JP4368852B2 - レーダ装置 - Google Patents
レーダ装置 Download PDFInfo
- Publication number
- JP4368852B2 JP4368852B2 JP2005508920A JP2005508920A JP4368852B2 JP 4368852 B2 JP4368852 B2 JP 4368852B2 JP 2005508920 A JP2005508920 A JP 2005508920A JP 2005508920 A JP2005508920 A JP 2005508920A JP 4368852 B2 JP4368852 B2 JP 4368852B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- primary
- cluster
- received
- directions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/46—Indirect determination of position data
- G01S13/48—Indirect determination of position data using multiple beams at emission or reception
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
- G01S13/426—Scanning radar, e.g. 3D radar
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
【0001】
この発明は、レーダ装置に係るものであり、特にレーダを用いて目標物が存在する方向を測定する技術に関するものである。
【背景技術】
【0002】
一般にレーダシステムでは、受信信号が検出可能となるビームの指向方向を求めることによって、目標の存在方向を取得することができる。目標の方向を計測する精度は、ビーム幅が狭くなるほど向上する。しかし、レーダの送信波長を一定にしてビーム幅を狭くしようとすると、より大きな開口径を有するアンテナが必要となる。そこで、計測精度がビーム幅に依存する方法に替えて、わずかに異なるビーム方向を有する複数のビームから得られた受信信号間の振幅や位相の差異などの情報を用いて、目標の方向を計測する方法が従来から用いられている。このような方法によれば、ビーム幅から決定される計測精度よりも高い角度分解能を達成できる。
【0003】
このような方法の例としては、シーケンシャルロービング方式(sequential-lobing)、モノパルス方式(monopulse)が公知である。これらの方法では、まず複数のビーム方向から互いに隣接した2つの方向のビームを選択し、これら2つのビームから観測された受信信号の振幅や位相の間の差(Δ信号と呼ばれる)と和(Σ信号)を求める。次に、△信号とΣ信号との比を算出する。この比を△/Σ値と呼ぶこととすれば、△/Σ値は目標の角度と一意に対応するので、△/Σ値から目標の方向を推定することができるのである。
【0004】
しかしながら、これらの方法では、目標の個数は1に制限される。すなわち、同一のビーム内に複数の目標が存在する場合は正確に方向を算出することができないという問題がある。例えば、図17に示すように、アンテナ100から方向101〜105に対して放射されるビーム(方向101と102、方向102と103、方向103と104、方向104と105はそれぞれ隣接しているものとし、さらに各方向のビームをビーム101〜105と呼ぶこととする)を用いて目標110の方向を推定するレーダシステムを考えてみると、互いに隣接しているビーム1とビーム2、ビーム2とビーム3、ビーム3とビーム4、ビーム4とビーム5のそれぞれの組み合わせからは、真の目標の有無に関わらず、何らかの角度値が算出されることになる。図18に示した矢印111、112、113、114は、図17のビーム101〜105から得られる受信信号間の差異に基づいて算出した角度値の方向(像)の例である。図において、方向111はビーム101と102との組み合わせから求められたものであり、方向112はビーム102と103との組み合わせから求められたものである。また、方向113はビーム103と104との組み合わせから求められたものであり、方向114はビーム104と105との組み合わせから求められたものである。方向113と方向114は、ビーム103〜105による送信波を目標110に照射して反射された受信波と相関があるが、方向111と方向112は目標110と相関がなく、真の目標に対応しない偽像(false image)である。
【0005】
ここで、目標が一つだけの場合、受信信号の振幅や電力に基づいて偽像を棄却することもできるが、目標が複数となると、ビームの組み合わせで得られる方向と目標との相関が複雑になり、単純な閾値による棄却では対応できない。
【0006】
複数の目標の方向を計測する一つの方法として、I.Ziskind and M. Wax,“Maximum likelihood localization of multiple sources by alternating projection,”IEEE Transaction on Acoustics Speech and Signal Processing,Vol. 36,no 10,pp. 1553-1560,Oct 1988 などに開示されている最尤推定法(Maximum likelihood localization)がある。この手法によれば、複数の目標がビーム内に存在していても方向の分離が可能であるが、この方法では、多くの演算量を必要とし、そのため高い演算性能の信号処理装置を要求する。特に目標数が多くなると、演算量が増大することになる。
【0008】
以上のように、シーケンシャルロービング方式・モノパルス方式では、複数目標の方向を分離することができず、また最尤推定法では複数目標の方向を分離することは可能となるが、演算負荷が高いという問題があった。
【0009】
この発明は、ビームを複数組み合わせて目標の方向を算出する既存の手法の有する
上記のような問題を解決することを目的とするものである。
【課題を解決するための手段】
【0010】
この発明に係るレーダ装置は、複数の方向にビームを放射するとともに、目標により反射された前記ビームを受信波として受信するアンテナと、
前記アンテナが受信した受信波に検波処理を施して受信信号を出力する受信器と、
前記受信器が出力した受信信号から前記受信波の特徴量を抽出する信号検出器と、
前記複数の方向に放射されたビームのうち、一部が重なり合う少なくとも2つのビームの受信波より前記信号検出器が算出した特徴量の組み合わせから、前記目標の方向である1次方向を算出する方向算出器とを備えるレーダ装置において、
前記方向算出器が算出した1次方向が複数存在する場合に、複数の前記1次方向の分布が所定の密度以上となる領域からその領域に属する1次方向に基づいて真の目標の方向である統合方向を算出する方向統合器を備え、
前記方向統合器は、前記所定の密度以上の領域に属する1次方向からクラスタを形成して、そのクラスタ単位に前記統合方向を算出し、算出した前記統合方向を角度成分の初期値として、前記目標の角度と反射率を仮定して予め設定したモデル受信信号と、前記方向算出器が前記1次方向の算出に用いた受信信号と、をモデルフィッティングすることにより前記目標の方向を推定するものである。
【発明の効果】
【0011】
このように、このレーダ装置では、1次方向の分布密度が一定値以上となる領域のそれぞれから真の目標の方向を抽出するようにした。これにより、複数個の目標が存在する場合であっても、それぞれの目標の方向を分離できるのである。
【発明を実施するための最良の形態】
【0012】
実施の形態1.
図1は、この発明の実施の形態1によるレーダ装置の構成を示したブロック図である。図において、レーダ装置1はシーケンシャルロービング方式によるパルスレーダ装置であって、基準信号発生器2、送信器3、アンテナ4−a及び4−b、受信器7、信号処理器8を有している。基準信号発生器2は、局部発信器(ローカルオシレータ)によって周波数が一定である微弱な基準信号を発生する部位である。なお、この説明および以下の説明において、部位とは専用の回路又は素子を指すものとする。ただし場合によっては、汎用的な機能を有する中央演算装置を搭載したコンピュータに、コンピュータプログラムを通じて相当の処理を実行させるような構成を採っていてもよい。
【0013】
送信器3は増幅器とパルス変調器から構成されており、増幅器によって基準信号発生器2が発生した基準信号を増幅し、さらにパルス変調器によって基準信号からパルス波を発生する部位である。アンテナ4−aは送信器3が発生したパルス波を所定の方向にビームとして放射するアンテナである。ビーム5−aはアンテナ4−aにより放射されるビームである。目標6はレーダ装置1の外部に存在し、レーダ装置1の測定対象となっている物体である。電波5−bは、ビーム5−aの一部が目標6により反射されて生じた電波である。アンテナ4−bはビーム5−bを受信するアンテナである。受信器7はアンテナ4−bが受信した受信波に対して検波処理をして、受信信号を出力する部位である。信号処理器8は、受信器7が出力した受信信号に対して信号処理を施し、目標6が存在する方向を算出する部位である。アンテナ駆動器9は、アンテナ4−a及び4−bの方向を機械的あるいは電子的に制御する部位であって、アンテナ4−a及び4−bは同じ方向を向くようにアンテナ駆動器9によって制御されるようになっている。
【0014】
図2は、信号処理器6の詳細な構成を示すブロック図である。図において、信号検出器11は、入力された信号から振幅などの信号特徴量を求める部位である。また△/Σ測角器12は、信号検出器11が求めた特徴量の△/Σ値を求め、△/Σ値から各ビームに基づく目標の方向を算出する。なお、以降の説明において、△/Σ測角器12が算出する目標の方向を、1次方向と呼ぶこととする。クラスタ分離器13は、△/Σ測角器12が出力した1次方向が集中的に分布している角度範囲を、クラスタとして抽出する部位である。1次方向が集中的に分布している角度範囲が複数ある場合は、複数の角度範囲においてクラスタを形成するようになっている。分布中心算出器14は、クラスタ分離器13が形成したクラスタのそれぞれにおいて、1次方向の分布中心を求めて、クラスタ毎に真の目標の方向を算出する部位である。ここで「分布中心」とは、1次方向が所定の分布密度存在する領域に属する単数または複数の1次方向を統計的に処理して得られる値をいうものとする。また、以降の説明において、真の目標の方向を「統合方向」と呼ぶこととする。
【0015】
なお、△/Σ測角器12は、方向算出器の例であり、またクラスタ分離器13と分布中心算出器14は方向統合器の例である。
【0016】
次に、レーダ装置1の動作について説明する。まず基準信号発生器2は微弱な基準信号を発生し、その微弱信号に基づいて、送信器3はパルス送信波を発生する。アンテナ4−aは、このパルス送信波をビーム5−aとして放射する。前述の通り、アンテナ4−a及び4−bは、アンテナ駆動器9の制御によって機械的または電子的にビームを放射又は受信する方向を切り替えるようになっている。これによって、アンテナ4−aはビームの一部が重なるように複数の方向に向けられて、それぞれの方向に向かって順次2個以上のアンテナビームを放射する。
【0017】
各々の時間においてアンテナ4−aから放射されたビーム5−aは、目標6に反射され、その一部がアンテナ4−bに受信波として受信される。アンテナ1に受信された受信波は、受信器7に出力され、アナログ信号からディジタル信号に変換され(A/D変換)、その変換結果が受信信号として信号処理器8に出力される。レーダ装置1はシーケンシャルロービング方式によるパルスレーダ装置であるから、異なる時間において放射されたアンテナビームを組み合わせることによって、信号処理器8を用いて目標6の方向を算出するのである。
【0018】
(△/Σ値から角度を算出する方法)
図3は、信号処理器6の処理を示したフローチャートである。ステップS101において、信号処理器6の信号検出器11によって入力信号の特徴量が検出された後、△/Σ測角器12は入力信号の特徴量の△/Σ値を求め、さらに1次方向を算出する。△/Σ値の例としては、入力信号の振幅を特徴量とし、複数のビームパターンにおける振幅を比較して得る△/Σ値(振幅比較方式)と、入力信号の位相を特徴量とし、複数のビームパターンにおける位相を比較して得る△/Σ値などがあり、いずれの△/Σ値を用いても目標の方向の算出を行うことが可能である。たとえば、振幅比較方式ならば、隣接する2つのビームについての受信信号において、目標の方向に起因する誤差電圧εは、これら両ビームの受信信号の振幅の差(△)を振幅の和(Σ)で除した値で表される。すなわちとε=△/Σの関係が成立する。
【0019】
そして、アンテナ4−a及び4−bの正面方向をθaとすれば、目標の方向をθoは
θo=θa+f(ε) (1)
で与えられる。これによって、目標の1次方向を算出することができる。なお、式(1)において、関数fは、誤差電圧εと、目標方向のθaからのずれの量との関係を表す関数である。
【0020】
次にステップS102において、クラスタ分離器13は、△/Σ測角器12によって算出された1次方向の分布に基づいてクラスタを形成する。図4と図5は、真の目標と△/Σ測角器12によって算出される1次方向、そしてクラスタ分離器13によって形成されるクラスタとの関係を概念的に示す図である。図4は、真の目標35と36からなる複数の目標が存在している場合に、アンテナ4−a及び4−bによるビーム走査を用いて真の目標35と36の存在する方向を算出する場合を示している。図に示すように、アンテナ1はビームパターン41〜47を放射するが、ビームパターン41と42、42と43、43と44、44と45、45と46、46と47はそれぞれ一部が重なっている。
【0021】
続いて図5は、ビームパターン41〜47を用いて真の目標35と36が存在する方向を1次方向として算出した結果を示す図である。図において、1次方向51はビームパターン42と43とに基づいて、△/Σ測角器12が算出した1次方向である。同様にして、1次方向52はビームパターン43と44に基づいて算出されたものであり、1次方向53はビームパターン44と45に基づいて算出されたものである。さらに、1次方向54はビームパターン45と46に基づいて算出されたものであり、1次方向55はビームパターン46と47に基づいて算出されたものである。
【0022】
図6から明らかになることは、以下の通りである。
(1)ビームパターンの組み合わせのそれぞれから、1つずつの1次方向が算出されている。
(2)例えば1次方向51と52のように、ある真の目標を対象とする1次方向が複数算出されていたとしても、それらの1次方向は異なる値となりうる。
(3)ビームパターン44と45から算出された1次方向53のように、場合によっては、真の目標が存在しない方向であるにも関わらず、あたかも何らかの目標が存在するかのように1次方向を算出してしまう。このように真の目標が存在しないにも関わらず、算出されてしまう1次方向を「偽像に対する1次方向」(あるいは単に、「偽像に対する方向」)と呼ぶ。
【0023】
そこで、特に(2)の問題を解決するために、クラスタ分離器13は1次方向をクラスタリングする。さらに中心分布算出器14では、クラスタ分離器13が形成したクラスタのそれぞれから真の目標に対する方向を算出し、さらに偽像に対する方向を排除する。
【0024】
(クラスタ形成処理の詳細)
図6は、ステップS102におけるクラスタ形成処理の詳細なフローチャートである。これらの処理はクラスタ分離器13によって実行されるものである。図のステップS111において、カウンタ変数Nの初期値として1を設定する。このカウンタ変数は、△/Σ測角器12が算出した複数の1次方向のうちの一つを指し示すために用いられるものである。次にステップS112において、変数EにN番目の1次方向を代入する。この処理の前提として、△/Σ測角器12が算出した複数の1次方向は一定の順序で配列されているものとし、先頭からの順番によって一意にいずれかの1次方向が定まるものとする。すなわちN番目の1次方向、N+1番目の1次方向、という呼び方によって、それぞれの要素が一意に決定される。
【0025】
ステップS113において、もう一つのカウンタ変数Mの初期値として同じく1を設定する。このカウンタ変数は、すでに生成されているクラスタがある場合に、それらのクラスタの一つを指し示すものとして用いられる。1次方向と同じように、クラスタも一定の順序で配列されており、先頭からの順番によって一意に定めるものとする。ステップS114において、M番目のクラスタの最大値を変数MAXに格納し、またM番目のクラスタの最小値を変数MINに格納する。クラスタの最大値とは、そのクラスタに属する1次方向の最大値を意味するものとする。一方、クラスタの最小値とは、そのクラスタに属する1次方向の最小値を意味するものとする。
【0026】
次にステップS115において、変数E(N番目の1次方向)が、変数MAX(M番目のクラスタの最大値)に所定値Dを加えた値よりも小さいかどうか(条件1と呼ぶ)を調べる。それとともに、変数E(N番目の1次方向)が、変数MIN(M番目のクラスタの最小値)から所定値Dを減じた値よりも大きいかどうか(条件2と呼ぶ)を調べる。条件1と条件による選別の結果、1次方向の値の大きさ順に各1次方向を並べた場合に、隣接する2つの1次方向であって、かつ一定値以上離れている1次方向は、異なるクラスタに所属するようになる。すなわち、隣り合う1次方向までの距離が近ければ、1次方向の分布密度が高いといえ、その距離が遠ければ1次方向の分布密度は低いと考えられるのである。
【0027】
なお、クラスタの形成は1次方向の分布密度の大きい点を中心に行えば十分であるから、このように1次方向間の距離値に基づいてクラスタを形成する方法以外にも、標準偏差など他の統計指標を用いてクラスタ形成してもよいことはいうまでもない。
【0028】
条件1と条件2の両方が満たされた場合は、ステップS116に進む(ステップS115:Yes)。この場合には、ステップS116において変数E(N番目の1次方向)をM番目のクラスタに含める。その後ステップS120に進むが、以降の処理については後述する。
【0029】
一方、ステップS115において、条件1と条件2のいずれか、あるいは双方が満たされない場合には、ステップS117に進む(ステップS115:No)。ステップS117では、カウンタ変数Mに1を加えて、ステップS118でカウンタ変数Mが現在形成されているクラスタの総数より大きいか否かを判定する。Mがクラスタの総数より大きい場合には、もうこれ以上処理すべきクラスタが存在しないことを意味しているので、ステップS119に進む(ステップS118:Yes)。ステップS119では、変数E(N番目の1次方向)が所属すべきクラスタは、まだ存在していないので、新たなクラスタを生成し、このクラスタに変数E(N番目の1次方向)を所属させる。その後ステップS120に進むが、以降の処理については後述する。
【0030】
また、ステップS118でカウンタ変数Mが現在形成されているクラスタの総数以下である場合には、ステップS114に戻り、それ以降の処理を繰り返す。これにより、変数E(N番目の1次方向)が、すでに存在しているいずれかのクラスタに所属すべきものであれば、ステップS114〜ステップS118、あるいはステップS114〜ステップS116の繰り返しにより、変数E(N番目の1次方向)をそのクラスタに所属させることができる。
【0031】
次に、ステップS120以降の処理について説明する。ステップS120において、カウンタ変数Nに1を加える。ステップS121においてNが1次方向の総数を超えていない場合には、ステップS112に戻って、次の1次方向の処理を行う(ステップS121:No)。一方、ステップS121においてNが1次方向の総数を超えた場合には、これ以上処理すべき1次方向は存在しないので、処理を終了する。以上でステップS102によるクラスタの形成処理を終える。
【0032】
(分布中心の算出処理)
次に、ステップS1O3〜S104において、分布中心算出器14は各クラスタの分布中心の算出を行う。まずステップS103において、分布中心算出器14は、カウンタ変数Mに1を代入して初期化する。次にステップS104において、M番目のクラスタの分布中心を計算し、このクラスタの統合方向とする。クラスタの分布中心の計算は次のようにして行う。今、M番目のクラスタに、異なるビームの組み合わせにより得たN個の1次方向θi(i=1,2,…,N)が属しているとする。また、1次方向θiの算出に用いた受信信号の振幅値をaiとする。このとき、分布中心算出器14は、M番目のクラスタの分布中心wMを、式(2)によって算出する。
【0033】
【数1】
【0034】
式(2)によって与えられる分布中心は、1次方向θiに受信信号の振幅値による重み付けを施した値の総和を、受信信号の振幅値の総和で除算することにより正規化した値である。すなわち、パルスレーダにおいては、目標の存在する距離付近に受信信号の振幅値のピークが存在し、このピークが大きければ大きいほど、目標の存在確率が大きくなる。したがって、その受信信号に基づいて算出された1次方向の評価を大きくすることで、分布中心と真の目標の方向との一致度が高くなり、測角精度を向上させることができる。
【0035】
続いて、ステップS105において、分布中心算出器14は、式(3)を用いてM番目のクラスタの強度acMを算出する。
【0036】
【数2】
【0037】
ステップS106において、分布中心算出器14は、カウンタ変数Mに1を加え、さらにステップS107において、Mがクラスタの総数を超えたかどうかを調べる。Mがクラスタの総数以下である場合には、まだ処理すべきクラスタが存在するので、ステップS104に戻る(ステップS1O7:No)。一方、Mがクラスタの総数を超えた場合には、ステップS108に進む(ステップS1O7:Yes)。
【0038】
ステップS108において、分布中心算出器14は、式(3)によって算出された各クラスタの強度を比較し、強度が最も強いクラスタから強度の強い順に所定数のクラスタを選択する。そして選択したクラスタの分布中心を、統合方向としてそれぞれ算出する。図5の偽像53のように、偽像は一般的に他の像から孤立する。そのため、クラスタ分離器13が偽像53に対応して形成したクラスタ57に属する1次方向の個数は小さくなる。式(3)による強度は、各1次方向を算出するのに用いた受信電力の振幅値の総和に基づいて決定されるので、クラスタに属する1次方向の個数が少なければ、強度も小さくなると考えられる。このことから、各クラスタ間で強度の大きい統合方向を選択することで、偽像を排除することができる。
【0039】
同様にして、クラスタ57に属する1次方向の個数に基づいて強度を算出するようにしてもよい。例えば、個数そのものをクラスタの強度としてもよい。
【0040】
また、偽像53は真の目標に対応した像ではないので、偽像53を形成した受信信号の振幅は、真の目標により反射されて受信された受信波の受信信号の振幅よりも小さい。したがってクラスタに属する1次方向の個数に影響される式(3)ではなく、各クラスタに属する1次方向の算出に用いたビーム単体の受信信号の振幅の平均値に基づいて強度を定めるようにしてもよい。
【0041】
さらに、振幅に基づいて強度を算出することに替えて、各ビームの受信波の受信信号の電力値に基づいて強度を算出するようにしてもよい。
【0042】
以上から明らかなように、この発明の実施の形態1のレーダ装置によれば、シーケンシャルロービング方式のレーダ装置のように、本来単一目標の測角に使用されるレーダを用いて複数の目標の測角を行うことができる。
【0043】
また、偽像の発生を抑制して、精度の高い測角を行うことができる、という効果を奏する。
【0044】
なお、この発明の実施の形態1においては、式(5)によりクラスタの分布中心値を求めて、分布中心値を各クラスタの統合方向とした。これによって、各ビームに基づいて算出された1次方向を重み付け平均するものであり、各測角値の誤差を低減する効果が期待できる。しかし、このような方法に替えて、各クラスタの1次方向を算出する基礎となったビームのうち、最大振幅または最大電力を有するビームから算出された1次方向をそのまま統合方向としてもよい。受信信号のSN比が十分高い場合には、クラスタにおいて最も高い受信振幅あるいは電力を有する受信信号から算出された1次方向をそのままクラスタ測角値として採用しても、十分な測角精度が得られる。
【0045】
また、この実施の形態1においては、シーケンシャルロービング方式のパルスレーダ装置を例に説明した。しかしながら、モノパルス方式によるパルスレーダ装置においても、アンテナの構成や給電方法が異なるだけであって、受信信号を処理する部位の構成についてはシーケンシャルロービングの場合と何ら異なることがなく、この発明の実施の形態1の動作原理を適用することができる。したがって、この発明が及ぶ範囲はシーケンシャルロービング方式のパルスレーダ装置に限定されるものではない。
【0046】
さらに、この発明の実施の形態1で示される発明の特徴は、パルス方式以外のパルスレーダ装置であっても適用できることはいうまでもないが、特にFMCW(Frequency Modulation Continuous Wave)方式のレーダ装置のように、距離情報まで取得できる場合には、クラスタを形成する場合に角度値(1次方向)が近似する像という条件のみでクラスタを形成するのではなく、各像の距離が近似するという条件をも組み合わせてクラスタを形成するようにすると、さらに精度を向上させることができる。
【0047】
実施の形態2.
実施の形態1では、パルスレーダ装置を例として、1次方向の分布密度に基づいてクラスタを形成し、それらクラスタの分布中心を選別することによって、複数の目標の方向を分離する方法について説明した。しかしながら、クラスタを形成する方法に替えて、受信信号の特徴量が極大となる(局所的に大きな値をとる)1次方向を統合方向として選択するようにしてもよい。この発明の実施の形態2によるレーダ装置はこのような特徴を有するものである。
【0048】
図7は、この発明の実施の形態2によるレーダ装置の構成を示すブロック図である。図において、レーダ21はシーケンシャルロービング方式によるドップラーレーダ装置であって、その構成要素のうち、図1と同一の符合を付した構成要素は、実施の形態1のレーダ装置における相当部位と同様であるので、説明を省略する。受信器22は、アンテナ4−bが受信した受信波(アナログ信号)を、基準信号発生器2から出力される基準信号を用いてビデオ信号(または中間周波信号)に周波数変換する部位である。さらに受信器22は、周波数変換した受信信号にA/D変換を施してディジタル信号に変換するようになっている。信号処理器23は、受信器22によってディジタル化された受信信号に対して信号処理を行うようになっており、その詳細な構成は図8によって示される。
【0049】
図において、周波数解析器24は、受信器22が出力する受信信号を、例えば高速フーリエ変換(FFT)などにより、周波数領域の信号すなわちスペクトルに変換する部位である。アンテナ4−aが放射したビームは目標6に反射されるが、目標6が移動している場合には、ドップラー効果によって周波数のずれが発生する。この周波数のずれを抽出して、目標6の速度を測定する点が、ドップラーレーダの特徴である。信号検出器25は、周波数解析器24が出力したスペクトルから、目標反射波に対応する信号成分を検出し、その特徴量(振幅や電力など)を検出する部位である。△/Σ測角器12は実施の形態1と同様に受信信号の特徴量から1次方向を算出する部位である。
【0050】
また、振幅密度分布算出器26は、△/Σ測角器12が算出した1次方向についての振幅密度分布を算出する部位である。また極大値算出器27は、振幅密度分布算出器26が算出した振幅密度分布の極大値を算出する部位である。
【0051】
次に、レーダ装置21の動作について説明する。基準信号発生器2から受信器22までの動作については実施の形態1と同様であるので説明を省略する。ただしレーダ装置21はドップラーレーダであるので、目標6が移動しているためにドップラー効果が生じて、送信波5−aの周波数と反射された受信波5−bの周波数との間にずれが生じている点に注意すべきである。
【0052】
続いて受信器22は、アナログ信号として入力される受信波を、基準信号発生器2が出力する基準信号を用いてビデオ信号(または中間周波信号)に周波数変換する。さらに周波数変換により得られた受信信号にA/D変換を施して、そのディジタル信号を信号処理器23に出力する。
【0053】
信号処理器23の内部において、周波数解析器24は受信信号に高速フーリエ変換を施し、各ビームについて一定周期毎の受信信号から周波数のずれと受信振幅との分布を出力する。具体的には図9に示すように受信信号(図9の(A))を一定周期毎に切り出して、それぞれに対して周波数解析を行う(図9の(B))。なお、この例では周波数のずれと受信振幅との分布を出力することとしたが、周波数のずれと受信電力との分布を出力するようにしてもよいことはいうまでもない。また、受信振幅や受信電力は受信信号の特徴量の例であって、周波数のずれとその他の特徴量の分布としてもよい。
【0054】
続いて、信号検出器25は、周波数解析器24が所定の間隔毎に出力する周波数−受信振幅分布から、受信振幅がピークとなる周波数(のずれ)とその受信振幅とを抽出し、△/Σ測角器12に出力する。△/Σ測角器12では、実施の形態1と同様に隣接するビームパターンの組み合わせにおける受信振幅から△/Σ値を算出して、1次方向を出力する。
【0055】
振幅密度分布算出器26は、△/Σ測角器12が算出した複数の1次方向について離散的に分布する振幅値を平滑化することにより、振幅密度分布を得る。具体的には、1次方向θkを算出するのに用いたアンテナビームの受信振幅値をakとすると、振幅密度分布算出器26は、受信振幅密度分布A(θ)を式(4)によって算出する。
A(θ)=akδ(θ−θk)W(θ) (4)
ここで、δ(θ)はディラックのδ関数であり、W(θ)は平滑処理に用いる窓関数である。
【0056】
次に極大値算出器27は、式(4)によって算出された受信振幅密度分布A(θ)からA(θ)の極大値を算出する。式(4)のA(θ)は、1次方向が集中している方向の近傍で大きくなる。また複数目標からの反射波が干渉しないビームの受信信号から算出された1次方向は、ビームの組み合わせによらず、真の目標の方向とほとんど同じ値になる。それに対して、複数の目標からの反射波が干渉したビームの受信信号から算出された1次方向は、算出に用いるビームによって値が異なる。このような方向は偽像の方向となり、かつ偽像においては1次方向の分布がまばらとなるので、A(θ)の値は小さくなる。偽像付近のA(θ)は極大値とはならないか、極大となっても、その極大値は小さい。一方、真の目標の方向に対して一定値以上の値となる。これによって、真の目標についての方向を分離できるのである。
【0057】
続いて、極大値算出器27は、A(θ)の極大値(ピーク)を所定数だけ検出し、これを統合方向として出力する。
【0058】
以上から明らかなように、実施の形態2のレーダ装置によれば、振幅密度分布とその極大値を算出することによって、真の目標を分離しつつ、偽像の分離を防止することができる。
【0059】
なお、この実施の形態2においては、クラスタ分離を行わなかったが、実施の形態1と同様にクラスタ分離器13に相当する構成要素を設けて、クラスタ分離をし、クラスタ毎に式(4)による振幅密度分布を算出してもよい。またその場合には、実施の形態1と同様にクラスタ毎の強度を算出し、この強度によってクラスタを選別してから、振幅密度分布を算出してもよい。
【0060】
実施の形態3.
実施の形態1及び2によるレーダ装置は、所定の分布密度をなす1次方向の中から統合方向を選択する、若しくは、分布中心を算出することによって統合方向を決定し、複数の目標の方向を分離するものであった。
【0061】
この他に、これまで述べたような方法で統合方向を求めた後、その統合方向に対してモデルフィッティング処理を行うことにより、さらに目標の方向の算出精度を高めるようにしてもよい。この発明の実施の形態3によるレーダ装置は、このような特徴を有するものである。
【0062】
図10は、この発明の実施の形態3によるレーダ装置の構成を示すブロック図である。図において、レーダ装置61はモノパルス方式によるドップラーレーダ装置である。基準信号発生器2及び送信器3は実施の形態2の相当部位と同様であるので説明を省略する。分配器62は送信器3が発生した送信信号を複数の出力先に分配する回路または素子である。図の例では、2つの出力先に分配されるように構成されている。送受切替器63−aは、アンテナ64−aを分配器62と受信器22とのいずれかに直結するスイッチであり、可動端子Aと接点B及びCを有していて、外部からの制御信号によって接続先を変更できるようになっている。送受切替器63−bについても、送受切替器63−aと同様に、アンテナ64−bを分配器62と受信器22とのいずれかに接続するスイッチであり、同じく可動端子Aと接点B及びCを有している。なおここでいう可動端子とは機械的に可動であるということに限られず、電子的に接続端子を選択するようになっていてもよい。
【0063】
アンテナ64−a及び64−bは、同時にそれぞれ送信波65−1と送信波65−2とを放射するとともに、反射波65−3及び65−4をそれぞれ受信するアンテナである。送信波65−1と65−2のビームパターンは、その一部が重なり合うように放射されるようになっている。反射波65−3は送信波65−1の一部が目標6に反射されて生じた反射波であり、反射波65−4は送信波65−2の一部が目標6に反射されて生じた反射波である。受信器66−a及び66−bは実施の形態2の受信器22と同様であるので説明を省略する。信号処理器67は、アンテナ64−aと受信器66−a及びアンテナ64−bと受信器66−bの少なくとも2系統の受信信号を組み合わせて、測角処理を行う部位であり、その詳細な構成は図11のブロック図によって示される。
【0064】
図11において、周波数解析器68は、実施の形態2における周波数解析器24に相当する部位であり、ドップラー効果による周波数のずれを解析するものである。信号検出器69は、周波数解析器68が解析した周波数のずれにおける受信信号の特徴量を抽出する部位である。ここで、レーダ装置61はパルスドップラーレーダ装置であるので、周波数のずれだけでなく、パルス波の到着遅延時間を考慮する必要がある。すなわちアンテナ64−a及び64−bから放射されたパルス波は目標6に到達し、さらに目標6によって反射されて再びアンテナ64−a及び64−bに戻ってくるが、その際アンテナ64−a及び64−bと目標6との往復距離を電波が移動する分だけ時間が経過する。このように、パルスドップラーレーダ装置における受信信号におけるパルス波の到着時間には距離の情報も含まれているので、これらを必要に応じて抽出するようにする。
【0065】
△/Σ測角器12、クラスタ分離器13、分布中心算出器14は実施の形態1の相当部位と同様であるので説明を省略する。モデルフィッティング処理器70は、反射率と方向、受信信号の特徴量との関係を規定するモデルと、分布中心算出器14によって算出された受信信号の特徴量及び統合方向とを照合して、統合方向の精度を向上する部位である。
【0066】
なお、モデルフィッティング処理器70も方向統合器の一部を構成するものである。
【0067】
次にレーダ装置61の動作について説明する。まず、基準信号発生器2は、自身が内蔵する局所発生器により周波数が一定である微弱な基準信号を発生する。送信器3はこの微弱な基準信号を増幅し、かつパルス変調を施して、送信信号を発生させる。この送信信号は、分配器62によって送受切替器63−a及び63−bに送信される。
【0068】
送受切替器63−a及び63−bは、可動端子Aを接点Bに接続させる。これによって、分配器62と、アンテナ64−a及び64−bとが直結するので、送信器3が発生させた送信信号(パルス信号)はアンテナ64−a及び64−bに送信されて、アンテナ64−aと64−bからそれぞれ送信波65−1と65−2として同時に放射される。レーダ装置61はモノパルス方式によるレーダ装置であるから、同時に少なくとも2つのビームバターンによるビームを放射することで、一回のパルス波放射のみによってもビームの組み合わせが得られる。しかし、これと並行して、アンテナ駆動器9は、アンテナ64−a及び64−bによる素子アレーの個数よりも多くの方向のビームパターンが得られるようにアンテナ64−aと64−bがビームを放射する方向を変更する。
【0069】
アンテナ64−a及び64−bがパルス波を放射すると、送受切替器63−a及び63−bは、可動端子Aを接点Cに接続させる。これによって、アンテナ64−aと受信器66−a、そしてアンテナ64−bと受信器66−bが直結する。この間にビーム65−1と65−2は目標6に反射されて、反射波65−3と65−4として再びアンテナ64−a及び64−bに到来する。アンテナ64−aと64−bはそれぞれの反射波を受信波として受信し、送受切替器63−a及び63−bを経由して受信器66−a及び66−bに受信波を出力する。このようにレーダ装置61は、送受切替器63−a及び63−bによってアンテナ64−aと64−bの送受を切り替える。アンテナ64−aと64−bがパルス波を放射するタイミングは任意であるのに対して、アンテナ64−aと64−bが反射波を受信するタイミングは目標6との相対的な位置関係によって決定され、また目標6の位置は不定であることが多いので、送受切替器63−a及び63−bが可動端子Aを切り替えるタイミングは接点Bに接続している時間に比べて接点Cに接続している時間の方が長いことが多い。図12は送受切替器63−a及び63−bにおける可動端子Aを切り替えるタイミングチャートである。
【0070】
次に、受信器66−a及び66−bにおいて、実施の形態2における受信器22と同様に基準信号と受信波をディジタル信号に変換し、信号処理器67に出力する。
【0071】
信号処理器67において、周波数解析器68は受信信号に高速フーリエ変換を施し、各ビームについて一定周期毎の受信信号から周波数のずれと受信信号振幅との分布を出力する。そして、信号検出器69において、周波数のずれと受信信号振幅との分布において、受信信号振幅がピークとなる周波数を抽出する。さらに、△/Σ測角器12は、信号検出器69が抽出した受信信号振幅に基づいて△/Σ値を求め、△/Σ値から1次方向を算出する。これらの処理については実施の形態2における周波数解析器24及び信号検出器25、△/Σ測角器12における処理と同様であるので詳細な説明を省略する。
【0072】
続いてクラスタ分離器13は1次方向の分布に基づくクラスタを形成し、分布中心算出器14は、各クラスタにおける分布中心を算出する。これらの処理については実施の形態1と同様である。
【0073】
次にモデルフィッティング処理器70は、分布中心算出器14が算出した分布中心(各クラスタの統合方向)に対してモデルフィッティング処理を施す。以下において、観測に用いるビームの数をm、真の目標の方向をθ、j番目(ただしj=1,2,…,m)のビームの指向特性をαj(θ)、j番目のビームで実際に観測される受信信号をsjとする。また目標数をnとし、i番目(ただしi=1,2,…,n)の目標の反射率、角度、距離をそれぞれγi、θi、riと仮定すると、受信信号の推定値s’jは式(5)で表される。
【0074】
【数3】
【0075】
ただし、Cはレーダ装置の性能によって定まる係数である。
そこで、最小二乗法を用いて
【0076】
【数4】
【0077】
が最小となるように、γiとθiを推定する。ここで、γiとθiを同時に推定する場合、この最小二乗法は非線形最小二乗法となるため、反復改良によってγiとθiを推定することになる。なお、式(6)の値は、残差二乗和として知られているものである。
【0078】
反復改良による推定処理では、初期値の選択方法がよくないと、推定処理に要する演算量が増大し、処理時間がかかるという問題がある。そこでレーダ装置61では、分布中心算出器14が算出したクラスタの分布中心をθiの初期値として用いることとする。クラスタの分布中心の誤差は小さく、精度は十分に高いので、クラスタの分布中心を初期値として使用すれば早期に推定値が収束する。したがって、演算量を削減することができ、十分効率的な計算が行える。
【0079】
一方、反射率γiは、最小二乗法における線形性(linearity)が強く、推定処理における初期値依存性が低い。そこで、反射率γiの初期値については、あまり真値に近い値を与える必要はなく、例えばある一定値を反射率γiの初期値とすればよい。
【0080】
また、モデルフィッティングによりγiとθiとを推定すると、実際に目標が存在しない方向では、反射率がほぼ0となるので、偽像が現れる方向では反射率が小さくなる。そこで、所定値以下の反射率となるクラスタの分布中心については棄却するようにすれば偽像を採用してしまうことを防止できる。
【0081】
最後にモデルフィッティング処理器70は、このようにして推定したθiを統合方向として出力する。
【0082】
以上から明らかなように、この発明の実施の形態4のレーダ装置によればモデルフィッティングの手法を用いて高精度な方向推定を行う一方で、クラスタの分布中心をモデルフィッティングの初期値に用いて、方向の推定を行うこととしたので、モデルフィッティングにおける反復改良の回数を少なくすることができ、演算量を削減することができるのである。
【0083】
なお、モデルフィッティング処理器70では、反射率γiを推定することとしたが、反射率γiに替えて、γ’i=γi/γi 4を推定するようにしてもよい。式(5)において、反射率γiと方向θiとを推定パラメータとするには、それ以外の変数が既知でなければならないが、このような仮定に反して、距離riは未知であることが多い。このような場合であっても、γ’i=γi/γi 4を推定することとして、γiとriとを独立した変数としてみなさないようにすれば、距離riは未知であっても、モデルフィッティングによる推定処理を適用することができる。
【0084】
また、モデルフィッティング処理器70は、受信信号si(siは振幅と位相をもパラメータとして有する)についてモデルフィッティングを行うこととした。しかし、この他にも、受信信号の振幅値や電力値についてモデルフィッティングを行うようにしてもよい。受信信号の振幅値を用いてモデルフィッティングを行うには、式(6)において、siおよびs’iの代わりに|si|および|s’i|を用いるようにすればよい。また受信信号の電力値を用いてモデルフィッティングを行うには、式(6)において、siおよびs’iの代わりに|si|および|s’i|を用いるようにすればよい。受信信号の振幅値や電力値についてモデルフィッティングを行うようにすることで、振幅や位相を取り扱う必要がなくなり、演算量をさらに削減できる。
【0085】
また方向の初期値として分布中心を用いたが、実施の形態1で述べたようにSN比が高い場合には、クラスタ内において最も高い受信振幅あるいは電力を有する受信信号から算出された1次方向を初期値としてもよい。また実施の形態2で述べたように1次方向の局所的分布において受信信号の特徴量が極大となる1次方向を初期値としてもよい。
【0086】
実施の形態4.
以上述べた実施の形態3によれば、モデルフィッティングによる方向推定を行った場合であっても、クラスタの分布中心を初期値とすることで、反射率や方向の推定に要する演算量を削減できる。しかし、この他に方向の初期値を複数与えてそれぞれの推定演算を組み合わせることで、最小二乗法による推定演算の総量を削減するようにしてもよい。実施の形態4によるレーダ装置はこのような特徴を有するものである。
この発明の実施の形態4によるレーダ装置は自動車に搭載するレーダ装置(車載レーダ)であって、例えば図13に示すように自動車の前方に装着された車載レーダ71は、衝突防止やオートクルーズ用の車間制御に用いられる。また側面に装着された車載レーダ72及び73は、側突検知や追い越し車検知に用いられる。そして後方に装着された車載レーダ74は、後方障害物検知に用いられるものである。これらのレーダ装置が目標物の方向を検知できるようになることによって、例えば自動車の前方に装着された車載レーダ71であれば、隣の車線を走行している車を検知してしまって、自動的に減速をすることがなくなる。また側面に装着された車載レーダ72及び73であれば、追い越し車両の位置まで正確に判断して適切な安全制御を行うことができるのである。
【0087】
車載レーダは、目標物の位置だけでなく、速度も測定する必要があることが多いので、自車の相対距離と相対速度とを測定可能なFMCW(Frequency Modulation Continuous Wave)レーダ方式が採用されることが多い。そこで、この発明の実施の形態4によるレーダ装置は、FMCW方式によるレーダ装置であるものとし、FMCWレーダにおいてこの発明を適用する方法について説明することとする。
【0088】
図14は、この発明の実施の形態4によるレーダ装置の構成を示すブロック図である。図において、レーダ装置81はFMCWレーダ装置である。レーダ装置81において、基準信号発生器82は、VCO(Voltage Controlled Oscillator)を備えており、一定周期毎に徐々に周波数が上昇又は下降する微弱基準信号を発生する部位である。送信器3は、実施の形態1と同様に増幅器を有していて、微弱な基準信号を送信信号に増幅する部位である。送受切替器83は、送信器3から出力された送信信号をアンテナ4−aに出力し、同時にアンテナ4−aから出力された反射波を後述する受信器85に出力するサーキュレータである。
【0089】
アンテナ4−a及びアンテナ駆動器9については、実施の形態1と同様であるので説明を省略する。レーダ装置81はFMCWレーダであるので、アップフェーズとダウンフェーズ(またはアップチャープとダウンチャープ)からなるビーム84−aを目標6に放射し、その一部が目標6に反射されてアンテナ4−aに到来した受信波84−bを受信するようになっている。受信器85は、ミキサ(混合器)を備えており、受信した受信波と基準信号発生器82が生成した基準信号とのピート信号を生成し、さらにそのビート信号をディジタル信号に変換して出力する部位である。ビート信号は各フェーズにおいて目標毎に生成される。したがって1つのフェーズにおいて、N個の目標にビームを照射して反射された受信波からビート信号を得た場合、N個のビート信号が生成されることになる。信号処理器86は、ビート信号を処理して、FMCWレーダの特徴である相対距離及び相対速度を算出するとともに、この発明の目的である目標の方向を測定する部位であって、その詳細な構成は図15のブロック図によって示される。
【0090】
図15において、周波数解析器87はビート信号の周波数分析を行う部位であって、信号検出器88は周波数解析器87が分析した周波数分布からビート信号の周波数、及び振幅などのビート信号の特徴量を抽出する部位である。アップ/ダウンチャープ連結器89は、アップフェーズ(アップチャープ)におけるビート信号とダウンフェーズ(ダウンチャープ)におけるビート信号の対を生成(coupling)する部位である。
【0091】
以後、△/Σ測角器12、クラスタ分離器13、分布中心算出器14は実施の形態1と同様であるので説明を省略する。最後にモデルフィッティング処理器90は、クラスタの分布中心に対してモデルフィッティングを行う部位である。なお、図15ではFMCWレーダを用いて目標の方向を算出するために必要となる構成を示しており、相対距離又は相対速度を算出する上で必要となる構成については図示及び説明を省略している。
【0092】
次にレーダ装置81の動作について説明する。レーダ装置81はFMCW方式のレーダ装置であるが、基準信号発生器82から受信器85までの動作は、実施の形態1に示したパルスレーダ装置における相当部位の動作と同様であるので、説明を省略する。ただし前述の通り、受信器85はビート信号を信号処理器86に出力する点で異なっている。
【0093】
信号処理器86において、周波数解析器87は高速フーリエ変換などによって、ビート信号の周波数分布を生成し、信号検出器88はこの周波数分布からビート信号の周波数を抽出する。アップ/ダウンチャープ連結器89は、信号検出器が抽出したアップフェーズのビート信号周波数とダウンフェーズのピート信号周波数との対を生成する。これは次のような理由による。
【0094】
レーダ装置81はFMCWレーダ装置であるが、FMCWレーダ装置では、アップフェーズのビート信号とダウンフェーズのピート信号の対が得られた場合に、相対速度と相対距離とを算出するというものである。具体的にいえば、アップフェーズのビート信号周波数をU、ダウンフェーズのピート信号周波数をD、周波数掃引幅をB、変調時間をT、光速をC、送信波の波長を人とした場合、目的の相対距離R、相対速度Vはそれぞれ式(7)、式(8)で与えられる。
【0095】
【数5】
【0096】
このようにRとVを算出するためには、UとDを決定することが必要である。ところで、目標がN個存在している場合には、ビート信号がアップフェーズとダウンフェーズのそれぞれでN個ずつ存在することとなり、どのアップフェーズのビート信号とどのダウンフェーズのビート信号とを組み合わせて式(7)、式(8)に代入するかによって、RとVは全く異なった値になることが理解できる。したがって、目標が複数存在する場合に、それぞれの相対距離と相対速度とを算出するために、アップフェーズのビート信号とダウンフェーズのビート信号との正しい組み合わせを得ることが重要である。アップ/ダウンチャープ連結器89はこのような処理を行うのである。ここでFMCWレーダにおいて、目標が複数存在する場合に、アップフェーズのビート信号とダウンフェーズのビート信号との正しい組み合わせを得る方法については、すでにいくつか公知の方法(例えば、特開平5−142337号公報 「ミリ波レーダ距離速度測定装置」など)が紹介されているので、ここでは説明を省略する。
【0097】
次に、△/Σ測角器12において、ピート信号の振幅値に基づいて△/Σ値を求め、目標の1次方向を算出する。以後、クラスタ分離器13、分布中心算出器14における処理は、実施の形態1と同様であるので説明を省略する。
【0098】
続いて、モデルフィッティング処理器90において、クラスタの分布中心の受信信号sjと推定値s’jとのモデルフィッティングを行う。図16は、モデルフィッティング処理器90におけるモデルフィッティング処理を示すフローチャートである。まず、図16のステップS401において、モデルフィッティング処理器90は、カウンタ変数Mを1に初期化する。以降の処理において、カウンタ変数Mはクラスタを識別するために用いられる。
【0099】
次にステップS402において、モデルフィッティング処理器90は、M番目のクラスタについて、そのクラスタの分布中心の近傍の範囲で、角度推定値を所定の個数だけ設定する。ここではN個(Nは自然数)の角度推定値を選択するものとする。角度推定値の設定方法としては、例えばM番目のクラスタに属する1次方向のうち分布中心との距離が小さい順にN個の1次方向を角度推定値として選択する、などの方法が考えられる。
【0100】
ステップS403において、カウンタ変数Iと変数MINとを初期化する。カウンタ変数Iの初期値には1が与えられる。このカウンタ変数Iは、N個の角度推定値のいずれかを識別するために用いられる。変数MINは最小値を算出するために用いられる記憶域であり、最小値として取り得ないようなある程度の大きな値であれば、どのような値を初期値としてもよい。続いて、ステップS404において、I番目の角度推定値を81として、式(5)によりs’jを算出し、式(6)による最小二乗法において、反射率γjのみを反復改良することで、モデルフィッティングを行う。実施の形態3で述べたとおり、反射率γjは線形性が強いため、早期に推定値が収束する。その結果、反復改良によって式(6)の値(残差二乗和)が最小となる反射率を求めておく。ステップS405では、ステップS404で求めた最小値がMINより小さいか否かを調べる。最小値がMINより小さい場合には、このクラスタにおいてそれ以前の角度推定値を用いて求めた最小値よりも、現在の角度推定値による最小値の方が小さいことを意味している。そこで、この場合にはステップS406に進み(ステップS405:Yes)、変数MINに式(6)で計算した現在の残差二乗和を設定して、さらに現在の角度推定値をメモリに記憶しておく。なお式(6)の最小値と、その最小値を得た角度推定値はクラスタ毎に記憶域が確保され、保存される。そしてその後、ステップS407に進む。
【0101】
一方、ステップS405において、ステップS404で求めた最小値がMINより小さくない場合には、その最小値はそのクラスタ全体の最小値としては採用できないので、直接ステップS407に進む(ステップS405:No)。
【0102】
次にステップS407において、Iに1を加える。続くステップS408において、IがNを超えるかどうかを判定し、N以下である場合にはステップS404に戻る(ステップS408:No)。一方、Nを超えた場合にはこのクラスタにはこれ以上角度推定値が存在しないので、次のクラスタの処理に遷る。具体的には、ステップS409に進み(ステップS408:Yes)、Mに1を加える。ステップS410において、Mがクラスタの総数を超えたかどうかを判定する。その結果、Mがクラスタの総数以下である場合には、まだ未処理のクラスタがあるので、次のクラスタの処理を行うためにステップS402に戻る(ステップS410:No)。また、Mがクラスタの総数を超えた場合には、未処理のクラスタはこれ以上ないので、ステップS411に進む(ステップS410:Yes)。
【0103】
ステップS411において、モデルフィッティング処理器90は、クラスタ毎に求められた式(6)を最小とする角度推定値を出力する。
【0104】
以上から明らかなように、この発明の実施の形態5のレーダ装置によれば、非線形最小二乗法に用いなければ推定することが困難な角度成分を複数の角度推定値に固定することによって、角度成分についての反復改良演算を排除することが可能となり、演算量をさらに削減することができるのである。
【0105】
なお上記の角度推定値の個数Nを1として、反射率のみモデルフィッティングし、その結果、所定の条件に見合ったクラスタのみを選択するようにしてもよい。たとえば、各クラスタにおいて1次方向を1つだけ選択して(これが角度推定値となる)、式(5)の角度成分をこの1次方向に固定しておき、反射率のみモデルフィッティングして、反射率が基準値以上となる場合のみ、この角度推定値を統合方向として採用するようにしてもよい。また1次方向ではなく、分布中心としてもよいことはいうまでもない。
【0106】
また同じく分布中心若しくは1つの1次方向を角度推定値として1つだけ選択し、反射率のみモデルフィッティングして、その結果、式(6)の値が所定値以下とならない場合に、そのクラスタの1次方向を棄却するようにしてもよい。式(6)(残差二乗和)が十分に小さくならない場合には、仮定した目標の方向、すなわちクラスタ測角値の精度が低いことを意味するため、このような値を無効とすることで、測角精度を向上させることができる。
【産業上の利用の可能性】
【0107】
以上のように、この発明に係るレーダ装置は、複数の目標の方向を計測する用途に有用である。
【図面の簡単な説明】
【0108】
【図1】この発明の実施の形態1によるレーダ装置の構成を示すブロック図である。
【図2】この発明の実施の形態1によるレーダ装置の信号処理器の詳細な構成を示すブロック図である。
【図3】この発明の実施の形態1によるレーダ装置の信号処理器の動作を示すフローチャートである。
【図4】この発明の実施の形態1によるレーダ装置のビームと目標との関係を説明するための図である。
【図5】この発明の実施の形態1によるレーダ装置のビームと1次方向との関係を説明するための図である。
【図6】この発明の実施の形態1におけるクラスタ形成処理のフローチャートである。
【図7】この発明の実施の形態2によるレーダ装置の構成を示すブロック図である。
【図8】この発明の実施の形態2によるレーダ装置の信号処理器の詳細な構成を示すブロック図である。
【図9】この発明の実施の形態2のレーダ装置における周波数解析を説明するための図である。
【図10】この発明の実施の形態3によるレーダ装置の構成を示すブロック図である。
【図11】この発明の実施の形態3によるレーダ装置の信号処理器の詳細な構成を示すブロック図である。
【図12】この発明の実施の形態3のレーダ装置における送受切替器の動作タイミングチャートである。
【図13】この発明の実施の形態4のレーダ装置が自動車に搭載された状態を示す図である。
【図14】この発明の実施の形態4によるレーダ装置の構成を示すブロック図である。
【図15】この発明の実施の形態4によるレーダ装置の信号処理器の詳細な構成を示すブロック図である。
【図16】この発明の実施の形態4のレーダ装置におけるモデルフィッティング処理器の動作を示すフローチャートである。
【図17】従来の技術におけるビームパターンと目標との関係を示す図である。
【図18】従来の技術におけるビームパターンとそれにより算出された方向との関係を示す図である。
である。
Claims (5)
- 複数の方向にビームを放射するとともに、目標により反射された前記ビームを受信波として受信するアンテナと、
前記アンテナが受信した受信波に検波処理を施して受信信号を出力する受信器と、
前記受信器が出力した受信信号から前記受信波の特徴量を抽出する信号検出器と、
前記複数の方向に放射されたビームのうち、一部が重なり合う少なくとも2つのビームの受信波より前記信号検出器が算出した特徴量の組み合わせから、前記目標の方向である1次方向を算出する方向算出器とを備えるレーダ装置において、
前記方向算出器が算出した1次方向が複数存在する場合に、複数の前記1次方向の分布が所定の密度以上となる領域からその領域に属する1次方向に基づいて真の目標の方向である統合方向を算出する方向統合器を備え、
前記方向統合器は、前記所定の密度以上の領域に属する1次方向からクラスタを形成して、そのクラスタ単位に前記統合方向を算出し、算出した前記統合方向を角度成分の初期値として、前記目標の角度と反射率を仮定して予め設定したモデル受信信号と、前記方向算出器が前記1次方向の算出に用いた受信信号と、をモデルフィッティングすることにより前記目標の方向を推定する
ことを特徴とするレーダ装置。 - 複数の方向にビームを放射するとともに、目標により反射された前記ビームを受信波として受信するアンテナと、
前記アンテナが受信した受信波に検波処理を施して受信信号を出力する受信器と、
前記受信器が出力した受信信号から前記受信波の特徴量を抽出する信号検出器と、
前記複数の方向に放射されたビームのうち、一部が重なり合う少なくとも2つのビームの受信波より前記信号検出器が算出した特徴量の組み合わせから、前記目標の方向である1次方向を算出する方向算出器とを備えるレーダ装置において、
前記方向算出器が算出した1次方向が複数存在する場合に、複数の前記1次方向の算出に用いた前記受信波の特徴量の分布が所定の密度以上となる領域からその領域に属する目標の方向に基づいて真の目標の方向である統合方向を算出する方向統合器を備え、
前記方向統合器は、前記所定の密度以上の領域に属する1次方向からクラスタを形成して、そのクラスタ単位に前記統合方向を算出し、算出した前記統合方向を角度成分の初期値として、前記目標の角度と反射率を仮定して予め設定したモデル受信信号と、前記方向算出器が前記1次方向の算出に用いた受信信号と、をモデルフィッティングすることにより前記目標の方向を推定する
ことを特徴とするレーダ装置。 - 前記方向統合器は、前記クラスタに属する1次方向から所定の個数の1次方向を選択し、選択された1次方向のいずれかを前記角度成分として反射率を最小二乗法により推定するモデルフィッティングを行うことを特徴とする請求項1又は2に記載のレーダ装置。
- 前記方向統合器は、モデルフィッティングにより推定された前記反射率が所定値以上となる場合に、前記クラスタにおいて前記目標の方向を推定することを特徴とする請求項3に記載のレーダ装置。
- 前記方向統合器は、モデルフィッティングの残差二乗和の最小値が所定倍以上となる前記クラスタから算出した統合方向を棄却することを特徴とする請求項3に記載のレーダ装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/011646 WO2005026769A1 (ja) | 2003-09-11 | 2003-09-11 | レーダ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2005026769A1 JPWO2005026769A1 (ja) | 2006-11-24 |
JP4368852B2 true JP4368852B2 (ja) | 2009-11-18 |
Family
ID=34308215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005508920A Expired - Fee Related JP4368852B2 (ja) | 2003-09-11 | 2003-09-11 | レーダ装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7586436B2 (ja) |
EP (1) | EP1666914B1 (ja) |
JP (1) | JP4368852B2 (ja) |
WO (1) | WO2005026769A1 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005156337A (ja) * | 2003-11-26 | 2005-06-16 | Hitachi Ltd | 車載用レーダ装置 |
JP4447946B2 (ja) * | 2004-03-22 | 2010-04-07 | 富士通テン株式会社 | レーダ装置 |
DE112005000763B4 (de) * | 2004-05-11 | 2011-09-29 | Murata Mfg. Co., Ltd. | Radarsystem |
US7768445B2 (en) * | 2004-08-02 | 2010-08-03 | Mitsubishi Electric Corporation | Frequency-modulated radar system with variable pulse interval capability |
JP4371115B2 (ja) * | 2006-03-01 | 2009-11-25 | トヨタ自動車株式会社 | 物体検出装置 |
US7623062B2 (en) | 2006-08-01 | 2009-11-24 | Autoliv Asp, Inc. | System and method for target detection with a radar antenna |
JP4987456B2 (ja) * | 2006-12-25 | 2012-07-25 | 三菱電機株式会社 | レーダ装置 |
DE102007058241B4 (de) * | 2007-12-04 | 2022-07-07 | Robert Bosch Gmbh | Auswerteverfahren, insbesondere für ein Fahrerassistenzsystem eines Kraftfahrzeugs, zur Objektdetektion mittels eines Radarsensors |
EP2294726A1 (en) * | 2008-05-13 | 2011-03-16 | Lockheed Martin Corporation | Radio frequency photonic transceiver |
EP2347626A4 (en) * | 2008-09-29 | 2015-05-27 | Saab Sensis Corp | COMPACT BALISE-RADAR AND COMPLETE SYSTEM OF AIR TRAFFIC CONTROL SERVICES |
US7671789B1 (en) * | 2008-10-03 | 2010-03-02 | Lockheed Martin Corporation | Method and system for target detection and angle estimation based on a radar signal |
SE533361C2 (sv) | 2009-02-18 | 2010-09-07 | Winloc Ag | Profilerad nyckel för cylinderlås |
KR101007662B1 (ko) | 2009-05-08 | 2011-01-13 | 국방과학연구소 | 주파수 변조 특성 및 신호의 결합 특성을 이용한 레이더 신호의 클러스터링 방법 및 이를 이용한 레이더 신호 수신 및 처리장치 |
JP4827956B2 (ja) * | 2009-09-18 | 2011-11-30 | 三菱電機株式会社 | 車載用レーダ装置 |
JP2011145069A (ja) * | 2010-01-12 | 2011-07-28 | Furuno Electric Co Ltd | 偽像低減装置、レーダ装置、偽像低減方法、および偽像低減プログラム |
JP2012047700A (ja) * | 2010-08-30 | 2012-03-08 | Toshiba Corp | 波源推定装置および波源推定方法 |
JP5972259B2 (ja) * | 2011-03-24 | 2016-08-17 | 古河電気工業株式会社 | レーダ装置 |
KR20130065005A (ko) * | 2011-12-09 | 2013-06-19 | 주식회사 만도 | 레이더 장치 및 안테나 장치 |
JP6548376B2 (ja) | 2014-10-06 | 2019-07-24 | 日本電産株式会社 | レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム |
JP6567832B2 (ja) * | 2015-01-29 | 2019-08-28 | 日本電産株式会社 | レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム |
JP6650344B2 (ja) * | 2015-10-02 | 2020-02-19 | パナソニック株式会社 | 物体検出装置及び物体検出方法 |
US10274593B2 (en) * | 2015-10-02 | 2019-04-30 | Panasonic Corporation | Object detection device and object detection method |
US10761205B2 (en) * | 2017-06-23 | 2020-09-01 | Inxpect S.P.A. | Systems for determining target direction and methods therefor |
US20190331797A1 (en) * | 2018-04-25 | 2019-10-31 | GM Global Technology Operations LLC | Alternating chirp frequency modulated continuous wave doppler lidar |
JP7515262B2 (ja) * | 2020-01-20 | 2024-07-12 | Jrcモビリティ株式会社 | 物標検出システム、物標検出方法、及びコンピュータが実行可能なプログラム |
JP7461160B2 (ja) * | 2020-02-21 | 2024-04-03 | Jrcモビリティ株式会社 | 3次元情報推定システム、3次元情報推定方法、及びコンピュータが実行可能なプログラム |
EP4016127A1 (en) | 2020-12-16 | 2022-06-22 | Provizio Limited | Multiple input multiple steered output (mimso) radar |
WO2022229386A1 (en) | 2021-04-30 | 2022-11-03 | Provizio Limited | Mimo radar using a frequency scanning antenna |
CN115236610B (zh) * | 2022-07-21 | 2023-05-26 | 扬州宇安电子科技有限公司 | 一种基于雷达信号的多角度虚假目标模拟系统及方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7725A (en) * | 1850-10-15 | Maize-harvester | ||
US5280294A (en) * | 1983-11-25 | 1994-01-18 | Itt Corporation | Passive monopulse ranging to a non-cooperative emitter and non-emitting object |
JP2699740B2 (ja) | 1991-11-30 | 1998-01-19 | 日本電気株式会社 | レーダ装置 |
JP2567332B2 (ja) * | 1993-02-17 | 1996-12-25 | 本田技研工業株式会社 | 時分割型レーダシステム |
US6278798B1 (en) * | 1993-08-09 | 2001-08-21 | Texas Instruments Incorporated | Image object recognition system and method |
JP2591482B2 (ja) * | 1994-06-10 | 1997-03-19 | 日本電気株式会社 | 目標検出回路 |
FR2735594B1 (fr) * | 1995-06-13 | 1997-07-25 | Thomson Csf | Procede et dispositif de determination du spectre de frequence d'un signal |
DE69611278T2 (de) * | 1995-11-10 | 2001-05-23 | Toyota Jidosha K.K., Toyota | Radargerät zur Erfassung der Richtung des Zentrums eines Ziels |
WO1997040400A1 (fr) * | 1996-04-22 | 1997-10-30 | The Furukawa Electric Co., Ltd. | Radar |
KR20000069850A (ko) | 1997-01-21 | 2000-11-25 | 진 에이. 테넌트 | 충돌 예측 감지 시스템 |
JP2930236B1 (ja) * | 1998-01-26 | 1999-08-03 | 本田技研工業株式会社 | レーダ装置 |
JP3946852B2 (ja) * | 1998-02-20 | 2007-07-18 | 三菱電機株式会社 | レーダ装置およびこのレーダ装置における目標相対距離・相対速度探索方法 |
JPH11248814A (ja) * | 1998-03-06 | 1999-09-17 | Mitsubishi Electric Corp | 電波装置 |
JPH11271430A (ja) * | 1998-03-25 | 1999-10-08 | Toyota Central Res & Dev Lab Inc | 自動車レーダ装置 |
JP3986671B2 (ja) | 1998-07-15 | 2007-10-03 | 本田技研工業株式会社 | 物体検知装置 |
US6198427B1 (en) * | 1998-07-21 | 2001-03-06 | Applied Concepts, Inc. | Doppler complex FFT police radar with direction sensing capability |
JP3986678B2 (ja) * | 1998-08-07 | 2007-10-03 | 本田技研工業株式会社 | 物体検知装置 |
JP3480486B2 (ja) * | 1998-08-18 | 2003-12-22 | トヨタ自動車株式会社 | Fm−cwレーダ装置 |
JP3512066B2 (ja) * | 1998-12-10 | 2004-03-29 | トヨタ自動車株式会社 | 車載用レーダ装置 |
JP4038291B2 (ja) * | 1998-12-11 | 2008-01-23 | 三菱電機株式会社 | レーダ装置 |
JP2000187071A (ja) * | 1998-12-21 | 2000-07-04 | Honda Motor Co Ltd | レーダ装置 |
JP2000206241A (ja) * | 1999-01-13 | 2000-07-28 | Honda Motor Co Ltd | レ―ダ装置 |
JP4258941B2 (ja) * | 1999-06-03 | 2009-04-30 | 株式会社デンソー | レーダ装置 |
JP4115638B2 (ja) * | 1999-10-19 | 2008-07-09 | 本田技研工業株式会社 | 物体認識装置 |
JP3685970B2 (ja) * | 1999-12-27 | 2005-08-24 | 本田技研工業株式会社 | 物体検知装置 |
JP2002026289A (ja) * | 2000-07-03 | 2002-01-25 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP3995890B2 (ja) * | 2001-03-05 | 2007-10-24 | 株式会社村田製作所 | レーダ |
-
2003
- 2003-09-11 EP EP03818660.7A patent/EP1666914B1/en not_active Expired - Lifetime
- 2003-09-11 JP JP2005508920A patent/JP4368852B2/ja not_active Expired - Fee Related
- 2003-09-11 US US10/567,789 patent/US7586436B2/en not_active Expired - Fee Related
- 2003-09-11 WO PCT/JP2003/011646 patent/WO2005026769A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP1666914A1 (en) | 2006-06-07 |
US20060238405A1 (en) | 2006-10-26 |
US7586436B2 (en) | 2009-09-08 |
JPWO2005026769A1 (ja) | 2006-11-24 |
EP1666914A4 (en) | 2007-07-25 |
EP1666914B1 (en) | 2017-04-05 |
WO2005026769A1 (ja) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4368852B2 (ja) | レーダ装置 | |
US11340342B2 (en) | Automotive radar using 3D printed luneburg lens | |
JP6567832B2 (ja) | レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム | |
JP6313981B2 (ja) | レーダ装置、車両制御システム、および、信号処理方法 | |
US9575170B2 (en) | Radar device and target height calculation method | |
JP4045043B2 (ja) | レーダ装置 | |
US9229100B2 (en) | Phased array radar with monopulse algorithm measurement | |
JP2016075558A (ja) | レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム | |
US20070008210A1 (en) | Radar device | |
JP2001042034A (ja) | レーダ装置 | |
US11709261B2 (en) | Radar device for vehicle, controlling method of radar device and radar system for vehicle | |
Li et al. | Novel 4D 79 GHz radar concept for object detection and active safety applications | |
US10712428B2 (en) | Radar device and target detecting method | |
KR100800851B1 (ko) | 레이더 장치 | |
TWI808874B (zh) | 用於交通工具的雷達系統及偵測方法 | |
Ogawa et al. | Development of Automotive Millimeter Wave Radars | |
JP3018825B2 (ja) | レーダ装置 | |
WO2023032610A1 (ja) | 電子機器、電子機器の制御方法、及びプログラム | |
WO2023032600A1 (ja) | 電子機器、電子機器の制御方法、及びプログラム | |
JP2005172768A (ja) | 測角装置 | |
JPH06102348A (ja) | レーダ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4368852 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |