[go: up one dir, main page]

JP4375787B2 - Consumable electrode arc welding method - Google Patents

Consumable electrode arc welding method Download PDF

Info

Publication number
JP4375787B2
JP4375787B2 JP2004064372A JP2004064372A JP4375787B2 JP 4375787 B2 JP4375787 B2 JP 4375787B2 JP 2004064372 A JP2004064372 A JP 2004064372A JP 2004064372 A JP2004064372 A JP 2004064372A JP 4375787 B2 JP4375787 B2 JP 4375787B2
Authority
JP
Japan
Prior art keywords
welding
wire
molten pool
arc
consumable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004064372A
Other languages
Japanese (ja)
Other versions
JP2005246469A (en
Inventor
克之 松廣
真人 池辺
Original Assignee
住友金属パイプエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属パイプエンジ株式会社 filed Critical 住友金属パイプエンジ株式会社
Priority to JP2004064372A priority Critical patent/JP4375787B2/en
Publication of JP2005246469A publication Critical patent/JP2005246469A/en
Application granted granted Critical
Publication of JP4375787B2 publication Critical patent/JP4375787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、溶接母材に設けた開先に沿って移動する先行ワイヤ(消耗電極ワイヤ)及び後行ワイヤ(フィラワイヤ)を用いて行われる炭素鋼材の消耗電極式アーク溶接方法に関する。 The present invention relates to a consumable electrode arc welding method for a carbon steel material, which is performed using a preceding wire (consumable electrode wire) and a following wire (filler wire) that move along a groove provided in a weld base material.

機械構造物、建築構造物及び土木構造物等、炭素鋼製の溶接構造物の製作分野において広く採用されている消耗電極式アーク溶接方法は、溶加材を兼ねる電極ワイヤをアーク電流の供給下にて溶接母材に設けた開先に沿って移動させ、該電極ワイヤの消耗を伴って発生するアークの作用により溶接を行う方法である。 The consumable electrode arc welding method widely used in the field of manufacturing carbon steel welded structures such as mechanical structures, building structures, and civil engineering structures is based on the supply of arc current to electrode wires that also serve as filler materials. In this method, welding is performed by the action of an arc generated along with wear of the electrode wire.

この消耗電極式アーク溶接方法は、開先の上方に電極ワイヤを対向させ、前記アークを下向きに生ぜしめて実施されるのが一般的であるが、特に、大型構造物の製作現場においては、開先の下方に電極ワイヤを対向させ、前記アークを上向きに生ぜしめて実施される上向き溶接、開先の側方に電極ワイヤを対向させ、前記アークを略水平方向に生ぜしめて実施される立向き溶接等、種々の姿勢での溶接施工、所謂、姿勢溶接が必要となる場合がある。   This consumable electrode type arc welding method is generally carried out with an electrode wire facing above a groove and the arc is generated downward. Upward welding performed with the electrode wire facing downward and the arc facing upward, vertical welding performed with the electrode wire facing the groove side and the arc facing substantially horizontally In some cases, it is necessary to perform welding in various postures, that is, so-called posture welding.

この種の姿勢溶接、特に、開先の下方に電極ワイヤを対向させて行われる上向き溶接、開先の側方に電極ワイヤを対向させて行われる立向き溶接、及びこれらの中間形態での溶接においては、アークの作用により開先の内部に形成される溶融池に重力が作用し、該溶融池の保持状態が不安定となって、溶融池の垂れ落ちにより溶接ビードの表面に生じる凹凸等の表面欠陥、及び溶接ビードの内部に生じるブローホール等の内部欠陥が発生する虞れがある。   This kind of posture welding, in particular, upward welding performed with the electrode wire facing the groove below, vertical welding performed with the electrode wire opposed to the side of the groove, and welding in an intermediate form thereof. In this case, gravity acts on the molten pool formed inside the groove by the action of the arc, and the holding state of the molten pool becomes unstable, and irregularities generated on the surface of the weld bead due to dripping of the molten pool There is a risk that internal surface defects such as blow holes generated inside the weld bead and the like will occur.

このような表面欠陥及び内部欠陥(以下溶接欠陥という)の発生を防止するには、電極ワイヤに供給されるアーク電流を小さくし、これに伴って電極ワイヤの送給速度を低くして、溶接速度を低下せしめることが有効であるが、このようにした場合、溶接能率が低下し、溶接構造物の製作において施工時間の大半を占める溶接時間が長くなるという問題が発生する。   In order to prevent the occurrence of such surface defects and internal defects (hereinafter referred to as welding defects), the arc current supplied to the electrode wire is reduced, and the feeding speed of the electrode wire is reduced accordingly. Although it is effective to reduce the speed, in such a case, the welding efficiency is lowered, and there arises a problem that the welding time occupying most of the construction time in the production of the welded structure becomes long.

消耗電極式アーク溶接方法においては、高能率での溶接施工を可能とすることを目的とした種々の提案がなされている。これらの提案の一つとして、アークを発生する消耗電極ワイヤの溶接進行方向の後側に、該消耗電極ワイヤ(先行ワイヤ)に追随して後行移動する後行ワイヤを備え、該後行ワイヤを、前記アークの作用により開先の内部に形成される溶融池内に挿入し、前記アーク電流の一部を後行ワイヤに分流させることにより、溶融池の冷却を促進することを目的とした消耗電極式アーク溶接方法がある(例えば、特許文献1参照)。   In the consumable electrode type arc welding method, various proposals have been made for the purpose of enabling welding with high efficiency. As one of these proposals, a trailing wire that moves following the consumable electrode wire (preceding wire) on the rear side in the welding progress direction of the consumable electrode wire that generates an arc is provided. Is inserted into a molten pool formed inside the groove by the action of the arc, and a part of the arc current is shunted to the trailing wire, thereby depleting for the purpose of promoting cooling of the molten pool There is an electrode type arc welding method (see, for example, Patent Document 1).

また電極ワイヤの消耗を伴わない二重シールド式のTIG溶接方法においては、溶融池の内部に、溶着促進用のホットワイヤと共に、一又は複数本の冷却用のコールドワイヤを非加熱状態で送給することにより、溶融池の保持力を高めて、溶接不良の発生を防止するようにしたアーク溶接方法がある(例えば、特許文献2参照)。
特開昭3−275280号公報 特開昭11−58017号公報
In addition, in the double shield type TIG welding method that does not involve electrode wire consumption, a hot wire for promoting welding and one or more cold wires for cooling are fed into the molten pool in an unheated state. There is an arc welding method in which the holding power of the molten pool is increased to prevent the occurrence of poor welding (for example, see Patent Document 2).
JP-A-3-275280 JP 11-58017 A

特許文献1に開示された溶接方法は、アンダーカット、ハンピング等の不整ビードの発生防止には有効であることが確かめられている優れた方法であるが、姿勢溶接への適用、特に、溶融池の安定保持が難しい上向き溶接又は立向き上進溶接への適用の可能性は未知である。   The welding method disclosed in Patent Document 1 is an excellent method that has been confirmed to be effective in preventing the occurrence of irregular beads such as undercut and humping. The possibility of application to upward welding or vertical upward welding, which is difficult to maintain stably, is unknown.

また特許文献2に開示された溶接方法は、ワイヤの消耗を伴わないTIG溶接に限定された技術であり、MIG溶接、MAG溶接等の消耗電極式アーク溶接方法に適用することはできない上、特許文献1と同様、上向き溶接又は立向き上進溶接への適用において、満足すべき品質での溶接施工を高い能率にて実施することは難しい。   The welding method disclosed in Patent Document 2 is a technique limited to TIG welding that does not involve wire wear, and cannot be applied to consumable electrode arc welding methods such as MIG welding and MAG welding. As in Document 1, it is difficult to perform welding with satisfactory quality at high efficiency in application to upward welding or vertical upward welding.

更に特許文献1、2に開示された溶接方法はいずれも、ブローホール等の溶接ビードの内部欠陥を防止するための対策がなされておらず、内部欠陥による溶接継手の強度低下が問題となる構造物に適用する場合、溶接速度の低下による対応が必要となり、高能率での溶接施工の要求に応えられないという問題がある。   Further, none of the welding methods disclosed in Patent Documents 1 and 2 has a structure for preventing the internal defect of the weld bead such as a blow hole, and the strength of the welded joint due to the internal defect is a problem. When applied to an object, it is necessary to cope with a decrease in welding speed, and there is a problem that it is impossible to meet the demand for high-efficiency welding.

本発明は斯かる事情に鑑みてなされたものであり、特許文献1に開示された方法を適正な条件下にて実施することにより、溶接母材に設けた開先の内部に形成される溶融池の安定保持を可能とし、上向き溶接を含む全姿勢溶接を、高い溶接品質を確保しつつ高能率にて行わせ得る消耗電極式アーク溶接方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and the fusion | melting formed in the inside of the groove | channel provided in the weld base material by implementing the method disclosed by patent document 1 on appropriate conditions. An object of the present invention is to provide a consumable electrode type arc welding method capable of stably maintaining a pond and capable of performing all-position welding including upward welding with high efficiency while ensuring high welding quality.

本発明の第1発明に係る消耗電極式アーク溶接方法は、溶接母材に設けた開先に沿って先行移動する先行ワイヤ及び後行移動する後行ワイヤを用い、アーク電流の供給により前記先行ワイヤの消耗を伴って発生するアークの作用により前記開先の内部に形成される溶融池内に前記後行ワイヤを挿入し、該後行ワイヤに前記アーク電流を分流させつつ溶接を行う炭素鋼材の消耗電極式アーク溶接方法において、前記開先の内部での前記溶融池の安定保持を可能とすべく、該溶融池の最大幅を10mm以下とする条件下にて溶接を行うことを特徴とする。 The consumable electrode type arc welding method according to the first aspect of the present invention uses a leading wire that moves in advance along a groove provided in a welding base material and a trailing wire that moves in a subsequent manner, and supplies the preceding wire by supplying an arc current. A carbon steel material that is welded while inserting the trailing wire into a molten pool formed inside the groove by the action of an arc generated along with the consumption of the wire, and performing the welding while diverting the arc current to the trailing wire. In the consumable electrode type arc welding method, the welding is performed under a condition that the maximum width of the molten pool is 10 mm or less in order to enable stable maintenance of the molten pool inside the groove. .

本発明においては、先行ワイヤと後行ワイヤとを用い、炭素鋼材を対象として実施される消耗電極式アーク溶接方法を、開先の内部に形成される溶融池の最大幅を10mm以下として実施し、表面張力による保持力を高めて溶融池の安定保持を可能として、上向き溶接を含む姿勢溶接を、溶融池の垂れ落ちに起因する表面欠陥の発生を防止して、溶接速度の低下によることなく高能率にて行わせる。 In the present invention, the prior use of the wire and the trailing wire, a consumable electrode type arc welding method that will be implemented as a target carbon steel, carried the maximum width of the molten pool formed inside the groove as 10mm or less Increases the holding force due to surface tension to enable stable holding of the molten pool, prevents the occurrence of surface defects caused by dripping of the molten pool, and posture welding including upward welding, without causing a decrease in welding speed Make it happen at high efficiency.

また本発明の第2発明に係る消耗電極式アーク溶接方法は、後行ワイヤに分流させる分流電流Ifを、該後行ワイヤの送給速度Wfと、前記先行ワイヤに供給されるアーク電流Iaとを含む下記の条件式が成立する範囲内に保って溶接を行うことを特徴とする。
5.38Wf−(0.53Ia−120)≧If ≧1.52Wf−(0.15Ia−3.77)
Further, the consumable electrode type arc welding method according to the second aspect of the present invention includes a shunt current If to be shunted to the succeeding wire, a feeding speed Wf of the succeeding wire, and an arc current Ia supplied to the preceding wire. Welding is performed while maintaining the following conditional expression including:
5.38 Wf- (0.53 Ia-120) ≧ If ≧ 1.52 Wf- (0.15 Ia-3.77)

本発明においては、溶融池の最大幅を10mm以下とする条件下での先行ワイヤと後行ワイヤとを用いた消耗電極式アーク溶接方法を、後行ワイヤの分流電流が、ブローホール等の内部欠陥の発生限界を調べた結果に基づいて決定された条件式を満たすように実施して、表面欠陥及び内部欠陥を排除した高い溶接品質を、高能率にて実現する。   In the present invention, a consumable electrode type arc welding method using a leading wire and a trailing wire under the condition that the maximum width of the molten pool is 10 mm or less is used. It is carried out so as to satisfy the conditional expression determined based on the result of examining the occurrence limit of defects, and high weld quality excluding surface defects and internal defects is realized with high efficiency.

本発明の第1発明に係る消耗電極式アーク溶接方法においては、先行ワイヤと後行ワイヤとを用いる炭素鋼材の消耗電極式アーク溶接を、溶融池の最大幅を10mm以下として実施するから、後行ワイヤの挿入により温度低下せしめられる溶融池を、開先の開口側表面における表面張力の作用により安定して保持することができ、上向き溶接を含む姿勢溶接を、満足すべき溶接品質を維持しつつ、大なる溶着速度を採用して高能率にて行わせることが可能となる。 In the first consumable electrode arc welding method according to the invention of the present invention, prior to consumable electrode arc welding of carbon steel using a wire and a trailing wires, because implementing a maximum width of the molten pool as 10mm or less, The molten pool, which is lowered in temperature by the insertion of the trailing wire, can be stably held by the action of the surface tension on the opening side surface of the groove, maintaining satisfactory welding quality for posture welding including upward welding. However, it is possible to perform a high efficiency by employing a large welding speed.

また第2発明に係る消耗電極式アーク溶接方法においては、内部欠陥の有無を考慮して定めた条件式が成立するように後行ワイヤに分流させる電流を維持して溶接を実施するから、高い溶接品質を有する姿勢溶接を、高能率にて行わせることが可能となる等、本発明は優れた効果を奏する。   Further, in the consumable electrode type arc welding method according to the second aspect of the invention, welding is performed while maintaining the current to be diverted to the succeeding wire so that the conditional expression determined in consideration of the presence or absence of internal defects is satisfied. The present invention has an excellent effect, such as enabling posture welding having welding quality to be performed with high efficiency.

以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本発明に係る消耗電極式アーク溶接方法(以下、本発明方法という)の実施状態を示す模式図である。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof. FIG. 1 is a schematic view showing an implementation state of a consumable electrode type arc welding method (hereinafter referred to as a method of the present invention) according to the present invention.

本発明方法の実施に用いる溶接装置は、先行ワイヤとしての消耗電極ワイヤ1、後行ワイヤとしてのフィラワイヤ2と、これらを各別に送給可能に構成された送給ドラム10,20とを備えている。消耗電極ワイヤ1は、給電線11により溶接電源3の正極に接続されており、溶接電源3から給電線11を介して所定のアーク電流Iaが供給されるようになしてある。またフィラワイヤ2は、溶接電源3の負極を溶接母材4に接続するための母材接続線31の中途にて分岐された分流線21に接続されており、後述する分流電流Ifを分流線21及び母材接続線31を介して溶接電源3に帰還させ得るようになしてある。   A welding apparatus used for carrying out the method of the present invention includes a consumable electrode wire 1 as a leading wire, a filler wire 2 as a trailing wire, and feeding drums 10 and 20 configured to feed them separately. Yes. The consumable electrode wire 1 is connected to the positive electrode of the welding power source 3 by a power supply line 11, and a predetermined arc current Ia is supplied from the welding power source 3 through the power supply line 11. Further, the filler wire 2 is connected to a shunt line 21 branched in the middle of the base material connection line 31 for connecting the negative electrode of the welding power source 3 to the weld base material 4. In addition, it can be returned to the welding power source 3 via the base material connection line 31.

図1には、平板状をなす炭素鋼製の溶接母材4,4の合わせ部にV字形の断面を有して設けられた開先5に対する溶接途中の状態が示されている。この溶接は、消耗電極ワイヤ1及びフィラワイヤ2の先端を開先5に対し、該開先5の延設方向に適長離隔した位置にて対向するように位置決めし、これらのワイヤ1,2を、図中に白抜矢符にて示す如く、消耗電極ワイヤ1を先として開先5に沿って所定速度にて移動させると共に、溶接電源3から消耗電極ワイヤ1にアーク電流Iaを給電せしめて行われる。なお、消耗電極ワイヤ1及びフィラワイヤ2の移動は、例えば、これらを一括して保持するキャリッジを予め設定された案内レールに沿って移動させることによりなされ、この移動速度は、手動又は自動により増減調節されるようになしてある。 FIG. 1 shows a state in the middle of welding with respect to a groove 5 provided with a V-shaped cross section at a joining portion of carbon steel weld base materials 4 and 4 having a flat plate shape. In this welding, the tips of the consumable electrode wire 1 and the filler wire 2 are positioned so as to face the groove 5 at a position separated by an appropriate length in the extending direction of the groove 5, and these wires 1 and 2 are positioned. As shown by the white arrow in the figure, the consumable electrode wire 1 is moved first along the groove 5 at a predetermined speed, and the arc current Ia is supplied from the welding power source 3 to the consumable electrode wire 1. Done. The consumable electrode wire 1 and the filler wire 2 are moved, for example, by moving a carriage that holds them together along a preset guide rail, and the moving speed is increased or decreased manually or automatically. It is supposed to be done.

アーク電流Iaの給電により、消耗電極ワイヤ1の先端と開先5との間にアーク6が発生し、このアーク6の作用により開先5の内部には、溶加材としての消耗電極ワイヤ1と溶接母材4,4とが一体に溶融してなる溶融池7が、消耗電極ワイヤ1の対向部位に形成され、更に、この溶融池7が冷却凝固してなる溶接ビード8が消耗電極ワイヤ1の移動方向後側に連続して形成されて、溶接母材4,4が溶着される。またこの間、消耗電極ワイヤ1に後行移動するフィラワイヤ2の先端は、前述の如く形成される溶融池7内に挿入されることとなり、該溶融池7は、自身よりも十分に低温であるフィラワイヤ2の挿入量に応じて冷却される。   By supplying the arc current Ia, an arc 6 is generated between the tip of the consumable electrode wire 1 and the groove 5, and the consumable electrode wire 1 as a filler material is formed inside the groove 5 by the action of the arc 6. A weld pool 8 formed by integrally melting the weld base metals 4 and 4 is formed at a portion facing the consumable electrode wire 1, and a weld bead 8 formed by cooling and solidifying the melt pool 7 is formed by a consumable electrode wire. 1 is formed continuously on the rear side in the moving direction, and the welding base materials 4 and 4 are welded. During this time, the tip of the filler wire 2 that moves backward to the consumable electrode wire 1 is inserted into the molten pool 7 formed as described above, and the molten pool 7 is sufficiently cooler than itself. It cools according to the insertion amount of 2.

一方、分流線21を介して母材接続線31に接続されているフィラワイヤ2には、溶融池7への挿入により溶接電源3に帰還される分流電流Ifが発生する。このようにフィラワイヤ2に発生する分流電流Ifと、消耗電極ワイヤ1に供給されるアーク電流Ia及び母材接続線31を介して溶接電源3に帰還される接地電流Ieとの間には、下式により与えられる関係が存在し、分流電流Ifの大きさは、図1に示す如く、母材接続線31の中途(分流線21の分岐部よりも接地側)に介装された可変抵抗32の抵抗値の増減により、所定の範囲内において自在に増減調節することができる。   On the other hand, a shunt current If that is fed back to the welding power source 3 by being inserted into the molten pool 7 is generated in the filler wire 2 connected to the base material connection line 31 via the shunt line 21. Thus, there is a decrease between the shunt current If generated in the filler wire 2, the arc current Ia supplied to the consumable electrode wire 1, and the ground current Ie returned to the welding power source 3 via the base material connection line 31. The relationship given by the equation exists, and the magnitude of the shunt current If is, as shown in FIG. 1, the variable resistor 32 interposed in the middle of the base material connection line 31 (the ground side from the branch portion of the shunt line 21). By increasing or decreasing the resistance value, it is possible to freely increase or decrease within a predetermined range.

Ia=If+Ie …(1)   Ia = If + Ie (1)

またこの間、消耗電極ワイヤ1は、送給ドラム10の回転により、自身の移動速度及び消耗量に応じて予め定められた速度にて送り出され、またフィラワイヤ2は、送給ドラム20の回転により、溶融池7への単位時間当たりの挿入長さを一定に保つべく、予め定められた送給速度Wfにて送り出される。   During this time, the consumable electrode wire 1 is fed out at a speed determined in advance according to its own moving speed and consumption amount by the rotation of the feeding drum 10, and the filler wire 2 is fed by the rotation of the feeding drum 20. In order to keep the insertion length per unit time into the molten pool 7 constant, the feed is sent at a predetermined feed speed Wf.

溶融池7は、公知の如く、消耗電極ワイヤ1及びフィラワイヤ2の周囲に供給されるシールドガスにより、外気との接触による酸化を防ぐべく覆われている。以下に説明する本発明方法は、アルゴンガス等の不活性ガスを主体とするシールドガスを用いるMIG溶接、炭酸ガスを主体とするシールドガスを用いるMAG溶接等、シールドガスの種類の如何に拘らず適用可能であることは言うまでもない。   As is known, the molten pool 7 is covered with a shielding gas supplied around the consumable electrode wire 1 and the filler wire 2 to prevent oxidation due to contact with the outside air. The method of the present invention described below is applicable regardless of the type of shield gas, such as MIG welding using shield gas mainly composed of inert gas such as argon gas, MAG welding using shield gas mainly composed of carbon dioxide gas, etc. Needless to say, it is applicable.

なお、図1においては、溶接母材4,4に設けた開先5の上方に消耗電極ワイヤ1を位置決めし、該消耗電極ワイヤ1の先端から発せられるアーク6が、前記開先5に対して下向きに作用する溶接、所謂、下向き溶接での実施状態が示されているが、この溶接は、前述の如く、アーク6が開先5の下位置から上向きに作用する上向き溶接、立て位置に配された開先5に対しアークが側方から作用する立向き溶接等、種々の姿勢での姿勢溶接での実施も可能である。   In FIG. 1, the consumable electrode wire 1 is positioned above the groove 5 provided in the weld base metals 4 and 4, and an arc 6 emitted from the tip of the consumable electrode wire 1 is directed to the groove 5. As shown above, this welding is performed in the upward position in which the arc 6 acts upward from the lower position of the groove 5 and in the standing position. It is also possible to carry out posture welding in various postures such as vertical welding in which an arc acts on the arranged groove 5 from the side.

これらの姿勢溶接においては、前述の如く、開先5の内部における溶融池7の保持状態が不安定となり、該溶融池7の垂れ落ちに起因する溶接不良の発生を引き起こす問題がある。本発明者は、開先5の内部において溶融池7を支える保持力の発生メカニズムを検証し、その結果、開先5の内部に形成される溶融池7の最大幅δに上限を設け、またフィラワイヤ2の送給量を適正に保つことにより、溶接速度の低下によらずに溶接不良の発生を防止し得ることを知見した。なお開先5は、図1に示すV字形に限らず、U字形、Y字形等の種々の断面形状を有するものが存在するが、以下に示す本発明方法は、開先5の形状の如何に拘らず適用可能である。   In these posture weldings, as described above, there is a problem in that the holding state of the molten pool 7 in the groove 5 becomes unstable, and a welding failure occurs due to dripping of the molten pool 7. The inventor verified the generation mechanism of the holding force that supports the molten pool 7 inside the groove 5, and as a result, set an upper limit on the maximum width δ of the molten pool 7 formed inside the groove 5, It has been found that by maintaining the feeding amount of the filler wire 2 appropriately, it is possible to prevent the occurrence of poor welding regardless of the decrease in welding speed. The groove 5 is not limited to the V shape shown in FIG. 1, and there are various shapes such as a U shape and a Y shape. However, the method of the present invention described below is not limited to the shape of the groove 5. Applicable regardless of

実際の溶接施工中に形成される溶融池7の長さは、開先5の延設方向に有限であり、端部が存在するが、この端部は、溶融池7の保持力を大きくするように作用するため、開先5の内部における溶融池7の保持状態の定性的傾向を把握するには、溶融池7が開先5の延設方向に十分に長いと仮定し、開先5の断面内において溶融池7に加わる外力の釣り合いを二次元的に検討すれば十分である。なお溶融池7に作用する外力は、重力、外圧(大気圧)及び溶融池7の表面張力である。   The length of the molten pool 7 formed during actual welding is finite in the extending direction of the groove 5 and has an end, but this end increases the holding force of the molten pool 7. Therefore, in order to grasp the qualitative tendency of the holding state of the molten pool 7 inside the groove 5, it is assumed that the molten pool 7 is sufficiently long in the extending direction of the groove 5. It is sufficient to examine the balance of external forces applied to the molten pool 7 in a two-dimensional manner within the cross section. The external forces acting on the molten pool 7 are gravity, external pressure (atmospheric pressure), and surface tension of the molten pool 7.

図2は、V字形断面を有する開先5内部の溶融池7の上向き溶接時における形成態様を示す図である。本図に示す溶融池7は、下向きに加わる重力の作用により、下位置となる開先5の拡がり側に向けて凸となる表面を、拡がり側及び狭まり側に有し、これらの表面間にhなる厚さを有して形成されている。   FIG. 2 is a view showing a formation mode at the time of upward welding of the molten pool 7 inside the groove 5 having a V-shaped cross section. The molten pool 7 shown in this figure has a surface that protrudes toward the expansion side of the groove 5 that is the lower position due to the action of gravity applied downward, on the expansion side and the narrowing side, and between these surfaces The thickness h is formed.

この溶融池7における外力の釣り合い式は、溶融池7の下面(拡がり側の表面)の曲率半径をR、同じく上面(狭まり側の表面)の曲率半径をR0 とし、また溶融池7を形成する溶融金属の表面張力をσ、同じく密度をρとし、更に、重力の加速度をgとした場合、下式より与えられる。なお、外力としての外圧は、上下両面に作用して相殺されるため式中には表れない。 In this balance formula of the external force in the molten pool 7, the radius of curvature of the lower surface (expansion side surface) of the molten pool 7 is R, and the radius of curvature of the upper surface (narrow side surface) is also R 0 , and the molten pool 7 is formed. When the surface tension of the molten metal is σ, the density is ρ, and the acceleration of gravity is g, the following equation is given. It should be noted that the external pressure as an external force does not appear in the equation because it acts on both the upper and lower surfaces and cancels out.

σ/R=σ/R0 +ρgh …(2) σ / R = σ / R 0 + ρgh (2)

ここで裏波溶接を対象とすると、溶融池7の上面は凸となり、曲率半径R0 は無限大となるため、(2)式の釣り合い式は、次式に簡略化される。 Here, when the reverse wave welding is targeted, the upper surface of the molten pool 7 is convex and the radius of curvature R 0 is infinite, so the balance equation (2) is simplified to the following equation.

σ/R=ρgh …(3)   σ / R = ρgh (3)

即ち、厚さhの溶融池7に下向きに加わる重力を、溶融池7の下面の表面張力σにより支えることとなるが、この式中のρ及びgは定数であり、(3)式が成立し、溶融池7の限界保持厚さhを十分に高めるためには、表面張力σを大きくすること、及び開先5の拡がり側における溶融池7表面の曲率半径Rを小さくすることの一方又は両方を実現する必要がある。   That is, the downward gravity applied to the molten pool 7 having a thickness h is supported by the surface tension σ of the lower surface of the molten pool 7, and ρ and g in this equation are constants, and the equation (3) is established. In order to sufficiently increase the limit holding thickness h of the molten pool 7, one of increasing the surface tension σ and decreasing the curvature radius R of the surface of the molten pool 7 on the spreading side of the groove 5 or Both need to be realized.

まず、溶融池7表面の曲率半径Rを小さくする方法について説明する。図3は、種々に異なる最大幅δを有する溶融池7の形成態様を示す図である。V字形の開先5の内部に形成される溶融池7の最大幅δは、開先5の拡がり角度を変えることにより変更される。図3(a)は、拡がり角度が60°である場合を、図3(b)は、拡がり角度が40°である場合を、図3(c)は、拡がり角度が20°である場合を夫々示している。   First, a method for reducing the curvature radius R of the surface of the molten pool 7 will be described. FIG. 3 is a diagram showing how the molten pool 7 having variously different maximum widths δ is formed. The maximum width δ of the molten pool 7 formed inside the V-shaped groove 5 is changed by changing the spreading angle of the groove 5. 3A shows a case where the spread angle is 60 °, FIG. 3B shows a case where the spread angle is 40 °, and FIG. 3C shows a case where the spread angle is 20 °. Each shows.

図中のh0 は、溶融池7が開先5の側面に接触する部分の厚さを示し、R1 〜R3 は、溶融池7の表面の曲率半径を示している。これらの図の比較により明らかな如く、同一の厚さh0 を有して形成された夫々の溶融池7表面の曲率半径R1 ,R2 ,R3 は、明らかにR1 >R2 >R3 となる大小関係を有しており、溶融池7表面の曲率半径Rを小さくするためには、該溶融池7の最大幅δを小さくすることが有効であることがわかる。 In the figure, h 0 indicates the thickness of the portion where the molten pool 7 contacts the side surface of the groove 5, and R 1 to R 3 indicate the radius of curvature of the surface of the molten pool 7. As is apparent from the comparison of these figures, the radii of curvature R 1 , R 2 , R 3 of the surface of the molten pool 7 formed with the same thickness h 0 are clearly R 1 > R 2 > It has a magnitude relation of R 3, in order to reduce the curvature radius R of the molten pool 7 surface, to reduce the maximum width δ of the molten pool 7 is seen to be effective.

図4は、上向き溶接を行った場合における溶融池7の最大幅δと限界保持厚さhとの関係を調べた結果を示す図である。本図によれば、図3から想定されるように、溶融池7の限界保持厚さhは、溶融池7の最大幅δの減少に伴って増加する傾向を示すと共に、最大幅δが10mm以下となる領域において急激に増加していることが明らかである。即ち、溶融池7の最大幅δを10mm以下として溶接を行うことにより、高い溶接速度を確保しながら、開先5の内部に形成される溶融池7の安定保持が可能となり、上向き溶接を含む全姿勢溶接を、高い溶接品質を確保しつつ高能率にて行わせることが可能となる。   FIG. 4 is a diagram showing the results of examining the relationship between the maximum width δ of the weld pool 7 and the limit holding thickness h when upward welding is performed. According to this figure, as assumed from FIG. 3, the limit holding thickness h of the molten pool 7 tends to increase as the maximum width δ of the molten pool 7 decreases, and the maximum width δ is 10 mm. It is clear that it increases rapidly in the following region. That is, by performing welding with the maximum width δ of the molten pool 7 being 10 mm or less, it is possible to stably maintain the molten pool 7 formed inside the groove 5 while ensuring a high welding speed, including upward welding. All-position welding can be performed with high efficiency while ensuring high welding quality.

なお、図4における急増領域の発生メカニズムは明らかではないが、通常のアーク溶接において、アーク圧力が有効に作用する範囲が直径10mm程度の円形断面内であることが知られており、このアーク圧力の作用範囲との相乗効果により限界保持厚さhの急増が生じているものと推定される。また図4において、溶融池7の最大幅δを5mm以下とした領域の結果が示されていないのは、最大幅δが5mm以下である場合、消耗電極ワイヤ1及びフィラワイヤ2を開先5の中心部に対して正しく位置決めし難くなるためであり、この位置決めを高精度になし得るような装置を使用した場合、溶融池7の最大幅δを5mm以下として溶接することも本発明方法の範囲に含まれることは言うまでもない。   The generation mechanism of the sudden increase region in FIG. 4 is not clear, but in normal arc welding, it is known that the range in which the arc pressure acts effectively is within a circular cross section having a diameter of about 10 mm. It is presumed that a sharp increase in the limit retention thickness h occurs due to a synergistic effect with the range of action. In FIG. 4, the result of the region where the maximum width δ of the molten pool 7 is 5 mm or less is not shown. When the maximum width δ is 5 mm or less, the consumable electrode wire 1 and the filler wire 2 are connected to the groove 5. This is because it is difficult to correctly position the center portion, and when a device capable of performing this positioning with high accuracy is used, it is possible to weld the maximum width δ of the weld pool 7 to 5 mm or less. Needless to say, it is included in

更に図4に示す結果は、図1に示すV字形の開先5に限らず、U字形、Y字形等の他の断面形状を有する開先に対しても同様に得られることが確かめられており、溶融池7の最大幅δを10mm以下とする本発明方法は、開先の形状の如何に拘らず有効である。   Furthermore, it has been confirmed that the results shown in FIG. 4 can be obtained not only for the V-shaped groove 5 shown in FIG. 1 but also for grooves having other cross-sectional shapes such as a U-shape and a Y-shape. Therefore, the method of the present invention in which the maximum width δ of the molten pool 7 is 10 mm or less is effective regardless of the shape of the groove.

なお、溶融池7が形成される開先5の開口幅は、溶接母材4,4の厚さの増大に応じて広くなるため、10mm以上の開口幅を有する開先5に対して溶接を行う場合、まず、開先5の底部において溶融池7の最大幅δを10mm以下とした溶接を実施し、この溶接により得られた溶接ビード8上にて同様の条件下にて複数回の溶接を行い、開先5の内部全域を複数層に積層された溶接ビードにより埋めるようにすればよい。このようになされた溶接においても、最下層の溶融池7(溶接ビード8)の最大幅δが10mm以下である場合、本発明の範囲に含まれることとなる。   In addition, since the opening width of the groove 5 in which the molten pool 7 is formed becomes wider as the thickness of the welding base materials 4 and 4 increases, welding is performed on the groove 5 having an opening width of 10 mm or more. When performing, first, welding is performed at the bottom of the groove 5 with the maximum width δ of the molten pool 7 being 10 mm or less, and welding is performed a plurality of times under the same conditions on the weld bead 8 obtained by this welding. And the entire interior of the groove 5 may be filled with weld beads stacked in a plurality of layers. Even in the welding performed in this manner, the maximum width δ of the lowermost weld pool 7 (weld bead 8) is within the range of the present invention if it is 10 mm or less.

前記(3)式が成立し、溶融池7の限界保持厚さhを大とするための他の手段である表面張力σの増大は、溶融池7の組成を変更すること、または溶融池7の内部温度を低下させることにより達成されるが、前者、即ち、溶融池7の組成変更は、溶着部の強度性能に影響を及ぼすために適切な手段ではない。従って、表面張力σの増大により大なる限界保持厚さhを実現するには、溶融池7の内部温度を低下させる必要があり、このことは、前述の如く、消耗電極ワイヤ1に後行移動するフィラワイヤ2の挿入により溶融池7を冷却して実現される。   The increase in the surface tension σ, which is another means for increasing the limit holding thickness h of the molten pool 7 when the above equation (3) is established, is to change the composition of the molten pool 7 or However, the former, that is, the composition change of the molten pool 7 is not an appropriate means for affecting the strength performance of the welded portion. Accordingly, in order to achieve a large limit holding thickness h by increasing the surface tension σ, it is necessary to lower the internal temperature of the molten pool 7, which is followed by the consumable electrode wire 1 as described above. This is realized by cooling the molten pool 7 by inserting the filler wire 2.

ここで、溶融池7の冷却は、該溶融池7に単位時間当たりに挿入されるフィラワイヤ2の挿入量、即ち、フィラワイヤ2の送給速度Wfを大とすることにより促進されるが、この送給速度Wfが過大となった場合、以下に示す如く、溶融池7の冷却凝固により形成される溶接ビード8の内部欠陥(ブローホール)の生成を招くという問題がある。なおこのブローホールは、送給速度Wfが過小である場合にも同様に生成される。   Here, the cooling of the molten pool 7 is promoted by increasing the insertion amount of the filler wire 2 inserted into the molten pool 7 per unit time, that is, the feeding speed Wf of the filler wire 2. When the feeding speed Wf becomes excessive, there is a problem that the internal defect (blow hole) of the weld bead 8 formed by cooling and solidification of the molten pool 7 is caused as shown below. This blow hole is generated in the same manner when the feeding speed Wf is too low.

図5〜図7は、ブローホールの生成メカニズムの説明図であり、図5は、フィラワイヤ2の送給速度Wf(送給量)が適正である場合の状態を、図6は、フィラワイヤ2の送給速度Wfが過大である状態を、図7(a),(b)は、フィラワイヤ2の送給速度Wfが過小である状態を夫々示している。なおこれらの図には、図1と同一の参照符号を付してある。   5 to 7 are explanatory views of the blow hole generation mechanism. FIG. 5 shows a state in which the feeding speed Wf (feed amount) of the filler wire 2 is appropriate, and FIG. FIGS. 7A and 7B show a state where the feeding speed Wf is excessive, and FIGS. 7A and 7B show a state where the feeding speed Wf of the filler wire 2 is too small. In these figures, the same reference numerals as those in FIG. 1 are given.

図5に示す如く、消耗電極ワイヤ1に後行移動するフィラワイヤ2の送給速度Wfが適正である場合、消耗電極ワイヤ1先端のアーク6の作用により形成される溶融池7がフィラワイヤ2の先端部に濡れ上がる状態が安定して生じ、この場合、溶融池7の後側に連続する溶接ビード8の内部に何らの欠陥も生じない。   As shown in FIG. 5, when the feeding speed Wf of the filler wire 2 that moves backward to the consumable electrode wire 1 is appropriate, the molten pool 7 formed by the action of the arc 6 at the tip of the consumable electrode wire 1 is the tip of the filler wire 2. In this case, no defect is generated inside the weld bead 8 continuous on the rear side of the molten pool 7.

これに対し、フィラワイヤ2の送給速度Wfが過大である場合、フィラワイヤ2の先端部への溶融池7の濡れ上がりが生じず、図6に示す如く、フィラワイヤ2が溶融池7内に突っ込まれた状態となり、該フィラワイヤ2の周辺に間隙が発生し、この間隙内へのガスの巻き込みにより溶融池7の内部に気泡70,70…が発生し、これらの気泡70,70…の一部が、凝固の過程において排除されずに溶融池7に連続する溶接ビード8の内部に残り、該溶接ビード8の内部にブローホール80,80…が生成される。   On the other hand, when the feeding speed Wf of the filler wire 2 is excessive, the molten pool 7 does not wet up to the tip of the filler wire 2, and the filler wire 2 is pushed into the molten pool 7 as shown in FIG. A gap is generated around the filler wire 2, and bubbles 70, 70... Are generated inside the molten pool 7 due to the entrainment of gas into the gap, and some of these bubbles 70, 70. .. Remain in the weld bead 8 continuing to the molten pool 7 without being excluded in the solidification process, and blow holes 80, 80... Are generated in the weld bead 8.

またフィラワイヤ2の送給速度Wfが過小であった場合、該フィラワイヤ2の先端は、図7(a)に示す如く、溶融池7との接触直後に溶け、該溶融池7の内部に引きちぎられるように取り込まれ、図7(b)に示す如く、フィラワイヤ2と溶融池7との接触が途切れた状態となり、その後のフィラワイヤ2の送給により溶融池7との接触が再度生じる結果、図7(a),(b)に示す状態が短周期にて繰り返される。このとき、図7(a)の状態から図7(b)の状態への移行の間に溶融池7内にガスが巻き込まれ、気泡70,70…が発生し、凝固の過程において排除されずに溶接ビード8の内部に残り、該溶接ビード8の内部にブローホール80,80…が生成される。   When the feeding speed Wf of the filler wire 2 is too low, the tip of the filler wire 2 melts immediately after contact with the molten pool 7 and is torn inside the molten pool 7 as shown in FIG. As shown in FIG. 7B, the contact between the filler wire 2 and the molten pool 7 is interrupted, and contact with the molten pool 7 is caused again by feeding the filler wire 2 as a result. The states shown in (a) and (b) are repeated in a short cycle. At this time, gas is entrained in the molten pool 7 during the transition from the state of FIG. 7A to the state of FIG. 7B, and bubbles 70, 70... Are generated and are not excluded in the solidification process. Are left inside the weld bead 8, and blow holes 80, 80... Are generated inside the weld bead 8.

また図7(b)に示す状態においては、フィラワイヤ2と溶融池7との短絡も途切れ、フィラワイヤ2に帰還する分流電流Ifがゼロとなるため、アーク電流Iaが変動してアーク6の状態が不安定となり、これに伴うシールドの乱れにより溶融池7内へのガスの巻き込み、及び溶接ビード8内部のブローホール80,80…の生成が助長される。   In the state shown in FIG. 7B, the short-circuit between the filler wire 2 and the molten pool 7 is interrupted, and the shunt current If returning to the filler wire 2 becomes zero, so that the arc current Ia fluctuates and the state of the arc 6 changes. It becomes unstable, and the disturbance of the shield accompanying this facilitates the entrainment of gas into the molten pool 7 and the generation of blow holes 80, 80... Inside the weld bead 8.

本発明者は.以上の如きブローホールの生成メカニズムに着目し、消耗電極ワイヤ1に供給されるアーク電流Iaを所定値に設定した状態でフィラワイヤ2の送給速度Wfを種々に変え、溶接ビード8の内部にブローホール80,80…が生成されない送給速度Wfの適正領域を調べる試験を行った。図8は、この試験の結果を示す図であり、図8(a)は、アーク電流Iaを200Aに設定した場合の結果を示し、図8(b)〜(d)は、アーク電流Iaを、250、300、350Aに夫々設定した場合の結果を示している。   The inventors have: Paying attention to the blow hole generation mechanism as described above, while the arc current Ia supplied to the consumable electrode wire 1 is set to a predetermined value, the feeding speed Wf of the filler wire 2 is changed variously and blown into the weld bead 8. A test for examining an appropriate region of the feeding speed Wf in which the holes 80, 80. FIG. 8 is a diagram showing the results of this test, FIG. 8A shows the results when the arc current Ia is set to 200 A, and FIGS. 8B to 8D show the arc current Ia. , 250, 300, and 350A are shown.

図8(a)〜(d)の横軸はフィラワイヤ2の送給速度Wf、縦軸はフィラワイヤ2に分流する分流電流Ifである。前述の如くブローホールは、フィラワイヤ2の送給速度Wfが過小な領域及び過大な領域において生成され、ブローホールが生成されない適正領域は、各図中にクロスハッチを施して示す如く、フィラワイヤ2の分流電流Ifの増加に伴って拡大する領域となることがわかる。   8A to 8D, the horizontal axis represents the feeding speed Wf of the filler wire 2, and the vertical axis represents the shunt current If that is shunted to the filler wire 2. As described above, blow holes are generated in regions where the feeding speed Wf of the filler wire 2 is excessively low and excessive, and appropriate regions where blowholes are not generated are indicated by cross hatching in each figure. It can be seen that the region expands as the shunt current If increases.

またこの適正領域は、消耗電極ワイヤ1に供給されるアーク電流Iaの増加に伴って、送給速度Wfが大となる側に移行する傾向を示している。この移行は、アーク電流Iaの増加に伴って溶融池7が保有する熱エネルギが大きくなり、該溶融池7に接触するフィラワイヤ2が溶け易くなるためであると推定される。   Further, this appropriate region shows a tendency that the feeding speed Wf becomes larger as the arc current Ia supplied to the consumable electrode wire 1 increases. This transition is presumed to be because the thermal energy possessed by the molten pool 7 increases as the arc current Ia increases, and the filler wire 2 that contacts the molten pool 7 is likely to melt.

図8(a)〜(b)に示す試験結果において、適正領域の両側の境界線は、夫々直線近似することができ、各図中にL1〜L8として示す境界線の近似式を求めると、夫々以下の如くなる。   In the test results shown in FIGS. 8A to 8B, the boundary lines on both sides of the appropriate region can be linearly approximated, and when the approximate expression of the boundary lines indicated as L1 to L8 in each figure is obtained, Each is as follows.

L1: If=5.38Wf+8.33
L2: If=1.52Wf−24.33
L3: If=5.38Wf−8.33
L4: If=1.52Wf−35.83
L5: If=5.38Wf−35.00
L6: If=1.52Wf−43.41
L7: If=5.38Wf−71.67
L8: If=1.52Wf−46.94
L1: If = 5.38Wf + 8.33
L2: If = 1.52Wf-24.33
L3: If = 5.38Wf-8.33
L4: If = 1.52Wf-35.83
L5: If = 5.38Wf-35.00
L6: If = 1.52Wf−43.41
L7: If = 5.38Wf-71.67
L8: If = 1.52Wf-46.94

これらの各式の第2項は、アーク電流Iaに応じて変化しており、アーク電流の関数であると考えられる。そこで、各式の第2項をアーク電流Iaに対してプロットすると、図9に示す如くなり、供給速度Wfが小さい側の境界線を示すL1,L3,L5,L7の第2項と、供給速度Wfが大きい側の境界線を示すL2,L4,L6,L8の第2項とは、図中に示す如き各別の直線上に分布すると考えられ、夫々を最小二乗法により数式化すると、夫々以下に示す如くなる。   The second term of each of these equations varies with the arc current Ia and is considered to be a function of the arc current. Therefore, when the second term of each equation is plotted against the arc current Ia, it becomes as shown in FIG. 9, and the second term of L1, L3, L5, L7 indicating the boundary line on the side where the supply speed Wf is small, and the supply The second term of L2, L4, L6, and L8 indicating the boundary line on the side where the speed Wf is large is considered to be distributed on each other straight line as shown in the figure, and when each is expressed by the least square method, Each is as shown below.

L1,L3,L5,L7の第2項=−0.53Ia+120.00
L2,L4,L6,L8の第2項=−0.15Ia+3.77
Second term of L1, L3, L5 and L7 = −0.53Ia + 120.00
Second term of L2, L4, L6, L8 = −0.15 Ia + 3.77

従って、図8(a)〜(d)に示す適正領域は、下式にて示す上限境界線LUと、下限境界線LLとにより挾まれた領域となる。   Accordingly, the appropriate areas shown in FIGS. 8A to 8D are areas sandwiched by the upper limit boundary line LU and the lower limit boundary line LL shown by the following expression.

LU: If=5.38Wf−(0.53Ia−120.00)
LL: If=1.52Wf−(0.15Ia−3.77)
LU: If = 5.38Wf- (0.53Ia-120.00)
LL: If = 1.52Wf- (0.15Ia-3.77)

これにより、フィラワイヤ2に分流させる分流電流Ifを、下式に示す条件式が成立する範囲内に保って溶接を行うことにより、溶接ビード8の内部欠陥としてのブローホール80,80…の生成を防止することができ、高品質の溶接が可能となる。   As a result, welding is performed while keeping the shunt current If to be shunted to the filler wire 2 within a range where the conditional expression shown below is satisfied, thereby generating blow holes 80, 80... As internal defects of the weld bead 8. Can be prevented, and high-quality welding is possible.

5.38Wf−(0.53Ia−120)≧If ≧1.52Wf−(0.15Ia−3.77) …(4)   5.38Wf− (0.53Ia−120) ≧ If ≧ 1.52Wf− (0.15Ia−3.77) (4)

本発明方法の実施状態を示す模式図である。It is a schematic diagram which shows the implementation state of the method of this invention. 開先内部の溶融池の上向き溶接時における形成態様を示す図である。It is a figure which shows the formation aspect at the time of the upward welding of the molten pool inside a groove. 種々に異なる最大幅を有する溶融池の形成態様を示す図である。It is a figure which shows the formation aspect of the molten pool which has various different maximum widths. 上向き溶接を行った場合における溶融池の最大幅と限界保持厚さとの関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between the maximum width of a molten pool and limit holding | maintenance thickness in the case of performing upward welding. ブローホールの生成メカニズムの説明図である。It is explanatory drawing of the production | generation mechanism of a blowhole. ブローホールの生成メカニズムの説明図である。It is explanatory drawing of the production | generation mechanism of a blowhole. ブローホールの生成メカニズムの説明図である。It is explanatory drawing of the production | generation mechanism of a blowhole. フィラワイヤの送給速度の適正領域を調べる試験の結果を示す図である。It is a figure which shows the result of the test which investigates the appropriate area | region of the feeding speed of a filler wire. 適正領域の境界線の決定手順の説明図である。It is explanatory drawing of the determination procedure of the boundary line of an appropriate area | region.

符号の説明Explanation of symbols

1 消耗電極ワイヤ
2 フィラワイヤ
3 溶接電源
4 溶接母材
5 開先
6 アーク
7 溶融池
8 溶接ビード
DESCRIPTION OF SYMBOLS 1 Consumable electrode wire 2 Filler wire 3 Welding power source 4 Welding base material 5 Groove 6 Arc 7 Weld pool 8 Weld bead

Claims (2)

溶接母材に設けた開先に沿って先行移動する先行ワイヤ及び後行移動する後行ワイヤを用い、アーク電流の供給により前記先行ワイヤの消耗を伴って発生するアークの作用により前記開先の内部に形成される溶融池内に前記後行ワイヤを挿入し、該後行ワイヤに前記アーク電流を分流させつつ溶接を行う炭素鋼材の消耗電極式アーク溶接方法において、
前記開先の内部での前記溶融池の安定保持を可能とすべく、該溶融池の最大幅を10mm以下とする条件下にて溶接を行うことを特徴とする消耗電極式アーク溶接方法。
Using a leading wire that moves in advance along a groove provided in a weld base material and a trailing wire that moves in a subsequent direction, the arc is generated by the action of an arc generated by the consumption of the preceding wire by supplying an arc current. In the consumable electrode type arc welding method for carbon steel material, in which the trailing wire is inserted into a molten pool formed inside, and welding is performed while the arc current is diverted to the trailing wire,
A consumable electrode type arc welding method , wherein welding is performed under a condition that the maximum width of the molten pool is 10 mm or less so that the molten pool can be stably held inside the groove .
前記後行ワイヤに分流させる分流電流Ifを、該後行ワイヤの送給速度Wfと、前記先行ワイヤに供給されるアーク電流Iaとを含む下記の条件式が成立する範囲内に保って溶接を行う請求項1記載の消耗電極式アーク溶接方法。
5.38Wf−(0.53Ia−120)≧If ≧1.52Wf−(0.15Ia−3.77)
Welding is performed while maintaining the shunt current If to be shunted to the succeeding wire within a range in which the following conditional expression including the feeding speed Wf of the succeeding wire and the arc current Ia supplied to the preceding wire is satisfied. The consumable electrode type arc welding method according to claim 1 to be performed.
5.38 Wf- (0.53 Ia-120) ≧ If ≧ 1.52 Wf- (0.15 Ia-3.77)
JP2004064372A 2004-03-08 2004-03-08 Consumable electrode arc welding method Expired - Fee Related JP4375787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064372A JP4375787B2 (en) 2004-03-08 2004-03-08 Consumable electrode arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064372A JP4375787B2 (en) 2004-03-08 2004-03-08 Consumable electrode arc welding method

Publications (2)

Publication Number Publication Date
JP2005246469A JP2005246469A (en) 2005-09-15
JP4375787B2 true JP4375787B2 (en) 2009-12-02

Family

ID=35027451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064372A Expired - Fee Related JP4375787B2 (en) 2004-03-08 2004-03-08 Consumable electrode arc welding method

Country Status (1)

Country Link
JP (1) JP4375787B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260469B2 (en) * 2009-10-26 2013-08-14 株式会社神戸製鋼所 Gas shield arc welding method
JP5608115B2 (en) * 2011-02-28 2014-10-15 株式会社神戸製鋼所 Gas shield arc welding method and welding apparatus
CN113857626A (en) * 2020-06-30 2021-12-31 北京博清科技有限公司 Can body assembly, can and method for manufacturing can
CN113814534A (en) * 2021-09-23 2021-12-21 湖南天一智能科技有限公司 Cold and hot wire consumable electrode gas shielded welding device
CN115846825A (en) * 2022-12-14 2023-03-28 中联重科股份有限公司 High-strength steel welding method
CN116833514B (en) * 2023-05-25 2024-05-28 天津大学 A welding method and product for improving the 5G all-position welding quality of marine riser

Also Published As

Publication number Publication date
JP2005246469A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
KR200418345Y1 (en) Electro Gas Welding Equipment
JP2008055506A (en) Two-welding wire feeding arc welding method, multilayer welding method, and narrow groove welding method
KR101991608B1 (en) Horizontal fillet welding method, horizontal fillet welding system and program
JP4375787B2 (en) Consumable electrode arc welding method
JP2010125512A (en) Laser arc combination welding method
JP5499590B2 (en) Laser welding equipment
WO2018037754A1 (en) Upright narrow groove gas shielded arc welding method
WO2015122047A1 (en) One-side submerged arc welding method for multielectrode and method for producing welded product
US3975615A (en) Vertical position welding method and apparatus for practicing the method
KR102753581B1 (en) Electro gas welding apparatus and heat input control method thereof
WO2017033978A1 (en) Welding method and arc welding device
KR101608975B1 (en) Tandem GMAW device for welding thick plate
JPH07204854A (en) High speed gas shield arc welding apparatus and method
JP6211431B2 (en) Multi-electrode single-sided submerged arc welding method, welded product manufacturing method
JP2010234409A (en) Narrow gloove welding torch, and tandem arc welding apparatus having the same
KR20110084607A (en) Ceramic backing structure for electrogas welding with easy slag discharge
KR101595279B1 (en) Fgb welding method
JP3867164B2 (en) Welding method
KR101253892B1 (en) Tandem Electro Gas Arc Welding Device
JP6715682B2 (en) Submerged arc welding method
JP2006231359A (en) Welding method and welded structure thereof
KR101475142B1 (en) A new welding method for the bottom side shell's butt joints
KR100605669B1 (en) Copper Clad for Electro Gas Welding
JPH09314334A (en) High-speed gas shield arc welding apparatus and welding method
KR200384956Y1 (en) Water cooled copper backing for 2 electrod eledtro gas welding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees