[go: up one dir, main page]

JP4362173B2 - Cu ultrafine particle independent dispersion - Google Patents

Cu ultrafine particle independent dispersion Download PDF

Info

Publication number
JP4362173B2
JP4362173B2 JP22646499A JP22646499A JP4362173B2 JP 4362173 B2 JP4362173 B2 JP 4362173B2 JP 22646499 A JP22646499 A JP 22646499A JP 22646499 A JP22646499 A JP 22646499A JP 4362173 B2 JP4362173 B2 JP 4362173B2
Authority
JP
Japan
Prior art keywords
ultrafine particles
ultrafine
independent dispersion
substrate
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22646499A
Other languages
Japanese (ja)
Other versions
JP2000123634A (en
Inventor
正明 小田
暢哉 今関
洋幸 山川
裕彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Ulvac Techno Ltd
Original Assignee
Ulvac Inc
Ulvac Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Ulvac Materials Inc filed Critical Ulvac Inc
Priority to JP22646499A priority Critical patent/JP4362173B2/en
Publication of JP2000123634A publication Critical patent/JP2000123634A/en
Application granted granted Critical
Publication of JP4362173B2 publication Critical patent/JP4362173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LSI基板などの半導体基板の微細な配線を形成し、ビアホール、コンタクトホールを埋設するのに使用するCu超微粒子独立分散液に関する。
【0002】
【従来の技術】
従来、LSI基板等の多層配線を形成する際に、導電性の均一な微細パターンを形成する金属ペーストとして、炭素数5以上のアルコール類、又は有機エステル類を含有する有機溶媒中に粒径1000Å(0.1μm)以下の金属超微粒子がその表面を該有機溶媒で覆われて個々に均一に分散しているものが知られている(例えば、第2561537号特許公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来技術の金属ペーストにおいては、次のような問題があった。すなわち、LSI基板の配線幅が0.25μm、0.18μmと微細化が進む中で、塗布された金属ペーストが配線溝内を十分に埋設する前に乾燥が始まったり、また粘度が高いために、微細な溝内部を完全に埋設することが困難となっていた。
【0004】
本発明は、かかる従来技術の問題点を解決するためになされたものであり、LSI基板の微細な配線溝、ビアホール、コンタクトホール等を完全に埋設することができ、導電性の均一な微細パターンを形成することができるCu超微粒子独立分散液を提供することを課題としている。
【0005】
【課題を解決するための手段】
本発明のCu超微粒子独立分散液は、粘度が50cP以下であり、室温で蒸発し難くかつ半導体基板上にCu配線を形成する際の乾燥・焼成工程で蒸発するような有機溶媒と、粒径0.01μm以下のCu金属含有超微粒子とを混合して形成され、該超微粒子の表面が該有機溶媒で覆われて個々に独立して分散しているものである。該有機溶媒は、150℃以上で蒸発するものである。該有機溶媒は、ミネラルスピリット、トリデカン、ドデシルベンゼン若しくはそれらの混合物、又はそれらにα−テルピネオールを混合したものである。その他に、炭素数5以上の炭化水素(例えば、ピネン等)、アルコール(例えば、n−ヘプタノール等)、エーテル(例えば、エチルベンジルエーテル等)、エステル(例えば、n−ブチルステアレート等)、ケトン(例えば、ジイソブチルケトン等)、有機窒素化合物(例えば、トリイソプロパノールアミン等)、有機ケイ素化合物(シリコーン油等)、有機イオウ化合物若しくはそれらの混合物を、使用するCu分散液の用途によって適宜混合する。前記Cu金属含有超微粒子は、Cu、CuO又は該CuとCuOとの混合物からなる超微粒子である。また、前記Cu金属含有超微粒子の濃度は、5〜70wt%、好ましくは15〜50wt%である。該粒子の濃度が70wt%を超えると、粘度が高くなりすぎ、また、該粒子の濃度が5wt%未満だと膜厚が小さすぎるという問題がある。前記Cu超微粒子独立分散液の粘度は20℃で50cP以下、好ましくは10cP以下である。前記Cu超微粒子独立分散液は、Cu金属含有超微粒子以外にCuへの溶解度が低く、かつ半導体基板の基材と反応しやすい金属又はこれらの金属を含む化合物を少なくとも一種含有していてもよく、これにより基材との密着性が向上する。このCu金属元素以外の金属の具体的な例としては、例えば、Mg、Al、B、Ta、Nb及びVから選ばれる金属又はこれら金属を含む化合物が挙げられる。これらの金属を含む化合物には、例えば(C1735COO)2Mg等が挙げられる。これらの金属又は金属含有化合物のCu超微粒子独立分散液への添加量は、超微粒子の全重量基準で、0.5〜5wt%である。
【0006】
【実施例】
以下、本発明のCu超微粒子独立分散液の実施例をその分散液の使用例と共に説明する。
(実施例1)
ヘリウム圧力0.5Torrの条件下でCuを蒸発させ、ガス中蒸発法によりCuの超微粒子を生成する際に、生成過程のCu超微粒子にミネラルスピリットの蒸気を接触させて冷却回収し、溶媒中に独立した状態で分散している平均粒子径0.008μmのCu超微粒子を20wt%含有するCu超微粒子独立分散液を作製した。この分散液は粘度が室温で5cPであった。
【0007】
次いで、上記Cu超微粒子独立分散液を用いて、Si基板上に設けられたビアホールを処理した。このSi基板に形成されている絶縁膜としてのSiO2 膜には孔径0.15μm(アスペクト比5)、0.25μm(アスペクト比4)のビアホールが開けられており、ビアホールの内表面を含む基板の表面にはスパッタにより、WNのバリヤ膜が厚さ0.02μmで形成されており、またこのバリヤ膜の表面にはスパッタによりCuのシード膜が形成されている。
【0008】
上記の基板をスピンコータにセットして500rpmで回転させ、その上方から室温で上記のCu超微粒子独立分散液を滴下することによって、スピンコーティングした。ビアホール内にはこの分散液が充填され、基板の表面には平坦な該分散液の液膜が形成された。この状態の基板を10-2Torr以下の真空中、250℃の温度で、2分間加熱して有機溶媒を蒸発させ、次いで温度を300℃に上げて、CO2 ガス760Torr雰囲気中で、60分間焼成した。さらに、温度を400℃に上げて、不活性ガス中で30分間焼成した。かくして、Cu超微粒子が相互に融着して、ビアホール内がCuで空洞なく埋め込まれた縮みや割れのないCu薄膜が形成された。次いで、該ビアホールの内部以外のCu膜をCMP処理したところ、基板表面の余分なCuが除去され、ビアホール内に平坦な表面を有するCu薄膜が形成された。その比抵抗は2.0μΩcmであった。
(実施例2)
1Torrのヘリウムガス中に0.01TorrのO2 ガスを混合した雰囲気下でCuを蒸発させてCuOの超微粒子を生成し、ドデシルベンゼンとフタル酸ジエチルとの混合蒸気に接触させて冷却し、平均粒径0.01μmのCuO超微粒子を25wt%含有する粘度10cP(20℃)のCuO超微粒子独立分散液を作製した。また、このCuO超微粒子独立分散液と実施例1で作製したCu超微粒子独立分散液とを混合して、粘度7cP(20℃)のCu、CuO混合分散液を作製した。
【0009】
次いで、上記分散液を用いて、実施例1と同様にして室温で基板のビアホールを埋め込み、Cu膜を形成したところ、得られた薄膜は、いずれも焼結後も縮みや割れが生じることもなく、その比抵抗は2.0μΩcmであった。
(実施例3)
実施例1におけるCu超微粒子独立分散液の代わりに、トリデカンとフェネトールとの混合溶媒に50wt%のCu超微粒子を分散させたCu超微粒子独立分散液にMg、Al、B、Ta、Nb又はVの有機化合物の添加されたものを、実施例1と同様にして作製した。この分散液の粘度は20℃で10cPであった。
【0010】
次いで、これらの分散液を用いて、WNのバリア膜とCuシード膜を形成する工程を省き、他は実施例1と同様にして基板のビアホールを埋め込み、Cu膜を形成したところ、得られた薄膜は、焼結後も及びCMPによる平坦化処理工程中も縮みや割れが生じることもなく、基板との密着性も良好であり、その比抵抗は2.1μΩcmであった。
(実施例4)
実施例1のミネラルスピリットにα−テルピネオールを混合した溶媒中に分散させた粘度50cP(20℃)のCu超微粒子独立分散液を作製し、これを用いて、Si基板上に配線パターンを形成した。このSi基板に形成されている絶縁膜としてのSiO2 膜には幅0.25μm、深さ1μm(アスペクト比4)の溝がパターン状に形成されており、溝の内表面を含む基板の表面にはスパッタにより、WNバリヤ膜が厚さ0.02μmで形成されており、またこのバリヤ膜の表面にはスパッタによりCuのシード膜が形成されている。
【0011】
上記の基板をスピンコータにセットして500rpmで回転させ、その上方から上記のCu超微粒子独立分散液を滴下することによって、スピンコーティングした。パターン状の溝内にはこの分散液が充填され、基板の表面には平坦な該分散液の液膜が形成された。この状態の基板を10-2Torr以下の真空中、250℃の温度で、2分間加熱して有機溶媒を蒸発させ、次いで温度を300℃に上げて、不活性ガス雰囲気中で、H2Oガスの存在下(H2O分圧:10Torr)、60分間焼成した。さらに、温度を400℃に上げて、H2Oを除去した不活性ガス中で30分間焼成した。かくして、Cu超微粒子が相互に融着して、溝内がCuで空洞なく埋め込まれた縮みや割れのないCu薄膜が形成された。次いで、該溝の内部以外のCu膜をCMP処理したところ、基板表面の余分なCuが除去され、溝内に平坦な表面を有するCu薄膜が形成された。その比抵抗は2.0μΩcmであった。
【0012】
【発明の効果】
本発明のCu超微粒子独立分散液によれば、LSI基板の微細な配線溝、ビアホール、コンタクトホール等を完全に埋設することができ、導電性の均一な微細パターンを形成することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Cu ultrafine particle independent dispersion used for forming fine wiring of a semiconductor substrate such as an LSI substrate and filling via holes and contact holes.
[0002]
[Prior art]
Conventionally, when forming a multilayer wiring such as an LSI substrate, as a metal paste for forming a conductive fine pattern, a particle size of 1000 mm in an organic solvent containing alcohols having 5 or more carbon atoms or organic esters is used. It is known that metal ultrafine particles of (0.1 μm) or less are covered with the organic solvent and uniformly dispersed individually (for example, Japanese Patent No. 2561537).
[0003]
[Problems to be solved by the invention]
However, the conventional metal paste has the following problems. In other words, as the wiring width of the LSI substrate is becoming finer to 0.25 μm and 0.18 μm, the applied metal paste begins to dry before the wiring groove is sufficiently embedded, and the viscosity is high. Therefore, it has been difficult to completely bury the inside of the fine groove.
[0004]
The present invention has been made to solve the problems of the prior art, and can completely bury fine wiring grooves, via holes, contact holes, etc. of an LSI substrate, and has a uniform conductive fine pattern. It is an object of the present invention to provide an independent dispersion of Cu ultrafine particles capable of forming a Cu.
[0005]
[Means for Solving the Problems]
The Cu ultrafine particle independent dispersion of the present invention has an viscosity of 50 cP or less, an organic solvent that is difficult to evaporate at room temperature and evaporates in a drying / firing process when forming a Cu wiring on a semiconductor substrate, and a particle size It is formed by mixing with Cu metal-containing ultrafine particles of 0.01 μm or less, and the surface of the ultrafine particles is covered with the organic solvent and dispersed individually. The organic solvent evaporates at 150 ° C. or higher. The organic solvent is mineral spirit, tridecane, dodecylbenzene or a mixture thereof, or a mixture thereof with α-terpineol . In addition, hydrocarbons having 5 or more carbon atoms (eg, pinene), alcohols (eg, n-heptanol), ethers (eg, ethyl benzyl ether), esters (eg, n-butyl stearate), ketones (For example, diisobutyl ketone, etc.), organic nitrogen compound (for example, triisopropanolamine, etc.), organic silicon compound (silicone oil, etc.), organic sulfur compound, or a mixture thereof is appropriately mixed depending on the use of the Cu dispersion to be used . The Cu metal containing ultrafine particles, Cu, a ultrafine particles consisting of a mixture of CuO or the Cu and CuO. The concentration of the Cu metal-containing ultrafine particles is 5 to 70 wt%, preferably 15 to 50 wt%. When the concentration of the particles exceeds 70 wt%, the viscosity becomes too high, and when the concentration of the particles is less than 5 wt%, the film thickness is too small. The viscosity of the Cu ultrafine particle independent dispersion is 50 cP or less, preferably 10 cP or less at 20 ° C. In addition to the Cu metal-containing ultrafine particles, the Cu ultrafine particle independent dispersion may contain at least one metal having a low solubility in Cu and easily reacting with the substrate of the semiconductor substrate or a compound containing these metals. Thereby, adhesiveness with a base material improves. Specific examples of the metal other than the Cu metal element include, for example, a metal selected from Mg, Al, B, Ta, Nb and V or a compound containing these metals. Examples of the compound containing these metals include (C 17 H 35 COO) 2 Mg. The addition amount of these metals or metal-containing compounds to the Cu ultrafine particle independent dispersion is 0.5 to 5 wt% based on the total weight of the ultrafine particles.
[0006]
【Example】
Hereinafter, examples of the Cu ultrafine particle independent dispersion of the present invention will be described together with examples of use of the dispersion.
Example 1
When Cu is evaporated under the condition of helium pressure of 0.5 Torr and Cu ultrafine particles are produced by gas evaporation method, mineral spirit vapor is brought into contact with the Cu ultrafine particles in the production process and cooled and recovered. A Cu ultrafine particle independent dispersion containing 20 wt% Cu ultrafine particles having an average particle diameter of 0.008 μm dispersed in an independent state was prepared. This dispersion had a viscosity of 5 cP at room temperature.
[0007]
Subsequently, the via hole provided on the Si substrate was processed using the Cu ultrafine particle independent dispersion. A via hole having a hole diameter of 0.15 μm (aspect ratio 5) and 0.25 μm (aspect ratio 4) is formed in the SiO 2 film as an insulating film formed on the Si substrate, and the substrate includes the inner surface of the via hole. A WN barrier film having a thickness of 0.02 μm is formed by sputtering on the surface, and a Cu seed film is formed by sputtering on the surface of the barrier film.
[0008]
The above substrate was set on a spin coater, rotated at 500 rpm, and the above-mentioned Cu ultrafine particle independent dispersion was dropped from above at room temperature to perform spin coating. The via hole was filled with this dispersion, and a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state is heated in a vacuum of 10 −2 Torr or less at a temperature of 250 ° C. for 2 minutes to evaporate the organic solvent, and then the temperature is raised to 300 ° C. in a CO 2 gas 760 Torr atmosphere for 60 minutes. Baked. Furthermore, the temperature was raised to 400 ° C. and calcination was performed for 30 minutes in an inert gas. Thus, Cu ultrafine particles were fused to each other, and a Cu thin film free from shrinkage and cracking in which the via hole was filled with a cavity without Cu was formed. Next, when the Cu film other than the inside of the via hole was subjected to CMP, excess Cu on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the via hole. Its specific resistance was 2.0 μΩcm.
(Example 2)
Cu is evaporated in an atmosphere in which 0.01 Torr O 2 gas is mixed with 1 Torr helium gas to form ultrafine CuO particles, which are cooled in contact with a mixed vapor of dodecylbenzene and diethyl phthalate. A CuO ultrafine particle independent dispersion having a viscosity of 10 cP (20 ° C.) and containing 25 wt% of CuO ultrafine particles having a particle diameter of 0.01 μm was prepared. Moreover, this CuO ultrafine particle independent dispersion and the Cu ultrafine particle independent dispersion prepared in Example 1 were mixed to prepare a Cu and CuO mixed dispersion having a viscosity of 7 cP (20 ° C.).
[0009]
Next, using the above dispersion, via holes in the substrate were filled at room temperature in the same manner as in Example 1 to form a Cu film. Any of the thin films obtained may shrink or crack after sintering. The specific resistance was 2.0 μΩcm.
(Example 3)
Instead of the Cu ultrafine particle independent dispersion in Example 1, Mg, Al, B, Ta, Nb or V was used in the Cu ultrafine particle independent dispersion in which 50 wt% Cu ultrafine particles were dispersed in a mixed solvent of tridecane and phenetole. A compound to which the organic compound was added was prepared in the same manner as in Example 1. The viscosity of this dispersion was 10 cP at 20 ° C.
[0010]
Next, using these dispersions, the process of forming the WN barrier film and Cu seed film was omitted, and the others were filled with via holes in the substrate in the same manner as in Example 1 to form a Cu film. The thin film did not shrink or crack after sintering and during the planarization treatment process by CMP, had good adhesion to the substrate, and had a specific resistance of 2.1 μΩcm.
(Example 4)
A Cu ultrafine particle independent dispersion liquid having a viscosity of 50 cP (20 ° C.) dispersed in a solvent in which α-terpineol was mixed with the mineral spirit of Example 1 was prepared, and a wiring pattern was formed on the Si substrate using this. . A groove having a width of 0.25 μm and a depth of 1 μm (aspect ratio 4) is formed in a pattern on the SiO 2 film as an insulating film formed on the Si substrate, and the surface of the substrate including the inner surface of the groove A WN barrier film having a thickness of 0.02 μm is formed by sputtering, and a Cu seed film is formed by sputtering on the surface of the barrier film.
[0011]
The above substrate was set on a spin coater, rotated at 500 rpm, and the above-mentioned Cu ultrafine particle independent dispersion was dropped from above to perform spin coating. The dispersion was filled in the pattern-shaped grooves, and a flat liquid film of the dispersion was formed on the surface of the substrate. Vacuum below 10 -2 Torr substrate in this state, at a temperature of 250 ° C., then heated for 2 minutes and the organic solvents were evaporated, then the temperature was raised to 300 ° C., in an inert gas atmosphere, H 2 O Firing was performed for 60 minutes in the presence of gas (H 2 O partial pressure: 10 Torr). Furthermore, the temperature was raised to 400 ° C. and calcination was performed for 30 minutes in an inert gas from which H 2 O had been removed. Thus, Cu ultrafine particles were fused to each other, and a Cu thin film without shrinkage or cracking was formed in which the inside of the groove was filled with Cu without a cavity. Subsequently, when the Cu film other than the inside of the groove was subjected to CMP, excess Cu on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the groove. Its specific resistance was 2.0 μΩcm.
[0012]
【The invention's effect】
According to the Cu ultrafine particle independent dispersion of the present invention, fine wiring grooves, via holes, contact holes and the like of an LSI substrate can be completely buried, and a conductive fine pattern can be formed.

Claims (2)

150℃以上で蒸発するミネラルスピリット、トリデカン、ドデシルベンゼン若しくはそれらの混合物、又はそれらにα−テルピネオール又は炭素数5以上の炭化水素、アルコール、エーテル、エステル、ケトン、有機窒素化合物、有機ケイ素化合物、有機イオウ化合物、又はその混合物を混合した有機溶媒と、粒径0.01μm以下のCu、CuO又は該CuとCuOとの混合物からなるCu金属含有超微粒子とを混合して形成され、該超微粒子の表面が前記有機溶媒で覆われて個々に独立して分散しており、該超微粒子の濃度が5〜70wt%であって、粘度が50cP以下であることを特徴とするCu超微粒子独立分散液。 Mineral spirit, tridecane, dodecylbenzene or a mixture thereof that evaporates at 150 ° C. or higher, or α-terpineol or a hydrocarbon having 5 or more carbon atoms, alcohol, ether, ester, ketone, organic nitrogen compound, organic silicon compound, organic It is formed by mixing an organic solvent mixed with a sulfur compound or a mixture thereof and Cu metal-containing ultrafine particles made of Cu, CuO or a mixture of Cu and CuO having a particle size of 0.01 μm or less. surface are dispersed individually and independently covered with the organic solvent, the concentration of the ultrafine particles is a 5~70wt%, Cu ultrafine particles independently dispersed liquid, wherein the viscosity is less than 50cP . 前記Cu超微粒子独立分散液が、前記Cu金属含有超微粒子以外にCuへの溶解度が低く、かつ半導体基板の基材と反応しやすいMg、Al、B、Ta、Nb及びVから選ばれる少なくとも1つの金属又はこれらの金属を含む少なくとも1つの化合物を含有していることを特徴とする請求項1記載のCu超微粒子独立分散液。 In addition to the Cu metal-containing ultrafine particles, the Cu ultrafine particle independent dispersion has at least one selected from Mg, Al, B, Ta, Nb, and V, which has low solubility in Cu and easily reacts with the base material of the semiconductor substrate. The Cu ultrafine particle independent dispersion liquid according to claim 1, comprising at least one compound containing two metals or these metals.
JP22646499A 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion Expired - Lifetime JP4362173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22646499A JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-226141 1998-08-10
JP22614198 1998-08-10
JP22646499A JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Publications (2)

Publication Number Publication Date
JP2000123634A JP2000123634A (en) 2000-04-28
JP4362173B2 true JP4362173B2 (en) 2009-11-11

Family

ID=26527018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22646499A Expired - Lifetime JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Country Status (1)

Country Link
JP (1) JP4362173B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578755B2 (en) * 2000-05-02 2010-11-10 日揮触媒化成株式会社 Integrated circuit manufacturing method
EP1662020B1 (en) * 2003-07-03 2008-05-14 Mec Company Ltd. Method for producing a copper thin film
JP4918994B2 (en) 2005-05-30 2012-04-18 住友電気工業株式会社 Method for forming metal coating and metal wiring
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
US7521710B2 (en) 2006-02-16 2009-04-21 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
KR20090080522A (en) 2006-11-14 2009-07-24 이데미쓰 고산 가부시키가이샤 Organic thin film transistor and organic thin film light emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
WO2009060803A1 (en) 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Copper fine particle, method for producing the same, and copper fine particle dispersion
WO2020116003A1 (en) * 2018-12-03 2020-06-11 太陽誘電株式会社 Method and system for treating volatile organic compound
JP6687822B1 (en) * 2018-12-03 2020-04-28 太陽誘電株式会社 Method and system for treating volatile organic compounds
JP6808882B1 (en) * 2020-07-22 2021-01-06 有限会社 ナプラ A method of forming a conductor in a fine space provided on a semiconductor substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215367A (en) * 1983-05-23 1984-12-05 Tdk Corp Electrically conductive paste composition
JP2561537B2 (en) * 1989-03-30 1996-12-11 真空冶金株式会社 Metal paste and manufacturing method thereof
JPH05114306A (en) * 1991-10-18 1993-05-07 Nippon Cement Co Ltd Low viscosity copper ink composite for metallizing ceramics
JPH0786128A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Method for forming electrical characteristic film and spin coater used during formation
JPH0786737A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Method for manufacturing thin film multilayer circuit board
JP2769598B2 (en) * 1993-11-24 1998-06-25 株式会社住友金属エレクトロデバイス Conductor paste
JP3587884B2 (en) * 1994-07-21 2004-11-10 富士通株式会社 Method for manufacturing multilayer circuit board
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH10195350A (en) * 1996-12-25 1998-07-28 Clariant Internatl Ltd Coating composition
JPH1166957A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductor composition.
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM

Also Published As

Publication number Publication date
JP2000123634A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
US6214259B1 (en) Dispersion containing Cu ultrafine particles individually dispersed therein
JP4362170B2 (en) Silver ultrafine particle independent dispersion
JP4362173B2 (en) Cu ultrafine particle independent dispersion
US7338895B2 (en) Method for dual damascene integration of ultra low dielectric constant porous materials
US6844257B2 (en) Porous low-k dielectric interconnects with improved adhesion produced by partial burnout of surface porogens
TWI549187B (en) Method for producing insulating film
JP3586605B2 (en) Method for etching silicon nitride film and method for manufacturing semiconductor device
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
US6194316B1 (en) Method for forming CU-thin film
JP2002175934A (en) Capacitor
JP3953237B2 (en) Method for forming metal thin film and method for producing metal fine particle dispersion
JP2001035814A (en) Method of forming silver wiring pattern
JP2000124157A (en) FORMATION OF Cu THIN FILM
JP2001053028A (en) Formation method of cu thin film
JP2002075999A (en) Method of forming copper wiring pattern
JP4751496B2 (en) (Cu-C) Seed Layer Formation Method
KR101150267B1 (en) Zeolite-carbon doped oxide composite low k dielectric
JP2000223491A (en) Cu film forming method
JP2000306912A (en) Metal thin-film forming method
JP2003031566A (en) Composition for forming low dielectric constant insulating film, method for forming insulating film using the same, and electronic component having insulating film obtained thereby
JP2007266460A (en) Semiconductor device and manufacturing method thereof
EP1529310A2 (en) Porous low-k dielectric interconnect structures
JP5044307B2 (en) Thin film formation method
Lim et al. Suppression of Cu agglomeration in the Cu/Ta/Si structure by capping layer
Wang et al. Effects of thermal annealing on Zr–N doped magnetron sputtered copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term