JP4379550B2 - Low alloy steel with excellent resistance to sulfide stress cracking and toughness - Google Patents
Low alloy steel with excellent resistance to sulfide stress cracking and toughness Download PDFInfo
- Publication number
- JP4379550B2 JP4379550B2 JP2000083372A JP2000083372A JP4379550B2 JP 4379550 B2 JP4379550 B2 JP 4379550B2 JP 2000083372 A JP2000083372 A JP 2000083372A JP 2000083372 A JP2000083372 A JP 2000083372A JP 4379550 B2 JP4379550 B2 JP 4379550B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- steel
- content
- less
- ssc resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims description 10
- 238000005336 cracking Methods 0.000 title claims description 10
- 229910000851 Alloy steel Inorganic materials 0.000 title claims description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 55
- 239000010959 steel Substances 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 15
- 230000000171 quenching effect Effects 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910001566 austenite Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 23
- 238000005496 tempering Methods 0.000 description 19
- 230000001965 increasing effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、輸送用のラインパイプ、さらには石油化学プラント用配管などに好適な耐硫化物応力割れ性と靭性に優れた降伏応力が1060MPa(155ksi)以上の鋼材およびその製造方法に関する。
【0002】
【従来の技術】
近年のエネルギー事情の逼迫に伴い、これまで敬遠されてきた硫化水素を多く含む原油や天然ガスが活用される情勢になってきており、それらの掘削、輸送、貯蔵等が必要となってきた。さらに、油井やガス井の深井戸化、輸送効率の向上、さらには低コスト化のために、この分野で用いられる鋼材、特に鋼管については、これまで以上に高強度化が要求されている。
【0003】
すなわち、従来広く用いられていた80ksi級[降伏応力(YS)が80〜90ksi(552〜621MPa)や90ksi級[例えば、YSが90〜100ksi(621〜686MPa)]の耐硫化物応力割れ性に優れた鋼管に代わって、最近では110ksi級[YSが110〜125ksi(758〜862MPa)]や125ksi級[YSが125〜140ksi(862〜965MPa)]の耐硫化物応力割れ性に優れた高強度鋼管が使用されるようになり、さらにはYSが140ksi(965MPa〜1068MPa)以上の耐硫化物応力割れ性に優れた超高強度鋼管に対する要求も高まりつつある。
一般に、鋼材はその強度が増すほど硫化物応力割れ性(以後SSCという)が大きくなる。従って、硫化水素を多く含む環境下で使用される鋼材の高強度化に対し、最も大きな課題となるのはSSCに対する抵抗性(以後耐SSC性という)の改善である。
【0004】
耐SSC性の改善に関しては、(1)鋼を高清浄度化する、(2)鋼材の組織を細粒組織とする、(3)鋼材の組織をマルテンサイトが約80%以上の組織とする、(4)高温焼戻し処理すること等で達成されることが知られている。
【0005】
高強度鋼のSSCは旧オーステナイト粒界を起点として発生、進展すると言われているので、上記(1)のようにP、S等の不純物元素を低減して旧オーステナイト粒界の脆化を防止すれば耐SSC性の向上に有効である。
【0006】
また、粒径を細かくすれば割れに対する抑止力が増し、さらに単位体積当たりの粒界面積が増加し間接的に不純物元素の粒界偏析が軽減され粒界脆化が防止されることから、上記(2)のように組織の細粒化も耐SSC性の改善に有効である。上記(3)のようにマルテンサイト率を高めて均一組織とすること、上記(4)のように焼戻し温度を高くして内部歪みを低減すること等も耐SSC性の改善に有効であると言われている。
【0007】
例えば、特開昭62−253720号公報には、Mn、P等の不純物元素を低減することによる耐SSC性の改善方法が開示されている。また、特開昭59−232220号公報には、2回焼入れ熱処理により組織を微細化させ、耐SSC性を改善する方法が開示されている。特開平6−322478号公報には、誘導加熱により組織を微細化させた耐SSC性能に優れた125ksi級の鋼材を得る方法が開示されている。また、特開平8−311551号公報には、直接焼入法を用いて、焼入れ性や焼戻し温度を高めることにより、耐SSC性に優れた110ksi級〜140ksi級の強度の鋼管の製造方法について開示されている。
【0008】
ただし、これまでは110ksi級もしくはそれ以下の強度の鋼材に関する検討が多数を占め、それ以上の強度、例えば125〜140ksi級の鋼材の耐SSC性の改善は困難であることから、検討例は少ない。まして、155ksi級{YSが155ksi(1060MPa)以上}の強度の鋼材についての検討例は皆無である。
【0009】
一方、高強度化に伴う耐SSC性の低下に加えて、特にYSが140ksi(965MPa)以上の低合金鋼に関しては、靭性の低下も重大な問題となることが最近判明してきた。
【0010】
【発明が解決しようとする課題】
本発明の課題は、YSが1060MPa(155ksi)以上と高強度であっても耐SSC性および靭性に優れている鋼材を提供することにある。
【0011】
具体的な耐SSC性の目標は、NACE(National Association of Corrosion Engineers)TM0177−96A法に規定された浴(硫化水素で飽和した25℃の0.5%酢酸+5%食塩水)中での定荷重試験での割れ発生限界応力(σth)が、鋼材のYSの85%以上である。また、靭性の目標は、使用環境、運搬される環境を考慮し破面遷移温度(延性/脆性破面の面積比が1:1となる温度)が−10℃以下である。
【0012】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、実験、検討を重ねた結果、下記の知見をえるに至った。
【0013】
a)155ksi級鋼材の耐SSC性と靭性は炭化物の形態に大きく支配される。
【0014】
b)耐SSC性の改善には、正方晶構造の微細なMC型の炭化物(以下、単にMCと記す)を形成する元素であるMo、VおよびNbの合金元素を含有させて焼戻し温度を高めるのが効果的である。
【0015】
c)さらに、上記合金元素は、焼入れ性を高める作用があり、組織中のマルテンサイト率を多くして耐SSC性を改善する効果もある。
d)靭性の改善には、Nb、Vによる析出強化を極力避け、Moを活用してM3C型炭化物(以下、単にM3Cと記す)の成長を遅らせるのが最も効果的である。
【0016】
e)しかし、VはNbほどではないにせよ微細な炭化物として母材と整合性を保ちつつ析出し、靭性を低下させる。ただしV炭化物は通常の焼入れ温度の900℃近傍で十分鋼中に固溶し、後の焼戻し時の析出強化に寄与するため、粗粒化による靭性低下の問題は生じない。これに対して、MoはFe主体の粗大なM3C中に濃化し焼戻し温度を高め、かつこれらM3CはMCほど靭性を低下させない。このような観点から、Moを活用し、Vとうまくバランスさせて含有させることにより、耐SSC性と靭性とを同時に改善することができる。
【0017】
本発明は、上記知見に基づきなされたもので、その要旨は以下の通りである。
【0018】
(1)質量%で、C:0.2〜0.35%、Si:0.05〜0.5%、Mn:0.1〜1%、P:0.025%以下、S:0.01%以下、Cr:0.1〜1.2%、Mo:0.1〜1%、B:0.0001〜0.005%、Al:0.005〜0.1%、N:0.01%以下、V:0.05〜0.5%、Ni:0.1%以下、O(酸素):0.01%以下、Nb:0.005〜0.1%およびTi:0.005〜0.03%を含有し、残部Feおよび不純物からなり、MoおよびV含有量が下記式(1)および(2)を満たし、降伏応力が1060MPa(155ksi)以上であることを特徴とする耐硫化物応力割れ性および靭性に優れた低合金鋼材。
【0019】
0.060≦Mo×V≦0.3・・・(1)
0.5×Mo−V+GS/10≧1・・・(2)
ここで、元素記号は各元素の含有量(質量%)を、GSは旧オーステナイト粒のASTM粒度番号を示す。
【0020】
(2)Feの一部に替えて、0.3〜1%のWを含有している上記(1)に記載の低合金鋼材。
【0021】
(3)上記(1)または(2)に記載した化学組成の鋼を熱間加工し、次いで880〜950℃の温度範囲内の温度に10分間以上保持した後焼入れ処理をおこない、その後焼戻し処理することを特徴とする耐硫化物応力割れ性および靭性に優れた降伏強度が1060MPa(155kis)以上の低合金鋼材の製造方法。
【0022】
【発明の実施の形態】
以下、本発明の鋼材の化学組成および製造条件について詳しく説明する。なお、化学成分の含有量の「%」表示は「質量%」を示す。
【0023】
鋼材の化学組成:
C:0.2〜0.35%
Cは、焼入れ性を高めて強度を向上させるのに有効な元素である。その含有量が、0.2%未満では焼入れ性が低下し十分な耐SSC性、靭性が得られないことが多い。一方、0.35%を超えると、炭化物が増加し水素のトラップサイトとなって耐SSC性が低下し、さらには焼割れ感受性も増大する。したがって、Cの含有量を0.2〜0.35%とした。好ましくは0.25〜0.30%である。
【0024】
Si:0.05〜0.5%
Siは、鋼の脱酸に有効な元素であり、焼戻し軟化抵抗を高める効果もある。脱酸の目的からは0.05%以上の含有量とする必要がある。しかし、その含有量が0.5%を超えると、軟化相のフェライト相の析出を促進し耐SSC性を著しく低下させる。したがって、Siの含有量を0.05〜0.5%とした。好ましいSi含有量の上限は0.3%である。
【0025】
Mn:0.1〜1%
Mnは、鋼の焼入れ性を確保するのに有効な元素である。この目的からは0.1%以上の含有量が必要である。しかし、1%を超えて含有させると粒界に偏析して耐SSC性および靭性を低下させる。したがって、Mnの含有量を0.1〜1%とした。なお、Mn含有量の上限は望ましくは0.5%である。
【0026】
P:0.025%以下
Pは、不純物として鋼中に不可避的に存在するが、粒界に偏析して耐SSC性や靭性を劣化させる。特にその含有量が0.025%を超えると耐SSC性や靭性の劣化が著しくなる。このため、不純物として混入するとしてもその含有量は0.025%以下にする必要がある。なお、耐SSC性や靭性を高めるためにPの含有量はできるだけ低くすることが望ましい。
【0027】
S:0.01%以下
Sは、Pと同様に不純物として鋼中に不可避的に存在するが、粒界に偏析することと、硫化物系の介在物を多量に生成することによって耐SSC性や靭性を低下させる。特に、その含有量が0.01%を超えると耐SSC性や靭性の低下が著しくなる。したがって、不純物として混入するとしてもその含有量は0.01%以下にする必要がある。なお、耐SSC性を高めるためにSの含有量はできるだけ低くすることが望ましい。
【0028】
Cr:0.1〜1.2%
Crは、焼入れ性を向上させる効果がある。この効果を確実に得るためにはCrの含有量は0.1%以上とする必要がある。しかし、Crを1.2%を超えて含有させると、硫化水素を含む酸性の湿潤環境ではCrが活性溶解して腐食速度が大きくなり耐SSC性を低下させる。したがって、Crの含有量を0.1〜1.2%とした。好ましくは0.4〜1%である。
【0029】
Mo:0.1〜1%
Moは、焼入れ性を向上させ、かつM3C中に濃化してその成長を遅らせ焼き戻し軟化抵抗を高める本発明における重要な元素である。また、Nb、Vと同時に添加すると微細なMCを形成し高温焼戻しを可能にし、耐SSC性を向上させる。その含有量が0.1%未満では前記の効果が得られない。一方、1%を超えて含有させると、上記の効果が飽和するのに加え、焼戻し時に針状のMo炭化物が析出して水素をトラップして吸蔵水素量を増し、かつその周辺の応力集中により耐SSC性を却って低下させることがある。したがって、Moの含有量を0.1〜1%とした。好ましくは0.3〜0.7%である。
【0030】
B:0.0001〜0.005%
Bは、微量で鋼の焼入れ性を向上させる作用を有する。しかし、その含有量が0.0001%未満ではその効果が充分でなく、0.01%を超えると粒界にCr23(C、B)6を析出させ、耐SSC性および靭性が低下するため、Bの含有量を0.0001〜0.005%とした。なお、B含有量の望ましい範囲は、0.0002〜0.002%である。
【0031】
Al:0.005〜0.1%
Alは、鋼の脱酸に必要な元素である。しかし、その含有量が0.005%未満では十分な効果が得られない。一方、0.1%を超えて含有させると粗大なAl系介在物が多くなって、耐SSC性および靭性が低下する。したがって、Alの含有量を0.005〜0.1%とした。Al含有量の望ましい範囲は0.01〜0.05%である。なお、本発明でいうAlとは所謂「sol.Al(酸可溶Al)」のことである。
【0032】
V:0.05〜0.5%
Vは、焼戻し時に微細な炭化物として析出して高温焼戻しを可能とし、耐SSC性を改善する作用を有する本発明における重要な元素である。この効果を確実に得るには0.05%以上とする必要がある。一方、V含有量が0.5%を超えると効果が飽和して強化に寄与しなくなることに加え、靭性の低下や、VCが水素のトラップサイトとなることによる耐SSC性の低下が起こる。このため、Vの含有量を0.05〜0.5%とした。望ましくは0.1%を超え、0.2%以下である。
【0033】
Ni:0.1%以下
Niは、不純物として鋼中に存在し、本発明で規定する化学組成の範囲の鋼においては耐SSC性を低下させる。特に、Niの含有量が0.1%を超えると耐SSC性の低下が著しくなる。したがって、Niの含有量を0.1%以下とした。なお、Niは、Cr原料中に不可避的に含まれており、Crを含有させる場合、Niの含有量を0(ゼロ)にすることは工業的に極めて難しいが、できるだけ少なくすることが望ましい。
【0034】
N:0.01%以下
Nは、不純物として鋼中に存在し、粒界に偏析して靭性および耐SSC性を低下させる。また、TiやZrを添加する場合は、TiNやZrNを形成する。Nの含有量が0.01%を超えると、TiやZrで固定しきれないNがBNとして析出するので、Bも焼入れ性向上効果が十分得られなく、耐SSC性や靭性が低下する。また、過剰なTiNやZrNの析出は靭性を大幅に低下させる。したがって、Nの含有量を0.01%以下とした。なお、Nは大気中などから鋼中に侵入し、その含有量を0(ゼロ)にすることは工業的に極めて難しいが、できるだけ少なくすることが望ましい。
【0035】
O(酸素):0.01%以下
Oは、不純物として鋼中に存在し、粒界に偏析して耐SSC性および靭性を低下させる。しかし、その含有量が0.01%以下であれば許容できることから、Oの含有量を0.01%以下とした。なお、Oは大気中などから鋼中に侵入し、その含有量を0(ゼロ)にすることは工業的に極めて難しいが、できるだけ少なくすることが望ましい。
【0036】
Nb:0.005〜0.1%
Nbは、通常の焼入れ、焼戻し熱処理では未固溶の炭化物として存在し、ピニング効果により細粒化に有効である。また、直接焼入れ法により焼入れ時に完全に固溶させとともに焼戻し温度を高めれば、焼戻し軟化抵抗を高めることに活用でき、耐SSC性を高めることもできる。この効果を得るためには、Nbを0.005%以上含有させる必要がある。一方、0.1%を超えて含有させるとNb炭化物が靭性を大幅に低下させる。従って、Nbの含有量を0.005〜0.1%とした。望ましいNbの上限は0.05%である。
【0037】
Ti:0.005〜0.03%
Tiは、鋼中の不純物であるNをTiNとして固定する効果がある。N固定に必要とするよりも過剰なTiは、炭化物となって微細に析出し、焼戻し軟化抵抗を高める効果を有する。Nの固定は、焼入れ性向上のために添加するBがBNとなるのを抑制し、Bを固溶状態に維持して充分な焼入れ性を確保するために必要である。こうした効果を得るには、Tiは0.005%以上含有させる必要がある。なお、Tiの含有量は0.005%以上で、かつ窒化物を形成するのに必要な化学量論量以上とするのがよい。Tiの含有量が0.03%を超えると、微細なTi炭化物が過剰に析出し靭性を大きく低下させるので、その上限は0.03%とした。望ましいTiの上限値は0.02%である。
【0038】
W:0.3〜1%
Wは、必要により含有させる。含有させれば焼入れ性を高め、焼戻し軟化抵抗を高めて耐SSC性を向上させる作用を有する。前記の効果を確実に発揮させるには、Wの含有量は0.3%以上とすることが好ましい。しかし、1%を超えて含有させると前記の効果が飽和あるいは低下するのに加え、過剰なW炭化物が水素のトラップサイトとなって却って耐SSC性が低下する。したがって、Wの含有量を0.3〜1%とした。なお、W含有量の上限は0.7%とすることが好ましい。
【0040】
(1)および(2)式
0.060≦Mo×V≦0.3・・・・(1)
0.5×Mo−V+GS/10≧1・・・・(2)
本発明の降伏応力が155ksi以上の低合金鋼材では、耐SSC性と靭性とを両立させるためには、MoとVが下記式を満たす量とする必要がある。
【0041】
耐SSC性向上の観点からは、下記式のようにMo×Vが0.060以上となるように含有させ、析出強化を活用し焼戻し温度を高める必要がある。
【0042】
0.060≦Mo×V
一方、過剰のMoおよびVによる析出強化は、MCが水素のトラップサイトとなるので耐SSC性を却って低下させる。このため、下記の(1)式のようにMo×Vが0.3以下となるようにする必要がある。
【0043】
Mo×V≦0.3・・・(1)
靭性の観点からは、Vによる析出強化よりも、MoによるM3Cの成長抑止効果を用いた方がよい。この理由は、整合歪みを周囲に固着するVCよりも、非整合析出するM3Cの方が靭性に対する感受性が低いためである。Moは、このM3C中に濃化してその成長を遅らせ、焼戻し軟化抵抗を高める働きがある。また、靭性は旧オーステナイト粒径の影響も受けるため、より細粒組織とするのが望ましい。これらの観点から、Vや粒度に対して、Moを下式(2)を満足するように含有させる必要がある。
【0044】
0.5×Mo−V+GS/10≧1・・・(2)
GSは、旧オーステナイト粒のASTM粒度番号を示す。
【0045】
製造方法:
本発明の鋼材は、上記の化学組成を有する鋼を用いて、板材や継目無鋼管等に熱間加工した後、焼入れ処理を実施し組織を再結晶させ、結晶粒を微細化することにより得られる。この際、焼入れ温度が880℃未満であると十分な焼入れができなく、局部的に軟化相ができて耐SSC性が低下する。一方、焼入れ温度が950℃を超えた場合、結晶粒の粗大化が起こって靭性が低下する。焼戻し温度は特に限定しないが600〜700℃の範囲が好ましい。高い温度で焼戻すことにより、内部歪みが低減されたり、M3Cが均一分散して耐SSC性がより向上する。
なお、直接焼入れ後や、数回の焼入れ焼戻しの後、最終的に上記の温度範囲で焼入れ処理をすればよいが、製造コスト低減の観点から焼入れ、焼戻し処理は一回にするのが望ましい。
【0046】
【実施例】
表1に示す化学組成を有する16種の低合金鋼を150kg真空溶解炉および150トン転炉にて溶製して鋼塊とした後、熱間加工して鋼板と鋼管を製造した。
【0047】
【表1】
表中の鋼符号(A)、(B)、(L)および(M)が転炉溶製材で、その他は真空溶解材である。
【0048】
真空熔解した各150kg鋼塊は、1250℃に加熱してから熱間鍛造して厚さ40mm、幅80mm、長さ250mmの鋼片とした。この鋼片を熱間圧延して厚さ15mmの鋼板とし、表2に示す温度で焼入れ、焼戻し熱処理を施し強度調整した。
【0049】
また、転炉溶製材は丸ビレットにして、通常のマンネスマン/マンドレルミル方式の製管方法により、外径250mm、肉厚16mmの継目無鋼管を製造した。
【0050】
【表2】
上記の鋼板および継目無鋼管から、平行部が圧延方向になるように、平行部が直径6mm、長さ40mmの丸棒引張試験片を採取し、室温で引張試験をおこなって、降伏応力(YS)を測定した。
【0051】
また、平行部の直径が6.35mmで長さが25.4mmの丸棒引張試験片を平行部が圧延方向となるように採取し、NACETM0177−96A法に準拠した方法で耐SSC性の評価試験をおこなった。この試験は、硫化水素で飽和した25℃の0.5%酢酸+5%食塩水中での定荷重試験で、硫化水素の分圧は実環境を想定し0.003気圧、また応力はYSの85%を負荷した。
【0052】
また、靱性を評価するため、圧延方向と直交する方向に平行に10mm×10mm×55mmのシャルピー試験片(Vノッチ)を採取した。この試験片の採取方向を圧延方向と直交する方向にしたのは、圧延方向と直交する方向での評価の方が長手方向の評価に比べ過酷な条件となるためである。
この試験片を用いて、種種の温度で衝撃試験を実施し、破面中の延性破面と脆性破面の面積比が1:1になる温度を破面遷移温度vTsとした。
【0053】
表2に測定したYSおよび耐SSC性と靱性のの評価結果を示す。耐SSCの評価は、720時間の試験時間中に破断しなかった場合を耐SSC性が良好と判定し○印とし、破断した場合を×とした。
【0054】
なお、表2中に示した旧オーステナイト相の粒径は、焼戻し材から顕微鏡試験片を採取し、樹脂埋めして研磨し、表面をナイタル溶液で腐食後、JISG0551に従う方法で粒度番号を測定しものである。
表2から明らかなように、本発明で規定する化学組成、粒度番号の鋼材は良好な耐SSC性と靭性を併せて有していることがわかる。一方、比較例では、化学組成、粒度が本発明の規定を満たしていないので、耐SSC性もしくは靭性が十分でないことが認められる。
【0055】
【発明の効果】
本発明によれば、YSが1060MPa(155ksi)以上の高強度であっても良好な耐SSC性と靭性を併せ持つ鋼材が得られ、油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、輸送用のラインパイプ、さらには石油化学プラント用配管などに用いて優れた効果を奏し、産業上極めて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a yield stress excellent in sulfide stress cracking resistance and toughness suitable for casings and tubing for oil wells and gas wells, drill pipes for drilling, line pipes for transportation, and piping for petrochemical plants. Relates to a steel material of 1060 MPa (155 ksi) or more and a method for producing the same.
[0002]
[Prior art]
With the recent tightening of the energy situation, crude oil and natural gas containing a lot of hydrogen sulfide, which has been avoided in the past, has come to be used, and it has become necessary to drill, transport, and store them. Further, in order to deepen oil wells and gas wells, improve transportation efficiency, and reduce costs, steel materials used in this field, particularly steel pipes, are required to have higher strength than ever.
[0003]
That is, 80 ksi class [yield stress (YS) is 80 to 90 ksi (552 to 621 MPa) or 90 ksi class [for example, YS is 90 to 100 ksi (621 to 686 MPa)] which has been widely used in the past. In place of excellent steel pipes, recently, 110 ksi class [YS is 110 to 125 ksi (758 to 862 MPa)] and 125 ksi class [YS is 125 to 140 ksi (862 to 965 MPa)] and high strength with excellent resistance to sulfide stress cracking. Steel pipes are used, and further, there is an increasing demand for ultra-high-strength steel pipes having excellent sulfide stress cracking resistance with YS of 140 ksi (965 MPa to 1068 MPa) or more.
In general, as the strength of steel increases, sulfide stress cracking (hereinafter referred to as SSC) increases. Therefore, the biggest challenge for increasing the strength of steel materials used in an environment containing a large amount of hydrogen sulfide is the improvement of resistance to SSC (hereinafter referred to as SSC resistance).
[0004]
Regarding the improvement of SSC resistance, (1) making the steel highly clean, (2) making the steel structure fine-grained, and (3) making the steel structure a martensite structure of about 80% or more. (4) It is known to be achieved by high-temperature tempering treatment.
[0005]
SSC of high-strength steel is said to start and develop from the prior austenite grain boundaries, so as to prevent the embrittlement of the prior austenite grain boundaries by reducing impurity elements such as P and S as in (1) above. This is effective for improving the SSC resistance.
[0006]
In addition, if the particle size is made finer, the deterrence against cracking increases, and further, the grain boundary area per unit volume increases, which indirectly reduces grain boundary segregation of the impurity element and prevents grain boundary embrittlement. As in (2), the refinement of the structure is also effective in improving the SSC resistance. It is effective to improve the SSC resistance to increase the martensite ratio as described in (3) above to obtain a uniform structure and to increase the tempering temperature and reduce internal strain as described in (4) above. It is said.
[0007]
For example, Japanese Patent Laid-Open No. 62-253720 discloses a method for improving SSC resistance by reducing impurity elements such as Mn and P. Japanese Patent Application Laid-Open No. 59-232220 discloses a method for improving the SSC resistance by refining the structure by twice quenching heat treatment. Japanese Patent Application Laid-Open No. 6-322478 discloses a method of obtaining a 125 ksi class steel material having excellent SSC resistance and having a fine structure by induction heating. JP-A-8-31551 discloses a method for producing a steel pipe having a strength of 110 ksi class to 140 ksi class having excellent SSC resistance by increasing the hardenability and tempering temperature using a direct quenching method. Has been.
[0008]
However, many studies have been made on steel materials having a strength of 110 ksi class or lower, and it is difficult to improve the SSC resistance of steel materials having a strength higher than that, for example, 125 to 140 ksi class. . Moreover, there are no examples of studies on steel materials having a strength of 155 ksi class {YS is 155 ksi (1060 MPa) or more}.
[0009]
On the other hand, it has recently been found that in addition to the decrease in SSC resistance accompanying the increase in strength, particularly in low alloy steels with YS of 140 ksi (965 MPa) or more, the decrease in toughness is also a serious problem.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a steel material excellent in SSC resistance and toughness even if YS is as high as 1060 MPa (155 ksi) or higher.
[0011]
The specific SSC resistance target was determined in a bath specified in the NACE (National Association of Corrosion Engineers) TM0177-96A method (0.5% acetic acid at 25 ° C. + 5% saline saturated with hydrogen sulfide). The crack initiation limit stress (σth) in the load test is 85% or more of YS of the steel material. In addition, the target of toughness is a fracture surface transition temperature (temperature at which the area ratio of ductility / brittle fracture surface becomes 1: 1) is −10 ° C. or less in consideration of the use environment and the transport environment.
[0012]
[Means for Solving the Problems]
As a result of repeated experiments and studies to solve the above problems, the present inventors have obtained the following knowledge.
[0013]
a) The SSC resistance and toughness of 155 ksi class steel are largely governed by the form of carbide.
[0014]
b) To improve SSC resistance, alloy elements of Mo, V, and Nb, which are elements that form fine MC type carbides (hereinafter simply referred to as MC) having a tetragonal crystal structure, are included to increase the tempering temperature. the is Ru Oh effective.
[0015]
c) Furthermore, the above alloy elements have the effect of enhancing the hardenability, and also have the effect of improving the SSC resistance by increasing the martensite ratio in the structure.
d) For the improvement of toughness, it is most effective to avoid the precipitation strengthening by Nb and V as much as possible and to use Mo to delay the growth of M 3 C type carbide (hereinafter simply referred to as M 3 C).
[0016]
e) However, V precipitates as fine carbides, though not as much as Nb, while maintaining consistency with the base material, and lowers toughness. However, V carbide is sufficiently dissolved in steel at around 900 ° C., which is the normal quenching temperature, and contributes to precipitation strengthening during subsequent tempering, so that the problem of toughness reduction due to coarsening does not occur. On the other hand, Mo concentrates in coarse M 3 C mainly composed of Fe and raises the tempering temperature, and these M 3 Cs do not lower toughness as much as MC. From such a point of view, SSC resistance and toughness can be improved at the same time by utilizing Mo and containing it in a well-balanced manner with V.
[0017]
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0018]
(1) By mass%, C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.00. 01% or less, Cr: 0.1-1.2%, Mo: 0.1-1%, B: 0.0001-0.005%, Al: 0.005-0.1%, N: 0.00. 01% or less, V: 0.05 to 0.5%, Ni: 0.1% or less, O (oxygen): 0.01% or less , Nb: 0.005 to 0.1%, and Ti: 0.005 -0.03% , consisting of Fe and impurities, Mo and V contents satisfy the following formulas (1) and (2), and yield stress is 1060 MPa (155 ksi) or more. Low alloy steel with excellent sulfide stress cracking and toughness.
[0019]
0.060 ≦ Mo × V ≦ 0.3 (1)
0.5 × Mo−V + GS / 10 ≧ 1 (2)
The content of each element symbol of element (mass%), GS is shows the ASTM grain size number of prior austenite grains.
[0020]
(2) The low alloy steel material according to the above (1), which contains 0.3 to 1% of W instead of part of Fe .
[0021]
( 3 ) Hot working the steel having the chemical composition described in (1) or (2 ) above, then holding it at a temperature within the temperature range of 880 to 950 ° C. for 10 minutes or more, and then performing a tempering treatment. A method for producing a low alloy steel material having a yield strength excellent in sulfide stress cracking resistance and toughness of 1060 MPa (155 kis) or more.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the chemical composition and production conditions of the steel material of the present invention will be described in detail. In addition, "%" display of the content of chemical components indicates "% by mass".
[0023]
Chemical composition of steel:
C: 0.2 to 0.35%
C is an element effective for improving the hardenability and improving the strength. If the content is less than 0.2%, the hardenability is lowered and sufficient SSC resistance and toughness are often not obtained. On the other hand, if it exceeds 0.35%, carbides increase to serve as hydrogen trap sites, resulting in a decrease in SSC resistance and an increase in susceptibility to burning cracks. Therefore, the content of C is set to 0.2 to 0.35%. Preferably it is 0.25 to 0.30%.
[0024]
Si: 0.05-0.5%
Si is an element effective for deoxidation of steel and has an effect of increasing temper softening resistance. For the purpose of deoxidation, the content must be 0.05% or more. However, if its content exceeds 0.5%, precipitation of the ferrite phase of the softening phase is promoted and the SSC resistance is remarkably lowered. Therefore, the Si content is set to 0.05 to 0.5%. The upper limit of the preferable Si content is 0.3%.
[0025]
Mn: 0.1 to 1%
Mn is an effective element for ensuring the hardenability of steel. For this purpose, a content of 0.1% or more is necessary. However, if it exceeds 1%, it segregates at the grain boundary and decreases the SSC resistance and toughness. Therefore, the Mn content is set to 0.1 to 1%. Note that the upper limit of the Mn content is desirably 0.5%.
[0026]
P: 0.025% or less P is unavoidably present in the steel as an impurity, but segregates at the grain boundaries to deteriorate the SSC resistance and toughness. In particular, when the content exceeds 0.025%, the SSC resistance and toughness deteriorate significantly. For this reason, even if it mixes as an impurity, the content needs to be 0.025% or less. In order to improve SSC resistance and toughness, the P content is desirably as low as possible.
[0027]
S: 0.01% or less S is unavoidably present in the steel as an impurity as in the case of P. However, S is resistant to SSC by segregating at grain boundaries and producing a large amount of sulfide-based inclusions. And reduce toughness. In particular, when the content exceeds 0.01%, the SSC resistance and toughness are significantly lowered. Therefore, even if it mixes as an impurity, the content needs to be 0.01% or less. In addition, in order to improve SSC resistance, it is desirable to make S content as low as possible.
[0028]
Cr: 0.1-1.2%
Cr has the effect of improving hardenability. In order to reliably obtain this effect, the Cr content needs to be 0.1% or more. However, when Cr is contained in excess of 1.2%, Cr is actively dissolved in an acidic wet environment containing hydrogen sulfide, the corrosion rate is increased, and the SSC resistance is lowered. Therefore, the content of Cr is set to 0.1 to 1.2%. Preferably it is 0.4 to 1%.
[0029]
Mo: 0.1 to 1%
Mo is an important element in the present invention that improves hardenability and concentrates in M 3 C to delay its growth and increase temper softening resistance. Further, when added simultaneously with Nb and V, fine MC is formed, enabling high-temperature tempering and improving SSC resistance. If the content is less than 0.1%, the above effect cannot be obtained. On the other hand, if the content exceeds 1%, the above effects are saturated, and needle-like Mo carbides precipitate during tempering, trapping hydrogen, increasing the amount of occluded hydrogen, and stress concentration around it. The SSC resistance may be reduced instead. Therefore, the content of Mo is set to 0.1 to 1%. Preferably it is 0.3 to 0.7%.
[0030]
B: 0.0001 to 0.005%
B has the effect of improving the hardenability of the steel in a small amount. However, if the content is less than 0.0001%, the effect is not sufficient, and if it exceeds 0.01%, Cr 23 (C, B) 6 is precipitated at the grain boundary, and the SSC resistance and toughness are lowered. , B content was 0.0001 to 0.005%. In addition, the desirable range of B content is 0.0002 to 0.002%.
[0031]
Al: 0.005 to 0.1%
Al is an element necessary for deoxidation of steel. However, if the content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, when the content exceeds 0.1%, coarse Al inclusions increase, and the SSC resistance and toughness are deteriorated. Therefore, the Al content is set to 0.005 to 0.1%. A desirable range of the Al content is 0.01 to 0.05%. In addition, Al as used in the field of this invention is what is called "sol.Al (acid-soluble Al)".
[0032]
V: 0.05-0.5%
V is an important element in the present invention that has the effect of precipitating as fine carbides during tempering to enable high-temperature tempering and improving SSC resistance. In order to obtain this effect reliably, it is necessary to make it 0.05% or more. On the other hand, if the V content exceeds 0.5%, the effect is saturated and does not contribute to strengthening. In addition, the toughness is lowered and the SSC resistance is lowered due to the VC becoming a hydrogen trap site. For this reason, the V content is set to 0.05 to 0.5%. Desirably, it exceeds 0.1% and is 0.2% or less.
[0033]
Ni: 0.1% or less Ni is present in the steel as an impurity, and lowers the SSC resistance in the steel having the chemical composition defined in the present invention. In particular, when the Ni content exceeds 0.1%, the SSC resistance is significantly lowered. Therefore, the Ni content is set to 0.1% or less. Ni is inevitably contained in the Cr raw material. When Cr is contained, it is extremely difficult industrially to make the Ni content 0 (zero), but it is desirable to reduce it as much as possible.
[0034]
N: 0.01% or less N is present in the steel as an impurity and segregates at the grain boundary to lower toughness and SSC resistance. When adding Ti or Zr, TiN or ZrN is formed. If the N content exceeds 0.01%, N that cannot be fixed by Ti or Zr precipitates as BN, so that B cannot sufficiently improve the hardenability, and the SSC resistance and toughness are lowered. In addition, excessive precipitation of TiN or ZrN significantly reduces toughness. Therefore, the N content is set to 0.01% or less. Note that N penetrates into the steel from the atmosphere or the like and its content is 0 (zero) industrially very difficult, but it is desirable to reduce it as much as possible.
[0035]
O (oxygen): 0.01% or less O is present in the steel as an impurity, and segregates at the grain boundary to lower the SSC resistance and toughness. However, since it is acceptable if the content is 0.01% or less, the content of O is set to 0.01% or less. Note that it is extremely difficult industrially to enter O into the steel from the atmosphere or the like and make its content 0 (zero), but it is desirable to reduce it as much as possible.
[0036]
Nb: 0.005 to 0.1%
Nb is usually the hardening and tempering heat treatment exist as carbides undissolved, is effective for grain refining by pinning effect. Further, if the solid quenching method is used to completely dissolve at the time of quenching and the tempering temperature is raised, it can be used to increase the temper softening resistance, and the SSC resistance can be enhanced. In order to acquire this effect, it is necessary to contain Nb 0.005% or more. On the other hand, if the content exceeds 0.1%, Nb carbides significantly reduce toughness. Therefore, the Nb content is set to 0.005 to 0.1%. A desirable upper limit of Nb is 0.05%.
[0037]
Ti: 0.005 to 0.03%
Ti has an effect of fixing N, which is an impurity in steel , as TiN. Excess Ti than necessary for N fixation becomes a carbide and precipitates finely, and has the effect of increasing the temper softening resistance. Fixing N is necessary for suppressing B added to improve hardenability to become BN and maintaining B in a solid solution state to ensure sufficient hardenability. These effects to Ru obtained, Ti content should be 0.005% or more. Note that the Ti content is preferably 0.005% or more and more than the stoichiometric amount necessary for forming the nitride. If the Ti content exceeds 0.03%, fine Ti carbides are excessively precipitated and the toughness is greatly reduced, so the upper limit was made 0.03%. A desirable upper limit of Ti is 0.02%.
[0038]
W: 0.3-1%
W is contained if necessary. If contained, it has the effect of improving hardenability, increasing temper softening resistance, and improving SSC resistance. In order to ensure the above effects, the W content is preferably 0.3% or more. However, if the content exceeds 1%, the above effect is saturated or lowered, and excessive W carbide becomes a hydrogen trap site, and the SSC resistance is lowered. Therefore, the W content is set to 0.3 to 1%. The upper limit of the W content is preferably 0.7%.
[0040]
Equations (1) and (2)
0.060 ≦ Mo × V ≦ 0.3 (1)
0.5 × Mo−V + GS / 10 ≧ 1 (2)
In the low alloy steel having a yield stress of 155 ksi or more according to the present invention, it is necessary that Mo and V satisfy the following formulas in order to achieve both SSC resistance and toughness.
[0041]
From the viewpoint of improving SSC resistance, it is necessary to contain Mo × V to be 0.060 or more as shown in the following formula, and to increase the tempering temperature by utilizing precipitation strengthening.
[0042]
0.060 ≦ Mo × V
On the other hand, precipitation strengthening due to excessive Mo and V lowers the SSC resistance because MC becomes a hydrogen trap site. For this reason, Mo × V is 0 as shown in the following equation (1). 3 it is necessary to become hereinafter.
[0043]
Mo × V ≦ 0.3 (1)
From the viewpoint of toughness, it is better to use the growth inhibiting effect of M 3 C due to Mo than to precipitation strengthening due to V. This is because M 3 C, which undergoes inconsistent precipitation, is less sensitive to toughness than VC in which matched strain is fixed around. Mo has a function of concentrating in M 3 C to delay its growth and increase the temper softening resistance. Further, since the toughness is affected by the prior austenite grain size, it is desirable to have a finer grain structure. From these viewpoints, it is necessary to contain Mo so as to satisfy the following formula (2) with respect to V and particle size.
[0044]
0.5 × Mo−V + GS / 10 ≧ 1 (2)
GS indicates the ASTM grain size number of prior austenite grains.
[0045]
Production method:
The steel material of the present invention is obtained by hot working into a plate material or a seamless steel pipe using a steel having the above chemical composition, followed by quenching to recrystallize the structure and refine crystal grains. It is done. At this time, if the quenching temperature is less than 880 ° C., sufficient quenching cannot be performed, and a softening phase is locally generated, resulting in a decrease in SSC resistance. On the other hand, when the quenching temperature exceeds 950 ° C., the crystal grains become coarse and the toughness is lowered. The tempering temperature is not particularly limited, but is preferably in the range of 600 to 700 ° C. By tempering at a high temperature, the internal strain is reduced, or M 3 C is uniformly dispersed and the SSC resistance is further improved.
In addition, after the direct quenching or after several quenching and tempering, the quenching treatment may be finally performed in the above temperature range, but it is desirable that the quenching and tempering treatment be performed once from the viewpoint of reducing the manufacturing cost.
[0046]
【Example】
Sixteen kinds of low alloy steels having chemical compositions shown in Table 1 were melted in a 150 kg vacuum melting furnace and a 150 ton converter to form a steel ingot, and then hot worked to produce a steel plate and a steel pipe.
[0047]
[Table 1]
Steel symbols (A), (B), (L) and (M) in the table are converter melting materials, and the others are vacuum melting materials.
[0048]
Each 150 kg steel ingot melted in vacuum was heated to 1250 ° C. and then hot forged into steel pieces having a thickness of 40 mm, a width of 80 mm, and a length of 250 mm. This steel slab was hot-rolled into a steel plate having a thickness of 15 mm, and the strength was adjusted by quenching and tempering heat treatment at the temperatures shown in Table 2.
[0049]
The converter melt was made into a round billet, and a seamless steel pipe having an outer diameter of 250 mm and a wall thickness of 16 mm was manufactured by a normal Mannesmann / mandrel mill type pipe manufacturing method.
[0050]
[Table 2]
A round bar tensile test specimen having a diameter of 6 mm and a length of 40 mm was taken from the steel plate and the seamless steel pipe so that the parallel portion was in the rolling direction, and a tensile test was performed at room temperature to obtain a yield stress (YS ) Was measured.
[0051]
In addition, a round bar tensile test piece having a parallel part diameter of 6.35 mm and a length of 25.4 mm was taken so that the parallel part was in the rolling direction, and the SSC resistance was evaluated by a method based on the NACETM0177-96A method. A test was conducted. This test is a constant load test in 0.5% acetic acid + 5% saline solution at 25 ° C. saturated with hydrogen sulfide. The partial pressure of hydrogen sulfide is 0.003 atm, assuming the actual environment, and the stress is 85 of YS. % Loaded.
[0052]
Further, in order to evaluate toughness, a Charpy test piece (V notch) having a size of 10 mm × 10 mm × 55 mm was taken in parallel to a direction orthogonal to the rolling direction. The reason why the specimen is collected in the direction orthogonal to the rolling direction is that the evaluation in the direction orthogonal to the rolling direction is more severe than the evaluation in the longitudinal direction.
Using this test piece, an impact test was performed at various temperatures, and the temperature at which the area ratio of the ductile fracture surface to the brittle fracture surface in the fracture surface was 1: 1 was defined as the fracture surface transition temperature vTs.
[0053]
Table 2 shows the evaluation results of the measured YS and SSC resistance and toughness. In the evaluation of the SSC resistance, the case where it did not break during the test time of 720 hours was judged that the SSC resistance was good, and was marked as ◯, and the case where it broke was marked as x.
[0054]
The particle size of the prior austenite phase shown in Table 2 is obtained by collecting a microscopic test piece from a tempered material, polishing it with a resin, polishing the surface with a nital solution, and then measuring the particle size number by a method according to JISG0551. Is.
As is clear from Table 2, it can be seen that the steel material having the chemical composition and particle size number defined in the present invention has both good SSC resistance and toughness. On the other hand, in the comparative example, since the chemical composition and the particle size do not satisfy the provisions of the present invention, it is recognized that the SSC resistance or toughness is not sufficient.
[0055]
【The invention's effect】
According to the present invention, it is possible to obtain a steel material having both good SSC resistance and toughness even if YS is high strength of 1060 MPa (155 ksi) or more, oil well or gas well casing or tubing, drill pipe for drilling, It has excellent effects when used for transportation line pipes and petrochemical plant pipes, and is extremely effective in industry.
Claims (3)
0.060≦Mo×V≦0.3・・・(1)
0.5×Mo−V+GS/10≧1・・・(2)
ここで、元素記号は各元素の含有量(質量%)を、GSは旧オーステナイト粒のASTM粒度番号を示す。In mass%, C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less Cr: 0.1-1.2%, Mo: 0.1-1%, B: 0.0001-0.005%, Al: 0.005-0.1%, V: 0.05-0 .5%, Ni: 0.1% or less, N: 0.01% or less, O (oxygen): 0.01% or less , Nb : 0.005-0.1 % and Ti: 0.005-0. Sulfide-resistant stress characterized by comprising 03% , balance Fe and impurities, Mo and V contents satisfying the following formulas (1) and (2), and yield stress is 1060 MPa (155 ksi) or more Low alloy steel with excellent cracking and toughness.
0.060 ≦ Mo × V ≦ 0.3 (1)
0.5 × Mo−V + GS / 10 ≧ 1 (2)
Here, the element symbol indicates the content (% by mass) of each element, and GS indicates the ASTM particle size number of the prior austenite grains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000083372A JP4379550B2 (en) | 2000-03-24 | 2000-03-24 | Low alloy steel with excellent resistance to sulfide stress cracking and toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000083372A JP4379550B2 (en) | 2000-03-24 | 2000-03-24 | Low alloy steel with excellent resistance to sulfide stress cracking and toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001271134A JP2001271134A (en) | 2001-10-02 |
JP4379550B2 true JP4379550B2 (en) | 2009-12-09 |
Family
ID=18600024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000083372A Expired - Fee Related JP4379550B2 (en) | 2000-03-24 | 2000-03-24 | Low alloy steel with excellent resistance to sulfide stress cracking and toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4379550B2 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8002910B2 (en) | 2003-04-25 | 2011-08-23 | Tubos De Acero De Mexico S.A. | Seamless steel tube which is intended to be used as a guide pipe and production method thereof |
JP4140556B2 (en) * | 2004-06-14 | 2008-08-27 | 住友金属工業株式会社 | Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking |
JP4609138B2 (en) | 2005-03-24 | 2011-01-12 | 住友金属工業株式会社 | Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe |
JP4725216B2 (en) | 2005-07-08 | 2011-07-13 | 住友金属工業株式会社 | Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking |
MXPA05008339A (en) | 2005-08-04 | 2007-02-05 | Tenaris Connections Ag | High-strength steel for seamless, weldable steel pipes. |
CN100422374C (en) * | 2006-04-04 | 2008-10-01 | 无锡西姆莱斯石油专用管制造有限公司 | Anti-sulfur drill rod and method for manufacturing the same |
MX2009000219A (en) | 2006-06-29 | 2009-03-20 | Tenaris Connections Ag | Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same. |
US7862667B2 (en) * | 2007-07-06 | 2011-01-04 | Tenaris Connections Limited | Steels for sour service environments |
MX2010005532A (en) | 2007-11-19 | 2011-02-23 | Tenaris Connections Ltd | High strength bainitic steel for octg applications. |
BRPI0904814B1 (en) | 2008-11-25 | 2020-11-10 | Maverick Tube, Llc | method of manufacturing a steel product |
FR2939449B1 (en) | 2008-12-09 | 2011-03-18 | Vallourec Mannesmann Oil & Gas France | LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS. |
US9163296B2 (en) | 2011-01-25 | 2015-10-20 | Tenaris Coiled Tubes, Llc | Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment |
IT1403689B1 (en) | 2011-02-07 | 2013-10-31 | Dalmine Spa | HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS. |
IT1403688B1 (en) | 2011-02-07 | 2013-10-31 | Dalmine Spa | STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR. |
US8636856B2 (en) | 2011-02-18 | 2014-01-28 | Siderca S.A.I.C. | High strength steel having good toughness |
US8414715B2 (en) | 2011-02-18 | 2013-04-09 | Siderca S.A.I.C. | Method of making ultra high strength steel having good toughness |
US9340847B2 (en) | 2012-04-10 | 2016-05-17 | Tenaris Connections Limited | Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same |
MX2015008990A (en) | 2013-01-11 | 2015-10-14 | Tenaris Connections Ltd | Galling resistant drill pipe tool joint and corresponding drill pipe. |
US9187811B2 (en) | 2013-03-11 | 2015-11-17 | Tenaris Connections Limited | Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing |
US9803256B2 (en) | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
EP2789700A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
EP2789701A1 (en) | 2013-04-08 | 2014-10-15 | DALMINE S.p.A. | High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes |
WO2014207656A1 (en) | 2013-06-25 | 2014-12-31 | Tenaris Connections Ltd. | High-chromium heat-resistant steel |
US20160305192A1 (en) | 2015-04-14 | 2016-10-20 | Tenaris Connections Limited | Ultra-fine grained steels having corrosion-fatigue resistance |
CN104789875B (en) * | 2015-05-20 | 2017-07-28 | 攀钢集团成都钢钒有限公司 | 155ksi grade of steel high-strength tenacities casing steel, sleeve pipe and preparation method thereof |
US11124852B2 (en) | 2016-08-12 | 2021-09-21 | Tenaris Coiled Tubes, Llc | Method and system for manufacturing coiled tubing |
CN109234638B (en) * | 2018-10-31 | 2020-10-09 | 东北大学 | High-manganese pipeline steel and preparation method thereof |
AR118071A1 (en) * | 2019-02-15 | 2021-09-15 | Nippon Steel Corp | STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT |
ES2988808T3 (en) | 2019-08-27 | 2024-11-21 | Nippon Steel Corp | Steel material suitable for use in acidic environment |
US20230118113A1 (en) * | 2020-03-31 | 2023-04-20 | Nippon Steel Corporation | Steel |
DE112021002068T5 (en) * | 2020-03-31 | 2023-01-12 | Jtekt Corporation | CARBORIZED BEARING |
US20230366070A1 (en) | 2020-11-11 | 2023-11-16 | Nippon Steel Corporation | Steel material suitable for use in sour environment |
JP7406177B1 (en) | 2022-02-17 | 2023-12-27 | 日本製鉄株式会社 | Steel suitable for use in sour environments |
-
2000
- 2000-03-24 JP JP2000083372A patent/JP4379550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001271134A (en) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4379550B2 (en) | Low alloy steel with excellent resistance to sulfide stress cracking and toughness | |
JP6677310B2 (en) | Steel materials and steel pipes for oil wells | |
EP1862561B9 (en) | Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe | |
JP3562353B2 (en) | Oil well steel excellent in sulfide stress corrosion cracking resistance and method for producing the same | |
CN110366603B (en) | Wear-resistant steel sheet and method for producing wear-resistant steel sheet | |
JP4538094B2 (en) | High strength thick steel plate and manufacturing method thereof | |
JP3543708B2 (en) | Oil well steel with excellent resistance to sulfide stress corrosion cracking and method for producing oil well steel pipe using the same | |
CN101965414B (en) | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both | |
JP4542624B2 (en) | High strength thick steel plate and manufacturing method thereof | |
CN105408512B (en) | High-strength steel material for oil well use, and oil well pipe | |
CN112877602A (en) | High-strength seamless steel pipe for oil well and method for producing same | |
WO2007013429A1 (en) | Process for producing seamless steel pipe | |
WO2007007678A1 (en) | Low-alloy steel for oil well tube having excellent sulfide stress cracking resistance | |
CN115768914B (en) | Martensitic stainless steel material and method for producing martensitic stainless steel material | |
JP2000256783A (en) | High-strength oil well steel with excellent toughness and sulfide stress corrosion cracking resistance and method for producing the same | |
JP7226598B2 (en) | Abrasion-resistant steel plate and manufacturing method thereof | |
JP6468302B2 (en) | Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material | |
CN108699656B (en) | Steel and oil well pipes | |
JPH09249935A (en) | High-strength steel with excellent resistance to sulfide stress cracking and its manufacturing method | |
JP2002060893A (en) | Oil well steel with excellent resistance to sulfide stress corrosion cracking and its production method | |
JP2000017389A (en) | Cr-Mo low alloy steel seamless steel pipe with excellent toughness and Cr-Mo low alloy steel for the seamless steel pipe | |
JPH07331381A (en) | High strength and high toughness seamless steel pipe and its manufacturing method | |
JP4134377B2 (en) | Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking | |
JP2551692B2 (en) | Manufacturing method of low alloy seamless steel pipe with fine grain structure. | |
JPH11286720A (en) | Manufacturing method of high strength steel excellent in sulfide stress cracking resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081126 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090908 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4379550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |