[0018]
Mn: 1.2 to 2.0%
Mn is an element effective for improving the strength and toughness of the steel sheet, and its effect is small at less than 1.2%. On the other hand, when Mn is added exceeding 2.0%, the weldability, the toughness of the heat affected zone, and the SR resistance of the weld metal deteriorate. Therefore, the amount of Mn is set in the range of 1.2 to 2.0%.
[0019]
P: 0.02% or less P is contained as an impurity and lowers toughness, so it is desirable to reduce it as much as possible. However, excessive de-P in the steel making process increases the production cost, and therefore, a normal converter refining level is sufficient. When the amount of P exceeds 0.02%, it becomes difficult to ensure the toughness of the base material and the weld heat affected zone. Therefore, the P content is 0.02% or less.
[0020]
S: 0.002% or less Since S is contained as an impurity and reduces toughness, it is desirable to reduce it as much as possible. In general, inclusions can be refined by controlling the form of granulated particles from MnS to CaS by adding Ca, but in X80 grade high-strength steel, finely dispersed CaS-based inclusions can also cause toughness degradation. . This tendency becomes remarkable when S exceeds 0.002%, and toughness deteriorates. Therefore, the S content is 0.002% or less.
[0021]
Nb: 0.005 to 0.05%
Nb is an element that suppresses the growth of crystal grains and refines the microstructure and imparts sufficient toughness during heating and rolling of the slab. Therefore, Nb is necessary for high toughness steel, and the effect becomes remarkable at 0.005% or more. On the other hand, when the Nb content exceeds 0.05%, the effect is saturated and the toughness of the weld heat affected zone and the SR resistance of the weld metal are deteriorated. Therefore, the Nb content is within the range of 0.005 to 0.05%.
[0022]
Ti: 0.005-0.02%
Ti forms TiN and suppresses the growth of crystal grains in the slab and the welding heat affected zone during slab heating. As a result, Ti refines the microstructure and improves toughness, and the effect becomes significant at 0.005% or more. On the other hand, if the amount of Ti exceeds 0.02%, the toughness is deteriorated. Therefore, the Ti amount is set in the range of 0.005 to 0.02%.
[0023]
Al: 0.01-0.04
Al is added as a deoxidizing agent, and the effect is remarkable when 0.01% or more is added. When the addition amount of Al exceeds 0.01%, the toughness of the weld heat affected zone is deteriorated. Therefore, the Al content is set in the range of 0.01 to 0.04%.
[0024]
Furthermore, in the present invention, one or more of Cu, Ni, Cr, Mo, and Ca can be added as an optional additive element. Hereinafter, those elements will be described.
[0025]
Cu: 0.5% or less Cu is one of elements effective for improving toughness and increasing strength, but if it exceeds 0.5%, weldability is impaired. Therefore, when adding Cu, the amount of Cu shall be 0.5% or less.
[0026]
Ni: 0.5% or less Ni is one of elements effective for improving toughness and increasing strength, but when it exceeds 0.5%, the effect is saturated. Moreover, it is expensive as an additive element, and adding more than necessary is not preferable economically. Therefore, when adding Ni, the amount of Ni is made 0.5% or less.
[0027]
Cr: 0.5% or less Cr is an element effective for obtaining sufficient strength even at low C together with Mn. However, if it exceeds 0.5%, weldability is adversely affected. Therefore, when adding Cr, the Cr content is 0.5% or less.
[0028]
Mo: 0.3% or less Mo is one of the elements effective for improving toughness and increasing strength. However, if it exceeds 0.3%, the effect is saturated, and weldability and HIC resistance are improved. Inhibit. Therefore, when adding Mo, the amount of Mo is made 0.3% or less.
[0029]
Ca: 0.0005 to 0.0025%
Ca controls the form of sulfide inclusions and improves the toughness of the weld heat affected zone. This effect appears when 0.0005% or more is added. However, if it exceeds 0.0025%, not only the effect is saturated, but also the cleanliness is lowered to deteriorate the toughness of the heat affected zone. Therefore, the Ca content is within the range of 0.0005 to 0.0025%.
[0030]
Next, the reason for limiting the chemical component of the weld metal will be described. The weld metal is a portion that is melted and solidified by welding, and the chemical component of the weld metal is diluted with the base material in which the used wire is melted.
[0031]
C of weld metal: 0.07 to 0.12%
If C is less than 0.07%, it is difficult to ensure a predetermined strength of X80. On the other hand, from the viewpoint of weldability, it is desirable to reduce the C content, and addition exceeding 0.12% leads to deterioration of the toughness and SR resistance characteristics of the weld metal. Therefore, the C content of the weld metal is set in the range of 0.07 to 0.12%.
[0032]
Weld metal Si: 0.05 to 0.3%
Si is necessary to ensure deoxidation of the weld metal and good workability, and if it is less than 0.05%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.3%, the toughness and weldability of the weld heat affected zone will be deteriorated. Therefore, the Si content of the weld metal is set in the range of 0.05 to 0.30%.
[0033]
Mn of weld metal: 1.2 to 2.0%
Mn is added as an element effective for improving the strength and toughness of the weld metal, but if it is less than 1.2%, it is difficult to ensure a predetermined strength of X80 or more. On the other hand, when Mn is added exceeding 2.0%, toughness, SR resistance, and weldability are significantly deteriorated. Therefore, the Mn content of the weld metal is set in the range of 1.2 to 2.0%.
[0034]
P of weld metal: 0.02% or less P segregates at the grain boundaries of the weld metal to deteriorate toughness, and this tendency becomes significant when it exceeds 0.02%. Therefore, the P content of the weld metal is set to 0.02% or less.
[0035]
S of weld metal: 0.005% or less S segregates at the grain boundary of the weld metal to deteriorate toughness. When the content exceeds 0.005%, this tendency becomes remarkable. Therefore, the S amount of the weld metal is set to 0.005% or less.
[0036]
Weld metal Ni: 0.5-2.5%
Ni is an element effective for improving the toughness and increasing the strength of the weld metal, and is particularly effective for improving the toughness after SR. However, if it is less than 0.5%, the effect is not exhibited, and the SR resistance property of the weld metal is also inferior. On the other hand, even if Ni is added in excess of 2.5%, the effect on the SR resistance is saturated. Therefore, the Ni content of the weld metal is set in the range of 0.5 to 2.5%.
[0037]
Weld metal Mo: 0.3-1.0%
Mo has a high resistance to temper softening and is an element effective for securing the strength after SR. However, if it is less than 0.3%, the strength after SR cannot be obtained. On the other hand, if it exceeds 1.0%, the effect is saturated and weldability is impaired. Therefore, the Mo content of the weld metal is set in the range of 0.3 to 1.0%.
[0038]
Ti of weld metal: 0.005 to 0.04%
The addition of Ti brings about an improvement in toughness by refining the structure. If the amount of Ti is less than 0.005%, the effect is small. If the Ti amount exceeds 0.04%, the toughness is deteriorated. Therefore, the Ti amount of the weld metal is set within the range of 0.005 to 0.04%.
[0039]
Weld metal O (oxygen): 0.015-0.035%
O decreases the toughness by being reduced, but if it is reduced to less than 0.015%, the toughness tends to deteriorate. On the other hand, when the amount of O exceeds 0.035%, toughness deteriorates. Therefore, the O amount (oxygen amount) of the weld metal is set within a range of 0.015 to 0.035%.
[0040]
Further, in the present invention, one or more of B, Cu, and Cr can be added as an optional additive element of the weld metal. Hereinafter, the component ranges of these elements and the reasons for limitation will be described.
[0041]
B of weld metal: 0.0005 to 0.002%
B improves strength and improves toughness by improving the hardenability of the weld metal in the presence of Ti. If the amount of B is less than 0.0005%, the effect is small. If the amount of B exceeds 0.002%, the toughness is deteriorated. Therefore, when adding B to a weld metal, the amount of B is made into the range of 0.0005 to 0.002%.
[0042]
Cu in weld metal: 0.5% or less Cu is one of the elements effective for improving toughness and increasing strength in weld metal, but addition exceeding 0.5% inhibits weldability. Therefore, when adding Cu to a weld metal, the amount of Cu shall be 0.5% or less.
[0043]
Cr of weld metal: 1.0% or less Cr is an element effective for obtaining sufficient strength even in the weld metal, but if added over 1.0%, the weldability is adversely affected. Therefore, when adding Cr to the weld metal, the Cr content is 0.5% or less.
[0044]
In these means, “the balance is substantially iron” means that the inevitable impurities and other trace elements are included in the scope of the present invention unless the effects of the present invention are impaired. It means that it can be.
[0045]
DETAILED DESCRIPTION OF THE INVENTION
As described above, by using the base material of the chemical component of the present invention and forming the weld metal of the chemical component of the present invention, both the base material portion and the welded portion have high strength and high toughness before and after SR. Can be manufactured.
[0046]
The steel of the present invention can be melted using any method as long as it is a converter, an electric furnace, or any other manufacturing method that can control chemical components within the scope of the invention. The molten steel can be cast into a shape such as a slab, and a steel plate serving as a base material of a welded steel pipe can be manufactured by a thick plate mill or a hot rolling mill. In addition, in this invention, the manufacturing method of a steel plate is not specifically limited.
[0047]
This steel sheet is formed by UOE forming, press bend forming, roll forming or the like, and then welded and joined to produce a welded steel pipe. It is preferable to use submerged arc welding for welding and joining. In the present invention, the manufacturing method of the steel pipe is not particularly limited as long as it is cold working. Also, the welding method is not particularly limited as long as the chemical component of the weld metal satisfies the scope of the invention.
[0048]
The weld metal is a molten part during welding, and its chemical composition is determined by the wire and the base material dilution. Therefore, in order to adjust the chemical composition of the weld metal within the scope of the present invention, the steel pipe is considered in consideration of the chemical composition of the base metal and the wire, the welding method, and the dilution ratio of the chemical composition depending on the welding conditions (welding heat input). Need to manufacture.
[0049]
【Example】
Steel plates having chemical components shown in Table 1 were used to produce steel plates by hot rolling. Steels A to F in Table 1 are invention steels, and steels G to J are comparative steels. After cold forming these steel plates, steel pipes were manufactured by seam welding. For seam welding, submerged arc welding (heat input: 20 to 60 kJ / cm) was used for both the inner and outer surfaces of the steel pipe.
[0050]
[Table 1]
[0051]
For these steel pipes, the strength and toughness of the base metal as welded and after SR (600 ° C. × 2 hr) and the toughness of the seam weld heat affected zone (HAZ) were investigated. Table 2 shows the results of these investigations. Here, the strength is represented by yield strength YS (unit MPa) and tensile strength TS (unit MPa), and toughness is represented by Charpy absorbed energy vE -20 (unit J) at -20 ° C.
[0052]
[Table 2]
[0053]
As for the strength of the base material, it was determined that the yield strength was 551 MPa or more and the tensile strength was 620 MPa or more as-welded and after SR. As for the toughness of the base material, it was determined that the Charpy absorbed energy was 100 J or more, both as welded and after SR. About the toughness of the heat affected zone (HAZ), it was determined that the Charpy absorbed energy was 80 J or more, both as welded and after SR.
[0054]
As shown in Table 2, a steel pipe using steels A to F having chemical components within the scope of the present invention provided sufficient strength, good toughness, and excellent SR resistance. On the other hand, in steel pipes using steels G to I having chemical components outside the scope of the present invention, the toughness of the base material or heat-affected zone (HAZ) before and after SR is not sufficient, and in Steel J, the strength of the base material is low. Not enough.
[0055]
For steel pipes using some of the steels shown in Table 1 (steel A, F, H), steel pipes were manufactured by changing several types of weld metals. Table 3 shows the chemical composition of the weld metal.
[0056]
[Table 3]
[0057]
The steel pipes 1 to 4 using the inventive steel A are also invented steel pipes whose chemical components of the weld metals A-1 to A-4 are also within the scope of the present invention. The steel pipes 5 and 6 using the inventive steel F are invented steel pipes because the chemical components of the weld metals F-1 and F-2 are also within the scope of the present invention. The steel pipes 7 to 9 are comparative steel pipes because the chemical components of the weld metals F-3 to F-5 are out of the scope of the present invention. The steel pipes 10 to 12 using the comparative steel H are comparative steel pipes in which the chemical components of the weld metals H-1 to H-3 are also outside the scope of the present invention.
[0058]
For these steel pipes, the strength and toughness of the weld metal as welded and after SR (600 ° C. × 2 hr) and the toughness of the seam weld heat affected zone (HAZ) were investigated. These survey results are shown in Table 4.
[0059]
[Table 4]
[0060]
Regarding the determination of strength and toughness, both as welded and after SR, the yield strength was 551 MPa or more, the tensile strength was 620 MPa or more, and the Charpy absorbed energy was 80 J or more. As shown in Table 4, the weld metals A1 to F2 of the inventive steel pipes 1 to 6 having chemical components that satisfy the scope of the invention for both the base metal and the weld metal show sufficient strength and toughness.
[0061]
On the other hand, the comparative steel pipes 7 to 12 (welded metals F3 to H3) in which the weld metal is outside the scope of the invention are not sufficiently tough before and after SR, and are not sufficiently strong before and after SR. , 11 (welded metal F3, F5, H2).
[0062]
Thus, it turns out that a preform | base_material and a weld metal can obtain favorable performance for both a base material part and a welded part for the first time in the steel pipe within the range of the chemical composition of the present invention. Even if the base metal is within the range of the chemical composition of the present invention, the steel pipe where the weld metal is not within the range of the chemical composition of the present invention and the steel pipe where the base metal and the weld metal are not within the range of the chemical composition of the present invention are sufficient. It can be seen that the mechanical properties cannot be obtained.
[0063]
【The invention's effect】
In the present invention, Si in the base metal is reduced, the toughness before and after SR of the base metal part and the weld heat affected zone is secured, O in the weld metal is reduced, Ni is increased, and Ti is added even in B-free. Thus, toughness before and after SR of the weld metal can be ensured. In this way, by defining the chemical components of the base metal and the weld metal, it is possible to produce a high-strength, high-toughness welded steel pipe having excellent SR resistance characteristics and yield strength of 551 MPa or more for both the base metal part and the weld part. It becomes possible.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000247295A JP4380037B2 (en) | 2000-08-17 | 2000-08-17 | High strength high toughness welded steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000247295A JP4380037B2 (en) | 2000-08-17 | 2000-08-17 | High strength high toughness welded steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002060905A JP2002060905A (en) | 2002-02-28 |
JP4380037B2 true JP4380037B2 (en) | 2009-12-09 |
Family
ID=18737420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000247295A Expired - Lifetime JP4380037B2 (en) | 2000-08-17 | 2000-08-17 | High strength high toughness welded steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4380037B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6515324B2 (en) * | 2015-02-18 | 2019-05-22 | 日本製鉄株式会社 | Submerged arc welding metal of high strength UOE steel pipe excellent in SR resistance characteristics |
-
2000
- 2000-08-17 JP JP2000247295A patent/JP4380037B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002060905A (en) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5776860B1 (en) | Steel plates and line pipes for thick-walled high-strength line pipes with excellent sour resistance, crush resistance and low temperature toughness | |
JP5292784B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP5251092B2 (en) | Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same | |
JP4837807B2 (en) | High strength welded steel pipe and manufacturing method thereof | |
CN105452506B (en) | Electric resistance welded steel pipe excellent in weld zone quality and method for manufacturing same | |
JP5217385B2 (en) | Steel sheet for high toughness line pipe and method for producing the same | |
WO2018185851A1 (en) | Vertical-seam-welded steel pipe | |
JP5176271B2 (en) | Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same | |
JP6308151B2 (en) | Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP6008042B2 (en) | Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP2006233263A (en) | Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness | |
JP3972756B2 (en) | High strength line pipe with excellent low temperature toughness | |
JP4433844B2 (en) | Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone | |
JP2001158939A (en) | High strength and high toughness steel pipe excellent in resistance to stress relief annealing embrittlement | |
JP4539100B2 (en) | Super high heat input welded heat affected zone | |
JP5028761B2 (en) | Manufacturing method of high strength welded steel pipe | |
JP4964480B2 (en) | High strength steel pipe excellent in toughness of welded portion and method for producing the same | |
JP4380037B2 (en) | High strength high toughness welded steel pipe | |
JP4523908B2 (en) | Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof | |
JP4102103B2 (en) | Manufacturing method of high strength bend pipe | |
JP4259374B2 (en) | High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same | |
JP2000355729A (en) | High strength line pipe excellent in low temperature toughness | |
JP5659949B2 (en) | Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090901 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4380037 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |