[go: up one dir, main page]

JP4373110B2 - Method for producing wet method amorphous silica - Google Patents

Method for producing wet method amorphous silica Download PDF

Info

Publication number
JP4373110B2
JP4373110B2 JP2003062037A JP2003062037A JP4373110B2 JP 4373110 B2 JP4373110 B2 JP 4373110B2 JP 2003062037 A JP2003062037 A JP 2003062037A JP 2003062037 A JP2003062037 A JP 2003062037A JP 4373110 B2 JP4373110 B2 JP 4373110B2
Authority
JP
Japan
Prior art keywords
amorphous silica
silica
wet
resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062037A
Other languages
Japanese (ja)
Other versions
JP2004269311A (en
Inventor
哲 佐藤
金一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2003062037A priority Critical patent/JP4373110B2/en
Publication of JP2004269311A publication Critical patent/JP2004269311A/en
Application granted granted Critical
Publication of JP4373110B2 publication Critical patent/JP4373110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、湿式法非晶質シリカの製造方法に関するものであり、より詳細には、微細化が容易であり、樹脂配合剤や感熱紙用填剤として有用な湿式法非晶質シリカの製造方法に関する。
【0002】
【従来の技術】
非晶質シリカは、例えば樹脂フィルムにフィルム相互の付着(ブロッキング)を防止するためのアンチブロッキング剤として各種の樹脂に配合されている(例えば特許文献1参照)。また、感熱記録紙の記録層中に填剤として非晶質シリカを配合することにより、感熱記録(記録ヘッド等と記録層との接触)に際して、記録層中の成分(ロイコ色素等の呈色剤やフェノール発色剤など)が記録ヘッドに付着する等の不都合を防止し得ることも知られている(特許文献2参照)。
【0003】
【特許文献1】
特開2001−131337号公報
【特許文献2】
特公平2−1030号公報
【0004】
【発明が解決しようとする課題】
ところで、非晶質シリカには、大きく分けて、湿式法によるものと乾式法(気相法)によるものとがある。湿式法非晶質シリカは、所謂水ガラスのようなケイ酸アルカリ水溶液を鉱酸により中和することにより得られ、気相法シリカは、四塩化ケイ素を酸素炎中で加水分解することにより得られる。
【0005】
上記のような非晶質シリカは、要求される特性等に応じて、湿式法或いは気相法によるものが使用されるが、製造法が容易であり、コストが安価であるという点で、上記特許文献1、2では、湿式法による非晶質シリカが使用されている。
【0006】
樹脂配合剤や感熱記録紙用の填剤などとして非晶質シリカを用いる場合、樹脂等に対する分散を均一に行い、且つ表面平滑性や安定した物性を確保するために、その粒径は微細であることが望まれる場合もあるが、湿式法シリカは、ある粒度以下になると凝集力が支配的になり、微細なものが得られないという欠点がある。即ち、水性スラリーの段階での湿式粉砕により微細な粒子を形成することはできるのであるが、これを乾燥した場合に凝集してしまい、乾式下でさらなる粉砕を行っても微細な粒子を得ることができない。
【0007】
また、感熱記録紙用填剤として非晶質シリカを用いる場合には、サーマルヘッドの腐食を防ぐ為、不純金属成分含量が抑制されていることが好ましいが、湿式法によるものでは、アルカリ金属塩やアルカリ土類金属塩類が使用されるため、かかる要求を満足させることができず、その実用化が阻まれることもある。
【0008】
したがって、本発明の目的は、湿式法により製造される非晶質シリカでありながら、微細化が容易な非晶質シリカの製造方法を提供することにある。
本発明の他の目的は、不純金属成分量の少ない湿式法非晶質シリカの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、ケイ酸アルカリと鉱酸とを水もしくは電解質水溶液に同時注加しながらpHを6乃至10の領域に保持してシリカの核粒子を生成し、次いで同時注加を停止して熟成する第1段の工程、
次いでケイ酸アルカリと鉱酸とを同時注加しながらpHを4乃至10の領域に保持してシリカの核粒子を成長させる第2段の工程、
ケイ酸アルカリと鉱酸との同時注加を停止して熟成を行う第3段の工程、及び
次いで脱アルカリ、ろ過、水洗、乾燥及び粉砕を行う第4段の工程、
とからなることを特徴とする非晶質シリカの製造方法が提供される。
【0010】
本発明により製造される非晶質シリカは、例えば、下記式(1):
Pco=B/A …(1)
式中、
Aは、2乃至40重量%濃度に調製された非晶質シリカの水性スラリーを2mmφの
アルミナボールミルを用いての湿式粉砕で限界粉砕して得られる粉砕スラリーのレーザ
回折法による体積基準中位径(D 50 )を示し、
Bは、前記粉砕スラリーを乾燥し、次いでジェットミルを用いての乾式粉砕で限界粉
砕して得られる粉末のレーザ回折法による体積基準中位径(D 50 )を示す、
で定義される凝集性度(Pco)が1.0乃至1.25、特に1.0乃至1.20の範囲にあり、ジェットミルにより湿式粉砕と同等のレベルにまで乾式粉砕することができるという性質を有している。
また、本発明により製造される非晶質シリカは、
1.前記粉砕スラリーのレーザ回折法による体積基準中位径(D50)が2μm以下であること、
2.水性分散液で測定したゼータ(ζ)電位が−35乃至−45ミリボルトであること、
3.BET比表面積が80m/g以下であること、
4.吸油量が150cc/100g以下であること、
5.1.45より大きい屈折率を有していること、
が好ましい。
【0011】
【発明の実施形態】
概説すると、本発明は、核生成反応と核成長反応との二段の反応工程が独立した工程となっている従来とは全く異なる湿式法で非晶質シリカを製造するものである。
【0012】
既に述べたように、通常の湿式法シリカは、湿式スラリーの段階での粉砕(湿式粉砕)により微細化できたとしても、それを乾燥すると再凝集し、さらに粉砕(乾式)を行うと、凝集した粒子を再微細化することが困難であり、限界まで粉砕したとしても、湿式粉砕で得られた粒径まで微細化することができない。
【0013】
しかるに、本発明においては、核生成反応によって、一旦、核となるシリカ粒子を生成せしめ、この後、核成長反応によって核粒子を徐々に成長させていくことにより非晶質シリカを得るのであり、一般にBET比表面積の小さな非晶質シリカが得られる。本発明の製法によりBET比表面積の小さなシリカが得られる理由は定かでないが、以下のように考えられる。シリカの一次粒子核が生成した後、凝集性を増大させるシリカ表面の凹凸が核成長過程において緻密に埋められることにより、多孔性を有しない二次粒子となり、その結果BET比表面積が小さくなるものと推察される。また、この結果、この非晶質シリカの所定濃度の水性スラリーを、アルミナボールを用いての湿式粉砕機により限界粉砕した得られたものの平均粒径と、該スラリーを乾燥してジェットミル(乾式粉砕機)で限界粉砕して得られる粉末の平均粒径との比で表される凝集性度(Pco:式(1)参照)は極めて1に近いものとなる。
【0014】
また、本発明の非晶質シリカは、湿式法で得られたものでありながら、25℃、75%RH及び48時間における平衡水分率が7%以下であり、吸湿性が小さいという特性を有している。即ち、上記のような方法で得られるシリカは、シリカ粒子の析出を一挙に行う従来法によるものに比してBET比表面積が小さく、このため、吸湿性が低いものとなっている。
【0015】
さらに、上記のように反応を二段に分割するときには、アルカリ金属塩やアルカリ土類金属塩等の電解質塩の使用量は少なくてよく、場合によっては、その使用量をゼロとすることも可能である。さらに、得られるシリカ粒子は緻密に核成長していることから、洗浄により、このような電解質塩に由来する不純物を容易に除去することができる。従って、かかる非晶質シリカは、樹脂配合剤などの用途ばかりか、不純金属の存在を嫌う感熱記録紙用填剤としても極めて有効に適用される。
【0016】
(湿式法非晶質シリカの製造)
以下、本発明を、製造方法にしたがって詳細に説明する。
本発明の非晶質シリカは、核生成工程(第1段の工程)、核成長工程(第2段の工程)、熟成工程(第3段の工程)及び後処理工程(第4段の工程)を経て製造される。
【0017】
核生成工程(第1段の工程):
この工程では、先ず、ケイ酸アルカリと鉱酸とを水もしくは電解質水溶液に攪拌下に同時注加し、シリカの核粒子を生成させ、熟成を行う。熟成時間は核粒子が生成する時間であれば良く特に制限はない。
【0018】
ケイ酸アルカリとしては、ケイ酸ナトリウムやケイ酸カリウムなどを使用し得るが、通常は、ケイ酸ナトリウムが使用される。
また、鉱酸としては、塩酸、硝酸、硫酸等を使用し得るが、一般的には塩酸や硫酸が使用される。
さらに、上記のケイ酸アルカリ及び鉱酸が同時注加される電解質水溶液としては、特に制限されるものではないが、燐酸ナトリウム、硫酸アンモニウム、食塩や硫酸ナトリウム、塩化リチウム、硫酸リチウム、炭酸ナトリウム、炭酸水素ナトリウムなどの電解質塩の水溶液が使用される。本発明においては、シリカ粒子を一挙に析出させるものではないため、かかる電解質塩の水溶液としては高濃度のものを使用する必要はなく、例えば電解質塩の量が、ケイ酸アルカリの使用量(SiO換算)当り、50重量%以下の量とすることができ、場合によっては、その使用量をゼロとすることもできる(即ち、単なる水を使用することもできる)。
【0019】
ケイ酸アルカリと鉱酸との同時注加により複分解反応によりシリカが生成するが、この反応段階でのpHの制御が重要であり、同時注加の間中pHを、6乃至10、好ましくは8乃至9.5の範囲に維持する。即ち、上記範囲よりもpHが高いと、複分解反応が進行せず、核となるシリカ粒子の生成が困難となる。一方、上記範囲よりもpHが低いと、反応が一挙に進行し、シリカ粒子が一挙に析出し、目的とする特性の非晶質シリカを得ることができない。また、この工程での反応温度は、50乃至100℃の範囲が好適である。
【0020】
上記の反応終了後、同時注加を停止し、熟成を行い、核となる非晶質シリカの粒子を析出させる。この熟成時のpHは、一般に、4乃至10、特に5乃至8の範囲とするのがよい。このときのpHが上記範囲をはずれると、析出が有効に進行せず、目的とする特性のシリカ粒子を得ることが困難となるおそれがある。尚、この段階でのpH調整は、例えばケイ酸アルカリの注加停止後、所定量の鉱酸をそのまま注加することによっても容易に行われる。また、この熟成は、ケイ酸アルカリの使用量等によっても異なるが、一般には、50乃至100℃の温度で10乃至60分間行えばよい。
【0021】
核成長工程(第2段の工程):
上記の核生成工程終了後、再び、ケイ酸アルカリと鉱酸とを同時注加することにより、上記の核粒子上にシリカを生成してシリカの核粒子を成長させる。この工程でのpHは4乃至10、特に6.5乃至8.5の範囲に調整される。この範囲よりもpHが高いと、核粒子の成長反応が有効に進行せず、また、pHが低いと、核粒子の成長よりも、新たな核粒子の生成を引き起こす為、目的とする特性のシリカ粒子を得ることができなくなってしまう。
【0022】
この工程において、pH調整は、この注加速度に併せて、鉱酸の注加速度を調整することにより容易に行うことができる。また、この工程での反応温度は、 50乃至100℃の範囲が好適である。
【0023】
熟成工程(第3段の工程):
次いで、ケイ酸アルカリ及び鉱酸の注加を停止、上記のpH領域のまま熟成を行い、先の工程で生成した核粒子が成長したシリカ粒子を析出させる。即ち、かかる方法によると、シリカの核粒子が緻密に成長した非晶質シリカ粒子を析出させることができる。かかる熟成工程は、一般に、50乃至100℃の温度で1乃至2時間行われる。
【0024】
後処理工程(第4段の工程):
本発明によれば、次いで、脱アルカリ、ろ過、水洗、乾燥及び粉砕を行うことにより、目的とする非晶質シリカを得ることができる。
脱アルカリ、ろ過及び水洗は、副生するアルカリ塩、或いは電解質塩等を除去するものであり、定法にしたがって行われる。例えば脱アルカリは、鉱酸の添加によりpHを2乃至4程度の領域に調整することにより行うことができる。本発明では、核粒子を徐々に成長させて目的とするシリカ粒子を得ているため、粒子中の上記不純金属塩の除去を、上記のような操作で容易に行うことができるという利点を有している。例えば、シリカ粒子を一挙に析出させる従来法によれば、上記金属塩が粒子中に封じ込められてしまい、上記のような操作で除去することが困難である。
【0025】
乾燥は、100乃至300℃程度の熱処理により行われ、洗浄乾燥後の非晶質シリカは、その目的に応じて、所定の粒度にまで粉砕し分級することにより製品とされる。このような粉砕は、ジェット粉砕機、衝撃式粉砕機、振動式粉砕機などが使用され、また分級は、重力式風力分級機、慣性式風力分級機、遠心式風力分級機、機械式風力分級機などが使用される。
【0026】
(非晶質シリカ)
上記のようにして得られた非晶質シリカは、核生成及び核成長という二段の反応工程を経ていることから、従来公知の湿式法シリカにはみられない特性を有している。
【0027】
即ち、本発明の製造方法により得られる非晶質シリカは、既に述べた通り、下記式(1):
Pco=B/A …(1)
式中、
Aは、2乃至40重量%濃度に調製された前記非晶質シリカの水性スラリーを2mm
φのボールミルを用いた湿式粉砕機で限界粉砕して得られる粉砕スラリーのレーザ回折
法による体積基準中位径(D50)を示し、
Bは、前記粉砕スラリーを乾燥し、次いでジェットミルを用いての乾式粉砕で限界粉
砕して得られる粉末のレーザ回折法による体積基準中位径(D50)を示す、
で定義される凝集性度(Pco)が1に近い値を示し、例えば1.0乃至1.25、特に1.0乃至1.20の範囲にあり、湿式粉砕と同等のレベルにまで乾式粉砕することができる。また、このことは、一旦、所定の粒度にまで微細化された粒子が凝集した場合にも、再び粉砕によって微粒化し得ることを物語っており、工業的に極めて有利である。ここで、限界粉砕とは、限界値まで粉砕して微細化を行うことを意味し、一例として、図1に粉砕スラリーの体積基準中位径(D50)と湿式粉砕時間の関係を示す。図から、湿式粉砕を行っていくと或る時間(図では約4時間)で体積基準中位径(D50)の値が一定となり、これ以上の微細化は不可能となることが分かる。従って、体積基準中位径(D50)が一定の値になるまでの粉砕を行うことを言う。
【0028】
例えば、本発明の非晶質シリカは、樹脂配合剤や感熱記録紙用填剤など、種々の基材に配合して使用され、このため、粉砕スラリーのレーザ回折法による体積基準中位径(D50)が2μm以下であることが好ましい。また、乾燥後に凝集して大径化しても、再び乾式粉砕することにより、容易に元の微粒に復帰させることができる。
【0029】
また、本発明の非晶質シリカは、25℃、75%RH及び48時間における平衡水分率が7%以下であり、吸湿性が小さい。上述した方法で得られるシリカは、核粒子が緻密に成長している為、その吸湿性が低いものと信じられる。従って、この非晶質シリカは、復水の問題が少なく、例えば樹脂に練り込んだときや、フィルムをヒートシールする際における水分の離脱に伴う発泡の問題も解消されている。
【0030】
また、本発明の湿式法非晶質シリカは、後述する実施例の方法で、水性分散液について測定したゼータ(ξ)電位が−35乃至−45ミリボルトの範囲にあるという特性も有している。
なお、ゼータ(ξ)電位は溶液のpH等の条件で値が変わるため本発明では以下のような条件で測定した。試料0.15gを200mlのイオン交換水中に懸濁させた時の値を原点値とし、次いで、希塩酸溶液を用いてpH調整を行なった。
懸濁液は5分間超音波分散し、Malvern社製Zetasizer3000HsaでpH5におけるゼータ電位を測定した。
【0031】
また、本発明の湿式法非晶質シリカは、BET比表面積が80m/g以下、好ましくは30m/g以下、特に好ましくは10m/g以下と低い値であり、樹脂配合剤或いは感熱紙用填剤として有用である。
【0032】
さらに、本発明の湿式法非晶質シリカは、核粒子の生成及び核粒子の成長という二段の反応段階を経て製造されていることから、吸油量が150cc/100g以下と比較的小さな値を示し、さらには、屈折率が1.45より大きく、樹脂に近い値を示す。従って、樹脂に配合したときに、その透明性を保持することができるという利点を有している。
【0033】
また、本発明においては、アルカリ金属や電解質塩に由来する不純金属成分が洗浄により有効に除去されている。従って、例えば、5%懸濁液を5分間煮沸後に測定した比抵抗は5kΩ・cm以上と高い値を示す。
【0034】
[用途]
上述した本発明の非晶質シリカは、樹脂中での分散性に優れ、樹脂配合剤として各種樹脂に配合することにより、例えばアンチブロッキング性を付与することができる。また、微細化することにより、延伸フィルム等に添加した場合でも延伸白化現象が抑制できる。
【0035】
尚、樹脂配合剤として使用する場合、そのままの状態で樹脂に配合することができるが、必要に応じ有機及び無機の助剤により被覆などの後処理を行って各種用途に供することができる。
【0036】
例えば、ステアリン酸、パルミチン酸、ラウリン酸等のカルシウム塩、亜鉛塩、マグネシウム塩、バリウム塩等の金属石鹸、シラン系カップリング剤、アルミニウム系カップリング剤、チタン系カップリング剤、ジルコニウム系カップリング剤、各種ワックス類、未変性乃至変性の各種樹脂(例えばロジン、石油樹脂等)等の有機助剤で表面処理して、各種用途に使用することができる。これらの有機助剤は、非晶質シリカ当たり0.5乃至10重量%、特に1乃至5重量%の量で用いるのがよい。
【0037】
また、無機系助剤としては、エアロジル、疎水処理エアロジル等の微粒子シリカ、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸塩、カルシア、マグネシア、チタニア等の金属酸化物、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、炭酸カルシウム等の金属炭酸塩、フッ化マグネシウム,フッ化アンモニウム等のフッ化物,A型、P型等の合成ゼオライト及びその酸処理物又はその金属イオン交換物から成る定形粒子を用いることができ、これらを非晶質シリカにブレンド乃至マブシして使用することもできる。これらの無機系助剤は、非晶質シリカ当たり0.5乃至10重量%、特に1乃至5重量%の量で用いるのがよい。
【0038】
本発明の非晶質シリカが配合される熱可塑性樹脂としては、特に限定されるものではないが、特にフィルム形成用のオレフィン系樹脂が好適であり、例えば、低−、中−或いは高−密度のポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、あるいはこれらのエチレン乃至α−オレフィンとの共重合体であるポリプロピレン系重合体、線状低密度ポリエチレン、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)、エチレン−アクリル酸エステル共重合体等が挙げられ、これらは単独でも或いは2種以上のブレンド物の形でも使用できる。勿論、本発明の非晶質シリカは、それ自体公知の他のフィルム形成用樹脂にも配合することができ、例えばナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル、ポリカーボネート、ポリスルフォン、塩化ビニル樹脂、塩化ビニリデン樹脂、フッ化ビニル樹脂等に配合することもできる。
【0039】
特に樹脂に配合してアンチブロッキング性を付与する場合、本発明の非晶質シリカは、樹脂100重量部当たり、0.05乃至1重量部、特に0.1乃至0.5重量部の量で用いるのがよい。
【0040】
また本発明の非晶質シリカは、同時注加の二段反応による核成長を実施しており、緻密にシリカ間の結合が成されていると信じられ、比表面積も低くなっており、ロイコ色素や顕色材等が入り込める空間が僅かである為、感熱紙用填剤としても有用である。更に、不純金属成分含量が抑制されていることから、サーマルヘッドの腐食等を起こす心配もなく、例えば紙等の支持体上に形成される感熱記録層形成用の組成物中に配合することができる。この組成物中には、ロイコ色素等の呈色剤、フェノール類等の発色剤、水溶性樹脂などのバインダー及び増感剤などが配合されており、本発明の非晶質シリカは、固形分基準で10乃至60重量%、特に20乃至40重量%の量で含有させることができる。
【0041】
【実施例】
本発明を、次の例で説明するが、本発明はこれらの実施例に限定されるものではない。実施例の測定は以下の方法で行なった。
【0042】
(1)体積基準中位径(D50
Malvern社製MasterSizer2000を使用して測定した。
【0043】
(2)ゼータ(ξ)電位
試料0.15gを200mlのイオン交換水中に懸濁させた時の値を原点値とし、次いで、希塩酸溶液を用いてpH調整を行なった。懸濁液は5分間超音波分散し、Malvern社製Zetasizer3000HsaでpH5におけるゼータ電位を測定した。
【0044】
(3)比表面積、細孔容積
Micromeritics製ASAP2010を使用し、BET法により測定した。
【0045】
(4)平衡水分率
試料約2gを予め重量を測定した40×40mmの秤量瓶に入れ、110℃の電気恒温乾燥機で2時間乾燥後、デシケーター中で放冷する。次いで試料の重量を精秤し、予め飽和食塩水溶液で関係湿度75%に調節したデシケーター中に入れ48時間後の重量増を測定し平衡水分率とした。
【0046】
(5)比抵抗
試料5gを95gのイオン交換水に懸濁させた後、5分間煮沸した。次いで懸濁液を水冷した後(株)堀場製作所製電気伝導度計(DS-14)で測定した。
【0047】
(6)pH
試料5gを95gのイオン交換水に懸濁させた後、5分間煮沸した。次いで懸濁液を水冷した後東亜電波工業社製pHメータ(HM-30G)を使用して測定した。
【0048】
(7)吸油量
JIS K5101−1991に準拠して測定した
【0049】
(8)嵩密度
JIS K6220−1995に準拠して測定した。
【0050】
(9)屈折率
Optical Mineralogy Vol.1 1987 Blackwell Scientific Publications P18−P25に記載のBecke Testに準拠して測定した。
【0051】
(実施例1)
(核生成工程)
0.5%硫酸アンモニウム水溶液に珪酸ソーダ溶液(SiO:24.3%、NaO:7.8%、S.G.=1.33)と13%塩酸水溶液を、反応温度85℃でpH9を保ちながらシリカ濃度が0.3%になるまで同時注加した。pH5にpH降下した後一旦同時注加を停止し、15分間攪拌熟成した。
(核成長工程)
次いでシリカ濃度が4.5%になるまで珪酸ソーダ溶液と13%塩酸水溶液をpH7.5に保ちながら同時注加した。注加終了後1時間攪拌熟成を行い核成長反応を完結させ、13%塩酸水溶液を添加してpH2.5までpH降下を行なった。その後定法に従い、濾過水洗後、瞬間乾燥を実施し、乾式粉砕、分級操作を行なうことで試料1Aを得た。
(微細化)
試料1Aを水に再分散させシリカ濃度20%の懸濁液を作成した。懸濁液をボールミル(2mmφアルミナボール)を使用して5時間湿式粉砕を行なった。得られた粉砕スラリーをスプレー乾燥機にて瞬間乾燥し、乾燥粉末を乾式粉砕することで試料1Bを得た。
物性測定を行い結果を表1に示す。
【0052】
(実施例2)
実施例1の0.5%硫酸アンモニウム水溶液の代わりに1.5%食塩水を使用し、反応温度60℃で同様の反応条件で合成を実施し、試料2Aを得た。また、微細化も同条件で実施し試料2Bを得た。
物性測定を行い結果を表1に示す。
【0053】
(実施例3)
実施例1の0.5%硫酸アンモニウム水溶液の代わりに2.0%硫酸ナトリウム水溶液を使用し、反応温度70℃で同様の反応条件で合成を実施し、試料3Aを得た。また、微細化も同条件で実施し試料3Bを得た。
物性測定を行い結果を表1に示す。
【0054】
(実施例4)
実施例1の硫酸アンモニウムを使用せず、同様の反応条件で合成を実施し、試料4Aを得た。また、微細化も同条件で実施し4Bを得た。
物性測定を行い結果を表1に示す。
【0055】
(比較例1)
(核生成工程)
0.5%硫酸アンモニウム水溶液に珪酸ソーダ溶液(SiO:24.3%、NaO:7.8%、S.G.=1.33)と13%塩酸水溶液を、反応温度60℃でpH9を保ちながらシリカ濃度が0.3%になるまで同時注加した。pH6.5にpH降下した後一旦同時注加を停止し、15分間攪拌熟成した。
(核成長工程)
次いでシリカ濃度が4.5%になるまで珪酸ソーダ溶液と13%塩酸水溶液をpH3に保ちながら同時注加した。注加終了後1時間攪拌熟成を行い核成長反応を完結させ、13%塩酸水溶液を添加してpH2.5までpH降下を行なった。その後定法に従い、濾過水洗後、瞬間乾燥を実施し、乾式粉砕、分級操作を行なうことで試料5Aを得た。
(微細化)
試料5Aを水に再分散させシリカ濃度20%の懸濁液を作成した。懸濁液をボールミル(2mmφアルミナボール)を使用して5時間湿式粉砕を行なった。得られた粉砕スラリーをスプレー乾燥機にて瞬間乾燥し、乾燥粉末を乾式粉砕することで試料5Bを得た。
物性測定を行い結果を表1に示す。
【0056】
(比較例2)
張水中に珪酸ソーダ溶液(SiO:24.3%、NaO:7.8%、S.G.=1.33)と13%硫酸水溶液を、反応温度75℃でpH8を維持しながらシリカ濃度4.5%になるまで同時注加を行なった。注加終了後1時間攪拌熟成を行い、13%硫酸水溶液を添加してpH2までpH降下を行なった。その後定法に従い、濾過水洗後、瞬間乾燥を実施し、乾式粉砕、分級操作を行なうことで試料6Aを得た。
(微細化)
試料6Aを水に再分散させシリカ濃度15%の懸濁液を作成した。懸濁液をボールミル(2mmφアルミナボール)を使用して5時間湿式粉砕を行なった。得られた粉砕スラリーをスプレー乾燥機にて瞬間乾燥し、乾燥粉末を乾式粉砕することで試料6Bを得た。
物性測定を行い結果を表1に示す。
【0057】
【表1】

Figure 0004373110
【0058】
(実施例5〜8)
実施例1乃至4で得られた本発明によるシリカ粉末を填剤として下記組成からなる感熱記録層形成液を用いて感熱記録試験紙を作成した。この試験紙について下記に示す方法でそれぞれ評価した。結果を表4に示す。
【0059】
(感熱記録試験紙の作成)
感熱塗液は各素材の固形分が以下の通りになるように調合した。尚、それぞれの素材はペイントシェンカー等により良く湿式粉砕した後に混合した。
ロイコ染料:ODB-2(3-ジエチルアミノ-6-メチル-7-アニリノフルオラン)10部
顕色材:BPA(ビスフェノールA) 20部
増感剤:PBBP (ポリベンジルビフェニル) 20部
滑剤:ステアリン酸亜鉛 10部
バインダー:PVA-117 (ポリビニルアルコール) 15部
フィラー(表4参照) 20部
上記感熱記録層形成液を市販PPC用紙上に乾燥重量が6g/m2となるように塗布後、室温で乾燥し、ロール圧10kg/cmでカレンダリングを行い、試験用感熱記録試験紙とした。
【0060】
(感熱紙の評価)
(10)地汚れ濃度
塗布後24時間経た感熱記録層形成液塗布紙の地汚れ濃度を富士写真フィルム(株)製標準濃度計FSD-103型でVフィルターを用いて測定し、これを肉眼観察により表2のような基準で評価した。
【表2】
Figure 0004373110
【0061】
(11)動的発色画像濃度
(株)大倉電機製印字装置TH-PMDで記録し、(ヘッド電圧24V、パルス幅1.3msec、パルス周期2msec、サーマルヘッド抵抗値1572Ω)、このときの発色画像濃度を標準濃度計FSD−103型(富士写真フィルム製)で測定し、これと肉眼観察により表3のような基準で評価した。
【表3】
Figure 0004373110
【0062】
(12)カス付着防止試験
NTT FAX−510Tを用い、ベタ印字後のサーマルヘッドに付着するカスを肉眼で観察し以下のように評価した。
:優
:良
×:不良
【0063】
【表4】
Figure 0004373110
【0064】
(実施例9〜10)
実施例1乃至2で得られた本発明によるシリカ粉末を填剤として配合した、ポリプロピレン(PP)フィルムを作成した。このフィルムについて下記に示す方法でそれぞれ評価した。結果を表5に示す。
【0065】
(フィルムの作成)
樹脂にPPを用いて、以下に示した配合原料を加工温度230℃で製膜し、厚さ30μmのフィルムを得た。
Figure 0004373110
【0066】
(フィルム確性試験環境)
ISO 291:1997に準拠して、室温23℃、湿度50%に調節した環境中において試験フィルムを保存し、所定時間経過した試験片を各種フィルム確性試験に供した。
【0067】
(13)Haze測定
Hazeは、Gardner社製haze−gard plusを使用し、ASTM D 1003−95に準拠して測定した。Hazeの値が小さいほど透明性に優れる。
【0068】
(14)Clarity測定
Clarityは、ASTM D 1044−94に記載されている装置を用い、前記Haze測定に用いたフィルムの試験片をそのまま測定した。Clarityの値が大きいほど鮮明性に優れる。
なお、測定にはGardner社製haze−gard plusを使用した。
【0069】
(15)SCOF(静摩擦係数)測定
ASTM D 1894−95に準拠し、東洋精機製摩擦測定機TR−2を用いて、フィルム外表面同士の静摩擦係数を評価した。SCOFの値が低いほど滑り性に優れる。
【0070】
(16)Gel数
ニコン製二光束干渉顕微鏡で得られた測定結果をMicromap 550及びSurface Explorerを使用し解析した。直径100μm以上且つ突起高さ2μm以上の凸物をGel(フィッシュアイ)と見なし、フィルム16cmあたりのGel数をカウントした。
【0071】
(17)アンチブロッキング性(AB性)測定
ISO 11502:1995 method Bに準ずる方法で、6kPaで60℃、3日間圧着したフィルムについて、ブロッキング力の測定を行い、以下に示すように評価した。
○:問題なく剥れる
△:剥れにくい
×:剥れない
【0072】
(比較例3)
PP−樹脂組成物配合表において、アンチブロッキング剤として比較例2を用いた。結果を表5に示す。
【0073】
(比較例4)
PP樹脂に何も配合しないで、PP樹脂100重量%とした。結果を表5に示す。
【0074】
【表5】
Figure 0004373110
【0075】
【発明の効果】
本発明によれば、核生成反応及び核成長反応の二段の反応を用いることにより、湿式法によるものでありながら、微細化が容易な非晶質シリカを得ることができる。この非晶質シリカは、樹脂等に対する分散性が良好であり、例えば樹脂配合剤として好適である。また、比表面積も低く、ロイコ色素や顕色材等が入り込める空間が僅かである為、感熱記録用填剤として有用であり、更に不純金属成分含量が抑制されていることから、記録ヘッド等の腐食を防止することもできる。さらに、サブミクロンサイズまで微細化することで延伸フィルム等のフィラーとして利用できる他、樹脂中で微細なシリカの均一分散が可能となることによるガスバリアー性等の新たな機能を付与することも可能である。
【図面の簡単な説明】
【図1】粉砕スラリーの体積基準中位径(D50)と湿式粉砕時間の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a wet method.Method for producing amorphous silicaMore specifically, a wet method that is easy to refine and useful as a resin compounding agent and a thermal paper fillerMethod for producing amorphous silicaAbout.
[0002]
[Prior art]
Amorphous silica is blended in various resins as an anti-blocking agent for preventing adhesion (blocking) between films on a resin film, for example (see, for example, Patent Document 1). Also, by blending amorphous silica as a filler in the recording layer of the thermal recording paper, the components in the recording layer (coloring of leuco dyes, etc.) during thermal recording (contact between the recording head and the recording layer). It is also known that inconveniences such as adhering to the recording head can be prevented (see Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-131337 A
[Patent Document 2]
Japanese Patent Publication No. 2-1030
[0004]
[Problems to be solved by the invention]
By the way, amorphous silica is roughly classified into a wet process and a dry process (vapor phase process). Wet process amorphous silica is obtained by neutralizing an alkali silicate aqueous solution such as so-called water glass with mineral acid, and vapor phase process silica is obtained by hydrolyzing silicon tetrachloride in an oxygen flame. It is done.
[0005]
The amorphous silica as described above is used by a wet method or a gas phase method depending on required properties, etc., but the above method is easy because the manufacturing method is easy and the cost is low. In Patent Documents 1 and 2, amorphous silica obtained by a wet method is used.
[0006]
When amorphous silica is used as a resin compounding agent or a filler for heat-sensitive recording paper, the particle size is fine in order to uniformly disperse the resin and ensure surface smoothness and stable physical properties. In some cases, it is desired that the wet process silica has a drawback that when the particle size is smaller than a certain particle size, the cohesive force becomes dominant and a fine one cannot be obtained. In other words, fine particles can be formed by wet pulverization at the stage of an aqueous slurry, but they will aggregate when dried, and fine particles can be obtained even if further pulverization is performed under dry conditions. I can't.
[0007]
Further, when amorphous silica is used as a heat-sensitive recording paper filler, it is preferable that the content of impure metal components is suppressed in order to prevent corrosion of the thermal head. And alkaline earth metal salts are used, such a requirement cannot be satisfied and its practical use may be hindered.
[0008]
  Therefore, the object of the present invention is toWhile being an amorphous silica produced by a wet process,Easy to miniaturizeMethod for producing amorphous silicaIs to provide.
  Another object of the present invention is a wet process with a small amount of impure metal components.Method for producing amorphous silicaIs to provide.
[0009]
[Means for Solving the Problems]
  According to the present invention,A first stage in which alkali silicate and mineral acid are simultaneously added to water or an aqueous electrolyte solution while maintaining the pH in the region of 6 to 10 to produce silica core particles, and then the simultaneous injection is stopped and ripened. The process of
  Next, a second stage step of growing silica core particles while maintaining the pH in the region of 4 to 10 while simultaneously adding alkali silicate and mineral acid,
  A third stage of aging by stopping simultaneous pouring of alkali silicate and mineral acid; and
  Next, a fourth stage process for dealkalization, filtration, washing with water, drying and grinding,
A method for producing amorphous silica is provided.
[0010]
  The amorphous silica produced according to the present invention is, for example, the following formula (1):
    Pco = B / A (1)
  Where
    A is a 2 mmφ aqueous slurry of amorphous silica prepared to a concentration of 2 to 40% by weight.
  Laser of pulverized slurry obtained by limit pulverization by wet pulverization using alumina ball mill
  Volume-based median diameter by diffraction method (D 50 )
    B is a powder of the limit by drying the pulverized slurry, followed by dry pulverization using a jet mill.
  Volume-based median diameter (D 50 )
The degree of cohesion (Pco) defined in the above is in the range of 1.0 to 1.25, particularly 1.0 to 1.20, and can be dry pulverized to a level equivalent to wet pulverization by a jet mill. It has properties.
  The amorphous silica produced according to the present invention is
1. Volume-based median diameter (D50) Is 2 μm or less,
2. The zeta (ζ) potential measured with the aqueous dispersion is −35 to −45 millivolts,
3. BET specific surface area is 80m2/ G or less,
4). The oil absorption is 150 cc / 100 g or less,
Having a refractive index greater than 5.15;
Is preferred.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  In summary,The present inventionIt is completely different from the conventional case where the two-stage reaction process of the nucleation reaction and the nucleus growth reaction is an independent process.Amorphous silica is produced by a wet method.
[0012]
As already mentioned, even if normal wet silica can be refined by pulverization (wet pulverization) at the stage of wet slurry, it re-aggregates when it is dried, and further agglomerates when pulverized (dry). It is difficult to re-fine the resulting particles, and even if pulverized to the limit, it cannot be reduced to the particle size obtained by wet pulverization.
[0013]
  However,In the present inventionIn this method, the silica particles that form the nucleus are once generated by the nucleation reaction, and then the nucleus particles are gradually grown by the nucleus growth reaction.Amorphous silica is obtained, and amorphous silica having a small BET specific surface area is generally obtained.The reason why a silica having a small BET specific surface area can be obtained by the production method of the present invention is not clear, but is considered as follows. After the primary particle nuclei of silica are formed, the irregularities on the silica surface that increase the cohesiveness are densely filled in the nucleus growth process, resulting in non-porous secondary particles, resulting in a small BET specific surface area. It is guessed.In addition, as a result, the average particle size of the obtained aqueous slurry of amorphous silica having a predetermined concentration was subjected to limit pulverization by a wet pulverizer using alumina balls, and the slurry was dried to obtain a jet mill (dry type The agglomeration degree (Pco: see formula (1)) represented by the ratio to the average particle diameter of the powder obtained by limit pulverization with a pulverizer is very close to 1.
[0014]
In addition, the amorphous silica of the present invention is obtained by a wet method, and has the characteristics that the equilibrium moisture content at 25 ° C., 75% RH and 48 hours is 7% or less and the hygroscopic property is small. is doing. That is, the silica obtained by the above method has a BET specific surface area smaller than that obtained by the conventional method in which the silica particles are precipitated all at once, and therefore has a low hygroscopic property.
[0015]
In addition, when the reaction is divided into two stages as described above, the amount of electrolyte salt such as alkali metal salt or alkaline earth metal salt used may be small, and in some cases, the amount used may be zero. It is. Furthermore, since the resulting silica particles are densely nucleated, impurities derived from such electrolyte salts can be easily removed by washing. Therefore, such amorphous silica is very effectively applied not only as a resin compounding agent but also as a filler for heat-sensitive recording paper that dislikes the presence of impure metals.
[0016]
(Production of wet process amorphous silica)
Hereinafter, the present invention will be described in detail according to the production method.
The amorphous silica of the present invention comprises a nucleation step (first step), a nucleation growth step (second step), an aging step (third step), and a post-treatment step (fourth step). ) Is manufactured through.
[0017]
Nucleation process (first stage process):
In this step, first, alkali silicate and mineral acid are simultaneously poured into water or an aqueous electrolyte solution with stirring to produce silica core particles and aging. The aging time is not particularly limited as long as the nucleation time is generated.
[0018]
As the alkali silicate, sodium silicate, potassium silicate and the like can be used, but sodium silicate is usually used.
As the mineral acid, hydrochloric acid, nitric acid, sulfuric acid and the like can be used, but hydrochloric acid and sulfuric acid are generally used.
Further, the aqueous electrolyte solution to which the alkali silicate and the mineral acid are simultaneously added is not particularly limited, but sodium phosphate, ammonium sulfate, sodium chloride, sodium sulfate, lithium chloride, lithium sulfate, sodium carbonate, carbonate An aqueous solution of an electrolyte salt such as sodium hydrogen is used. In the present invention, since silica particles are not precipitated all at once, it is not necessary to use a high concentration aqueous solution of the electrolyte salt. For example, the amount of the electrolyte salt is the amount of alkali silicate used (SiO 2).2The amount may be 50% by weight or less per conversion), and in some cases, the amount used may be zero (that is, simple water may be used).
[0019]
Silica is produced by metathesis reaction by simultaneous addition of alkali silicate and mineral acid. Control of pH in this reaction stage is important, and pH is adjusted to 6 to 10, preferably 8 during the simultaneous addition. To the range of 9.5. That is, when the pH is higher than the above range, the metathesis reaction does not proceed, and it becomes difficult to produce silica particles as a nucleus. On the other hand, if the pH is lower than the above range, the reaction proceeds all at once, silica particles precipitate all at once, and amorphous silica having the desired characteristics cannot be obtained. The reaction temperature in this step is preferably in the range of 50 to 100 ° C.
[0020]
After the completion of the above reaction, the simultaneous pouring is stopped and ripening is performed to precipitate amorphous silica particles as nuclei. In general, the pH at the time of aging is preferably 4 to 10, particularly 5 to 8. If the pH at this time is out of the above range, precipitation does not proceed effectively, and it may be difficult to obtain silica particles having the desired characteristics. Note that the pH adjustment at this stage can be easily performed by adding a predetermined amount of mineral acid as it is after, for example, stopping the addition of alkali silicate. In addition, this aging is generally carried out at a temperature of 50 to 100 ° C. for 10 to 60 minutes, although it varies depending on the amount of alkali silicate used.
[0021]
Nuclear growth process (second stage):
After the completion of the nucleation step, an alkali silicate and a mineral acid are simultaneously poured again to produce silica on the nuclei and grow silica nuclei. The pH in this step is adjusted to a range of 4 to 10, particularly 6.5 to 8.5. If the pH is higher than this range, the growth reaction of the core particles does not proceed effectively, and if the pH is low, the generation of new core particles is caused rather than the growth of the core particles. It becomes impossible to obtain silica particles.
[0022]
In this step, the pH adjustment can be easily performed by adjusting the injection acceleration of the mineral acid together with the injection acceleration. The reaction temperature in this step is preferably in the range of 50 to 100 ° C.
[0023]
Aging step (third step):
Next, the addition of alkali silicate and mineral acid is stopped, aging is performed in the above pH range, and silica particles on which the core particles generated in the previous step have grown are precipitated. That is, according to this method, amorphous silica particles in which silica core particles are densely grown can be precipitated. Such an aging step is generally performed at a temperature of 50 to 100 ° C. for 1 to 2 hours.
[0024]
Post-processing step (fourth step):
According to the present invention, the desired amorphous silica can then be obtained by carrying out dealkalization, filtration, washing with water, drying and grinding.
Dealkalization, filtration, and water washing are for removing by-product alkali salts, electrolyte salts, and the like, and are performed according to a conventional method. For example, dealkalization can be performed by adjusting the pH to about 2 to 4 by adding mineral acid. In the present invention, since the target silica particles are obtained by gradually growing the core particles, there is an advantage that the above-mentioned impure metal salt in the particles can be easily removed by the operation as described above. is doing. For example, according to the conventional method of precipitating silica particles all at once, the metal salt is contained in the particles and is difficult to remove by the above operation.
[0025]
Drying is performed by heat treatment at about 100 to 300 ° C., and the amorphous silica after washing and drying is made into a product by pulverizing to a predetermined particle size and classification according to the purpose. For such pulverization, jet pulverizer, impact pulverizer, vibration pulverizer, etc. are used. Gravity wind classifier, inertial wind classifier, centrifugal wind classifier, mechanical wind classifier are used for classification. A machine is used.
[0026]
(Amorphous silica)
Since the amorphous silica obtained as described above has undergone two-stage reaction steps of nucleation and nucleation, it has characteristics not found in conventionally known wet-process silica.
[0027]
  That is, the amorphous silica obtained by the production method of the present invention has the following formula (1):
    Pco = B / A (1)
    Where
    A represents the aqueous slurry of amorphous silica prepared to a concentration of 2 to 40% by weight.2mm
  Wet grinding machine using φ ball millDiffraction of pulverized slurry obtained by limit pulverization with
  Volume-based median diameter (D50)
    B, drying the crushed slurry, thenDry milling using a jet millLimit powder
  Volume-based median diameter (D50)
Cohesion degree defined by (Pco)Indicates a value close to 1, for exampleIt is in the range of 1.0 to 1.25, particularly 1.0 to 1.20, and can be dry pulverized to a level equivalent to wet pulverization. This also means that even if the particles refined to a predetermined particle size once aggregate, they can be atomized again by pulverization, which is extremely advantageous industrially. Here, limit pulverization means pulverization to the limit value and refinement, and as an example, FIG. 1 shows the volume-based median diameter (D50) And wet grinding time. From the figure, when the wet pulverization is carried out, the volume-based median diameter (D50) Is constant, and it can be seen that further miniaturization is impossible. Therefore, the volume-based median diameter (D50) Is to grind until a certain value is reached.
[0028]
For example, the amorphous silica of the present invention is used by being blended with various substrates such as a resin compounding agent and a heat-sensitive recording paper filler. For this reason, the volume-based median diameter of the pulverized slurry by the laser diffraction method ( D50) Is preferably 2 μm or less. Moreover, even if it aggregates and enlarges after drying, it can return to the original fine particle easily by carrying out dry grinding again.
[0029]
Further, the amorphous silica of the present invention has an equilibrium moisture content of 7% or less at 25 ° C., 75% RH and 48 hours, and has low hygroscopicity. The silica obtained by the above-described method is believed to have low hygroscopicity because the core particles grow densely. Therefore, this amorphous silica has few problems of condensate, and for example, the problem of foaming accompanying the separation of moisture when kneaded into a resin or when heat-sealing a film is also solved.
[0030]
The wet process amorphous silica of the present invention also has a characteristic that the zeta (ξ) potential measured with respect to the aqueous dispersion is in the range of −35 to −45 millivolts by the method of Examples described later. .
In addition, since the value of the zeta (ξ) potential varies depending on conditions such as the pH of the solution, it was measured under the following conditions in the present invention. A value obtained when 0.15 g of the sample was suspended in 200 ml of ion-exchanged water was used as an origin value, and then pH adjustment was performed using a diluted hydrochloric acid solution.
The suspension was ultrasonically dispersed for 5 minutes, and the zeta potential at pH 5 was measured with a Zevernizer 3000Hsa manufactured by Malvern.
[0031]
The wet process amorphous silica of the present invention has a BET specific surface area of 80 m.2/ G or less, preferably 30 m2/ G or less, particularly preferably 10 m2/ G or less, and is useful as a resin compounding agent or a thermal paper filler.
[0032]
Furthermore, since the wet-process amorphous silica of the present invention is produced through two reaction stages of generation of core particles and growth of core particles, the oil absorption is a relatively small value of 150 cc / 100 g or less. Furthermore, the refractive index is larger than 1.45 and shows a value close to that of a resin. Therefore, it has the advantage that the transparency can be maintained when blended with the resin.
[0033]
In the present invention, an impure metal component derived from an alkali metal or an electrolyte salt is effectively removed by washing. Therefore, for example, the specific resistance measured after boiling a 5% suspension for 5 minutes shows a high value of 5 kΩ · cm or more.
[0034]
[Usage]
The above-described amorphous silica of the present invention is excellent in dispersibility in a resin, and can be imparted with, for example, anti-blocking properties by being blended with various resins as a resin compounding agent. Moreover, even if it adds to a stretched film etc. by refinement | miniaturization, a stretch whitening phenomenon can be suppressed.
[0035]
In addition, when used as a resin compounding agent, it can be compounded into the resin as it is, but it can be used for various purposes by performing post-treatment such as coating with organic and inorganic auxiliaries as necessary.
[0036]
For example, calcium soap such as stearic acid, palmitic acid, lauric acid, metal soap such as zinc salt, magnesium salt, barium salt, silane coupling agent, aluminum coupling agent, titanium coupling agent, zirconium coupling It can be surface-treated with an organic auxiliary such as an agent, various waxes, various unmodified or modified resins (eg, rosin, petroleum resin, etc.) and used for various applications. These organic auxiliaries are preferably used in amounts of 0.5 to 10% by weight, in particular 1 to 5% by weight, per amorphous silica.
[0037]
Examples of the inorganic auxiliary agent include fine particle silica such as aerosil and hydrophobically treated aerosil, silicates such as calcium silicate and magnesium silicate, metal oxides such as calcia, magnesia and titania, magnesium hydroxide and aluminum hydroxide. Metal hydroxides such as calcium carbonate, metal carbonates such as calcium carbonate, fluorides such as magnesium fluoride and ammonium fluoride, synthetic zeolites such as A-type and P-type, and acid-treated products thereof or metal ion-exchange products thereof Particles can be used, and these can be blended or mashed with amorphous silica. These inorganic auxiliaries are preferably used in an amount of 0.5 to 10% by weight, particularly 1 to 5% by weight, per amorphous silica.
[0038]
The thermoplastic resin to which the amorphous silica of the present invention is blended is not particularly limited, but olefin-based resins for film formation are particularly suitable, for example, low-, medium- or high-density. Polyethylene, isotactic polypropylene, syndiotactic polypropylene, or polypropylene polymers that are copolymers of these with ethylene or α-olefin, linear low density polyethylene, ethylene-propylene copolymer, polybutene-1, Ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer, ion-crosslinked olefin copolymer (ionomer), ethylene-acrylic Acid ester copolymers, and the like. These may be used alone or in combination of two or more. It can also be used in the form of a blend. Of course, the amorphous silica of the present invention can be blended with other known film forming resins such as nylon 6, nylon 6-6, nylon 6-10, nylon 11 and nylon 12. It can also be blended with thermoplastic polyesters such as polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polysulfone, vinyl chloride resin, vinylidene chloride resin, vinyl fluoride resin and the like.
[0039]
Particularly when blended in a resin to impart antiblocking properties, the amorphous silica of the present invention is in an amount of 0.05 to 1 part by weight, especially 0.1 to 0.5 part by weight per 100 parts by weight of the resin. It is good to use.
[0040]
In addition, the amorphous silica of the present invention is subjected to nucleation by simultaneous two-stage reaction, and it is believed that the silica is closely bonded, the specific surface area is low, and leuco Since there is little space for pigments and developer to enter, it is also useful as a thermal paper filler. Furthermore, since the impure metal component content is suppressed, there is no concern of causing thermal head corrosion or the like, and it can be incorporated into a composition for forming a thermal recording layer formed on a support such as paper. it can. In this composition, a colorant such as a leuco dye, a color former such as phenols, a binder such as a water-soluble resin, and a sensitizer are blended. The amorphous silica of the present invention has a solid content. It can be contained in an amount of 10 to 60% by weight, in particular 20 to 40% by weight.
[0041]
【Example】
The present invention will be described with reference to the following examples, but the present invention is not limited to these examples. The measurement of the Example was performed by the following method.
[0042]
(1) Volume-based median diameter (D50)
Measurement was performed using a MasterSizer2000 manufactured by Malvern.
[0043]
(2) Zeta (ξ) potential
A value obtained when 0.15 g of the sample was suspended in 200 ml of ion-exchanged water was used as an origin value, and then pH adjustment was performed using a diluted hydrochloric acid solution. The suspension was ultrasonically dispersed for 5 minutes, and the zeta potential at pH 5 was measured with a Zevernizer 3000Hsa manufactured by Malvern.
[0044]
(3) Specific surface area, pore volume
ASAP2010 manufactured by Micromeritics was used, and measurement was performed by the BET method.
[0045]
(4) Equilibrium moisture content
About 2 g of a sample is placed in a 40 × 40 mm weighing bottle previously weighed, dried for 2 hours in an electric constant temperature dryer at 110 ° C., and then allowed to cool in a desiccator. Next, the weight of the sample was precisely weighed, placed in a desiccator previously adjusted to a relative humidity of 75% with a saturated saline solution, and the weight increase after 48 hours was measured to obtain the equilibrium moisture content.
[0046]
(5) Specific resistance
A sample of 5 g was suspended in 95 g of ion-exchanged water and then boiled for 5 minutes. Next, the suspension was cooled with water and measured with an electric conductivity meter (DS-14) manufactured by Horiba, Ltd.
[0047]
(6) pH
A sample of 5 g was suspended in 95 g of ion-exchanged water and then boiled for 5 minutes. Next, the suspension was cooled with water and then measured using a pH meter (HM-30G) manufactured by Toa Denpa Kogyo.
[0048]
(7) Oil absorption
Measured according to JIS K5101-1991
[0049]
(8) Bulk density
It measured based on JISK6220-1995.
[0050]
(9) Refractive index
Optical Mineralology Vol. 1 1987 Blackwell Scientific Publications Measured according to the Becke test described in P18-P25.
[0051]
Example 1
(Nucleation process)
Sodium silicate solution (SiO2) in 0.5% ammonium sulfate aqueous solution2: 24.3%, Na2O: 7.8%, S.I. G. = 1.33) and a 13% aqueous hydrochloric acid solution were added simultaneously until the silica concentration reached 0.3% while maintaining pH 9 at a reaction temperature of 85 ° C. After the pH was lowered to pH 5, the simultaneous pouring was once stopped and the mixture was aged and stirred for 15 minutes.
(Nuclear growth process)
Next, a sodium silicate solution and a 13% hydrochloric acid aqueous solution were simultaneously added while maintaining the pH at 7.5 until the silica concentration reached 4.5%. After completion of the addition, the mixture was aged and stirred for 1 hour to complete the nucleus growth reaction, and a 13% hydrochloric acid aqueous solution was added to lower the pH to 2.5. Thereafter, according to a conventional method, after filtration and washing with water, instantaneous drying was performed, and dry pulverization and classification were performed to obtain Sample 1A.
(Miniaturization)
Sample 1A was redispersed in water to prepare a suspension having a silica concentration of 20%. The suspension was wet-ground for 5 hours using a ball mill (2 mmφ alumina ball). The obtained pulverized slurry was instantaneously dried with a spray dryer, and the dry powder was dry pulverized to obtain Sample 1B.
The physical properties were measured and the results are shown in Table 1.
[0052]
(Example 2)
Synthesis was carried out under the same reaction conditions at a reaction temperature of 60 ° C. using 1.5% saline in place of the 0.5% aqueous ammonium sulfate solution of Example 1 to obtain Sample 2A. Further, miniaturization was performed under the same conditions to obtain Sample 2B.
The physical properties were measured and the results are shown in Table 1.
[0053]
(Example 3)
A 2.0% sodium sulfate aqueous solution was used in place of the 0.5% ammonium sulfate aqueous solution of Example 1, and synthesis was carried out under the same reaction conditions at a reaction temperature of 70 ° C. to obtain Sample 3A. Further, miniaturization was performed under the same conditions to obtain Sample 3B.
The physical properties were measured and the results are shown in Table 1.
[0054]
(Example 4)
The synthesis was carried out under the same reaction conditions without using the ammonium sulfate of Example 1, and Sample 4A was obtained. Moreover, refinement | miniaturization was implemented on the same conditions and 4B was obtained.
The physical properties were measured and the results are shown in Table 1.
[0055]
(Comparative Example 1)
(Nucleation process)
Sodium silicate solution (SiO2) in 0.5% ammonium sulfate aqueous solution2: 24.3%, Na2O: 7.8%, S.I. G. = 1.33) and a 13% aqueous hydrochloric acid solution were simultaneously added at a reaction temperature of 60 ° C. while maintaining pH 9 until the silica concentration reached 0.3%. After the pH was lowered to pH 6.5, the simultaneous pouring was once stopped and the mixture was aged and stirred for 15 minutes.
(Nuclear growth process)
Next, a sodium silicate solution and a 13% hydrochloric acid aqueous solution were simultaneously added while maintaining the pH at 3 until the silica concentration reached 4.5%. After completion of the addition, the mixture was aged and stirred for 1 hour to complete the nucleus growth reaction, and a 13% hydrochloric acid aqueous solution was added to lower the pH to 2.5. Then, according to a conventional method, after filtering and washing with water, instant drying was performed, and dry pulverization and classification were performed to obtain Sample 5A.
(Miniaturization)
Sample 5A was redispersed in water to prepare a suspension having a silica concentration of 20%. The suspension was wet-ground for 5 hours using a ball mill (2 mmφ alumina ball). The obtained pulverized slurry was instantaneously dried with a spray dryer, and the dry powder was dry pulverized to obtain Sample 5B.
The physical properties were measured and the results are shown in Table 1.
[0056]
(Comparative Example 2)
Sodium silicate solution in SiO 2 (SiO 22: 24.3%, Na2O: 7.8%, S.I. G. = 1.33) and a 13% aqueous sulfuric acid solution were simultaneously added at a reaction temperature of 75 ° C. while maintaining a pH of 8 until the silica concentration reached 4.5%. After completion of the addition, the mixture was aged and stirred for 1 hour, and a 13% sulfuric acid aqueous solution was added to lower the pH to pH 2. Then, according to a conventional method, after filtration and washing with water, instant drying was performed, and dry pulverization and classification were performed to obtain Sample 6A.
(Miniaturization)
Sample 6A was redispersed in water to prepare a suspension having a silica concentration of 15%. The suspension was wet-ground for 5 hours using a ball mill (2 mmφ alumina ball). The obtained pulverized slurry was instantaneously dried with a spray dryer, and the dry powder was dry pulverized to obtain Sample 6B.
The physical properties were measured and the results are shown in Table 1.
[0057]
[Table 1]
Figure 0004373110
[0058]
(Examples 5 to 8)
A thermal recording test paper was prepared using a thermal recording layer forming liquid having the following composition using the silica powder according to the present invention obtained in Examples 1 to 4 as a filler. The test papers were evaluated by the methods shown below. The results are shown in Table 4.
[0059]
(Creation of thermal recording test paper)
The heat-sensitive coating liquid was prepared so that the solid content of each material was as follows. In addition, each raw material was mixed after wet-grinding well with a paint schenker or the like.
Leuco dye: ODB-2 (3-diethylamino-6-methyl-7-anilinofluorane) 10 parts
Developer: 20 parts BPA (bisphenol A)
Sensitizer: PBBP (polybenzylbiphenyl) 20 parts
Lubricant: 10 parts of zinc stearate
Binder: PVA-117 (polyvinyl alcohol) 15 parts
Filler (see Table 4) 20 parts
Drying weight of the above thermal recording layer forming liquid on commercial PPC paper is 6g / m2After coating, the film is dried at room temperature, and the roll pressure is 10 kg / cm.2Was subjected to calendering and used as a test thermal recording test paper.
[0060]
(Evaluation of thermal paper)
(10) Contamination density
The scumming density of the heat-sensitive recording layer forming liquid coated paper 24 hours after coating was measured with a standard densitometer FSD-103 manufactured by Fuji Photo Film Co., Ltd. using a V filter. Evaluated by criteria.
[Table 2]
Figure 0004373110
[0061]
(11) Dynamic color image density
Recorded with a printing apparatus TH-PMD manufactured by Okura Electric Co., Ltd. (head voltage 24 V, pulse width 1.3 msec, pulse period 2 msec, thermal head resistance value 1572Ω), and the color image density at this time was determined as a standard densitometer FSD-103 It was measured with a mold (manufactured by Fuji Photo Film) and evaluated according to the criteria shown in Table 3 by observation with the naked eye.
[Table 3]
Figure 0004373110
[0062]
(12) Waste adhesion prevention test
Using NTT FAX-510T, debris adhering to the thermal head after solid printing was observed with the naked eye and evaluated as follows.
: Excellent
: Good
×: Defect
[0063]
[Table 4]
Figure 0004373110
[0064]
(Examples 9 to 10)
A polypropylene (PP) film was prepared by blending the silica powder according to the present invention obtained in Examples 1 and 2 as a filler. The films were evaluated by the methods shown below. The results are shown in Table 5.
[0065]
(Create film)
Using PP as the resin, the following blended raw materials were formed at a processing temperature of 230 ° C. to obtain a film having a thickness of 30 μm.
Figure 0004373110
[0066]
(Film accuracy test environment)
In accordance with ISO 291: 1997, the test film was stored in an environment adjusted to a room temperature of 23 ° C. and a humidity of 50%, and the test piece after a predetermined time was subjected to various film accuracy tests.
[0067]
(13) Haze measurement
Haze was measured in accordance with ASTM D 1003-95 using a Gardner-made haze-gard plus. The smaller the value of Haze, the better the transparency.
[0068]
(14) Clarity measurement
Clarity measured the test piece of the film used for the said Haze measurement as it was, using the apparatus described in ASTM D 1044-94. The greater the value of Clarity, the better the clarity.
In addition, Gardner's haze-gard plus was used for the measurement.
[0069]
(15) SCOF (Static Friction Coefficient) measurement
Based on ASTM D 1894-95, the coefficient of static friction between the outer surfaces of the film was evaluated using a friction measuring machine TR-2 manufactured by Toyo Seiki. The lower the SCOF value, the better the slipperiness.
[0070]
(16) Gel number
Measurement results obtained with a Nikon two-beam interference microscope were analyzed using a Micromap 550 and Surface Explorer. Convex objects with a diameter of 100 μm or more and a protrusion height of 2 μm or more are regarded as Gel (fish eye), and the film is 16 cm.2The number of Gel per count was counted.
[0071]
(17) Measurement of anti-blocking property (AB property)
With respect to the film pressure-bonded at 6 kPa at 60 ° C. for 3 days by the method according to ISO 11502: 1995 method B, the blocking force was measured and evaluated as shown below.
○: Peel without problems
Δ: Hard to peel
×: not peeled
[0072]
(Comparative Example 3)
In the PP-resin composition formulation table, Comparative Example 2 was used as an antiblocking agent. The results are shown in Table 5.
[0073]
(Comparative Example 4)
Nothing was added to the PP resin, and the PP resin was 100% by weight. The results are shown in Table 5.
[0074]
[Table 5]
Figure 0004373110
[0075]
【The invention's effect】
According to the present invention, by using a two-stage reaction of a nucleation reaction and a nucleation growth reaction, it is possible to obtain amorphous silica that is easily refined while being based on a wet method. This amorphous silica has good dispersibility with respect to a resin or the like, and is suitable, for example, as a resin compounding agent. In addition, since the specific surface area is low and there is little space for the leuco dye or developer to enter, it is useful as a heat-sensitive recording filler. Corrosion can also be prevented. Furthermore, it can be used as a filler for stretched films, etc. by miniaturizing to sub-micron size, and it can also add new functions such as gas barrier properties by enabling uniform dispersion of fine silica in the resin. It is.
[Brief description of the drawings]
FIG. 1 Volume-based median diameter (D50) And the wet pulverization time.

Claims (1)

ケイ酸アルカリと鉱酸とを水もしくは電解質水溶液に同時注加しながらpHを6乃至10の領域に保持してシリカの核粒子を生成し、次いで同時注加を停止して熟成する第1段の工程、
次いでケイ酸アルカリと鉱酸とを同時注加しながらpHを4乃至10の領域に保持してシリカの核粒子を成長させる第2段の工程、
ケイ酸アルカリと鉱酸との同時注加を停止して熟成を行う第3段の工程、及び
次いで脱アルカリ、ろ過、水洗、乾燥及び粉砕を行う第4段の工程、
とからなることを特徴とする非晶質シリカの製造方法。
A first stage in which alkali silicate and mineral acid are simultaneously poured into water or an aqueous electrolyte solution while maintaining the pH in the region of 6 to 10 to produce silica core particles, and then the simultaneous pouring is stopped and ripening is performed. The process of
Next, a second step of growing silica core particles while maintaining the pH in the region of 4 to 10 while simultaneously adding alkali silicate and mineral acid,
A third step for aging by stopping simultaneous pouring of alkali silicate and mineral acid, and then a fourth step for dealkalization, filtration, washing, drying and grinding,
A process for producing amorphous silica, comprising:
JP2003062037A 2003-03-07 2003-03-07 Method for producing wet method amorphous silica Expired - Fee Related JP4373110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062037A JP4373110B2 (en) 2003-03-07 2003-03-07 Method for producing wet method amorphous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062037A JP4373110B2 (en) 2003-03-07 2003-03-07 Method for producing wet method amorphous silica

Publications (2)

Publication Number Publication Date
JP2004269311A JP2004269311A (en) 2004-09-30
JP4373110B2 true JP4373110B2 (en) 2009-11-25

Family

ID=33124078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062037A Expired - Fee Related JP4373110B2 (en) 2003-03-07 2003-03-07 Method for producing wet method amorphous silica

Country Status (1)

Country Link
JP (1) JP4373110B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761501B2 (en) * 2003-09-24 2011-08-31 旭化成ケミカルズ株式会社 Method for producing polyamide resin composition
WO2006036034A1 (en) * 2004-09-30 2006-04-06 Nippon Paper Industries Co., Ltd. Thermosensitive recording material
WO2006070594A1 (en) * 2004-12-27 2006-07-06 Oji Paper Co., Ltd. Heat-sensitive recording material
EP1918118A4 (en) * 2005-08-25 2009-12-30 Oji Paper Co THERMAL SENSITIVE RECORDING MATERIAL AND METHOD OF MANUFACTURING THEREOF
US8512664B1 (en) 2007-07-20 2013-08-20 The National Titanium Dioxide Co. Ltd. (Cristal) Sodium silicate solutions
US8734750B2 (en) 2007-07-20 2014-05-27 The National Titanium Dioxide Co. Ltd. (Cristal) Sodium silicate solutions
US7622097B2 (en) 2007-07-20 2009-11-24 The National Titanium Bioxide Co., Ltd. (CRISTAL) Process for hydrothermal production of sodium silicate solutions and precipitated silicas
JP2010208178A (en) * 2009-03-11 2010-09-24 Sumitomo Chemical Co Ltd Polypropylene oriented multilayer film
CN108975680A (en) * 2018-09-18 2018-12-11 重庆国际复合材料股份有限公司 A kind of glass fibre operates on the recovery method of silk
JP7316177B2 (en) * 2019-10-03 2023-07-27 東ソー・シリカ株式会社 Hydrous silicic acid slurry and method for producing the same

Also Published As

Publication number Publication date
JP2004269311A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
TW554012B (en) Ultraviolet absorbent
US5342876A (en) Spherical granules of porous silica or silicate, process for the production thereof, and applications thereof
JP4373110B2 (en) Method for producing wet method amorphous silica
EP1118584B1 (en) Dispersion of silica particle agglomerates and process for producing the same
KR100237509B1 (en) Amorphous silica type filler
GB2228477A (en) Amorphous silica-alumina spherical particles
JP3050937B2 (en) Amorphous silica filler
JP3876610B2 (en) Silica fine particle dispersion and production method thereof
CA2655291A1 (en) Uv absorbing composition
JP3110526B2 (en) Hydrotalcite-coated particles, production method thereof and compounding agent for resin
JPH0643515B2 (en) New filler and its manufacturing method
JP3757205B2 (en) Compounding agent for resin
JPH021030B2 (en)
CA1218504A (en) Heat-sensitive recording paper and filler therefor
JP2833827B2 (en) Compounding agent for resin
JP2007314590A (en) Composite powder and its production method
JP2004331479A (en) Wet silica dispersion and production method thereof
JP2001131337A (en) Anti-blocking agent
KR100841969B1 (en) Compounding Agent For Resin
JP3076447B2 (en) Magnesium compound coated particles and method for producing the same
JP2947870B2 (en) Method for producing antistatic transparent resin polymer composition
JP2003191617A (en) Inkjet recording sheet
JP2718578B2 (en) Filler for thermal recording paper
JP2001105725A (en) Amorphous silica for inkjet recording sheet and method for producing the same
JP3469292B2 (en) Amorphous amorphous particles of amorphous silica titanate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees