[go: up one dir, main page]

JP4361077B2 - 磁気センサおよびその製造方法 - Google Patents

磁気センサおよびその製造方法 Download PDF

Info

Publication number
JP4361077B2
JP4361077B2 JP2006296407A JP2006296407A JP4361077B2 JP 4361077 B2 JP4361077 B2 JP 4361077B2 JP 2006296407 A JP2006296407 A JP 2006296407A JP 2006296407 A JP2006296407 A JP 2006296407A JP 4361077 B2 JP4361077 B2 JP 4361077B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetization
elements
magnetoresistive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006296407A
Other languages
English (en)
Other versions
JP2008111801A (ja
Inventor
茂 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006296407A priority Critical patent/JP4361077B2/ja
Priority to US11/976,178 priority patent/US7868613B2/en
Publication of JP2008111801A publication Critical patent/JP2008111801A/ja
Application granted granted Critical
Publication of JP4361077B2 publication Critical patent/JP4361077B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁界の変化を高感度に検出可能な磁気センサおよびその製造方法に関する。
従来、地磁気などの微小磁界の方向を検出するための磁気センサとして、パーマロイなどの強磁性材料からなる異方性磁気抵抗効果素子を利用したものが知られている(例えば特許文献1,2参照)。
特許第3318762号公報 特開平6−174471号公報
最近では、磁界変化に対し、異方性磁気抵抗効果素子よりも高い検出感度を示す巨大磁気抵抗効果(GMR;Giant Magneto-Resistive effect)素子を複数備えた磁気センサが開発されている(例えば、特許文献3参照)。このような磁気センサでは、例えば4つのGMR素子によってブリッジ回路が構成され、検出対象とする微小磁界(以下、検出対象磁界)が加わった際、いずれか2つのGMR素子の抵抗が正方向へ変化すると共に残りの2つのGMR素子の抵抗が負方向へ変化するようになっており、各GMR素子の抵抗変化の差分(作動出力)を検出することで検出対象磁界の大きさを測定することができる。
特開2003−66127号公報
上記特許文献3にあるようなブリッジ回路を構成する4つのGMR素子は、検出対象磁界が全く印加されていない状態(すなわち、測定待機状態)において全て同等の抵抗を示すことが要求される。仮に4つのGMR素子のうち、1つでも異なる抵抗を示す場合には、測定待機状態においてもブリッジ回路の差動出力(オフセット電圧)が発生してしまうこととなる。各GMR素子における抵抗は、主に自由層の磁化方向と固着層の磁化方向とのなす角度によって決まる。自由層の磁化方向は、異方性磁界の方向および大きさや、固着層と自由層との間に生じる交換バイアス磁界の大きさや方向にも影響されるものであるから、全ての磁気抵抗効果素子における抵抗を互いに等しくするには、異方性磁界の方向および固着層の磁化方向について相互に揃える必要がある。
しかしながら、実際には、異方性磁界の方向と固着層の磁化方向とのなす角度に比較的大きなばらつき(製造誤差)が生じるので、上記のようなオフセット電圧の発生を完全に除去することは極めて困難である。ところが、このようなオフセット電圧は、例えば地磁気のような極めて微小な磁界(例えば10Oe(=(2500/π)A/m)以下の磁界)を測定する場合に大きな誤差要因となる。したがって、製造誤差によるオフセット電圧を低減し、より高精度な検出対象磁界の測定を可能とする磁気センサが望まれる。
本発明はかかる問題に鑑みてなされたもので、その目的は、検出対象とする磁界の大きさを、より高精度に検出可能な磁気センサおよびその製造方法を提供することにある。
本発明の第1の磁気センサは、一定方向に固着された磁化方向を有する固着層と、非磁性の中間層と、外部磁界に応じて磁化方向が変化すると共に固着層の磁化方向と異なる方向の異方性磁界を発現する自由層とを含む積層構造をそれぞれ有する第1および第2の磁気抵抗効果素子を備えるようにしたものである。ここで、第1および第2の磁気抵抗効果素子は、積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にある。ここでいう、180°の回転移動とは、磁化の大きさや方向を含めて構造上の対称性を保つような180°の回転操作を意味する。すなわち、一方の磁気抵抗効果素子が回転中心軸を中心として180°回転(製造誤差程度のずれを含む)したときに、他方の磁気抵抗効果素子と重なり合う(一致する)。また、異方性磁界とは、結晶構造や形状などに起因する全ての異方性磁界を意味する。
本発明の第1の磁気センサでは、第1および第2の磁気抵抗効果素子が、積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあるので、第1および第2の磁気抵抗効果素子において、自由層の磁化方向と固着層の磁化方向との初期状態での相対角度が互いに等しくなる。そのうえ、第1および第2の磁気抵抗効果素子は検出対象磁界に応じて抵抗値が互いに逆方向の変化を示すこととなる。ここで、初期状態とは、第1および第2の磁気抵抗効果素子に対し、検出対象磁界を含む外部磁界が何ら付与されていない状態を意味する。この初期状態は、例えば、自由層の磁化が飽和する飽和磁界と同等以上の大きさを有するリフレッシュ磁界を、第1および第2の磁気抵抗効果素子の双方に対して回転中心軸に沿って印加することで得られる。
本発明の第2の磁気センサは、一定方向に固着された磁化方向を有する固着層と、非磁性の中間層と、外部磁界に応じて磁化方向が変化すると共に固着層の磁化方向と異なる方向の異方性磁界を発現する自由層とを含む積層構造をそれぞれ有する第1から第4の磁気抵抗効果素子を備えるようにしたものである。ここで、第1および第3の磁気抵抗効果素子は、平行移動により各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあり、第2および第4の磁気抵抗効果素子が平行移動により各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあり、第1および第3の磁気抵抗効果素子の素子対と第2および第4の磁気抵抗効果素子の素子対とが積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にある
本発明の第2の磁気センサでは、第1および第3の磁気抵抗効果素子が、平行移動により、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあり、第2および第4の磁気抵抗効果素子が、平行移動により、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあり、第1および第3の磁気抵抗効果素子の素子対と、第2および第4の磁気抵抗効果素子の素子対とが、積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係にあるので、第1から第4の磁気抵抗効果素子の全てにおいて、自由層の磁化方向と固着層の磁化方向との初期状態での相対角度が互いに等しくなる。そのうえ、第1および第3の磁気抵抗効果素子の抵抗と第2および第4の磁気抵抗効果素子の抵抗とが検出対象磁界に応じて互いに逆方向の変化を示すこととなる。この初期状態は、例えば、自由層の磁化が飽和する磁界と同等以上の大きさを有するリフレッシュ磁界を、第1から第4の磁気抵抗効果素子の全てに対して回転中心軸に沿って印加することで得られる。
本発明の第1および第2の磁気センサでは、リフレッシュ磁界印加手段を設け、それが発生するリフレッシュ磁界を一時的に付与することによって磁気抵抗効果素子の自由層を飽和させるようにすれば、自由層の磁化方向が外部からの不要な磁界(外乱磁界)によって乱された場合であっても、自由層の磁化方向が一定方向に揃うこととなる。特に、各磁気抵抗効果素子における自由層の異方性磁界を一致させ、その方向(自由層の異方性磁界の方向)に沿ってリフレッシュ磁界を発生させるようにリフレッシュ磁界印加手段を配置すれば、自由層の異方性磁界の方向が安定化し、磁気抵抗効果素子の出力が高いレベルで安定化する。なお、外乱磁界の影響がほとんどなく、かつ、自由層の異方性磁界の方向が十分に安定である場合には、リフレッシュ磁界Hrefを付与しなくともよい。
本発明における第1の磁気センサの製造方法は、一の基体上に、一定方向の異方性磁界を発現すると共に検出対象磁界に応じて磁化方向が変化する第1の強磁性層と、非磁性の中間層と、第1の強磁性層よりも大きな保磁力を有する第2の強磁性層とを順に積層してなる複数の磁気抵抗効果素子を一括して形成する工程と、複数の磁気抵抗効果素子の全てについて、異方性磁界の方向と異なる方向となるように第2の強磁性層の磁化方向を一括して設定する工程と、基体上に形成された複数の磁気抵抗効果素子から一対の磁気抵抗効果素子を切り出す工程と、切り出された一対の磁気抵抗効果素子を、その積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置する工程とを含むようにしたものである。
本発明における第1の磁気センサの製造方法では、一の基体上に一括して積層し、かつ規則化を行った複数の磁気抵抗効果素子のなかから一対の磁気抵抗効果素子が取り出したうえ、それらを、回転中心軸を中心とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置したので、一対の磁気抵抗効果素子の相互間において、第2の強磁性層の磁化方向と第1の強磁性層の異方性磁界の方向との相対角度の誤差が比較的小さくなる。
本発明における第2の磁気センサの製造方法は、一の基体上に、一定方向の異方性磁界を発現すると共に検出対象磁界に応じて磁化方向が変化する第1の強磁性層と、非磁性の中間層と、第1の強磁性層よりも大きな保磁力を有する第2の強磁性層とを順に積層してなる複数の磁気抵抗効果素子を一括して形成する工程と、複数の磁気抵抗効果素子の全てについて異方性磁界の方向と異なる方向となるように第2の強磁性層の磁化方向を一括して設定する工程と、複数の磁気抵抗効果素子が形成された基体を切り分けることにより、磁気抵抗効果素子をそれぞれ2つずつ含む一対の素子モジュールを形成する工程と、基体上に形成された複数の磁気抵抗効果素子から2つの磁気抵抗効果素子をそれぞれ含む一対の素子モジュールを切り出す工程と、切り出された一対の素子モジュールを、磁気抵抗効果素子の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置する工程とを含むようにしたものである。
本発明における第2の磁気センサの製造方法では、一の基体上に一括して積層し、かつ規則化を行った複数の磁気抵抗効果素子のなかから選択した2つの磁気抵抗効果素子をそれぞれ含む一対の素子モジュールを切り出したうえ、それらを、回転中心軸を中心とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置したので、4つの磁気抵抗効果素子の相互間において、第2の強磁性層の磁化方向と第1の強磁性層の異方性磁界の方向との相対角度の誤差が比較的小さくなる。
本発明の第1の磁気センサによれば、第1および第2の磁気抵抗効果素子を、回転中心軸を中心とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係としたので、初期状態における両者の抵抗の差に起因するオフセット出力を低減することができる。よって、検出対象磁界に基づく出力を、より高精度に検出することができる。
本発明の第2の磁気センサによれば、第1および第3の磁気抵抗効果素子を、平行移動により、各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係とし、かつ、第2および第4の磁気抵抗効果素子を、第1および第3の磁気抵抗効果素子に対し、回転中心軸を中心とする180°の回転移動により、またはその回転移動と平行移動とにより各々の自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の固着層の磁化方向および大きさも互いに一致する関係としたので初期状態における両者の抵抗の差に起因するオフセット出力を低減することができる。よって、検出対象磁界に基づく出力を、より高精度に検出することができる。
本発明の第1および第2の磁気センサによれば、さらに、リフレッシュ磁界印加手段を設け、全ての磁気抵抗効果素子に対してリフレッシュ磁界を一時的に付与するようにすれば、自由層を飽和させ、その磁化方向を一旦揃えることができる(初期状態とすることができる)。したがって、全ての磁気抵抗効果素子にリフレッシュ磁界を印加してから検出対象磁界を検出するようにすれば、地磁気程度の微小磁界であっても、よりいっそう高精度に、かつ安定して検出することができる。特に、第1および第2の磁気抵抗効果素子における双方の異方性磁界の方向、または、第1から第4の磁気抵抗効果素子における全ての異方性磁界の方向を回転中心軸と一致させるようにした場合には、上記のリフレッシュ磁界をその異方性磁界の方向に印加することで容易に初期状態を得ることができる。
本発明における第1の磁気センサの製造方法によれば、一の基体上に一括形成した複数の磁気抵抗効果素子の全てについて、第1の強磁性層の異方性磁界の方向と第2の強磁性層の磁化方向とが互いに異なるように一括して規則化を行ったのち、その基体から切り出した一対の磁気抵抗効果素子を、その積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置したので、一対の磁気抵抗効果素子の相互間において、第2の強磁性層の磁化方向と第1の強磁性層の異方性磁界の方向との相対角度の誤差を低減することができる。したがって、その相対角度の誤差に起因するオフセット出力を低減し、検出対象磁界をより高精度に測定可能な磁気センサを実現することができる。
本発明における第2の磁気センサの製造方法によれば、一の基体上に一括形成した複数の磁気抵抗効果素子の全てについて、第1の強磁性層の異方性磁界の方向と第2の強磁性層の磁化方向とが互いに異なるように一括して規則化を行ったのち、その基体から切り出した2つの磁気抵抗効果素子を各々含む一対の素子モジュールを、磁気抵抗効果素子の積層面と平行な軸を回転中心軸とする180°の回転移動により、またはその回転移動と平行移動とにより、各々の第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置したので、4つの磁気抵抗効果素子の相互間において、第2の強磁性層の磁化方向と第1の強磁性層の異方性磁界の方向との相対角度の誤差を低減することができる。したがって、その相対角度の誤差に起因するオフセット出力を低減し、検出対象磁界をより高精度に測定可能な磁気センサを実現することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
最初に、図1などを参照して、本発明における第1の実施の形態としての磁気センサの構成について説明する。図1は、本実施の形態の磁気センサ1の斜視構成を表す概略図である。
磁気センサ1は、集積基板100の上に、第1の磁気抵抗効果(MR;Magneto-Resistive effect)素子11Aが素子基板12上に設けられた第1のモジュール10と、第2のMR素子11Bが素子基板22上に設けられた第2のモジュール20とを有するものである。素子基板12,22は、例えばアルティック(Al2 3 ・TiC)の基板やシリコン(Si)基板の表面を絶縁化したもの(表面に酸化アルミニウム層を設けるなどしたもの)である。第1のモジュール10は集積基板100の上面に設けられている一方で、第2のモジュール20は、集積基板100の下面に設けられている。すなわち、第1および第2のモジュール10,20は、集積基板100を通る中心軸CLを回転中心とした回転対称な関係にある。すなわち、一方のMR素子(例えば第1のMR素子11A)を中心軸CLを回転中心として180°回転させると、他方のMR素子(第2のMR素子11B)と構造上一致する関係にある。中心軸CLは、後述する磁化容易軸Hk1,Hk2と平行をなしている。本実施の形態では、中心軸CLに沿った方向をX方向とし、集積基板100の面内においてX方向と直交する方向をY方向とし、さらに、集積基板100の面と直交する方向をZ方向とする。磁気センサ1は、ある回転面(ここではXY平面)において変化する検出対象磁界Hmの大きさを検出するものである。
磁気センサ1は、さらに、リフレッシュ磁界Hrefを発生させるコイル30を備えている。コイル30は、集積基板100の周囲を中心軸CLを中心として巻回している導線である。このコイル30は、電流が流れることにより、異方性磁界Hk1,Hk2の方向(ここでは+X方向)にリフレッシュ磁界Hrefを発生させ、それを第1および第2のMR素子11A,11Bに印加するものである。リフレッシュ磁界Hrefは、後述する自由層53A,53Bの磁化が飽和する磁界と同等以上の強度を有している。
図2(A)および図2(B)は、図1に示した第1および第2のMR素子11A,11Bを拡大した平面図である。第1のMR素子11Aは、図2(A)に示したように、銅などからなる一対の電極13A,14Aの間に複数の素子パターン15A(図2(A)では、7つの素子パターン15Aを示す)を設けたものである。複数の素子パターン15Aは、いずれもスパッタリング法およびフォトリソグラフィ法などを利用して形成されるものであり、X方向に延在する帯状をなすと共に、X方向と直交するY方向において互いに隣在し合うように配置されている。このように配置された複数の素子パターン15Aは、電極13Aと電極14Aとの間でつづら折り状となるように、長手方向(X方向)における各々の両端が銅などの非磁性導電層からなる連結部16Aによって互いに連結されている。
第2のMR素子11Bは、図2(B)に示したように、第1のMR素子11Aとほぼ同様の構成であり、銅などからなる一対の電極13B,14Bの間に複数の素子パターン15B(図2(B)では、7つの素子パターン15Bを示す)を設けたものである。複数の素子パターン15Bは、いずれもスパッタリング法などにより形成されるものであり、X方向に延在する帯状をなすと共に、Y方向において互いに隣在し合うように配置されている。このように配置された複数の素子パターン15Bは、電極13Bと電極14Bとの間でつづら折り状となるように、長手方向(X方向)における各々の両端が銅などの非磁性導電層からなる連結部16Bによって互いに連結されている。
図3および図4は、それぞれ図2(A)および図2(B)に示した素子パターン15A,15Bを拡大して示した分解斜視図である。各素子パターン15A,15Bは、それぞれ図3(A),図4(A)に示したように、磁性層を含む複数の機能膜が積層されたスピンバルブ構造をなしており、具体的には、素子基板12,22の上に、検出対象磁界Hmをはじめとする外部磁界に応じて方向が変化する磁化J53A,J53Bを有する自由層53A,53Bと、特定の磁化方向を発現しない非磁性の中間層52A,52Bと、一定方向に固着された磁化J51A,J51Bを有する固着層51A,51Bとがそれぞれ順に積層されたものである。自由層53A,53Bは、いずれもX方向の異方性磁界Hk1,Hk2を発現している。ここでの異方性磁界Hk1,Hk2とは、自由層53A,53Bの結晶構造に起因する異方性磁界成分や、自由層53A,53Bの形状に起因する異方性磁界成分を含む全ての異方性磁界を意味するものである。固着層51A,51Bの磁化J51A,J51Bの方向は、図1および図2に示したように、中心軸CLと直交する直交軸PLからわずかに傾いている。より詳細には、磁化J51Aの方向は、−Y方向から+X方向へ角度β1だけ傾いた方向であり、磁化J51Bの方向は、+Y方向から+X方向へ角度β2だけ傾いた方向である。角度β1および角度β2は、互いに等しいことが望ましい。磁化J51A,51Bの方向と異方性磁界Hk1,Hk2の方向との相対角度は、いずれも0°より大きく90°未満である。
図3(B),図4(B)に、固着層51A,51Bの詳細な構成を示す。固着層51A,51Bは、中間層52A,52Bの側から磁化固定膜54A,54Bと反強磁性膜55A,55Bと保護膜56A,56Bとが順に積層されたものである。磁化固定膜54A,54Bはコバルト(Co)やコバルト鉄合金(CoFe)などの強磁性材料からなり、この磁化固定膜54A,54Bの示す磁化方向が固着層51A,51B全体としての磁化J51A,J51Bの方向となる。一方、反強磁性膜55A,55Bは、白金マンガン合金(PtMn)やイリジウムマンガン合金(IrMn)などの反強磁性材料により構成されている。反強磁性膜55A,55Bは、ある一方向のスピン磁気モーメントと、それとは逆方向のスピン磁気モーメントとが完全に打ち消し合った状態にあり、磁化固定膜54A,54Bの磁化方向を固定するように作用している。また、保護膜56A,56Bは、タンタル(Ta)やハフニウム(Hf)などの化学的に安定な非磁性材料からなり、磁化固定膜54A,54Bや反強磁性膜55A,55Bなどを保護するものである。さらに、自由層53A,53Bは、ニッケル鉄合金(NiFe)などの軟磁性材料により構成されており、中間層52A,52Bは、例えば銅(Cu)や金(Au)などの高導電性の非磁性材料により構成されている。
ここで、図3(A),図4(A)は、検出対象磁界Hmをはじめとする含む外部磁界Hが付与されていない無負荷状態を示している。この場合、第1および第2のMR素子11A,11Bにおける磁化のベクトルおよび磁界のベクトルは、異方性磁界Hk1,Hk2と平行な軸(中心軸CL)を中心として互いに回転対称な関係となっている。自由層53Aの磁化J53Aは、固着層51Aおよび自由層53Aの間に生ずる交換結合磁界Hin1と、自由層53Aの異方性磁界Hk1との合成磁界H1の方向を向いている(図5(A))。同様に、自由層53Bの磁化J53Bは、固着層51Bおよび自由層53Bの間に生ずる交換結合磁界Hin2と、自由層53Bの異方性磁界Hk2との合成磁界H2の方向を向いている(図5(B))。一方、固着層51A,51Bの磁化J51A,J51Bは、異方性磁界Hk1,Hk2と0°よりも大きく90°未満の相対角度をなす方向を向いており、例えば合成磁界H1,H2とそれぞれ角度α1,α2をなしている。角度α1,α2は、検出対象磁界Hmの有無にかかわらず、いずれも90°であることが望ましい。そのような構成とすることで、素子パターン15A,15Bが最大の出力を発現するからである。交換結合磁界Hin1,Hin2は、それぞれ磁化J51A,J51Bと正反対のベクトルを有している。素子パターン15Aにおける磁化J51A、異方性磁界Hk1および交換結合磁界Hin1は、素子パターン15Bにおける磁化J51B、異方性磁界Hk2および交換結合磁界Hin2とそれぞれ等しいことが望ましい。なお、図5(A),図5(B)は、素子パターン15A,15Bにおける磁化の向きおよび大きさと、磁界の向きおよび大きさとを説明するための説明図である。
磁気センサ1は、例えば地磁気などの極めて微小な磁界(検出対象磁界Hm)の検出を行うのに好適である。ここでは、XY平面において回転する検出対象磁界Hmを検出する場合について説明する。例えば地磁気を測定する場合には、集積基板100を地面と平行に設置すればよい。
素子パターン15A,15Bは、いずれも積層面が検出対象磁界Hmの回転面と平行をなすように形成されている。素子パターン15Aに対し、例えば図5(A)に示したように検出対象磁界Hmが印加されると、自由層53Aの磁化J53Aは合成磁界H1と検出対象磁界Hmとの合成ベクトルV1の方向へ変化する。このとき、磁化J51Aと磁化J53Aとの角度は角度α1よりも大きくなるので、第1のMR素子11Aの抵抗値R1は増加する。一方、素子パターン15Bに対しても図5(B)に示したように図5(A)と同方向の検出対象磁界Hmが印加されるので、自由層53Bの磁化J53Bは合成磁界H2と検出対象磁界Hmとの合成ベクトルV2の方向へ変化する。このとき、磁化J51Bと磁化J53Bとの角度は角度α2よりも小さくなるので、第2のMR素子11Bの抵抗値R2は減少する。このように、検出対象磁界Hmの回転に伴い、第1のMR素子11Aの抵抗値R1と、第2のMR素子11Bの抵抗値R2とが互いに逆向きの変化を示すように構成されている。
図6は、磁気センサ1の回路構成を示す概略図である。
第1のモジュール10は素子基板12上に形成された定電流源CG1(図1では図示せず)を有しており、第2のモジュール20は素子基板22上に形成された定電流源CG2(図1では図示せず)を有している。これらの定電流源CG1,CG2は、第1および第2のMR素子11A,11Bと共に図6のような回路を構成している。第1のMR素子11Aおよび第2のMR素子11Bの一端同士(例えば電極13Aおよび電極13B)は第1の接続点P11において接続され、定電流源CG1および定電流源CG2の一端同士は第2の接続点P12において接続されている。さらに、第1のMR素子11Aの他端(第1の接続点P11とは反対側となる電極14A)は、第3の接続点P13において定電流源CG1の他端(第2の接続点P12とは反対側となる端部)と接続されており、第2のMR素子11Bの他端(第1の接続点P11とは反対側となる電極14A)は、第4の接続点P14において定電流源CG2の他端(第2の接続点P12とは反対側となる端部)と接続されている。ここで、定電流源CG1は第1のMR素子11Aに対して定電流I1を供給し、定電流源CG2は第2のMR素子11Bに対して定電流I2を供給するように構成されている。
さらに、第1のモジュール10は、入力側において第3の接続点P13および第4の接
続点P14とそれぞれ接続された差分検出器AMP1を有している。この差分検出器AM
P1は、第1の接続点P11と第2の接続点P12との間に電圧が印加されたときの第3
の接続点P13と第4の接続点P14との間の電位差(第1および第2のMR素子11A,11Bのそれぞれに生ずる電圧降下の差分)を検出し、差分信号S1として出力するものである。
次に、磁気センサ1の製造方法について説明する。
ここでは、まず、シリコンウェハなどの基体(図示せず)の表面に複数のMR素子を一括して形成する。具体的には、NiFeなどの軟磁性材料からなる第1の強磁性層と、銅などの非磁性導電材料からなる中間層と、第1の強磁性層よりも大きな保磁力を有する材料(例えばCoFe)からなる第2の強磁性層とを基体上に順に積層したのち所定の寸法形状となるようにパターニングを行うことで、自由層53、中間層52および固着層51からなる素子パターン15を複数形成する。そののち、所定の数の素子パターン15を連結する連結部16を形成し、さらに、両端に位置する連結部16と接続するように電極13,14を形成することにより、複数のMR素子を得る。この際、一定方向の磁界を印加しながら第1の強磁性層を成膜することにより自由層53の異方性磁界Hkの方向を設定する。固着層51については異方性磁界Hkと異なるように磁化J51の方向の固着化(規則化)を一括して行う。具体的には、例えば、異方性磁界Hkと異なる方向に(0°より大きく90°未満の相対角度をなすように)1.6kA/m以上160kA/m以下の強さを有する磁界を印加しつつ、250℃以上400℃以下の温度で4時間程度のアニール処理を施すことにより磁化J51の方向を一括して設定する。この規則化処理によって、外部磁界が零である初期状態での固着層51の磁化J51と自由層53の磁化J53との角度が決まる。
次いで、基体上に形成された複数のMR素子を、MR素子ごとに基体と共に切り分けることで、素子基板12上に第1のMR素子11Aが形成された第1のモジュール10と、素子基板22上に第2のMR素子11Bが形成された第2のモジュール20とを得る。ところで、磁化J51と磁化J53との相対的な角度については、同一の基体上に形成されたMR素子同士であっても、若干のばらつきを有することとなる。しかしながら、その角度は、より近い領域に形成されたMR素子同士であれば比較的小さな誤差となる。よって、磁気センサ1を作製するにあたっては、可能な限り狭い領域内から選択されたMR素子を組み合わせることが望ましい。得られた第1および第2のモジュール10,20を、自由層53A,53Bの異方性磁界Hk1,Hk2の方向と平行な軸を中心として互いに回転対称な位置となるように集積基板100に貼り付ける。その際、例えば、集積基板100の一方の面に第1のモジュール10を貼り付け、他方の面に第2のモジュール20を貼り付けるようにする。このようにすることで、検出対象磁界Hmに応じて抵抗値R1,R2が互いに逆方向の変化を示すようになる。
続いて、集積基板100の両面を絶縁性樹脂により覆ったのち第1および第2のモジュール10,20の周囲を巻回するようにコイル30を設ける。例えば、銅からなる極細線(φ30μm程度)を巻き付けることでコイル30を形成する。最後に定電流源CG1,CG2の形成や配線をおこなうなど、所定の工程を経ることにより、磁気センサ1が完成する。
このように構成された磁気センサ1を使用し、差分信号S1に基づいて検出対象磁界Hmを検出する方法について以下に説明する。
検出対象磁界Hmを検出する準備段階として、まず、コイル30にリフレッシュ電流を流すことにより、自由層53A,53Bの磁化が飽和する磁界と同等以上の大きさを有するリフレッシュ磁界Href(図5,図6)を、第1および第2のMR素子11A,11Bの各々に対して異方性磁界Hk1,Hk2の方向に沿って一時的に印加する。こうすることで、磁化J53A,J53Bの方向を初期状態にリセットすることができる。すなわち、磁化J53A,J53Bの方向を同一方向(異方性磁界Hk1,Hk2の方向)に一旦揃えることができる。この結果、第1および第2のMR素子11A,11Bのヒステリシス現象に伴う検出誤差を回避することができる。さらに、異方性磁界Hk1,Hk2の方向に沿ってリフレッシュ磁界Hrefを一時的に印加することで自由層53A,53Bの結晶磁気異方性が安定化するので(その結果、異方性磁界Hk1,Hk2も安定化するので)、磁気センサ1の出力が高いレベルで安定する。
図6において、第1の接続点P11と第2の接続点P12との間に所定の電圧を印加した際の定電流源CG1,CG2からの定電流をそれぞれI1,I2とし、第1および第2のMR素子11A,11Bの抵抗値をそれぞれR1,R2とする。検出対象磁界Hmが印加されていない場合、第3の接続点P13における電位V1は、
V1=I1・R1
であり、第4の接続点P14における電位V2は、
V2=I2・R2
となる。よって、第3の接続点P13と第4の接続点P14との間の電位差は、
V0=V1−V2
=I1・R1−I2・R2…(1)
ここで、定電流I1と定電流I2とが互いに等しい(すなわちI1=I2=I0である)場合には、式(1)は、
V0=I0・(R1−R2) …(2)
となる。
この回路では、検出対象磁界Hmが印加されたときに、電位差V0を測定することにより抵抗変化量が得られる。例えば検出対象磁界Hmが印加されたときに、抵抗値R1,R2がそれぞれ変化量ΔR1,ΔR2だけ増加したとすると、式(2)は、
V0=V1−V2
=I0・(R1−R2)
=I0・{(R1+ΔR1)−(R2+ΔR2)} …(3)
となる。
すでに述べたように、第1および第2のMR素子11A,11Bは検出対象磁界Hmによって各々の抵抗値R1,R2が互いに逆方向の変化を示すように配置されていることから、変化量ΔR1と変化量ΔR2とは互いの正負が逆の符号となる。したがって、式(3)において、検出対象磁界Hmが印加される前の抵抗値R1および抵抗値R2は互いに打ち消し合う一方で、変化量ΔR1および変化量ΔR2はそのまま維持される。
仮に、第1および第2のMR素子11A,11Bが全く同一の特性を有するとした場合、すなわち、
R1=R2=R
かつ
ΔR1=−ΔR2=ΔR
であると仮定した場合、式(3)は、
V0=I0・(R1+ΔR1−R2−ΔR2)
=I0・(R+ΔR−R+ΔR)
=I0・(2ΔR) …(4)
となる。したがって、外部磁界と抵抗変化量との関係が既知である第1および第2のMR素子11A,11Bを用いるようにすれば、検出対象磁界Hmの大きさを測定することができる。式(4)で表される電位差V0は、合成ベクトルV1,V2と、磁化J51A,J51Bとのなす角度によって決まるものである。
ところで、磁化J51Aと合成磁界H1との角度α1と、磁化J51Bと合成磁界H2との角度α2とが一致していなければ、検出対象磁界Hmを測定する前段階である初期状態においてオフセット出力が生じる(式(2)においてV0=0とならない)こととなる。検出対象磁界Hmが印加されていない無負荷状態であっても、第1のMR素子11Aの抵抗値R1と第2のMR素子11Bの抵抗値R2との差分が零とならないからである。
本実施の形態では、第1および第2のMR素子11A,11Bは、異方性磁界Hk1の方向と異方性磁界Hk2の方向とが互いに一致しているうえ、異方性磁界Hk1,Hk2と平行な中心軸CLを回転中心として互いに回転対称な関係を有している。このため、角度α1および角度α2が実質的に同等である。さらに、第1および第2のMR素子11A,11Bは一括形成されたものであるので、実質的に同等の性能を有している。よって、オフセット出力は極めて小さなものとなる。
これに対し、例えば図22および図23(A),図23(B)に示した比較例としての磁気センサ101のように、第1のモジュール110を構成する第1のMR素子111Aと、第2のモジュール120を構成する第2のMR素子111Bとが中心軸CLを中心として互いに回転対称な関係にない場合にはオフセット出力が比較的大きなものとなってしまう。なお、図22は、本実施の形態の磁気センサ1に対する比較例としての磁気センサ101の斜視構成を表す概略図であり、図23(A),図23(B)は、第1および第2のMR素子111A,111Bに含まれる各素子パターン(図示せず)における磁化の向きおよび磁界の向きの状態を説明するための説明図である。磁気センサ101では、第1のMR素子111Aと、第2のMR素子111Bとが異方性磁界Hk1,Hk2を含む面(XY平面)と直交する軸を中心として回転対称な位置関係にある。この場合、磁化J151Aの方向と磁化J151Bの方向とが直交軸PLを中心として互いに反対の方向へ傾くこととなる(互いに遠ざかる方向へ傾くこととなる)ので(図22)、磁化J151Aの方向と異方性磁界Hk1の方向とのなす角が90°未満である(図23(A))一方で磁化J151Bの方向と異方性磁界Hk2の方向とのなす角が90°を超えることとなる(図23(B))。すなわち、第1および第2のMR素子111A,111Bが回転対称となっていない場合には、角度β1および角度β2が実質的に同等であっても角度α1および角度α2は互いに大きく異なる。よって、磁気センサ101のように第1および第2のMR素子111A,111Bを配置した場合には、比較的大きなオフセット出力が表れることとなる。
以上説明したように、本実施の形態の磁気センサ1によれば、第1および第2のMR素子11A,11Bを、自由層53A,53Bの異方性磁界Hk1,Hk2の方向と平行な中心軸CLを中心として互いに回転対称な関係を有するようにしたので、初期状態において、磁化J53Aの方向と磁化J51Aの方向との相対角度α1と、磁化J53Bの方向と磁化J51Bの方向との相対角度α2とが互いに等しくなる。そのうえ、検出対象磁界Hmに応じて、第1のMR素子11Aの抵抗値R1と第2のMR素子11Bの抵抗値R2とが互いに逆方向の変化を示すこととなる。その結果、相対角度α1と相対角度α2との誤差に起因するオフセット出力を低減することができ、より高精度に検出対象磁界Hmを測定することができる。
さらに、コイル30を設け、第1および第2のMR素子11A,11Bに対して異方性磁界Hk1,Hk2の方向へリフレッシュ磁界Hrefを印加し、自由層53A,53Bを飽和させるようにしたので、自由層53A,53Bの磁化J53A,J53Bの方向が外部からの不要な磁界(外乱磁界)によって乱された場合であっても、一旦、それらを一定方向(合成磁界H1,H2の方向)へ揃えることができる。さらに、リフレッシュ磁界Hrefを印加することで、異方性磁界Hk1,Hk2の方向も安定化する。したがって、第1および第2のMR素子11A,11Bに対してリフレッシュ磁界Hrefを印加してから検出対象磁界Hmを検出するようにすれば、地磁気程度の微小磁界であっても、高精度に、かつ安定して検出することができる。
また、本実施の形態では、同一の基体上に一括形成した複数のMR素子の全てについて、第1の強磁性層の磁化容易軸と第2の強磁性層の磁化方向とが互いに異なるように一括して規則化を行ったのち、その基体から切り出した第1および第2のMR素子11A,11Bを集積基板100に配置するようにしたので、角度α1と角度α2との誤差や、第1および第2のMR素子11A,11Bにおける感度などの性能面での誤差を極めて低く抑えることができる。
[第2の実施の形態]
次に、図7〜図9を参照して、本発明における第2の実施の形態としての磁気センサの構成について説明する。図7は、本実施の形態の磁気センサ2の斜視構成を表す概略図であり、図8は、磁気センサ2の要部における磁化の向きおよび磁界の向きの状態を説明するための説明図である。さらに、図9は、磁気センサ2に対応する回路図である。
上記第1の実施の形態では、第1および第2のMR素子11A,11Bによって構成される磁気センサ1について説明した。これに対し、本実施の形態では、第1〜第4のMR素子11A〜11Dによって構成される磁気センサ2について説明する。以下では、主に磁気センサ1との相違点について説明することとし、それ以外の点についての説明は適宜省略する。
図7に示したように、磁気センサ2では、第1のモジュール10が素子基板12の上に第1のMR素子11Aと共に第3のMR素子11Cを有し、第2のモジュール20が素子基板22の上に第2のMR素子11Bと共に第4のMR素子11Dを有するように構成されている。ここで、第3および第4のMR素子11C,11Dは、それぞれ、第1および第2のMR素子11A,11Bと全く同様の構成を有している。すなわち、第1および第3のMR素子11A,11Cは互いに等価な関係にあり、第2および第4のMR素子11B,11Dは互いに等価な関係にある。したがって、第2および第4のMR素子11B,11Dは、第1および第3のMR素子11A,11Cに対して中心軸CLを中心とした回転対称な関係にある。第3のMR素子11Cは、固着層51A、中間層52Aおよび自由層53Aとそれぞれ対応する固着層51C、中間層52Cおよび自由層53Cを有する素子パターン15C(いずれも図示せず)を複数備えており、第4のMR素子11Dは、固着層51B、中間層52Bおよび自由層53Bとそれぞれ対応する固着層51D、中間層52Dおよび自由層53Dを有する素子パターン15D(いずれも図示せず)を複数備えている。図8(A)に示したように、固着層51Cの磁化J51Cは、磁化J51Aと同様に直交軸PLから角度β1だけ傾いた方向に固定されている。したがって、第3のMR素子11Cでは交換結合磁界Hin1と一致する交換結合磁界Hin3が発生し、その結果、合成磁界H1と一致する合成磁界H3が形成される。無負荷状態では、自由層53Cの磁化J53Cが合成磁界H3の方向を向いている。一方、図8(B)に示したように、固着層51Dの磁化J51Dは、磁化J51Bと同様に直交軸PLから角度β2だけ傾いた方向に固定されている。したがって、第4のMR素子11Dでは交換結合磁界Hin2と一致する交換結合磁界Hin4が発生し、その結果、合成磁界H2と一致する合成磁界H4が形成される。無負荷状態では、自由層53Dの磁化J53Dが合成磁界H4の方向を向いている。磁気センサ2では、無負荷状態において、磁化J51Aと磁化J53Aとの角度α1、磁化J51Bと磁化J53Bとの角度α2、磁化J51Cと磁化J53Cとの角度α3、および磁化J51Dと磁化J53Dとの角度α4は、全て同等となっている。
磁気センサ2の回路構成は図9に示した通りである。ここでは、第1のMR素子11Aおよび第2のMR素子11Bの一端同士が第1の接続点P11において接続され、第3のMR素子11Cおよび第4のMR素子11Dの一端同士が第2の接続点P12において接続され、第1のMR素子11Aの他端と第4のMR素子11Dの他端とが第3の接続点P13において接続され、第2のMR素子11Bの他端と第3のMR素子11Cの他端とが第4の接続点P14において接続されることにより、ブリッジ回路が構成されている。
磁気センサ2では、検出対象磁界Hmの変化に応じて、第3および第4のMR素子11C,11Dが、それぞれ、第1および第2のMR素子11A,11Bと全く同様の挙動を示す。図9において、第1の接続点P11と第2の接続点P12との間に所定の電圧を印加した際の定電流をI0とし、第1〜第4のMR素子11A〜11Dの抵抗値をそれぞれR1〜R4とする。検出対象磁界Hmが印加されていない場合、第2の接続点P12と第1の接続点P11との電位差Vは、
V=I1・R4+I1・R1=I2・R3+I2・R2
=I1(R4+R1)=I2(R3+R2) ……(5)
と表すことができる。なお、R1〜R4は、第1〜第4のMR素子11A〜11Dの各抵抗値である。また、第3の接続点P13における電位V1および第4の接続点P14における電位V2は、それぞれ、
V1=V−V4
=V−I1・R4
V2=V−V3
=V−I2・R3
と表せる。よって、第3の接続点P13と第4の接続点P14との間の電位差V0は、
V0=V1−V2
=(V−I1・R4)−(V−I2・R3)
=I2・R3−I1・R4 ……(6)
ここで、(5)式から
V0=R3/(R3+R2)・V−R4/(R4+R1)・V
={R3/(R3+R2)−R4/(R4+R1)}・V ……(7)
となる。このブリッジ回路では、検出対象磁界Hmが印加されたときに、上記の式(7)で示された第3および第4の接続点P13,P14間の電圧V0を測定することにより、抵抗変化量が得られる。検出対象磁界Hmが印加されたときに、抵抗値R1〜R4がそれぞれ変化量ΔR1〜ΔR4だけ増加したとすると、すなわち、抵抗値R1〜R4がそれぞれ、
R1→R1+ΔR1
R2→R2+ΔR2
R3→R3+ΔR3
R4→R4+ΔR4
のように変化したとすると、検出対象磁界Hmを印加したのちは、式(7)より、
V0={(R3+ΔR3)/(R3+ΔR3+R2+ΔR2)−(R4+ΔR4)/(R4+ΔR4+R1+ΔR1)}・V ……(8)
となる。すでに述べたように、磁気センサ2では、第1および第3のMR素子11A,11Cの抵抗値R1,R3と第2および第4のMR素子11B,11Dの抵抗値R2,R4とが逆方向に変化するので、変化量ΔR3と変化量ΔR2とが打ち消し合うと共に変化量ΔR4と変化量ΔR1とが打ち消し合うこととなる。このため、検出対象磁界Hmの印加前後を比較した場合、式(8)の各項における分母の増加はほとんど無い。一方、各項の分子については、変化量ΔR3と変化量ΔR4とは必ず反対の符号を有するので、打ち消し合うことなく増減が現れることとなる。検出対象磁界Hmが印加されることにより、第2および第4のMR素子11B,11Dでは、抵抗値は変化量ΔR2,ΔR4(ΔR2,ΔR4<0)の分だけそれぞれ変化する(実質的に低下する)一方で、第1および第3のMR素子11A,11Cでは、抵抗値は変化量ΔR1,ΔR3(ΔR1,ΔR3>0)の分だけそれぞれ変化する(実質的に増加する)からである。
特に、第1〜第4のMR素子11A〜11Dは、一括して形成されたものであり、同一の特性を有するので、すなわち、
R=R1=R2=R3=R4
かつ
ΔR=ΔR1=−ΔR2=ΔR3=−ΔR4
であるので、式(8)は、
V0={(R+ΔR)/(2R)−(R−ΔR)/(2R)}・V
=(ΔR/R)・V
となる。
このように、外部磁界と抵抗変化量との関係が既知である第1〜第4のMR素子11A〜11Dを用いるようにすれば、検出対象磁界Hmの大きさを測定することができる。
磁気センサ2の製造方法は、第1の実施の形態で説明した磁気センサ1の製造方法と基本的に同様である。まず、シリコンウェハなどの基体(図示せず)の表面に複数のMR素子を一括して形成したのち、2つのMR素子ごとに基体と共に切り分けることで、素子基板12上に第1および第3のMR素子11A,11Cが形成された第1のモジュール10と、素子基板22上に第2および第4のMR素子11B,11Dが形成された第2のモジュール20とを得る。そののち、第1および第2のモジュール10,20を、自由層の異方性磁界Hk1〜Hk4の方向と平行な軸を中心として互いに回転対称な位置となるように集積基板100に貼り付ける。その際、例えば、集積基板100の一方の面に第1のモジュール10を貼り付け、他方の面に第2のモジュール20を貼り付けるようにする。このようにすることで、検出対象磁界Hmに応じて抵抗値R1,R3と抵抗値R2,R4とが互いに逆方向の変化を示すようになる。続いて、集積基板100の両面を絶縁性樹脂により覆ったのち第1および第2のモジュール10,20の周囲を巻回するようにコイル30を設けるなど、所定の工程を経ることにより、磁気センサ2が完成する。
以上説明したように、本実施の形態の磁気センサ2によれば、第1および第3のMR素子11A,11Cを等価な位置に配置する一方、第2および第4のMR素子11B,11Dを、第1および第3のMR素子11A,11Cに対し中心軸CLを中心とした回転対称な関係を有するようにしたので、初期状態(無負荷状態)において、相対角度α1〜α4が全て等しくなる。そのうえ、検出対象磁界Hmに応じて、第1および第3のMR素子11A,11Cの抵抗値R1,R3と第2および第4のMR素子11B,11Dの抵抗値R2,R4とが互いに逆方向の変化を示すこととなる。その結果、角度α1〜α4の誤差に起因するオフセット出力を解消することができ、より高精度に検出対象磁界Hmを測定することができる。
次に、本発明の実施例について以下に説明する。
(実施例1−1〜1−4)
上記実施の形態の磁気センサ1について、リフレッシュ磁界Hrefを印加したのち、何らの外部磁界Hを加えない無負荷状態におけるオフセット出力電圧(mV)を測定すると共に、微弱な検出対象磁界Hmを加えたときの測定時出力電圧(mV)を測定した。ここでは、角度β1と角度β2とが等しい角度βとなるようにし、オフセット出力電圧および測定時出力電圧の角度β依存性を調べた。その結果を図10(A),図11(A),図12(A),図13(A)に示す。
図10(A)は、交換結合磁界Hin1,Hin2がいずれも4Oe(=(1/π)×1 03 A/m)であり、異方性磁界Hk1,Hk2がいずれも20Oe(=(5/π)× 103 A/m)である場合を示し、図11(A)は、交換結合磁界Hin1,Hin2がい ずれも6Oe(=(1.5/π)×103 A/m)であり、異方性磁界Hk1,Hk2 がいずれも20Oe(=(5/π)×103 A/m)である場合を示し、図12(A) は、交換結合磁界Hin1,Hin2がいずれも8Oe(=(2/π)×103 A/m)で あり、異方性磁界Hk1,Hk2がいずれも20Oe(=(5/π)×103 A/m) である場合を示し、図13(A)は、交換結合磁界Hin1,Hin2がいずれも10Oe (=(2.5/π)×103 A/m)であり、異方性磁界Hk1,Hk2がいずれも2 0Oe(=(5/π)×103 A/m)である場合を示している。実施例1−1〜1− 4に対応する比較例1−1〜1−4として、図19に示した磁気センサ2Bを作製し、 同様の調査を行った。その結果を図10(B),図11(B),図12(B),図13 (B)に示す。
図10〜図13から明らかなように、実施例1−1〜1−4では、角度βによらず、ほぼ零のオフセット出力電圧が得られた一方、比較例1−1〜1−4では、角度βに大きく依存するオフセット出力電圧が発生し、実施例1−1〜1−4と比べて測定時の出力電圧が極めて小さな変化を示した。すなわち、実施例1−1〜1−4では、オフセット出力電圧の発生を十分に抑え、より高精度に検出対象磁界Hmを測定可能であることが確認できた。
(実施例2−1〜2−4)
上記実施例1−1〜1−4と同様にして、磁気センサ1について、オフセット出力電圧および測定時出力電圧の角度β依存性を調べた。その結果を図14(A),図15(A),図16(A),図17(A)に示す。
図14(A)は、交換結合磁界Hin1,Hin2がいずれも4Oe(=(1/π)×103 A/m)であり、異方性磁界Hk1,Hk2がいずれも30Oe(=(7.5/π)×103 A/m)である場合を示し、図15(A)は、交換結合磁界Hin1,Hin2がいずれも6Oe(=(1.5/π)×103 A/m)であり、異方性磁界Hk1,Hk2がいずれも30Oe(=(7.5/π)×103 A/m)である場合を示し、図16(A)は、交換結合磁界Hin1,Hin2がいずれも8Oe(=(2/π)×103 A/m)であり、異方性磁界Hk1,Hk2がいずれも30Oe(=(7.5/π)×103 A/m)である場合を示し、図17(A)は、交換結合磁界Hin1,Hin2がいずれも10Oe(=(2.5/π)×103 A/m)であり、異方性磁界Hk1,Hk2がいずれも30Oe(=(7.5/π)×103 A/m)である場合を示している。実施例2−1〜2−4に対応する比較例2−1〜2−4として、図20に示した磁気センサ2Cを作製し、同様の調査を行った。その結果を図14(B),図15(B),図16(B),図17(B)に示す。
図14〜図17から明らかなように、実施例2−1〜2−4においても、上記実施例1−1〜1−4と同様、オフセット出力電圧の発生を十分に抑え、より高精度に検出対象磁界Hmを測定可能であることが確認できた。但し、実施例2−1〜2−4では、実施例1−1〜1−4と比較して異方性磁界Hk1,Hk2が大きいので、測定時出力電圧がやや低下する結果となった。
以上、いくつかの実施の形態および実施例を挙げて本発明を説明したが、本発明は上記の実施の形態等に限定されず、種々の変形が可能である。例えば上記実施の形態では、集積基板100の面内方向において互いに異なった領域に第1および第2のモジュール10,20を設けるようにしたが、これに限定されるものではない。例えば、図18に示した磁気センサ2Aのように、集積基板100の面内方向において互いに対応する領域に第1および第2のモジュール10,20を背中合わせに配置してもよいし、図19に示した磁気センサ2Bのように、第1および第2のモジュール10,20を向かい合わせに(第1のMR素子11Aが形成された面と第2のMR素子11Bが形成された面とが対向するように)配置してもよい。さらに、第1および第2のモジュール10,20が、図20に示した磁気センサ2Cのように、中心軸CLに沿った方向において異なった領域に配置されるようにしてもよい。このような場合であっても、本発明の概念に含まれる。ただし、これらの場合においても、磁化方向や磁界の方向の関係が図8に示したようになっていることが必要である。なお、図18および図19では、集積基板100を挟むように第1および第2のモジュール10,20を配置した例を示したが、予め第1および第2のモジュール10,20を背中合わせまたは向かい合わせに貼り付けたものを集積基板100の片側の面に配置するようにしてもよい。さらに、第1および第2のモジュール10,20を、集積基板100の面内方向において互いに異なった領域に個別に設ける場合(図1,図7,図20の場合)であっても、集積基板100の片側の面に第1および第2のモジュール10,20を設けるようにしてもよい。その場合には、第1のモジュール10または第2のモジュール20のいずれかを裏返して配置することとなる。
また、上記実施の形態では、異方性磁界Hk1〜Hk4の方向が全て一致するように第1〜第4のMR素子11A〜11Dを配置するようにしたが、本発明はこれに限定されるものではない。例えば、図21に示したように、異方性磁界Hk1,Hk2が中心軸CLから外れていてもよい。但し、異方性磁界Hk1の方向や磁化J51Aの方向などが異方性磁界Hk2の方向や磁化J51Bの方向などと中心軸CLを中心として互いに回転対称な関係となっている必要がある。この場合、中心軸CLに沿ってリフレッシュ磁界Hrefを印加することで初期状態が得られ、オフセット出力電圧を実質的に零とすることができる。なお、中心軸CLは、異方性磁界Hk1,Hk2、磁化J51A,J51Bおよび交換結合磁界Hin1,Hin2の各ベクトルを全て含む面(通常は積層面)と平行な軸とする。
本発明における第1の実施の形態としての磁気センサの構成を示す斜視図である。 図1に示した第1および第2のMR素子を拡大して示した平面図である。 図2に示した第1のMR素子の要部である素子パターンの構成を示す分解斜視図である。 図2に示した第2のMR素子の要部である素子パターンの構成を示す分解斜視図である。 図1に示した第1および第2のMR素子の要部における磁化の向きおよび磁界の向きの関係を説明する説明図である。 図1に示した磁気センサの回路構成を示す回路図である。 本発明における第2の実施の形態としての磁気センサの構成を示す斜視図である。 図7に示した第1〜第4のMR素子の要部における磁化の向きおよび磁界の向きの関係を説明する説明図である。 図7に示した磁気センサの回路構成を示す回路図である。 実施例1−1および比較例1−1におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例1−2および比較例1−2におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例1−3および比較例1−3におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例1−4および比較例1−4におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例2−1および比較例2−1におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例2−2および比較例2−2におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例2−3および比較例2−3におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 実施例2−4および比較例2−4におけるオフセット出力電圧および測定時出力電圧の角度β依存性を示す特性図である。 第2の実施の形態の変形例としての磁気センサの構成を示す斜視図である。 第2の実施の形態の変形例としての磁気センサの構成を示す斜視図である。 第2の実施の形態の変形例としての磁気センサの構成を示す斜視図である。 第1の実施の形態の変形例としての磁気センサの要部における磁化の向きおよび磁界の向きの関係を説明する説明図である。 比較例としての磁気センサの構成を示す斜視図である。 比較例としての磁気センサにおける磁化の向きおよび磁界の向きの関係を説明する説明図である。
符号の説明
1,2…磁気センサ、10…第1のモジュール、11…第1の磁気抵抗効果(MR)素子、12…素子基板、20…第2のモジュール、21…第2のMR素子、第2の素子ユニット、22…素子基板、100…集積基板、CL…中心軸、PL…直交軸、β1,β2…角度。

Claims (18)

  1. 一定方向に固着された磁化方向を有する固着層と、非磁性の中間層と、外部磁界に応じて磁化方向が変化すると共に前記固着層の磁化方向と異なる方向の異方性磁界を発現する自由層とを含む積層構造をそれぞれ有する第1および第2の磁気抵抗効果素子を備え、
    前記第1および第2の磁気抵抗効果素子は、前記積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、または前記回転移動と平行移動とにより、各々の前記自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記固着層の磁化方向および大きさも互いに一致する関係にある
    ことを特徴とする磁気センサ。
  2. 前記回転中心軸の方向は、前記第1および第2の磁気抵抗効果素子における双方の異方性磁界の方向と一致している
    ことを特徴とする請求項1に記載の磁気センサ。
  3. 前記自由層の磁化が飽和する飽和磁界と同等以上の大きさを有するリフレッシュ磁界を、前記第1および第2の磁気抵抗効果素子の各々に対して前記回転中心軸に沿って印加するリフレッシュ磁界印加手段を備えた
    ことを特徴とする請求項1または請求項2に記載の磁気センサ。
  4. 前記リフレッシュ磁界印加手段は、コイルからなることを特徴とする請求項3に記載の磁気センサ。
  5. 前記第1および第2の磁気抵抗効果素子のそれぞれに対し、互いに等しい値の定電流を供給する第1および第2の定電流源と、
    前記定電流によって前記第1および第2の磁気抵抗効果素子のそれぞれに生ずる電圧降下の差分を検出する差分検出器とを備え、
    前記電圧降下の差分に基づいて前記検出対象磁界を検出する
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の磁気センサ。
  6. 前記第1および第2の磁気抵抗効果素子は、その一端同士が第1の接続点において接続され、
    前記第1および第2の定電流源は、その一端同士が第2の接続点において接続され、
    前記第1の磁気抵抗効果素子の他端と前記第1の定電流源の他端とが第3の接続点において接続され、
    前記第2の磁気抵抗効果素子の他端と前記第2の定電流源の他端とが第4の接続点において接続され、
    前記第1の接続点と第2の接続点との間に電圧が印加されたときの前記第3の接続点と第4の接続点との間の電位差に基づいて前記検出対象磁界を検出する
    ことを特徴とする請求項5に記載の磁気センサ。
  7. 一定方向に固着された磁化方向を有する固着層と、非磁性の中間層と、外部磁界に応じて磁化方向が変化すると共に前記固着層の磁化方向と異なる方向の異方性磁界を発現する自由層とを含む積層構造をそれぞれ有する第1から第4の磁気抵抗効果素子を備え、
    前記第1および第3の磁気抵抗効果素子は、平行移動により、各々の前記自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記固着層の磁化方向および大きさも互いに一致する関係にあり、
    前記第2および第4の磁気抵抗効果素子は、平行移動により、各々の前記自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記固着層の磁化方向および大きさも互いに一致する関係にあり、
    前記第1および第3の磁気抵抗効果素子の素子対と、前記第2および第4の磁気抵抗効果素子の素子対とは、前記積層構造の積層面と平行な軸を回転中心軸とする180°の回転移動により、または前記回転移動と平行移動とにより、各々の前記自由層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記固着層の磁化方向および大きさも互いに一致する関係にある
    ことを特徴とする磁気センサ。
  8. 前記回転中心軸の方向は、前記第1から第4の磁気抵抗効果素子における全ての異方性磁界の方向と一致している
    ことを特徴とする請求項7に記載の磁気センサ。
  9. 前記自由層の磁化が飽和する飽和磁界と同等以上の大きさを有するリフレッシュ磁界を、前記第1から第4の磁気抵抗効果素子の各々に対して前記回転中心軸に沿って印加するリフレッシュ磁界印加手段を備えた
    ことを特徴とする請求項7または請求項8に記載の磁気センサ。
  10. 前記リフレッシュ磁界印加手段は、コイルからなる
    ことを特徴とする請求項9に記載の磁気センサ。
  11. 前記第1および第2の磁気抵抗効果素子の一端同士が第1の接続点において接続され、 前記第3および第4の磁気抵抗効果素子の一端同士が第2の接続点において接続され、 前記第1の磁気抵抗効果素子の他端と前記第3の磁気抵抗効果素子の他端とが第3の接続点において接続され、前記第2の磁気抵抗効果素子の他端と前記第4の磁気抵抗効果素子の他端とが第4の接続点において接続されることによりブリッジ回路が構成されている
    ことを特徴とする請求項7から請求項10のいずれか1項に記載の磁気センサ。
  12. 前記固着層の磁化方向は、前記固着層および自由層の間に生ずる交換結合磁界と前記自由層の異方性磁界との合成磁界の方向と直交している
    ことを特徴とする請求項1から請求項11のいずれか1項に記載の磁気センサ。
  13. 一の基体上に、一定方向の異方性磁界を発現すると共に検出対象磁界に応じて磁化方向が変化する第1の強磁性層と、非磁性の中間層と、前記第1の強磁性層よりも大きな保磁力を有する第2の強磁性層とを順に積層してなる複数の磁気抵抗効果素子を一括して形成する工程と、
    前記複数の磁気抵抗効果素子の全てについて、前記異方性磁界の方向と異なる方向となるように前記第2の強磁性層の磁化方向を一括して設定する工程と、
    前記基体上に形成された前記複数の磁気抵抗効果素子から一対の磁気抵抗効果素子を切り出す工程と、
    前記一対の磁気抵抗効果素子を、前記磁気抵抗効果素子の積層面と平行な軸を回転中心軸とする180°の回転移動により、または前記回転移動と平行移動とにより、各々の前記第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置する工程と
    を含むことを特徴とする磁気センサの製造方法。
  14. 前記回転中心軸の方向を、前記異方性磁界の方向と一致させることを特徴とする請求項13に記載の磁気センサの製造方法。
  15. 一定方向に磁界を印加しながら前記第1の強磁性層を形成することにより前記異方性磁界の方向を設定し、
    前記異方性磁界と異なる方向に磁界を印加しつつアニール処理を施すことにより前記第2の強磁性層の磁化方向を一括して設定する
    ことを特徴とする請求項13または請求項14に記載の磁気センサの製造方法。
  16. 一の基体上に、一定方向の異方性磁界を発現すると共に検出対象磁界に応じて磁化方向が変化する第1の強磁性層と、非磁性の中間層と、前記第1の強磁性層よりも大きな保磁力を有する第2の強磁性層とを順に積層してなる複数の磁気抵抗効果素子を一括して形成する工程と、
    前記複数の磁気抵抗効果素子の全てについて、前記異方性磁界の方向と異なる方向となるように前記第2の強磁性層の磁化方向を一括して設定する工程と、
    前記複数の磁気抵抗効果素子が形成された前記基体を切り分けることにより、前記磁気抵抗効果素子をそれぞれ2つずつ含む一対の素子モジュールを形成する工程と、
    前記一対の素子モジュールを、前記磁気抵抗効果素子の積層面と平行な軸を回転中心軸とする180°の回転移動により、または前記回転移動と平行移動とにより、各々の前記第1の強磁性層の異方性磁界の方向および大きさが互いに一致すると共に各々の前記第2の強磁性層の磁化方向および大きさも互いに一致する関係となるように配置する工程と
    を含むことを特徴とする磁気センサの製造方法。
  17. 前記回転中心軸の方向を、前記異方性磁界の方向と一致させることを特徴とする請求項16に記載の磁気センサの製造方法。
  18. 前記第1および第2の強磁性層の間に生ずる交換結合磁界と、前記第1の強磁性層の異方性磁界との合成磁界の方向と直交するように前記第2の強磁性層の磁化方向を一括して設定する
    ことを特徴とする請求項13から請求項17のいずれか1項に記載の磁気センサの製造方法。
JP2006296407A 2006-10-31 2006-10-31 磁気センサおよびその製造方法 Active JP4361077B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006296407A JP4361077B2 (ja) 2006-10-31 2006-10-31 磁気センサおよびその製造方法
US11/976,178 US7868613B2 (en) 2006-10-31 2007-10-22 Magnetic sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296407A JP4361077B2 (ja) 2006-10-31 2006-10-31 磁気センサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2008111801A JP2008111801A (ja) 2008-05-15
JP4361077B2 true JP4361077B2 (ja) 2009-11-11

Family

ID=39329357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296407A Active JP4361077B2 (ja) 2006-10-31 2006-10-31 磁気センサおよびその製造方法

Country Status (2)

Country Link
US (1) US7868613B2 (ja)
JP (1) JP4361077B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877095B2 (ja) * 2007-06-25 2012-02-15 Tdk株式会社 電流センサおよびその製造方法
US8884615B2 (en) * 2008-07-22 2014-11-11 Abb Research Ltd. Magnetoresistive sensor arrangement for current measurement
JP2011064653A (ja) * 2009-09-18 2011-03-31 Tdk Corp 磁気センサおよびその製造方法
TWI510768B (zh) * 2011-06-21 2015-12-01 Ind Tech Res Inst 力感測裝置及其力感測系統
JP5786884B2 (ja) * 2012-04-23 2015-09-30 株式会社デンソー 磁気センサ
JP6003371B2 (ja) * 2012-08-07 2016-10-05 Tdk株式会社 回転磁界センサ
US10036785B2 (en) * 2016-07-18 2018-07-31 Allegro Microsystems, Llc Temperature-compensated magneto-resistive sensor
WO2018173590A1 (ja) * 2017-03-23 2018-09-27 日本電産株式会社 磁気センサユニット及びそれを用いた磁界方向検出方法
JP6597820B2 (ja) 2018-03-12 2019-10-30 Tdk株式会社 磁気センサおよび位置検出装置
DE102018111011A1 (de) * 2018-05-08 2019-11-14 Infineon Technologies Ag Magnetfeldsensorvorrichtung
JP6886222B2 (ja) * 2019-03-19 2021-06-16 Tdk株式会社 磁気センサ
US11598828B2 (en) * 2019-08-26 2023-03-07 Western Digital Technologies, Inc. Magnetic sensor array with different RA TMR film
JP7028234B2 (ja) * 2019-11-27 2022-03-02 Tdk株式会社 磁気センサ
US11372029B2 (en) * 2019-12-11 2022-06-28 Tdk Corporation Magnetic field detection apparatus and current detection apparatus
DE102020130296A1 (de) * 2019-12-11 2021-06-17 Tdk Corporation Magnetfeld-erfassungsgerät und stromerfassungsgerät
JP7024811B2 (ja) * 2019-12-11 2022-02-24 Tdk株式会社 磁場検出装置および電流検出装置
JP7024810B2 (ja) * 2019-12-11 2022-02-24 Tdk株式会社 磁場検出装置および電流検出装置
JP7106591B2 (ja) * 2020-03-18 2022-07-26 Tdk株式会社 磁場検出装置および電流検出装置
JP7327597B2 (ja) * 2020-03-18 2023-08-16 Tdk株式会社 磁場検出装置および電流検出装置
JP7281492B2 (ja) * 2021-01-20 2023-05-25 Tdk株式会社 磁気センサの設計方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174471A (ja) 1992-12-10 1994-06-24 Casio Comput Co Ltd 電子式方位計
US5561368A (en) 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
JP3560821B2 (ja) * 1998-07-17 2004-09-02 アルプス電気株式会社 巨大磁気抵抗効果素子を備えたエンコーダ
JP2003008101A (ja) 2001-06-20 2003-01-10 Ricoh Co Ltd トンネル磁気抵抗効果素子及びこの素子を用いた方位検知システム
JP4028971B2 (ja) * 2001-08-28 2008-01-09 アルプス電気株式会社 磁気センサの組立方法
JP2003088127A (ja) 2001-09-11 2003-03-20 Shibafu Engineering Corp 電力変換装置
US20030214762A1 (en) 2002-05-14 2003-11-20 Manish Sharma Magnetic field detection sensor
JP2005069744A (ja) 2003-08-21 2005-03-17 Hamamatsu Koden Kk 磁気検出素子
JP4692805B2 (ja) 2004-06-30 2011-06-01 Tdk株式会社 磁気検出素子およびその形成方法
US7427859B2 (en) * 2005-08-10 2008-09-23 Tdk Corporation Moving body detecting apparatus
DE102006032277B4 (de) * 2006-07-12 2017-06-01 Infineon Technologies Ag Magnetfeldsensorbauelement
JP4877095B2 (ja) * 2007-06-25 2012-02-15 Tdk株式会社 電流センサおよびその製造方法

Also Published As

Publication number Publication date
US7868613B2 (en) 2011-01-11
US20080100290A1 (en) 2008-05-01
JP2008111801A (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4361077B2 (ja) 磁気センサおよびその製造方法
JP4877095B2 (ja) 電流センサおよびその製造方法
JP4930627B2 (ja) 磁気センサ
JP4458103B2 (ja) 磁気センサ、磁気方位センサ、磁界検出方法および磁気方位検出方法
US7005958B2 (en) Dual axis magnetic sensor
US7737678B2 (en) Magnetic sensor and current sensor
JP5888402B2 (ja) 磁気センサ素子
US20060039090A1 (en) System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor
JP2011064653A (ja) 磁気センサおよびその製造方法
WO2012090631A1 (ja) 磁気比例式電流センサ
US20200300667A1 (en) Magnetic sensor
EP3236276B1 (en) Magnetic field sensor with multiple axis sense capability
US5747997A (en) Spin-valve magnetoresistance sensor having minimal hysteresis problems
CN109643755A (zh) 磁传感器及电流传感器
JP5447616B2 (ja) 磁気センサの製造方法
JP4424093B2 (ja) 磁気センサ
JP2012119613A (ja) 磁気検出素子及びそれを用いた磁気センサ
JP2011027633A (ja) 磁気センサおよびその製造方法
JP6039697B2 (ja) 巨大磁気抵抗効果素子およびそれを用いた電流センサ
WO2015125699A1 (ja) 磁気センサ
JP5540326B2 (ja) 電流センサ
JP4507932B2 (ja) 巨大磁気抵抗効果素子を備える磁気センサ
JP6881413B2 (ja) 磁気センサ
JP7261656B2 (ja) 磁気センサおよびその製造方法
JP4735304B2 (ja) 三軸磁気センサおよびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090811

R150 Certificate of patent or registration of utility model

Ref document number: 4361077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250