[go: up one dir, main page]

JP4360113B2 - Proton conductive resin composition and heat-sealable proton conductive membrane - Google Patents

Proton conductive resin composition and heat-sealable proton conductive membrane Download PDF

Info

Publication number
JP4360113B2
JP4360113B2 JP2003102676A JP2003102676A JP4360113B2 JP 4360113 B2 JP4360113 B2 JP 4360113B2 JP 2003102676 A JP2003102676 A JP 2003102676A JP 2003102676 A JP2003102676 A JP 2003102676A JP 4360113 B2 JP4360113 B2 JP 4360113B2
Authority
JP
Japan
Prior art keywords
proton
film
acid group
proton conductive
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102676A
Other languages
Japanese (ja)
Other versions
JP2004307629A (en
Inventor
貴志 黒木
毅彦 尾身
石川  淳一
聡子 藤山
幸司 竹田
正司 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003102676A priority Critical patent/JP4360113B2/en
Publication of JP2004307629A publication Critical patent/JP2004307629A/en
Application granted granted Critical
Publication of JP4360113B2 publication Critical patent/JP4360113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素、アルコールなどを燃料に用いる燃料電池などにおいて有用なプロトン伝導性樹脂組成物に関する。より詳しくは、燃料電池などにおいて用いられる熱融着可能なプロトン伝導膜に関する。
【0002】
【従来の技術】
[高分子電解質型燃料電池]
高分子電解質型燃料電池とは電解質としてプロトン伝導性高分子を用いる燃料電池で、水素やメタノールなどの燃料を酸素または空気を用いて電気化学的に酸化することにより、燃料の化学エネルギーを電気エネルギーに変換して取り出すものである。高分子電解質型燃料電池には、燃料として、ボンベ、配管などから供給される純水素を用いるタイプのほか、改質器によりガソリンやメタノールから水素を発生させて用いるタイプなどがある。また、燃料としてメタノール水溶液を用いて直接発電を行う直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)も開発されている。このDMFCは、水素を発生させるための改質器が不要なためシンプルでコンパクトなシステムが構成でき、特に携帯機器用電源として注目されている。
【0003】
高分子電解質型燃料電池は、高分子電解質膜とこの両側に接触して配置される正極および負極から構成される。燃料の水素あるいはメタノールは負極において電気化学的に酸化されてプロトンと電子を生成する。このプロトンは高分子電解質膜内を、酸素が供給される正極に移動する。一方、負極で生成した電子は電池に接続された負荷を通り、正極に流れ、正極においてプロトンと電子が反応して水を生成する。そのため、電解質膜、膜と電極をつなぐ結着剤、水素の酸化および酸素の還元反応を促進する触媒を固定する結着剤などとして用いられる高分子材料には高いプロトン伝導性が求められる。また、膜と電極の界面や、触媒と結着剤の界面の接着が不十分な場合、剥離界面でプロトン伝導が阻害されるため、これらに用いられる高分子材料には高い接着性が求められる。
【0004】
[プロトン酸基含有フッ素系高分子]
高いプロトン伝導性を有する高分子材料としては、プロトン酸基含有フッ素系高分子が知られている。しかしながら、このプロトン酸基含有フッ素系高分子は、非常に高価格である、廃棄時に焼却するとフッ酸ガスが発生する、高温低湿度下ではプロトン伝導性が急激に低下するといった問題を有していた。また、このプロトン酸基含有フッ素系高分子はメタノールの透過性が高いため、DMFCの電解質膜として用いた場合、メタノールのクロスオーバーによる電圧低下や発電効率低下がおこるという問題も有していた。
【0005】
[プロトン酸基含有炭化水素系高分子]
一方、プロトン酸基含有炭化水素系高分子を用いた非フッ素系のプロトン伝導材料の開発も進められている。プロトン酸基含有炭化水素系高分子は低価格で製造できるほか、焼却時のハロゲン系ガスの発生もなく、高温低湿度下でのプロトン伝導性の低下も少ないことが知られている。
ただし、たとえばスルホン化ポリスチレンは、その主鎖構造が有する3級炭素がラジカルの攻撃を受けやすく、電池内で容易にα位の水素を放出してしまうため、電池特性が経時的に悪化することが知られている。
【0006】
そのため、主鎖に脂肪族鎖を有さない、すなわち芳香族炭化水素系のプロトン酸基含有高分子が数多く開発されてきた(Macromol. Chem. Phys., 199, 1421-1426 (1998)、Polymer, 40, 795-799 (1999)、 Polymer, 42, 3293-3296 (2001)など)。なかでも、スルホン化したポリエーテルエーテルケトンから成る膜は、耐熱性と化学的耐久性に優れ、高分子電解質として長時間の使用に耐えうることが報告されている(本間格、第3回セパレーションズサイエンス&テクノロジー研究会講座講演要旨集「高分子膜燃料電池の基礎と応用」p.17 (1999))。
【0007】
しかしながら、プロトン酸基含有芳香族炭化水素系高分子を用いた燃料電池は、湿度や温度の変動により、電池特性が低下するといった問題を有していた。これは、湿度や温度の変動によりプロトン伝導材料が膨張・収縮を繰り返した結果、膜と電極の界面や触媒と結着剤の界面が剥離するためであると考えられる。
そのため、良好な接着性を有するプロトン酸基含有芳香族炭化水素系高分子が求められていた。
【0008】
なお、一般的な熱可塑性樹脂の場合、樹脂は流動開始温度以上、分解温度以下の温度で溶融接着できるが、プロトン酸基含有芳香族炭化水素系高分子は熱可塑性を示さず、溶融接着ができない。これは、プロトン酸基の極性が高く、凝集力が高いため溶融流動性が著しく阻害される一方、そのプロトン酸基の熱安定性が低く、比較的低温で脱離するためである。
【0009】
【発明が解決しようとする課題】
本発明の目的は、良好な接着性を有する燃料電池用のプロトン伝導性樹脂組成物を提供することにある。また、熱融着が可能な燃料電池用のプロトン伝導膜を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、特定の芳香族ポリエーテルとプロトン酸基含有芳香族ポリエーテルからなる樹脂組成物が、熱融着が可能で、かつ、熱融着後にも優れたプロトン伝導性を有し、燃料電池用プロトン伝導材料として好適であることを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明のプロトン伝導性樹脂組成物は、下記一般式(1)で表わされる繰り返し構造単位を有し、流動開始温度が100〜220℃である下記式(6)〜(8)
−C n 2n −SO 3 Y (nは0〜10の整数、YはH,NaまたはK)・・(6)
−C n 2n −COOY(nは0〜10の整数、YはH,NaまたはK)・・(7)
−C n 2n −PO 3 2 (nは0〜10の整数、YはH,NaまたはK)・・(8)
のいずれかで示されるプロトン酸基を有さない芳香族ポリエーテルであって、下記一般式(2)または(3)で表わされる繰り返し構造単位を有する芳香族ポリエーテル(A)60〜10重量%と、
下記一般式(5)で表わされる繰り返し構造単位を有する、−SO 3 H基を有する芳香族ポリエーテル(B)40〜90重量%からなることを特徴とする。
【0012】
【化4】

Figure 0004360113
[式(1)中、A 1 はそれぞれ独立して−SO 2 −または−CO−であり、A 2 は−C(CH 3 2 −であり、g,h,iはそれぞれ独立して0または1を示す。]
【0013】
【化5】
Figure 0004360113
[式(2)および(3)中、A 1 は−SO 2 −または−CO−を示す。]
【0015】
【化4】
Figure 0004360113
[式(5)中、X1及びX2の少なくとも1つが−SO 3 であり、他はそれぞれ独立してHまたは−SO 3 であり、A3は−SO2−または−CO−、A4は−CH2−であり、k,lはそれぞれ独立して0または1を示し、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数)に置換されていても良い。]
【0016】
前記プロトン酸基が、−Cn2n−SO3Y(nは0〜10の整数、YはH,NaまたはKである。)であることは、本発明のプロトン伝導性樹脂組成物の好適な態様である。
【0017】
本発明により前記プロトン伝導性樹脂組成物を含んでなる熱融着可能なプロトン伝導膜が提供される。
【0018】
本発明により前記プロトン伝導膜を用いてなる燃料電池が提供される。
【0019】
【発明の実施の形態】
以下、本発明に係るプロトン伝導性樹脂組成物について具体的に説明する。
本発明のプロトン伝導性樹脂組成物は、流動開始温度が100〜220℃である芳香族ポリエーテル(A)60〜10重量%とプロトン酸基を有する芳香族ポリエーテル(B)40〜90重量%からなり、好ましくは、芳香族ポリエーテル(A)40〜10重量%と芳香族ポリエーテル(B)60〜90重量%からなり、さらに好ましくは芳香族ポリエーテル(A)30〜20重量%と芳香族ポリエーテル(B)70〜80重量%からなる。
【0020】
ここで、流動開始温度が100〜220℃である芳香族ポリエーテル(A)は熱プレス時に溶融流動することにより相手材料と融着する役割を担い、プロトン酸基を有する芳香族ポリエーテル(B)はプロトン伝導を担う。流動開始温度が100〜220℃である芳香族ポリエーテル(A)が上記組成範囲内である場合は、組成物重量当たりのプロトン酸基を有する芳香族ポリエーテル(B)の量が適当であるため良好なプロトン伝導性を得ることができ、また、芳香族ポリエーテル(A)が接着界面を覆ってしまうことによる界面抵抗の増大等の問題を生じることがない。さらに、接着強度が低下し燃料電池の使用環境において剥離が起ったり、接着界面に部分的に未接着部分ができ界面抵抗が高くなる等の問題を生じることがない。
【0021】
なお、本発明における芳香族ポリエーテルとは、繰り返し単位中に、エーテル基で連結される2つの芳香環を有する芳香族高分子を示し、繰り返し単位中に他の連結基やエーテル基により連結されていない芳香環を含んでいても良い。すなわち、本発明における芳香族ポリエーテルとは、例えばポリフェニレンオキシドなど、芳香環の連結基がエーテル基のみからなる芳香族ポリエーテルだけでなく、連結基がエーテル基とカルボニル基からなるポリエーテルケトン、連結基がエーテル基とスルホン基からなるポリエーテルスルホン、ポリスルホン、ポリエーテルニトリルなども包含する。
【0022】
本発明の流動開始温度が100〜220℃である芳香族ポリエーテル(A)とは、樹脂を加熱した際に溶融流動を開始する温度が100〜220℃、好ましくは120〜200℃、さらに好ましくは140〜180℃である芳香族ポリエーテルである。流動開始温度が上記範囲内である場合には、燃料電池に用いた際、発電中に樹脂が流動することによる接着面の剥離や膜、電極等の変形が起こることがない。また、熱融着するための温度が低いために熱融着時のプロトン酸基の脱離が起こることがない。
【0023】
ここで、流動開始温度とは、高化式フローテスタを用いた昇温法により測定した際に、試料がダイから流出し始める流出開始温度を示す。流動開始温度は、より具体的には、孔径1.0mm、孔長10.0mmのダイを備えたシリンダー中に試料を装入し、ピストンにより9.8MPaで加圧したまま5℃/分の昇温速度で加熱した際に試料がダイから流出を開始しピストンが移動し始める温度を示す。
【0024】
本発明の流動開始温度が100〜220℃である芳香族ポリエーテル(A)としては、より具体的には、下記一般式(1)で表わされる繰り返し構造単位を有し、プロトン酸基を有さない芳香族ポリエーテルが好ましい。
【化9】
Figure 0004360113
[式(1)中、A1およびA2はそれぞれ独立して直接結合,−CH2−,−C(CH32−,−C(CF32−,−O−,−SO2−または−CO−であり、g,h,iはそれぞれ独立して0または1を示すし、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数),−Cl,−F,−CF3または−CNに置換されていても良い。]
【0025】
本発明の流動開始温度が100〜220℃である芳香族ポリエーテル(A)の中でも、下記一般式(2)または(3)で表わされる繰り返し構造単位を有し、プロトン酸基を有さない芳香族ポリエーテルが特に好ましい。
【化10】
Figure 0004360113
[式(2)および(3)中、A1は直接結合,−CH2−,−C(CH32−,−C(CF32−,−O−,−SO2−または−CO−を示し、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数),−Cl,−F,−CF3または−CNに置換されていても良い。]
【0026】
ここで、前記式(1),(2),(3)のいずれかで示される繰り返し構造単位を有し、プロトン酸基を有さず、かつ流動開始温度が100〜220℃である芳香族ポリエーテル(A)は、その流動開始温度が上記範囲内であれば、他の繰り返し構造単位を含んでいても良い。すなわち、該芳香族ポリエーテルは、前記繰り返し構造単位と他の繰り返し構造単位からなるランダムあるいはブロックコポリマーであっても良い。
【0027】
前記式(1),(2),(3)のいずれかで示される繰り返し構造単位を有し、プロトン酸基を有さず、かつ流動開始温度が100〜220℃である芳香族ポリエーテル(A)は、プロトン酸基が脱離しない温度範囲において優れた溶融流動性を有し、さらにプロトン酸基を有する芳香族ポリエーテルとの接着性に優れる。また、該芳香族ポリエーテルは、熱水、酸、アルカリ、アルコールなどによる加水分解や、ラジカルの攻撃による変性を受けにくいため、燃料電池内で用いた際にも、剥離等が起こりにくい。
【0028】
なお、プロトン酸基を有する芳香族ポリエーテル(B)は、プロトン酸基が高極性で凝集しやすいため溶融流動性が著しく阻害され、100〜220℃の範囲で溶融流動しないことがあるため好ましくない。また、前記式(1),(2),(3)のいずれかで示される繰り返し構造単位を有し、プロトン酸基を有さない芳香族ポリエーテルであっても、流動開始温度が上記範囲を超える場合があるが、この場合には熱融着可能な温度においてプロトン酸基の脱離が起こるため好ましくない。さらに、流動開始温度が100〜220℃の範囲にある熱可塑性樹脂であっても、主鎖に脂肪族鎖を有するポリオレフィン類、脂肪族ポリエーテル類、脂肪族ポリアミド類や、加水分解を受けやすいポリカーボネート類、芳香族ポリアミド類、ポリイミド類などは、燃料電池に用いた際に変性を受けやすく、接着面の剥離も起こりやすいため好ましくない。
【0029】
なお、本発明の流動開始温度が100〜220℃である芳香族ポリエーテル(A)は従来公知のモノマー類を用い、従来公知の方法により製造することができ、例えば、芳香族ジハライド化合物と芳香族ジヒドロキシ化合物を縮合重合することにより製造することができる。
【0030】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)とは、プロトン酸基を有する繰り返し構造単位を有する芳香族ポリエーテルである。ここで、プロトン酸基を有する芳香族ポリエーテル(B)は、プロトン酸基を有する繰り返し構造単位を有していれば、他にプロトン酸基を有さない繰り返し構造単位を含んでいても良い。すなわち、該芳香族ポリエーテルは、プロトン酸基を有する繰り返し構造単位とプロトン酸基を有さない繰り返し構造単位からなる、ランダムあるいはブロックコポリマーであっても良い。
【0031】
ここで、本発明におけるプロトン酸基とは、具体的には、下記式(6)〜(8)で示されるスルホン酸基、カルボン酸基、ホスホン酸基などが挙げられる。中でも下記式(6)で示されるスルホン酸基が好ましく、下記式(6)においてn=0、Y=Hで示されるスルホン酸基が特に好ましい。
−Cn2n−SO3Y(nは0〜10の整数、YはH,NaまたはK)・・(6)
−Cn2n−COOY(nは0〜10の整数、YはH,NaまたはK)・・(7)
−Cn2n−PO32(nは0〜10の整数、YはH,NaまたはK)・・(8)
【0032】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)のプロトン酸基含有量に特に制限はないが、好ましくは、イオン交換基当量にして200〜5000g/mol、より好ましくは200〜1000g/molである。ここで、イオン交換基当量とは、プロトン酸基1モル当たりの樹脂重量で定義され、樹脂単位重量当たりのプロトン酸基モル数の逆数を意味する。すなわち、イオン交換基当量が小さいほど、樹脂単位重量当たりのプロトン酸基量が多いことを示す。イオン交換基当量が小さすぎる場合には、樹脂の水への溶解性が著しく高く、樹脂の製造や精製(樹脂中からの無機酸や無機塩の除去)が困難となる。イオン交換基当量が大きすぎる場合には、プロトン伝導性が低く高出力の燃料電池を得ることができない。
【0033】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)としては、より具体的には、下記一般式(4)で表わされる繰り返し構造単位を有する芳香族ポリエーテルであることが好ましい。
【化11】
Figure 0004360113
[式(4)中、X1〜X5の少なくとも1つがプロトン酸基であり、他はそれぞれ独立してHまたはプロトン酸基であり、A3およびA4はそれぞれ独立して直接結合,−CH2−,−C(CH32−,−C(CF32−,−O−,−SO2−または−CO−であり、j,k,lはそれぞれ独立して0または1を示し、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数),プロトン酸基,−Cl,−F,−CF3または−CNに置換されていても良い。]
【0034】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)の中でも、下記一般式(5)で表わされる繰り返し構造単位を有する芳香族ポリエーテルが特に好ましい。
【化12】
Figure 0004360113
[式(5)中、X1またはX2の少なくとも1つがプロトン酸基であり、他はそれぞれ独立してHまたはプロトン酸基であり、A3は−SO2−または−CO−、A4は直接結合,−CH2−,−C(CH32−,−C(CF32−,−O−,−SO2−または−CO−であり、k,lはそれぞれ独立して0または1を示し、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数),プロトン酸基,−Cl,−F,−CF3または−CNに置換されていても良い。]
【0035】
前記式(4)または(5)で示される繰り返し構造単位を有する、プロトン酸基を有さない芳香族ポリエーテルは、プロトン伝導性に優れ、さらに、熱水、酸、アルカリ、アルコールなどによる加水分解や、ラジカルの攻撃による変性を受けにくいため、燃料電池内で用いた際にも、プロトン伝導性を長期に渡り保持する。なお、プロトン酸基を有する高分子であっても、主鎖に脂肪族鎖を有するポリオレフィン類、脂肪族ポリエーテル類、脂肪族ポリアミド類や、加水分解を受けやすいポリカーボネート類、芳香族ポリアミド類、ポリイミド類などは、燃料電池内で用いた際に変性を受け、強度やプロトン伝導性が低下するため好ましくない。
【0036】
また、前記式(5)で表わされる繰り返し構造単位を有する芳香族ポリエーテルは、プロトン酸基が電子吸引基である−SO2−または−CO−に直接結合した芳香環に結合していることから、他の芳香環に結合したプロトン酸基に比べ、結合力が強く、分解、解離を受けにくい。なお、既存の芳香族ポリエーテルを発煙硫酸などでスルホン化した場合には、電子吸引基である−SO2−または−CO−に直接結合していない芳香環にスルホン酸基が導入されることが知られている。
【0037】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)は従来公知のモノマー類を用い、従来公知の方法により製造することができ、例えば、プロトン酸基を有する芳香族ジハライド化合物およびプロトン酸基を有さない芳香族ジハライド化合物とプロトン酸基を有さない芳香族ジヒドロキシ化合物を、あるいはプロトン酸基を有さない芳香族ジハライド化合物とプロトン酸基を有する芳香族ジヒドロキシ化合物およびプロトン酸基を有さない芳香族ジヒドロキシ化合物を縮合重合することにより製造することができる。また、従来公知の芳香族ポリエーテルを従来公知の方法によりスルホン化、アルキルスルホン化することにより得ることができる。
【0038】
なお、流動開始温度が100〜220℃である芳香族ポリエーテル(A)およびプロトン酸基を有する芳香族ポリエーテル(B)の製造において用いることのできるモノマー類に特に制限はないが、代表的な具体例を以下に例示する。
【0039】
芳香族ジハライド化合物としては、例えば、4,4’−ジフルオロベンゾフェノン、3,3’−ジフルオロベンゾフェノン、4,4’−ジクロロベンゾフェノン、3,3’−ジクロロベンゾフェノン、4,4’−ジフルオロジフェニルスルホン、4,4’−ジクロロジフェニルスルホン、1,4−ジフルオロベンゼン、1,3−ジフルオロベンゼン、2,6−ジクロロベンゾニトリル、4,4’−ジフルオロビフェニル、3,3’−ジブロモ−4,4’−ジフルオロビフェニル、4,4’−ジフルオロジフェニルメタン、4,4’−ジクロロジフェニルメタン、4,4’−ジフルオロジフェニルエーテル、2,2−ビス(4−フルオロフェニル)プロパン、2,2−ビス(4−クロロフェニル)プロパン、α,α’−ビス(4−フルオロフェニル)−1,4−ジイソプロピルベンゼン、3,3’−ジメチル−4,4’−ジフルオロベンゾフェノン、3,3’−ジエチル−4,4’−ジフルオロベンゾフェノン、3,3’,5,5’−テトラメチル−4,4’−ジフルオロベンゾフェノン、3,3’−ジメチル−4,4’−ジクロロベンゾフェノン、3,3’,4,4’−テトラメチル−5,5’−ジクロロベンゾフェノン、3,3’−ジメチル−4,4’−ジフルオロジフェニルスルホン、3,3’−ジメチル−4,4’−ジクロロジフェニルスルホン、2,5−ジフルオロトルエン、2,5−ジフルオロエチルベンゼン、2,5−ジフルオロ−p−キシレンなどを挙げられ、単独あるいは2種以上を混合して用いることができる。
【0040】
芳香族ジヒドロキシ化合物としては、例えば、ハイドロキノン、レゾルシン、カテコール、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルメタン、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(4−ヒドロキシフェニル)プロパン、1,4−ビス(4−ヒドロキシフェニル)ベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジメチルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−1,3−ジイソプロピルベンゼン、4,4’−ジヒドロキシベンゾフェノン、1,4−ビス(4−ヒドロキシベンゾイル)ベンゼン、3,3−ジフルオロ−4,4’−ジヒドロキビフェニル、2−メチルハイドロキノン、2−エチルハイドロキノン、2−イソプロピルハイドロキノン、2−オクチルハイドロキノン、2,3−ジメチルハイドロキノン、2,3−ジエチルハイドロキノン、2,5−ジメチルハイドロキノン、2,5−ジエチルハイドロキノン、2,5−ジイソプロピルハイドロキノン、2,6−ジメチルハイドロキノン、2,3,5−トリメチルハイドロキノン、2,3,5,6−テトラメチルハイドロキノン、3,3’−ジメチル−4,4’−ジヒドロキシビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジヒドロキシジフェニルメタン、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルエーテル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルエーテル、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルフィド、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフィド、3,3’−ジメチル−4,4’−ジヒドロキシジフェニルスルホン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルホン、2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−エチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、α,α’−ビス(3−メチル−4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、α,α’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、α,α’−ビス(3−メチル−4−ヒドロキシフェニル)−1,3−ジイソプロピルベンゼン、α,α’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)−1,3−ジイソプロピルベンゼンなどを挙げられ、単独あるいは2種以上を混合して用いることができる。
【0041】
プロトン酸基を有する芳香族ジハライド化合物としては、前記の芳香族ジハライド化合物のスルホン化物、アルキルスルホン化物のほか、2,5−ジクロロ安息香酸、2,5−ジフルオロ安息香酸、5,5’−カルボニルビス(2−フルオロ安息香酸)、5,5’−スルホニルビス(2−フルオロ安息香酸)、2,5−ジクロロフェニルホスホン酸、5,5’−カルボニルビス(2−フルオロベンゼンホスホン酸)およびそのアルカリ金属塩などを挙げることができる。
【0042】
プロトン酸基を有する芳香族ジヒドロキシ化合物としては、前記の芳香族ジヒドロキシ化合物のスルホン化物、アルキルスルホン化物のほか、2,5−ジヒドロキシ安息香酸、2,5−ジヒドロキシテレフタル酸、5,5’−メチレンジサリチル酸、5,5’−チオジサリチル酸、2,5−ジヒドロキシフェニルホスホン酸などのリン酸基を有する芳香族ジヒドロキシ化合物およびそのアルカリ金属塩などを挙げることができる。
【0043】
なお、芳香族ジハライド化合物及び芳香族ジヒドロキシ化合物のスルホン化物、アルキルスルホン化物は、前記芳香族ジハライド化合物及び前記芳香族ジヒドロキシ化合物を、発煙硫酸などの公知のスルホン化剤でMacromol. Chem. Phys., 199, 1421 (1998)に記載されているスルホン化する等の方法により得ることができる。
【0044】
本発明のプロトン酸基を有する芳香族ポリエーテル(B)は、前述の方法の他に、従来公知の芳香族ポリエーテルを従来公知の方法によりスルホン化、アルキルスルホン化することによっても得ることができる。芳香族ポリエーテルをスルホン化する方法の具体例としては、公知のスルホン化剤、例えば濃硫酸(特開昭57−25328号公報)、発煙硫酸(特表平11−502245号公報)、クロロスルホン酸(Journal of Applied Polymer Science, 70, 477 (1998))、メタンスルホン酸(Macromolecules, 27 6267 (1994))などによりスルホン化する方法が挙げられる。芳香族ポリエーテルをアルキルスルホン化する方法の具体例としては、サルトン化合物を用いる方法(J. Amer. Chem. Soc., 76, 5357 (1954))、樹脂の芳香族環の水素をリチウムに置換し、次いでジハロゲノアルカンでハロゲノアルキル基に変え、スルホアルキル基に変換する方法やテトラメチレンハロゲニウムイオンを用いてハロゲノブチル基を導入し、次いでハロゲンをスルホン酸基に変換する方法などが挙げられる。これらの方法より得られるプロトン酸基を有する芳香族ポリエーテルは、水、塩酸水、有機溶剤などを用いて精製することにより、酸や塩を除去することができる。ここで、用いることのできる芳香族ポリエーテルに特に制限はないが、代表的な具体例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルスルホン、ポリスルホン、ポリフェニレンオキシドや前述の流動開始温度が100〜220℃である芳香族ポリエーテルなどが挙げられる。
【0045】
本発明にかかる流動開始温度が100〜220℃である芳香族ポリエーテル(A)の分子量に特に制限はないが、還元粘度(濃度0.5g/dl、35℃で測定)にして0.3〜3.0dl/gの範囲が好ましく、0.5〜1.0dl/gの範囲が特に好ましい。分子量が低すぎると樹脂強度が低く、十分な接着力を得られない場合がある。また、分子量が高すぎると樹脂の溶融流動が不十分となり、十分な接着力を得られない場合がある。
【0046】
本発明にかかるプロトン酸基を有する芳香族ポリエーテル(B)の分子量に特に制限はないが、還元粘度(濃度0.5g/dl、35℃で測定)にして0.3〜3.0dl/gの範囲が好ましく、0.5〜2.0dl/gの範囲が特に好ましい。分子量が低すぎると樹脂強度が低く、乾燥・吸湿時の収縮・膨張により膜が割れる場合がある。また、分子量が高すぎると溶媒への溶解が困難となり、組成物とするための混合操作やキャストによる製膜が困難となる場合がある。
【0047】
本発明にかかるプロトン伝導性樹脂組成物の形態に特に制限はなく、流動開始温度が100〜220℃である芳香族ポリエーテル(A)の粉体とプロトン酸基を有する芳香族ポリエーテル(B)の粉体の混合物、該混合物を加熱圧縮して得られる膜や成形物、それぞれの芳香族ポリエーテルが溶剤に溶解あるいは分散したワニス、該ワニスから得られる膜などの形態を有することができる。ここで、膜や成形物の形態としては、それぞれの芳香族ポリエーテルが相溶し均一相を形成した膜や成形物であっても、相分離した膜や成形物であっても良い。
【0048】
なお、本発明の組成物の調整にあたって溶剤を用いる場合、その溶剤に特に制限はなく、例えば、水、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノールなどのアルコール類、トルエン、キシレンなどの炭化水素類、塩化メチル、塩化メチレンなどのハロゲン化炭化水素類、ジクロロエチルエーテル、1,4−ジオキサン、テトラヒドロフランなどのエーテル類、酢酸メチル、酢酸エチルなどの脂肪酸エステル類、アセトン、メチルエチルケトンなどのケトン類のほか、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、炭酸ジメチルなどの非プロトン性極性溶剤類などを単独で、あるいは混合して使用できる。
【0049】
本発明にかかるプロトン伝導膜は、本発明のプロトン伝導性樹脂組成物を含んでなる熱融着可能なプロトン伝導膜である。本発明のプロトン伝導膜は、本発明のプロトン伝導性樹脂組成物の熱プレスや溶液からのキャストにより得ることができる。ここで、本発明のプロトン伝導膜には、自立膜のみならず、基材、電極膜、熱融着性を有さないプロトン伝導膜等に密着した塗膜も含む。ここで、本発明にかかるプロトン伝導膜の厚みに特に制限はないが、自立膜である場合には10〜200μm、塗膜である場合には1〜100μmであることが好ましい。
【0050】
本発明にかかるプロトン伝導膜は、本発明のプロトン伝導性樹脂組成物を含んでいればよく、電気導電性を有する導電材、水素の酸化反応、酸素の還元反応を促進する触媒、強度や吸水膨張を調整するための無機フィラーや他の高分子、プロトン伝導性や電極との接着性を改善するプロトン酸基含有フッ素系高分子等と複合化されていても良い。本発明のプロトン伝導膜において、本発明のプロトン伝導性樹脂組成物と他の材料との比率に特に制限はないが、本発明のプロトン伝導性樹脂組成物の比率が20〜100wt%であると、プロトン伝導性と熱融着性を両立できるので好ましい。
【0051】
導電材としては、電気伝導性物質であればいずれのものでもよく、各種金属や炭素材料などが上げられる。例えば、アセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらは単独あるいは混合して、粉末状あるいはシート状で使用される。
【0052】
触媒としては、水素の酸化反応および酸素の還元反応を促進する金属であれば特に限定されないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金が挙げられる。
【0053】
強度や吸水膨張を調整するための無機フィラーや他の高分子に特に限定はなく、例えば、金属、ガラスやカーボンからなる繊維、ポリオレフィンやポリイミドの多孔質膜などが上げられる。
【0054】
本発明にかかるプロトン伝導膜は熱融着可能なプロトン伝導膜であり、100〜220℃、好ましくは140〜200℃、0.1〜100MPa、好ましくは1〜20MPaで加熱加圧することにより、相手材料と熱融着することができる。ここで、加熱温度が低すぎる場合には、融着の役割を担う芳香族ポリエーテルが溶融流動せず、融着できないため、好ましくない。また、加熱温度が高すぎる場合には、プロトン伝導を担うプロトン酸基を有する芳香族ポリエーテルからプロトン酸基の脱離が起こるため、好ましくない。
【0055】
なお、熱融着における被接着物である相手部材に特に制限はなく、本発明のプロトン伝導膜はもちろん、従来公知の高分子電解質膜、前述の導電材や触媒、および導電材や触媒を従来公知の高分子電解質で固めた電極等と熱融着することができる。中でも、熱融着の相手部材が本発明のプロトン伝導膜である場合には、極めて強固に融着するため、特に好ましい。ここで、従来公知の高分子電解質とは、イオンに解離し得るプロトン酸基を持たせた高分子であり、例えば、フッ素高分子、ポリエーテルケトン高分子、ポリエーテルサルホン高分子、ポリフェニレンサルファイド高分子、ポリイミド高分子、ポリアミド高分子、エポキシ高分子、ポリオレフィン高分子等にプロトン酸基を付与した高分子が挙げられる。フッ素高分子電解質としては、例えば、デュポン社製「Nafion」、旭硝子社製「Flemion」、旭化成社製「Aciplex」、ダウ社製「Dow膜」等が挙げられる。
【0056】
本発明にかかるプロトン伝導膜の熱融着による接着強度に特に制限はなく、含有する融着の役割を担う芳香族ポリエーテルの種類や量、相手部材の種類、融着温度や圧力等により異なるため、一概にはいえないが、少なくとも、接着物の水浸漬と乾燥を繰り返した際に剥離しない程度の接着強度を有することが好ましい。
【0057】
本発明のプロトン伝導性樹脂組成物および/またはプロトン伝導膜を用いることにより、信頼性に優れた燃料電池用膜−電極複合体を得ることができる。本発明のプロトン伝導性樹脂組成物および/またはプロトン伝導膜を用いた膜−電極複合体は、燃料電池の起動と停止に伴う温度や湿度の変化による接着界面の剥離が生じにくく、電池特性の低下が少ない。
【0058】
本発明のプロトン伝導性樹脂組成物および/またはプロトン伝導膜を用いた膜−電極複合体の製造方法に特に制限はなく、例えば次のような方法が例示できる。
1)本発明のプロトン伝導性樹脂組成物および/またはプロトン伝導膜を、カーボンペーパーなどの基材、導電材料、触媒、高分子電解質からなる、正負2枚の電極で挟み、熱融着する。
2)従来公知の高分子電解質膜表面に、本発明のプロトン伝導性樹脂組成物またはそのワニスを熱融着あるいは塗布し、正負2枚の電極で挟んで熱融着する。
3)本発明のプロトン伝導性樹脂組成物またはそのワニスを、正負2枚の電極表面に熱融着あるいは塗布し、従来公知の、あるいは本発明のプロトン伝導膜を挟んで熱融着する。
4)本発明のプロトン伝導性樹脂組成物またはそのワニスを、正負2枚の電極表面に熱融着あるいは塗布し、熱融着する。
5)導電材料、触媒などを含む本発明のプロトン伝導性樹脂組成物またはそのワニスをカーボンペーパーなどの基材に熱融着あるいは塗布して正負2枚の電極を作製し、従来公知の、あるいは本発明のプロトン伝導膜を挟んで熱融着する。
6)導電材料、触媒などを含む本発明のプロトン伝導性樹脂組成物またはそのワニスを、従来公知の、あるいは本発明のプロトン伝導膜の両面に熱融着あるいは塗布し、カーボンペーパーなどの基材で挟んで熱融着する。
【0059】
本発明にかかるプロトン伝導性樹脂組成物は、熱融着が可能で、かつ、熱融着後にも優れたプロトン伝導性を有し、燃料電池用プロトン伝導材料として好適である。より具体的には、該組成物は、プロトン酸基を有する芳香族ポリエーテルの分解(プロトン酸基の脱離)温度以下の温度での熱プレスによる融着が可能であり、プロトン酸基の脱離がないため融着後にも優れたプロトン伝導性を有す。さらに、該組成物は接着力が高く、燃料電池のプロトン伝導材料として使用した際には、湿度や温度の変動による膜と電極あるいは触媒と結着剤の界面剥離が生じにくく、高効率で信頼性に優れた燃料電池を得ることができる。
【0060】
本発明のプロトン伝導性樹脂組成物および/またはプロトン伝導膜を用いた膜−電極複合体を用いることにより、電池の起動と停止を繰り返しても電池特性が低下しにくく、信頼性に優れた燃料電池の提供が可能となる。
【0061】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれにより何ら制限されるものではない。
【0062】
実施例中の各種試験の試験方法は次に示すとおりである。
(1)還元粘度(ηinh)
芳香族ポリエーテル0.50gを溶媒100mlに溶解したのち、35℃において、ウベローデ粘度計で測定した。
(2)5%重量減少温度、重量減少開始温度
空気中にてDTA−TG(マック・サイエンス社製TG−DTA2000)を用い、昇温速度10℃/minで測定した。
(3)ガラス転移温度
示差走査熱量測定(DSC、マック・サイエンス社製DSC3100)により昇温速度10℃/minで400℃まで測定した。
【0063】
(4)流動開始温度(F.S.T)
高化式フローテスタ(島津製作所製・高化式フローテスターCFT500D)を用い、孔径1.0mm、孔長10.0mmのダイを備えたシリンダー中に試料を装入、ピストンにより9.8MPaで加圧したまま5℃/分の昇温速度で加熱した際に、試料がダイから流出を開始しピストンが移動し始める温度を測定した。
(5)熱融着性の有無
40×40mm角のフィルム状のプロトン伝導性樹脂組成物(プロトン伝導膜)2枚を加熱圧縮し、得られたフィルムを純水浸漬(室温2時間)および乾燥(120℃2時間)を4回繰り返した際の剥離の有無で判断した。
【0064】
(6)イオン交換基当量
プロトン伝導性樹脂組成物(プロトン伝導膜)を密閉できるガラス容器中に精秤し、そこに過剰量の塩化カルシウム水溶液を添加して一晩攪拌した。系内に発生した塩化水素を0.1N水酸化ナトリウム標準水溶液にてフェノールフタレイン指示薬を用いて滴定し、計算した。
(7)イオン伝導度(90℃、膜厚方向)
1M硫酸で湿潤したサンプルフィルムを、1cm2の空孔を有する100μm厚PETフィルムの片面に白金電極を貼った測定用セル2個で挟み、空孔を1M硫酸水で満たした。これを90℃の恒温槽内に設置してその抵抗値を測定した。サンプルフィルムを挟まなかった場合の抵抗値との差から、サンプルフィルム単体の抵抗値を求め、イオン伝導度(90℃、膜厚方向)を算出した。なお、イオン伝導度の計算に必要な膜厚は乾燥状態でマイクロメータを用いて測定した。
【0065】
(合成例1)
窒素導入管、温度計、分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、4,4’−ジフルオロベンゾフェノン21.82g(0.10mol)、レゾルシン10.57g(0.096mol)および無水炭酸ナトリウム11.02g(0.104mol)を精秤した。これにN−メチル−2−ピロリドン86.5gおよび純水1.8gを加え、窒素ガスを通じ撹拌しながら、200℃まで2時間かけて昇温した後、6時間反応を行った。この際、留出する水は分液器より回収した。得られた粘稠な反応マスを冷却、N−メチル−2−ピロリドン80gで希釈した後、セライト濾過により副生する塩を除去した。このポリマー溶液を、水−メタノール(5/5,wt/wt)混合液500mlに排出し、析出したポリマーを濾集、5wt%塩酸水溶液、純水、メタノールで洗浄した後、100℃4時間乾燥してポリアリールエーテルケトン粉25.8g(収率90%)を得た。
得られたポリアリールエーテルケトン粉の還元粘度は0.56dl/g(p-クロロフェノール/フェノール(9/1,wt/wt)混合液で測定)、ガラス転移温度は118℃、5%重量減少温度は539℃、流動開始温度は175℃であった。
【0066】
(合成例2)
レゾルシン10.57g(0.096mol)の代わりに、レゾルシン5.28g(0.048mol)およびヒドロキノン5.28g(0.048mol)を用いた他は合成例1と同様にして、ポリアリールエーテルケトン粉26.5g(収率93%)を得た。
得られたポリアリールエーテルケトン粉の還元粘度は0.52dl/g(p-クロロフェノール/フェノール(9/1,wt/wt)混合液で測定)、ガラス転移温度は124℃、5%重量減少温度は533℃、流動開始温度は180℃であった。
【0067】
(合成例3)
レゾルシン10.57g(0.096mol)の代わりに、ヒドロキノン11.01g(0.10mol)を用い、N−メチル−2−ピロリドン86.5gの代わりにN−メチル−2−ピロリドン259.5gを用いた他は合成例1と同様にして6時間の反応を行った。なお、反応中ポリマーが析出し、固形物がスラリー状となった。反応終了後、固形物を濾過、ポリマーと副生塩を濾集し、純水、5wt%塩酸水溶液、純水、アセトンで洗浄した後、100℃4時間乾燥してポリエーテルエーテルケトン粉28.2g(収率98%)を得た。
得られたポリエーテルエーテルケトン粉の還元粘度は0.86dl/g(p-クロロフェノール/フェノール(9/1,wt/wt)混合液で測定)、ガラス転移温度は143℃、融点は334℃、5%重量減少温度は530℃、流動開始温度は340℃であった。
【0068】
(合成例4)
窒素導入管、温度計、トルエンで満たした分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、4,4’−ジクロロジフェニルスルホン28.72g(0.10mol)、レゾルシン10.57g(0.096mol)および無水炭酸ナトリウム11.02g(0.104mol)を精秤した。これにN−メチル−2−ピロリドン97.3gおよびトルエン10.8gを加え、窒素ガスを通じ撹拌しながら、195℃まで2時間かけて昇温した後、6時間反応を行った。反応はトルエン還流下に行い、留出する水は分液器により分液回収した。得られた粘稠な反応物を冷却、N−メチル−2−ピロリドン80gで希釈した後、セライト濾過により複製する塩を除去した。このポリマー溶液を、メタノール500mlに排出し、析出したポリマーを濾集、5wt%塩酸水溶液、純水、メタノールで洗浄した後、100℃4時間乾燥してポリエーテルスルホン粉30.8g(収率95%)を得た。
得られたポリアリールエーテルスルホン粉の還元粘度は0.71dl/g(N−メチル−2−ピロリドンで測定)、ガラス転移温度は167℃、5%重量減少温度は518℃、流動開始温度は215℃であった。
【0069】
(合成例5)
レゾルシン10.57g(0.096mol)の代わりに、ビスフェノールA21.92g(0.096mol)を用いた他は合成例4と同様にして、ポリスルホン粉40.7g(収率92%)を得た。
得られたポリスルホン粉の還元粘度は0.85dl/g(N−メチル−2−ピロリドンで測定)、ガラス転移温度は190℃、5%重量減少温度は510℃、流動開始温度は255℃であった。
【0070】
(合成例6)
4,4’−ジクロロジフェニルスルホン28.72g(0.10mol)の代わりに、2,6−ジクロロベンゾニトリル17.20g(0.10mol)を用い、N−メチル−2−ピロリドン97.3gおよびトルエン10.8gの代わりにN−メチル−2−ピロリドン62.8gおよびトルエン7.0gを用いた他は合成例4と同様にして、ポリエーテルニトリル粉19.0g(収率91%)を得た。
得られたポリエーテルニトリル粉の還元粘度は0.50dl/g(N−メチル−2−ピロリドンで測定)、ガラス転移温度は142℃、融点は337℃、5%重量減少温度は490℃、流動開始温度は350℃であった。
【0071】
(合成例7)
レゾルシン10.57g(0.096mol)の代わりに、レゾルシン5.29g(0.048mol)およびビスフェノールA10.96g(0.048mol)を用い、N−メチル−2−ピロリドン97.3gおよびトルエン10.8gの代わりにN−メチル−2−ピロリドン80.8gおよびトルエン9.0gを用いた他は合成例4と同様にして、ポリアリールエーテルニトリル粉25.2g(収率94%)を得た。
得られたポリアリールエーテルニトリル粉の還元粘度は0.63dl/g(N−メチル−2−ピロリドンで測定)、ガラス転移温度は160℃、5%重量減少温度は482℃、流動開始温度は210℃であった。
【0072】
(合成例8)
レゾルシン10.57g(0.096mol)の代わりに、ビスフェノールA21.92g(0.048mol)を用い、N−メチル−2−ピロリドン97.3gおよびトルエン10.8gの代わりにN−メチル−2−ピロリドン98.2gおよびトルエン10.9gを用いた他は合成例4と同様にして、ポリアリールエーテルニトリル粉30.8g(収率91%)を得た。
得られたポリアリールエーテルニトリル粉の還元粘度は0.69dl/g(N−メチル−2−ピロリドンで測定)、ガラス転移温度は170℃、5%重量減少温度は473℃、流動開始温度は225℃であった。
【0073】
(合成例9)
窒素導入管、温度計、トルエンで満たした分液器を備えた冷却器、及び撹拌装置を備えたフラスコに、3,3’−カルボニルビス(6−フルオロベンゼンスルホン酸ナトリウム)84.46g(0.20mol)、ビス(3−メチル−4ヒドロキシフェニル)メタン51.27g(0.20mol)および無水炭酸カリウム33.17g(0.24mol)を精秤した。これにジメチルスルホキシド510.9gおよびトルエン56.8gを加え、窒素ガスを通じ撹拌しながら、176℃まで2時間かけて昇温した後、10時間反応を行った。反応はトルエン還流下に行い、留出する水は分液器により分液回収した。得られた粘稠な反応物をジメチルスルホキシド300gで希釈した後、セライト濾過により副生する塩を除去した。このポリマー溶液を、アセトン10Lに排出し、析出したポリマーを濾集、アセトンで洗浄した後、150℃4時間乾燥してプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン粉112.1g(収率88%)を得た。
得られたポリアリールエーテルケトン粉の還元粘度は0.91dl/g(ジメチルスルホキシドで測定)、ガラス転移温度は250℃以上(250℃までの測定で未検出)であった。
【0074】
(合成例10)
3,3’−カルボニルビス(6−フルオロベンゼンスルホン酸ナトリウム)84.46g(0.20mol)の代わりに、3,3’−カルボニルビス(6−フルオロベンゼンスルホン酸ナトリウム)42.23g(0.10mol)および4,4’−ジフルオロベンゾフェノン21.82g(0.10mol)を用い、ジメチルスルホキシド510.9gおよびトルエン56.8gの代わりにジメチルスルホキシド429.3gおよびトルエン47.7gを用いた他は合成例9と同様にして、プロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン粉96.4g(収率90%)を得た。
得られたポリアリールエーテルケトン粉の還元粘度は1.25dl/g(ジメチルスルホキシドで測定)、ガラス転移温度は250℃以上(250℃までの測定で未検出)であった。
【0075】
(合成例11)
3,3’−カルボニルビス(6−フルオロベンゼンスルホン酸ナトリウム)84.46g(0.20mol)の代わりに、3,3’−スルホニルビス(6−クロロベンゼンスルホン酸ナトリウム)49.13g(0.10mol)および4,4’−ジクロロジフェニルスルホン28.72(0.10mol)を用い、ジメチルスルホキシド510.9gおよびトルエン56.8gの代わりにジメチルスルホキシド402.0gおよびトルエン44.7gを用いた他は合成例9と同様にして、プロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルスルホン粉87.7g(収率87%)を得た。
得られたポリアリールエーテルスルホン粉の還元粘度は1.07dl/g(ジメチルスルホキシドで測定)、ガラス転移温度は250℃以上(250℃までの測定で未検出)であった。
【0076】
(実施例1)
合成例1で得られたポリアリールエーテルケトン粉2gと合成例9で得られたプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン2gをN−メチル−2−ピロリドンに加熱溶解し、ポリマー濃度10%の若干濁ったワニスを得た。得られたワニスを、それぞれのスペーサー厚みを有するブレードを用いてガラス基板上にキャストし、窒素通風下室温から200℃まで2時間かけて昇温乾燥し、厚さの異なる2種類の若干濁ったフィルムを得た。ここで、便宜上、厚さ30μmのものをフィルムA、50μmのものをフィルムBと呼ぶ。
【0077】
得られたフィルムAおよびフィルムBを2N硫酸水溶液および純水に1日づつ浸漬してスルホン酸ナトリウム基のプロトン交換を行い、フィルムC(プロトン交換前厚さ30μm)とフィルムD(プロトン交換前厚さ50μm)の2種のプロトン伝導膜を得た。
【0078】
フィルムCより40×40mmの試験片を切り出し、未乾燥で膨潤したままの状態で2枚重ね、周囲に厚さ50μmのスペーサーをおいて、200℃10MPaで5分間熱プレスしたところ、2枚が強固に接着した厚さ50μmのフィルムEを得た。フィルムEは、純水浸漬(室温2時間)および乾燥(120℃2時間)を4回繰り返しても剥離することはなかった。
【0079】
表1に、熱融着により得られたフィルムE(厚さ50μm)と熱融着をしていないフィルムD(厚さ50μm)のイオン交換基当量およびイオン伝導性(90℃、膜厚方向)を比較した。フィルムEのイオン交換基当量はフィルムDのものと同等で、スルホン酸基の脱離がないことがわかる。フィルムEのイオン伝導性はフィルムDのものより若干劣るが、これは接着界面の抵抗によるものである。
【0080】
(実施例2)
合成例1で得られたポリアリールエーテルケトン粉0.8gと合成例10で得られたプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン3.2gを用いた他は実施例1と同様にしてフィルムA〜Eを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。
【0081】
表1に、熱融着により得られたフィルムE(厚さ50μm)と熱融着をしていないフィルムD(厚さ50μm)のイオン交換基当量およびイオン伝導性(90℃、膜厚方向)を示す。フィルムEのイオン交換基当量はフィルムDのものと同等で、スルホン酸基の脱離がないことがわかる。フィルムEのイオン伝導性はフィルムDのものより若干劣るが、低下の程度は小さく、接着界面の抵抗が小さいことがわかる。
【0082】
(比較例1)
合成例10で得られたプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン4gのみを用いた他は実施例1と同様にしてフィルムA〜Eを作製した。得られたフィルムEは接着しておらず、水に浸漬するとすぐに剥離した。
【0083】
表1に、フィルムE(厚さ50μm、剥離せず2枚が密着しているもの)と熱融着をしていないフィルムD(厚さ50μm)のイオン交換基当量およびイオン伝導性(90℃、膜厚方向)を示す。フィルムEのイオン交換基当量はフィルムDのものと同等で、スルホン酸基の脱離がないことがわかる。フィルムEのイオン伝導性はフィルムDのものより著しく低く、接着できていないため界面の抵抗が著しく大きいことがわかる。
【0084】
(比較例2)
合成例1で得られたポリアリールエーテルケトン粉2.8gと合成例9で得られたプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルケトン1.2g用いた他は実施例1と同様にしてフィルムA〜Eを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。
【0085】
表1に、熱融着により得られたフィルムE(厚さ50μm)と熱融着をしていないフィルムD(厚さ50μm)のイオン交換基当量およびイオン伝導性(90℃、膜厚方向)を示す。フィルムEのイオン交換基当量はフィルムDのものと同等で、スルホン酸基の脱離がないことがわかる。フィルムEのイオン伝導性はフィルムDのものより著しく低く、接着界面の抵抗が著しく大きいことがわかる。
【0086】
(実施例3〜5、比較例3〜6)
合成例2〜8で得られたポリアリールエーテルケトン粉0.8gと合成例11で得られたプロトン酸基(スルホン酸ナトリウム基)を有するポリアリールエーテルスルホン3.2g用いた他は実施例1と同様にしてフィルムA〜Eを作製した。表1に樹脂組成物の組成とフィルムE作製時の熱プレス温度、熱融着により得られたフィルムE(厚さ50μm)と熱融着をしていないフィルムD(厚さ50μm)のイオン交換基当量およびイオン伝導性(90℃、膜厚方向)を示す。
【0087】
【表1】
Figure 0004360113
【0088】
実施例3において得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。フィルムEのイオン交換基当量はフィルムDのものと同等で、スルホン酸基の脱離がないことがわかる。フィルムEのイオン伝導性はフィルムDのものより若干劣るが、低下の程度は小さく、接着界面の抵抗が小さいことがわかる。
【0089】
比較例3においては、合成例3により得られたポリエーテルエーテルケトンがN−メチル−2−ピロリドンに溶解しなかったため、溶剤としてp−クロロフェノールを用いたワニスより製膜した。また、フィルムC2枚を200℃および300℃で熱プレスしたが、2枚は融着しなかった。300℃で熱プレスしたフィルムE(未融着)は黒褐色に変色しており、イオン交換基当量も2000g/molを超えるまでに増加しており、スルホン酸基の脱離が起こっていることが確認された。
【0090】
実施例4においては、熱プレス温度200℃ではフィルムC2枚が融着しなかったため、熱プレス温度220℃でフィルムEを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。フィルムEのイオン交換基当量はフィルムDのものより若干増加しており、僅かにスルホン酸基が脱離していた。フィルムEのイオン伝導性はフィルムDのものより劣るが十分なイオン伝導性を保持していた。
【0091】
比較例4においては、熱プレス温度200℃ではフィルムC2枚が融着しなかったため、熱プレス温度260℃でフィルムEを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかったが、黒色に変色していた。フィルムEのイオン交換基当量はフィルムDのものより大幅に増加しており、スルホン酸基の脱離のため、イオン伝導性は極めて小さかった。
【0092】
比較例5においては、フィルムC2枚を200℃および300℃で熱プレスしたが、2枚は融着しなかった。300℃で熱プレスしたフィルムE(未融着)は黒褐色に変色しており、イオン交換基当量も2000g/molを超えるまでに増加しており、スルホン酸基の脱離が起こっていることが確認された。
【0093】
実施例5においては、熱プレス温度200℃ではフィルムC2枚が融着しなかったため、熱プレス温度220℃でフィルムEを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。フィルムEのイオン交換基当量はフィルムDのものより若干増加しており、僅かにスルホン酸基が脱離していた。フィルムEのイオン伝導性はフィルムDのものより劣るが十分なイオン伝導性を保持していた。
【0094】
比較例6においては、熱プレス温度200℃ではフィルムC2枚が融着しなかったため、熱プレス温度240℃でフィルムEを作製した。得られたフィルムEは強固に接着しており、実施例1と同様の水浸漬及び乾燥処理においても剥離することはなかった。フィルムEのイオン交換基当量はフィルムDのものより増加していることからスルホン酸基が脱離していることが確認され、そのイオン伝導性も僅かであった。
【0095】
(実施例6)
実施例2で得られたフィルムD(スルホン酸基を有するプロトン伝導膜)を純水に浸漬して膨潤させ、以下に示す市販の燃料電池用電極(空気極及び燃料極)で挟み、200℃10MPaで5分間熱プレスした。
空気極:ElectroChem社製
EC−20−10−7白金担持電極
触媒担持量:Pt 1mg/cm2
燃料極:ElectroChem社製
EC−20−C−7RU白金・ルテニウム担持電極
触媒担持量:Pt 1mg/cm2,Ru 0.5g1mg/cm2
得られた電解質膜−電極複合体はほぼ乾燥しており、電極の剥離はなかった。
【0096】
この電解質膜−電極複合体を、ElectroChem社製燃料電池試験セル(品番:EFC−05−REF)に組み込み、図1の燃料電池を組み立てた。この燃料電池は、電解質膜1を触媒付き電極2および2’がガスケット3を使用して挟み、さらにその外側にセパレータ4が置かれて、全体を加圧板5を用いて締め付けボルト7でしっかりと締め付けられた構造となっており、内部6にはガス流路が設けられている。
【0097】
燃料として1Mメタノール水溶液を使用し、燃料電池の電池特性を図2の燃料電池評価装置を用いて測定した。この評価装置は、燃料電池セル8の中に、図1の燃料電池が組み込んである。図の上側のラインではメタノール水溶液を送液ポンプ12により8を通して左側から右側に送液している。また、下側のラインでは空気を加湿用バブリングタンク9により加湿した状態で8を通して左側から右側に通気している。燃料極側の6の流路をメタノール水溶液が、空気極側の6の流路を空気が流れる様になっている。それぞれの流量はマスフローコントローラー11で制御する。メタノール水溶液および空気を流すことにより生じる電圧および電流密度を電子負荷10で測定することにより燃料電池を評価する仕組みになっている。
【0098】
この評価装置を用い以下の条件で測定したところ、約18.8mW/cm2の出力を得た。
測定条件 燃料電池温度: 80℃
メタノール水溶液濃度:1M(3.2wt%)
メタノール水溶液流量:2cc/min
空気圧力:0.05MPa
空気流量:100SCCM
空気バブリングタンク温度:50℃
【0099】
(比較例7)
比較例1で得られたフィルムD(スルホン酸基を有するプロトン伝導膜)を用い、実施例6と同様にして電解質膜−電極複合体の作製を試みたが、フィルムと電極は接着しなかった。
このフィルムと電極を燃料電池試験セルに組み込み、実施例6と同様にしてその電池特性を測定したところ、約3.6mW/cm2の出力を得た。実施例6に比べ、用いたフィルムのイオン伝導性が高いにもかかわらず、得られた出力が低いことから、本比較例においては、フィルム―電極界面の抵抗が大きいことがわかる。
【0100】
(実施例7)
実施例2で得られたポリマー濃度10%の若干濁ったワニスを、実施例6で用いたものと同じ燃料電池用電極(空気極及び燃料極)にキャストし、窒素通風下室温から200℃まで2時間かけて昇温乾燥し、プロトン伝導性樹脂組成物からなる厚さ30μmの塗膜を有する電極(空気極及び燃料極)を作製した。得られた電極を2N硫酸水溶液及び純水に1日ずつ浸漬してスルホン酸ナトリウム基のプロトン交換を行った。得られた塗膜(スルホン酸基を有するプロトン伝導膜)を有する空気極及び燃料極を未乾燥のまま重ね、200℃10MPaで5分間熱プレスし、電解質膜−電極複合体を作製した。得られた複合体はほぼ乾燥しており、電極の剥離はなかった。
この電解質膜−電極複合体を用い、実施例6と同様にして燃料電池の電池特性を測定したところ、約22.0mW/cm2の出力を得た。
【0101】
【発明の効果】
本発明により、熱融着が可能で、かつ、熱融着後にも優れたプロトン伝導性を有するプロトン伝導性芳香族炭化水素系樹脂組成物が提供される。該組成物は接着力が高く、燃料電池のプロトン伝導膜などのプロトン伝導材料として使用した際に、湿度や温度の変動による膜と電極あるいは触媒と結着剤の界面剥離が生じにくいため、高効率で信頼性に優れた燃料電池を得ることができる。
【図面の簡単な説明】
【図1】燃料電池の断面構造図を示す概略図である。
【図2】本発明において用いた燃料電池評価装置を示す図である。
【符号の説明】
1 電解質膜
2、2’ 触媒付き電極
3 ガスケット
4 セパレーター
5 加圧板
6 ガス流路
7 締め付けボルト
8 燃料電池セル
9 加湿用バブリングタンク
10 電子負荷
11 マスフローコントローラー
12 送液ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proton conductive resin composition useful in a fuel cell using hydrogen, alcohol or the like as a fuel. More specifically, the present invention relates to a heat-sealable proton conductive membrane used in a fuel cell or the like.
[0002]
[Prior art]
[Polymer electrolyte fuel cell]
A polymer electrolyte fuel cell is a fuel cell that uses a proton-conducting polymer as an electrolyte, and the chemical energy of the fuel is converted into electrical energy by electrochemically oxidizing hydrogen or methanol or other fuel using oxygen or air. It is to be converted and extracted. The polymer electrolyte fuel cell includes a type using pure hydrogen supplied from a cylinder, a pipe, or the like as a fuel, and a type using hydrogen generated from gasoline or methanol by a reformer. In addition, a direct methanol fuel cell (DMFC) that directly generates power using a methanol aqueous solution as a fuel has been developed. Since this DMFC does not require a reformer for generating hydrogen, a simple and compact system can be constructed, and it is especially attracting attention as a power source for portable devices.
[0003]
A polymer electrolyte fuel cell includes a polymer electrolyte membrane and a positive electrode and a negative electrode arranged in contact with both sides thereof. Fuel hydrogen or methanol is electrochemically oxidized at the negative electrode to generate protons and electrons. This proton moves in the polymer electrolyte membrane to the positive electrode to which oxygen is supplied. On the other hand, electrons generated at the negative electrode pass through a load connected to the battery and flow to the positive electrode, where protons and electrons react to generate water at the positive electrode. Therefore, high proton conductivity is required for a polymer material used as an electrolyte membrane, a binder that connects the membrane and the electrode, a binder that fixes a catalyst that promotes hydrogen oxidation and oxygen reduction reaction, and the like. In addition, when the adhesion between the interface between the membrane and the electrode, or the interface between the catalyst and the binder is insufficient, proton conduction is inhibited at the peeling interface, and thus the polymer material used for these is required to have high adhesion. .
[0004]
[Proton acid group-containing fluoropolymer]
Protonic acid group-containing fluorine-based polymers are known as polymer materials having high proton conductivity. However, this protonic acid group-containing fluorine-based polymer has a problem that it is very expensive, hydrofluoric acid gas is generated when incinerated at the time of disposal, and proton conductivity rapidly decreases under high temperature and low humidity. It was. Moreover, since this protonic acid group-containing fluorine-based polymer has high methanol permeability, when used as an electrolyte membrane of DMFC, there is a problem that voltage drop and power generation efficiency decrease due to methanol crossover.
[0005]
[Hydrocarbon polymer containing protonic acid group]
On the other hand, development of non-fluorine proton conducting materials using protonic acid group-containing hydrocarbon polymers is also underway. Protonic acid group-containing hydrocarbon-based polymers can be produced at low cost, do not generate halogen-based gas during incineration, and have a low decrease in proton conductivity under high temperature and low humidity.
However, for example, in sulfonated polystyrene, the tertiary carbon in the main chain structure is susceptible to radical attack, and the α-position hydrogen is easily released in the battery, so that the battery characteristics deteriorate over time. It has been known.
[0006]
Therefore, a large number of polymers containing protonic acid groups containing no aliphatic chain in the main chain, that is, aromatic hydrocarbons have been developed (Macromol. Chem. Phys., 199, 1421-1426 (1998), Polymer , 40, 795-799 (1999), Polymer, 42, 3293-3296 (2001)). In particular, it has been reported that a membrane made of sulfonated polyetheretherketone has excellent heat resistance and chemical durability and can withstand long-time use as a polymer electrolyte (Honma, 3rd Separation). Science & Technology Workshop Lecture Collection, “Fundamentals and Applications of Polymer Membrane Fuel Cells” p.17 (1999)).
[0007]
However, the fuel cell using the proton acid group-containing aromatic hydrocarbon polymer has a problem that the battery characteristics are deteriorated due to fluctuations in humidity and temperature. This is considered to be because the interface between the membrane and the electrode and the interface between the catalyst and the binder are peeled off as a result of the proton conductive material repeatedly expanding and contracting due to fluctuations in humidity and temperature.
Therefore, a proton acid group-containing aromatic hydrocarbon polymer having good adhesion has been demanded.
[0008]
In the case of a general thermoplastic resin, the resin can be melt-bonded at a temperature not lower than the flow start temperature and not higher than the decomposition temperature, but the protonic acid group-containing aromatic hydrocarbon polymer does not exhibit thermoplasticity and melt-bonding is not possible. Can not. This is because the proton acid group has a high polarity and a high cohesive force, so that the melt fluidity is remarkably inhibited, while the thermal stability of the proton acid group is low and desorbs at a relatively low temperature.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a proton conductive resin composition for fuel cells having good adhesion. Another object of the present invention is to provide a proton conductive membrane for a fuel cell that can be heat-sealed.
[0010]
[Means for Solving the Problems]
The present inventors have found that a resin composition comprising a specific aromatic polyether and a protonic acid group-containing aromatic polyether can be heat-sealed and has excellent proton conductivity even after heat-sealing. The present inventors have found that it is suitable as a proton conductive material for fuel cells and have completed the present invention.
[0011]
  That is, the proton conductive resin composition of the present invention has a repeating structural unit represented by the following general formula (1) and has a flow start temperature of 100 to 220 ° C.Following formula (6)-(8)
  -C n H 2n -SO Three Y (n is an integer from 0 to 10, Y is H, Na or K) (6)
  -C n H 2n -COOY (n is an integer of 0 to 10, Y is H, Na or K) (7)
  -C n H 2n -PO Three Y 2 (N is an integer from 0 to 10, Y is H, Na or K) (8)
Indicated by eitherAn aromatic polyether having no proton acid group, the aromatic polyether (A) having a repeating structural unit represented by the following general formula (2) or (3): 60 to 10% by weight;
  Having a repeating structural unit represented by the following general formula (5),-SO Three H groupAromatic polyether (B) having 40 to 90% by weight.
[0012]
[Formula 4]
Figure 0004360113
[In formula (1), A 1 Are independently -SO 2 -Or -CO- and A 2 Is -C (CH Three ) 2 -, And g, h and i each independently represent 0 or 1. ]
[0013]
[Chemical formula 5]
Figure 0004360113
[In the formulas (2) and (3), A 1 Is -SO 2 -Or -CO- is shown. ]
[0015]
[Formula 4]
Figure 0004360113
[In Formula (5), X1And X2At least one of-SO Three HAnd the others are independently H or-SO Three HAnd AThreeIs -SO2-Or -CO-, AFourIs -CH2-, K and l each independently represent 0 or 1, and the hydrogen atom of the aromatic ring is -CmH2m + 1(M is an integer of 1 to 10) may be substituted. ]
[0016]
The protonic acid group is -CnH2n-SOThreeY (n is an integer of 0 to 10, Y is H, Na, or K) is a preferred embodiment of the proton conductive resin composition of the present invention.
[0017]
According to the present invention, there is provided a heat-sealable proton conductive membrane comprising the proton conductive resin composition.
[0018]
The present invention provides a fuel cell using the proton conductive membrane.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the proton conductive resin composition according to the present invention will be specifically described.
The proton conductive resin composition of the present invention has a flow initiation temperature of 100 to 220 ° C., an aromatic polyether (A) of 60 to 10% by weight, and an aromatic polyether (B) having a proton acid group of 40 to 90% by weight. %, Preferably 40 to 10% by weight of aromatic polyether (A) and 60 to 90% by weight of aromatic polyether (B), more preferably 30 to 20% by weight of aromatic polyether (A). And 70-80% by weight of aromatic polyether (B).
[0020]
Here, the aromatic polyether (A) having a flow start temperature of 100 to 220 ° C. plays a role of fusing with a counterpart material by being melt-flowed at the time of hot pressing, and an aromatic polyether having a proton acid group (B ) Is responsible for proton conduction. When the aromatic polyether (A) having a flow initiation temperature of 100 to 220 ° C. is within the above composition range, the amount of the aromatic polyether (B) having a protonic acid group per weight of the composition is appropriate. Therefore, good proton conductivity can be obtained, and problems such as an increase in interfacial resistance due to the aromatic polyether (A) covering the adhesive interface do not occur. Further, there is no problem that the adhesive strength is lowered and peeling occurs in the environment where the fuel cell is used, or that an unbonded portion is partially formed at the bonded interface and the interface resistance is increased.
[0021]
The aromatic polyether in the present invention refers to an aromatic polymer having two aromatic rings linked by an ether group in a repeating unit, and is linked by another linking group or an ether group in the repeating unit. It may contain non-aromatic rings. That is, the aromatic polyether in the present invention is not only an aromatic polyether in which an aromatic ring linking group is composed only of an ether group, such as polyphenylene oxide, but also a polyether ketone in which the linking group is composed of an ether group and a carbonyl group, Also included are polyether sulfone, polysulfone, polyether nitrile and the like in which the linking group comprises an ether group and a sulfone group.
[0022]
The aromatic polyether (A) having a flow start temperature of 100 to 220 ° C. of the present invention has a temperature at which the melt flow starts when the resin is heated to 100 to 220 ° C., preferably 120 to 200 ° C., more preferably. Is an aromatic polyether that is 140-180 ° C. When the flow start temperature is within the above range, when used in a fuel cell, there is no peeling of the adhesive surface or deformation of the film, electrode, etc. due to the flow of the resin during power generation. In addition, since the temperature for heat-sealing is low, detachment of proton acid groups does not occur during heat-sealing.
[0023]
Here, the flow start temperature indicates an outflow start temperature at which the sample starts to flow out of the die when measured by a temperature raising method using a Koka flow tester. More specifically, the flow start temperature is set to 5 ° C./min while a sample is placed in a cylinder having a die having a hole diameter of 1.0 mm and a hole length of 10.0 mm, and pressurized by a piston at 9.8 MPa. It indicates the temperature at which the sample begins to flow out of the die and the piston begins to move when heated at the rate of temperature increase.
[0024]
More specifically, the aromatic polyether (A) having a flow initiation temperature of 100 to 220 ° C. of the present invention has a repeating structural unit represented by the following general formula (1) and has a protonic acid group. Aromatic polyethers that are not preferred are preferred.
[Chemical 9]
Figure 0004360113
[In formula (1), A1And A2Are each independently a direct bond, -CH2-, -C (CHThree)2-, -C (CFThree)2-, -O-, -SO2-Or -CO-, g, h and i each independently represent 0 or 1, and the hydrogen atom of the aromatic ring is -CmH2m + 1(M is an integer from 1 to 10), -Cl, -F, -CFThreeAlternatively, it may be substituted with -CN. ]
[0025]
Among the aromatic polyethers (A) having a flow start temperature of 100 to 220 ° C. of the present invention, it has a repeating structural unit represented by the following general formula (2) or (3) and has no proton acid group Aromatic polyethers are particularly preferred.
Embedded image
Figure 0004360113
[In the formulas (2) and (3), A1Is a direct bond, -CH2-, -C (CHThree)2-, -C (CFThree)2-, -O-, -SO2-Or -CO-, and the hydrogen atom of the aromatic ring is -CmH2m + 1(M is an integer from 1 to 10), -Cl, -F, -CFThreeAlternatively, it may be substituted with -CN. ]
[0026]
Here, an aromatic compound having a repeating structural unit represented by any one of the formulas (1), (2), and (3), having no proton acid group, and having a flow initiation temperature of 100 to 220 ° C. The polyether (A) may contain other repeating structural units as long as the flow start temperature is within the above range. That is, the aromatic polyether may be a random or block copolymer composed of the repeating structural unit and another repeating structural unit.
[0027]
An aromatic polyether having a repeating structural unit represented by any one of the formulas (1), (2) and (3), having no proton acid group and having a flow initiation temperature of 100 to 220 ° C. A) has excellent melt fluidity in a temperature range in which the proton acid group is not eliminated, and is excellent in adhesion to an aromatic polyether having a proton acid group. In addition, the aromatic polyether is less susceptible to hydrolysis by hot water, acids, alkalis, alcohols, and the like, and denaturation due to radical attack, and therefore, it does not easily peel off when used in a fuel cell.
[0028]
In addition, the aromatic polyether (B) having a proton acid group is preferable because the proton acid group is highly polar and easily agglomerated so that melt fluidity is remarkably inhibited and may not melt and flow in the range of 100 to 220 ° C. Absent. Further, even when the aromatic polyether has a repeating structural unit represented by any one of the formulas (1), (2), and (3) and does not have a protonic acid group, the flow start temperature is in the above range. In this case, the protonic acid group is eliminated at a temperature at which heat fusion can be performed, which is not preferable. Furthermore, even if it is a thermoplastic resin whose flow start temperature is in the range of 100 to 220 ° C., it is susceptible to hydrolysis with polyolefins, aliphatic polyethers, aliphatic polyamides having an aliphatic chain in the main chain. Polycarbonates, aromatic polyamides, polyimides and the like are not preferable because they are easily denatured when used in a fuel cell and the adhesive surface is easily peeled off.
[0029]
The aromatic polyether (A) having a flow start temperature of 100 to 220 ° C. according to the present invention can be produced by a conventionally known method using conventionally known monomers, for example, an aromatic dihalide compound and an aromatic It can be produced by condensation polymerization of a group dihydroxy compound.
[0030]
The aromatic polyether (B) having a proton acid group of the present invention is an aromatic polyether having a repeating structural unit having a proton acid group. Here, as long as the aromatic polyether (B) having a proton acid group has a repeating structural unit having a proton acid group, the aromatic polyether (B) may contain another repeating structural unit having no proton acid group. . That is, the aromatic polyether may be a random or block copolymer comprising a repeating structural unit having a protonic acid group and a repeating structural unit having no protonic acid group.
[0031]
Here, specific examples of the proton acid group in the present invention include sulfonic acid groups, carboxylic acid groups, and phosphonic acid groups represented by the following formulas (6) to (8). Among them, a sulfonic acid group represented by the following formula (6) is preferable, and a sulfonic acid group represented by n = 0 and Y = H in the following formula (6) is particularly preferable.
-CnH2n-SOThreeY (n is an integer from 0 to 10, Y is H, Na or K) (6)
-CnH2n-COOY (n is an integer from 0 to 10, Y is H, Na or K) (7)
-CnH2n-POThreeY2(n is an integer from 0 to 10, Y is H, Na or K) (8)
[0032]
Although there is no restriction | limiting in particular in the proton acid group content of the aromatic polyether (B) which has a proton acid group of this invention, Preferably, it is 200-5000 g / mol as an ion exchange group equivalent, More preferably, it is 200-1000 g / mol. Here, the ion exchange group equivalent is defined by the resin weight per mole of proton acid groups and means the reciprocal of the number of moles of proton acid groups per unit weight of the resin. That is, the smaller the ion exchange group equivalent, the greater the amount of proton acid groups per unit weight of the resin. When the ion exchange group equivalent is too small, the solubility of the resin in water is extremely high, making it difficult to produce and purify the resin (removal of inorganic acids and inorganic salts from the resin). When the ion exchange group equivalent is too large, a high-power fuel cell with low proton conductivity cannot be obtained.
[0033]
More specifically, the aromatic polyether (B) having a proton acid group of the present invention is preferably an aromatic polyether having a repeating structural unit represented by the following general formula (4).
Embedded image
Figure 0004360113
[In formula (4), X1~ XFiveAt least one of them is a protonic acid group, the other is independently H or a protonic acid group, and AThreeAnd AFourAre each independently a direct bond, -CH2-, -C (CHThree)2-, -C (CFThree)2-, -O-, -SO2-Or -CO-, j, k and l each independently represent 0 or 1, and the hydrogen atom of the aromatic ring is -CmH2m + 1(M is an integer of 1 to 10), protonic acid group, -Cl, -F, -CFThreeAlternatively, it may be substituted with -CN. ]
[0034]
Among the aromatic polyethers (B) having a proton acid group of the present invention, aromatic polyethers having a repeating structural unit represented by the following general formula (5) are particularly preferable.
Embedded image
Figure 0004360113
[In Formula (5), X1Or X2At least one of them is a protonic acid group, the other is independently H or a protonic acid group, and AThreeIs -SO2-Or -CO-, AFourIs a direct bond, -CH2-, -C (CHThree)2-, -C (CFThree)2-, -O-, -SO2-Or -CO-, k and l each independently represent 0 or 1, and the hydrogen atom of the aromatic ring is -CmH2m + 1(M is an integer of 1 to 10), protonic acid group, -Cl, -F, -CFThreeAlternatively, it may be substituted with -CN. ]
[0035]
The aromatic polyether having a repeating structural unit represented by the formula (4) or (5) and having no proton acid group is excellent in proton conductivity, and is further hydrolyzed by hot water, acid, alkali, alcohol or the like. Proton conductivity is maintained for a long time even when used in a fuel cell because it is less susceptible to degradation and denaturation due to radical attack. Even in the case of a polymer having a proton acid group, polyolefins having an aliphatic chain in the main chain, aliphatic polyethers, aliphatic polyamides, polycarbonates susceptible to hydrolysis, aromatic polyamides, Polyimides and the like are not preferable because they are denatured when used in a fuel cell and the strength and proton conductivity are lowered.
[0036]
In addition, the aromatic polyether having the repeating structural unit represented by the formula (5) has a protonic acid group as an electron withdrawing group.2Since it is bonded to an aromatic ring directly bonded to-or -CO-, it has a stronger binding force than a protonic acid group bonded to another aromatic ring and is not easily decomposed or dissociated. In addition, when the existing aromatic polyether is sulfonated with fuming sulfuric acid or the like, -SO which is an electron withdrawing group is used.2It is known that a sulfonic acid group is introduced into an aromatic ring not directly bonded to-or -CO-.
[0037]
The aromatic polyether (B) having a protonic acid group of the present invention can be produced by a conventionally known method using conventionally known monomers, such as an aromatic dihalide compound having a protonic acid group and a protonic acid group. Aromatic dihalide compounds that do not have protons and aromatic dihydroxy compounds that do not have protonic acid groups, or aromatic dihydroxy compounds that do not have protonic acid groups, aromatic dihydroxy compounds that have protonic acid groups, and protonic acid groups It can be produced by condensation polymerization of an aromatic dihydroxy compound. Further, a conventionally known aromatic polyether can be obtained by sulfonated or alkylsulfonated by a conventionally known method.
[0038]
The monomers that can be used in the production of the aromatic polyether (A) having a flow initiation temperature of 100 to 220 ° C. and the aromatic polyether (B) having a proton acid group are not particularly limited, but are representative. Specific examples are illustrated below.
[0039]
Examples of the aromatic dihalide compound include 4,4′-difluorobenzophenone, 3,3′-difluorobenzophenone, 4,4′-dichlorobenzophenone, 3,3′-dichlorobenzophenone, 4,4′-difluorodiphenylsulfone, 4,4′-dichlorodiphenylsulfone, 1,4-difluorobenzene, 1,3-difluorobenzene, 2,6-dichlorobenzonitrile, 4,4′-difluorobiphenyl, 3,3′-dibromo-4,4 ′ -Difluorobiphenyl, 4,4'-difluorodiphenylmethane, 4,4'-dichlorodiphenylmethane, 4,4'-difluorodiphenyl ether, 2,2-bis (4-fluorophenyl) propane, 2,2-bis (4-chlorophenyl) ) Propane, α, α'-bis (4-fluoropheny) ) -1,4-diisopropylbenzene, 3,3′-dimethyl-4,4′-difluorobenzophenone, 3,3′-diethyl-4,4′-difluorobenzophenone, 3,3 ′, 5,5′- Tetramethyl-4,4′-difluorobenzophenone, 3,3′-dimethyl-4,4′-dichlorobenzophenone, 3,3 ′, 4,4′-tetramethyl-5,5′-dichlorobenzophenone, 3,3 '-Dimethyl-4,4'-difluorodiphenylsulfone, 3,3'-dimethyl-4,4'-dichlorodiphenylsulfone, 2,5-difluorotoluene, 2,5-difluoroethylbenzene, 2,5-difluoro-p -Xylene etc. are mentioned, It can use individually or in mixture of 2 or more types.
[0040]
Examples of the aromatic dihydroxy compound include hydroquinone, resorcin, catechol, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, 4, 4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 2,2-bis (4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (4 -Hydroxyphenyl) propane, 1,4-bis (4-hydroxyphenyl) benzene, α, α'-bis (4-hydroxyphenyl) -1,4-dimethylbenzene, α, α'-bis (4-hydroxyphenyl) ) -1,4-diisopropylbenzene, α, α′-bis (4-H Loxyphenyl) -1,3-diisopropylbenzene, 4,4′-dihydroxybenzophenone, 1,4-bis (4-hydroxybenzoyl) benzene, 3,3-difluoro-4,4′-dihydroxybiphenyl, 2-methyl Hydroquinone, 2-ethylhydroquinone, 2-isopropylhydroquinone, 2-octylhydroquinone, 2,3-dimethylhydroquinone, 2,3-diethylhydroquinone, 2,5-dimethylhydroquinone, 2,5-diethylhydroquinone, 2,5-diisopropyl Hydroquinone, 2,6-dimethylhydroquinone, 2,3,5-trimethylhydroquinone, 2,3,5,6-tetramethylhydroquinone, 3,3′-dimethyl-4,4′-dihydroxybiphenyl, 3,3 ′, 5,5'-tetramethyl -4,4'-dihydroxybiphenyl, 3,3'-dimethyl-4,4'-dihydroxydiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane, 3,3', 5,5′-tetraethyl-4,4′-dihydroxydiphenylmethane, 3,3′-dimethyl-4,4′-dihydroxydiphenyl ether, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenyl ether 3,3′-dimethyl-4,4′-dihydroxydiphenyl sulfide, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenyl sulfide, 3,3′-dimethyl-4,4 ′ -Dihydroxydiphenylsulfone, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenylsulfone, 2 2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-ethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane , Α, α′-bis (3-methyl-4-hydroxyphenyl) -1,4-diisopropylbenzene, α, α′-bis (3,5-dimethyl-4-hydroxyphenyl) -1,4-diisopropylbenzene , Α, α′-bis (3-methyl-4-hydroxyphenyl) -1,3-diisopropylbenzene, α, α′-bis (3,5-dimethyl-4-hydroxyphenyl) -1,3-diisopropylbenzene Etc., and can be used alone or in admixture of two or more.
[0041]
Examples of the aromatic dihalide compound having a proton acid group include sulfonated products and alkylsulfonated products of the above-mentioned aromatic dihalide compounds, 2,5-dichlorobenzoic acid, 2,5-difluorobenzoic acid, and 5,5′-carbonyl. Bis (2-fluorobenzoic acid), 5,5′-sulfonylbis (2-fluorobenzoic acid), 2,5-dichlorophenylphosphonic acid, 5,5′-carbonylbis (2-fluorobenzenephosphonic acid) and alkalis thereof A metal salt etc. can be mentioned.
[0042]
Examples of the aromatic dihydroxy compound having a proton acid group include sulfonated products and alkylsulfonated products of the above aromatic dihydroxy compounds, 2,5-dihydroxybenzoic acid, 2,5-dihydroxyterephthalic acid, and 5,5′-methylene. Examples thereof include aromatic dihydroxy compounds having a phosphate group such as disalicylic acid, 5,5′-thiodisalicylic acid, and 2,5-dihydroxyphenylphosphonic acid, and alkali metal salts thereof.
[0043]
In addition, the aromatic dihalide compound and the sulfonated product of the aromatic dihydroxy compound, the alkyl sulfonated product, the aromatic dihalide compound and the aromatic dihydroxy compound, Macromol. Chem. Phys., With a known sulfonating agent such as fuming sulfuric acid. 199, 1421 (1998).
[0044]
The aromatic polyether (B) having a protonic acid group of the present invention can be obtained by sulfonating and alkylsulfonating a conventionally known aromatic polyether by a conventionally known method in addition to the above-mentioned method. it can. Specific examples of the method for sulfonating the aromatic polyether include known sulfonating agents such as concentrated sulfuric acid (Japanese Patent Laid-Open No. 57-25328), fuming sulfuric acid (Japanese Patent Publication No. 11-502245), chlorosulfone. Examples include sulfonation with acid (Journal of Applied Polymer Science, 70, 477 (1998)), methanesulfonic acid (Macromolecules, 27 6267 (1994)), and the like. Specific examples of the method for alkyl sulfonation of aromatic polyether include a method using a sultone compound (J. Amer. Chem. Soc., 76, 5357 (1954)), and replacing hydrogen in the aromatic ring of the resin with lithium. Then, a method of converting to a halogenoalkyl group with a dihalogenoalkane and converting it to a sulfoalkyl group, a method of introducing a halogenobutyl group using a tetramethylenehalogenium ion, and then converting a halogen to a sulfonic acid group, etc. . The aromatic polyether having a protonic acid group obtained by these methods can remove acids and salts by purification using water, aqueous hydrochloric acid, an organic solvent, or the like. Here, the aromatic polyether that can be used is not particularly limited, but representative examples include polyether ketone, polyether ether ketone, polyether ketone ketone, polyether sulfone, polysulfone, polyphenylene oxide, and the like. An aromatic polyether having a flow start temperature of 100 to 220 ° C.
[0045]
The molecular weight of the aromatic polyether (A) having a flow start temperature of 100 to 220 ° C. according to the present invention is not particularly limited, but the reduced viscosity (concentration 0.5 g / dl, measured at 35 ° C.) is 0.3. The range of -3.0 dl / g is preferable, and the range of 0.5-1.0 dl / g is particularly preferable. If the molecular weight is too low, the resin strength is low and sufficient adhesive strength may not be obtained. On the other hand, if the molecular weight is too high, the melt flow of the resin becomes insufficient, and sufficient adhesive strength may not be obtained.
[0046]
Although there is no restriction | limiting in particular in the molecular weight of aromatic polyether (B) which has a protonic acid group concerning this invention, 0.3-3.0dl / is made into reduced viscosity (concentration 0.5g / dl, measured at 35 degreeC). The range of g is preferable, and the range of 0.5 to 2.0 dl / g is particularly preferable. If the molecular weight is too low, the resin strength is low, and the film may break due to shrinkage and expansion during drying and moisture absorption. On the other hand, if the molecular weight is too high, it is difficult to dissolve in a solvent, and it may be difficult to perform film formation by mixing operation or casting to obtain a composition.
[0047]
There is no restriction | limiting in particular in the form of the proton conductive resin composition concerning this invention, Aromatic polyether (B) with the powder of aromatic polyether (A) whose flow start temperature is 100-220 degreeC, and a proton acid group ), A film or molded product obtained by heating and compressing the mixture, a varnish in which each aromatic polyether is dissolved or dispersed in a solvent, and a film obtained from the varnish. . Here, the form of the film or molded product may be a film or molded product in which each aromatic polyether is compatible to form a uniform phase, or may be a phase-separated film or molded product.
[0048]
In addition, when using a solvent in preparing the composition of the present invention, the solvent is not particularly limited, and examples thereof include water, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, and butanol, toluene, xylene, and the like. Hydrocarbons, halogenated hydrocarbons such as methyl chloride and methylene chloride, ethers such as dichloroethyl ether, 1,4-dioxane and tetrahydrofuran, fatty acid esters such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone In addition to these, aprotic polar solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and dimethyl carbonate can be used alone or in combination.
[0049]
The proton conducting membrane according to the present invention is a heat-sealable proton conducting membrane comprising the proton conducting resin composition of the present invention. The proton conducting membrane of the present invention can be obtained by hot pressing of the proton conducting resin composition of the present invention or casting from a solution. Here, the proton conductive membrane of the present invention includes not only a self-supporting membrane but also a coating film in close contact with a base material, an electrode membrane, a proton conductive membrane having no heat-fusibility, and the like. Here, although there is no restriction | limiting in particular in the thickness of the proton conductive film concerning this invention, when it is a self-supporting film | membrane, it is preferable that it is 10-100 micrometers in the case of being a coating film.
[0050]
The proton conductive membrane according to the present invention only needs to contain the proton conductive resin composition of the present invention, and is a conductive material having electrical conductivity, a hydrogen oxidation reaction, a catalyst that promotes oxygen reduction reaction, strength and water absorption. It may be combined with an inorganic filler for adjusting expansion, other polymers, a protonic acid group-containing fluorine-based polymer for improving proton conductivity and adhesion to electrodes, and the like. In the proton conductive membrane of the present invention, the ratio of the proton conductive resin composition of the present invention to other materials is not particularly limited, but the ratio of the proton conductive resin composition of the present invention is 20 to 100 wt%. It is preferable because both proton conductivity and heat-fusibility can be achieved.
[0051]
As the conductive material, any conductive material may be used, and various metals, carbon materials, and the like can be used. Examples thereof include carbon black such as acetylene black, activated carbon, graphite and the like, and these are used alone or mixed and used in the form of powder or sheet.
[0052]
The catalyst is not particularly limited as long as it promotes hydrogen oxidation reaction and oxygen reduction reaction. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, platinum, Rhodium or an alloy thereof.
[0053]
There are no particular limitations on the inorganic filler and other polymers for adjusting the strength and water absorption expansion, and examples thereof include fibers made of metal, glass and carbon, and porous films of polyolefin and polyimide.
[0054]
The proton conducting membrane according to the present invention is a proton conducting membrane that can be heat-sealed, and is heated and pressurized at 100 to 220 ° C., preferably 140 to 200 ° C., 0.1 to 100 MPa, preferably 1 to 20 MPa. Can be heat-sealed with the material. Here, when the heating temperature is too low, the aromatic polyether that plays the role of fusion does not flow and cannot be fused, which is not preferable. On the other hand, when the heating temperature is too high, the proton acid group is eliminated from the aromatic polyether having a proton acid group responsible for proton conduction.
[0055]
In addition, there is no restriction | limiting in particular in the other member which is an adherend in heat sealing | fusion, In addition to the proton conductive film of this invention, conventionally well-known polymer electrolyte membrane, the above-mentioned electrically conductive material and a catalyst, and an electrically conductive material and a catalyst are conventional. It can be heat-sealed with an electrode hardened with a known polymer electrolyte. Among these, when the heat fusion partner member is the proton conductive membrane of the present invention, it is particularly preferable because it is extremely firmly fused. Here, the conventionally known polymer electrolyte is a polymer having a protonic acid group capable of dissociating into ions, such as a fluorine polymer, a polyetherketone polymer, a polyethersulfone polymer, a polyphenylenesulfide. Examples include a polymer, a polyimide polymer, a polyamide polymer, an epoxy polymer, a polyolefin polymer, and the like, in which a proton acid group is added. Examples of the fluoropolymer electrolyte include “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass, “Aciplex” manufactured by Asahi Kasei, and “Dow membrane” manufactured by Dow.
[0056]
There is no particular limitation on the adhesive strength of the proton conducting membrane according to the present invention by thermal fusion, and it depends on the type and amount of aromatic polyether that plays the role of contained fusion, the type of mating member, the fusion temperature and pressure, etc. For this reason, although it cannot be generally stated, it is preferable to have an adhesive strength that does not peel at least when the adhesive is repeatedly immersed in water and dried.
[0057]
By using the proton conductive resin composition and / or proton conductive membrane of the present invention, a fuel cell membrane-electrode assembly having excellent reliability can be obtained. The membrane-electrode composite using the proton conductive resin composition and / or proton conductive membrane of the present invention is less prone to peeling of the adhesive interface due to changes in temperature and humidity associated with the start and stop of the fuel cell, and has battery characteristics. There is little decrease.
[0058]
There is no restriction | limiting in particular in the manufacturing method of the membrane-electrode complex using the proton conductive resin composition and / or proton conductive membrane of this invention, For example, the following methods can be illustrated.
1) The proton conductive resin composition and / or proton conductive membrane of the present invention is sandwiched between two positive and negative electrodes made of a substrate such as carbon paper, a conductive material, a catalyst, and a polymer electrolyte, and heat-sealed.
2) The proton conductive resin composition of the present invention or its varnish is thermally fused or coated on the surface of a conventionally known polymer electrolyte membrane, and is thermally fused by sandwiching it between two positive and negative electrodes.
3) The proton conductive resin composition of the present invention or the varnish thereof is heat-sealed or coated on the surface of two positive and negative electrodes, and is heat-sealed with a conventionally known or sandwiched proton conductive membrane of the present invention.
4) The proton conductive resin composition of the present invention or its varnish is thermally fused or applied to the surfaces of two positive and negative electrodes and thermally fused.
5) The proton conductive resin composition of the present invention containing a conductive material, a catalyst, or the like or its varnish is thermally fused or applied to a substrate such as carbon paper to produce two positive and negative electrodes, Heat fusion is performed with the proton conducting membrane of the present invention interposed therebetween.
6) The proton conductive resin composition of the present invention or its varnish containing a conductive material, a catalyst and the like is heat-sealed or coated on both surfaces of the proton conductive film of the present invention, or a base material such as carbon paper. And heat-sealing.
[0059]
The proton conductive resin composition according to the present invention can be heat-sealed and has excellent proton conductivity even after heat-sealing, and is suitable as a proton conductive material for fuel cells. More specifically, the composition can be fused by hot pressing at a temperature lower than the decomposition (desorption of proton acid group) temperature of the aromatic polyether having a proton acid group. Since there is no desorption, it has excellent proton conductivity even after fusing. Furthermore, the composition has high adhesive strength, and when used as a proton conductive material for a fuel cell, the interface between the membrane and the electrode or the catalyst and the binder is less likely to be peeled off due to fluctuations in humidity and temperature. A fuel cell having excellent properties can be obtained.
[0060]
By using the proton-conductive resin composition and / or the membrane-electrode assembly using the proton conductive membrane of the present invention, the battery characteristics are hardly deteriorated even when the battery is repeatedly started and stopped, and the fuel has excellent reliability. A battery can be provided.
[0061]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited at all by this.
[0062]
Test methods of various tests in the examples are as follows.
(1) Reduced viscosity (ηinh)
After 0.50 g of aromatic polyether was dissolved in 100 ml of solvent, it was measured with an Ubbelohde viscometer at 35 ° C.
(2) 5% weight reduction temperature, weight reduction start temperature
The measurement was performed at a temperature rising rate of 10 ° C./min using DTA-TG (TG-DTA2000 manufactured by Mac Science) in the air.
(3) Glass transition temperature
It measured to 400 degreeC with the temperature increase rate of 10 degree-C / min by the differential scanning calorimetry (DSC, DSC3100 by a Mac Science company).
[0063]
(4) Flow start temperature (FST)
Using a Koka flow tester (manufactured by Shimadzu Corp., Koka Flow Tester CFT500D), a sample was placed in a cylinder equipped with a die having a hole diameter of 1.0 mm and a hole length of 10.0 mm, and the piston was applied at 9.8 MPa. When heated at a heating rate of 5 ° C./min with pressure, the temperature at which the sample started to flow out of the die and the piston started to move was measured.
(5) Presence or absence of heat-fusibility
Two 40 × 40 mm square film-form proton conductive resin compositions (proton conductive membranes) were heated and compressed, and the resulting film was immersed in pure water (room temperature for 2 hours) and dried (120 ° C. for 2 hours) four times. Judgment was made based on the presence or absence of peeling when repeated.
[0064]
(6) Ion exchange group equivalent
The proton conductive resin composition (proton conductive membrane) was precisely weighed in a glass container that could be sealed, and an excess amount of calcium chloride aqueous solution was added thereto and stirred overnight. The hydrogen chloride generated in the system was titrated with a 0.1N sodium hydroxide standard aqueous solution using a phenolphthalein indicator and calculated.
(7) Ionic conductivity (90 ° C, film thickness direction)
A sample film wetted with 1M sulfuric acid2Was sandwiched between two measuring cells each having a platinum electrode attached to one side of a 100 μm-thick PET film having pores, and the pores were filled with 1 M sulfuric acid water. This was installed in a 90 ° C. thermostat and the resistance value was measured. The resistance value of the sample film alone was determined from the difference from the resistance value when the sample film was not sandwiched, and the ionic conductivity (90 ° C., film thickness direction) was calculated. The film thickness necessary for calculating the ionic conductivity was measured using a micrometer in a dry state.
[0065]
(Synthesis Example 1)
In a flask equipped with a nitrogen introduction tube, a thermometer, a separator equipped with a separator, and a stirrer, 21.82 g (0.10 mol) of 4,4′-difluorobenzophenone and 10.57 g (0.096 mol) of resorcinol. And 11.02 g (0.104 mol) of anhydrous sodium carbonate was precisely weighed. 86.5 g of N-methyl-2-pyrrolidone and 1.8 g of pure water were added thereto, and the temperature was raised to 200 ° C. over 2 hours while stirring through nitrogen gas, followed by reaction for 6 hours. At this time, the distilled water was recovered from the separator. The obtained viscous reaction mass was cooled and diluted with 80 g of N-methyl-2-pyrrolidone, and then the by-product salt was removed by Celite filtration. This polymer solution is discharged into 500 ml of a water-methanol (5/5, wt / wt) mixed solution, and the precipitated polymer is collected by filtration, washed with a 5 wt% hydrochloric acid aqueous solution, pure water, and methanol, and then dried at 100 ° C. for 4 hours. As a result, 25.8 g (yield 90%) of polyaryl ether ketone powder was obtained.
The resulting polyaryletherketone powder has a reduced viscosity of 0.56 dl / g (measured with a p-chlorophenol / phenol (9/1, wt / wt) mixture), a glass transition temperature of 118 ° C., 5% weight loss The temperature was 539 ° C., and the flow start temperature was 175 ° C.
[0066]
(Synthesis Example 2)
In the same manner as in Synthesis Example 1, except that resorcin 5.28 g (0.048 mol) and hydroquinone 5.28 g (0.048 mol) were used instead of resorcin 10.57 g (0.096 mol), polyaryl ether ketone powder 26.5 g (yield 93%) was obtained.
The resulting polyaryletherketone powder has a reduced viscosity of 0.52 dl / g (measured with a p-chlorophenol / phenol (9/1, wt / wt) mixture), a glass transition temperature of 124 ° C., 5% weight loss The temperature was 533 ° C. and the flow starting temperature was 180 ° C.
[0067]
(Synthesis Example 3)
Instead of 10.57 g (0.096 mol) of resorcin, use 11.01 g (0.10 mol) of hydroquinone, and use 259.5 g of N-methyl-2-pyrrolidone instead of 86.5 g of N-methyl-2-pyrrolidone. In the same manner as in Synthesis Example 1, the reaction was performed for 6 hours. In addition, the polymer precipitated during the reaction, and the solid became a slurry. After completion of the reaction, the solid was filtered, the polymer and by-product salts were collected, washed with pure water, 5 wt% aqueous hydrochloric acid, pure water, and acetone, and then dried at 100 ° C. for 4 hours to obtain polyether ether ketone powder 28. 2 g (yield 98%) was obtained.
The resulting polyether ether ketone powder has a reduced viscosity of 0.86 dl / g (measured with a p-chlorophenol / phenol (9/1, wt / wt) mixture), a glass transition temperature of 143 ° C., and a melting point of 334 ° C. The 5% weight loss temperature was 530 ° C, and the flow start temperature was 340 ° C.
[0068]
(Synthesis Example 4)
In a flask equipped with a nitrogen inlet tube, a thermometer, a separator filled with toluene, and a stirrer, 28.72 g (0.10 mol) of 4,4′-dichlorodiphenylsulfone and 10.57 g of resorcin (0.096 mol) and 11.02 g (0.104 mol) of anhydrous sodium carbonate were precisely weighed. N-methyl-2-pyrrolidone (97.3 g) and toluene (10.8 g) were added thereto, and the mixture was heated to 195 ° C. over 2 hours with stirring through nitrogen gas, and then reacted for 6 hours. The reaction was performed under toluene reflux, and the distilled water was separated and collected by a separator. The obtained viscous reaction product was cooled, diluted with 80 g of N-methyl-2-pyrrolidone, and then duplicated salt was removed by Celite filtration. The polymer solution was discharged into 500 ml of methanol, and the precipitated polymer was collected by filtration, washed with a 5 wt% hydrochloric acid aqueous solution, pure water, and methanol, and then dried at 100 ° C. for 4 hours to obtain 30.8 g of a polyethersulfone powder (yield 95). %).
The resulting polyaryl ether sulfone powder has a reduced viscosity of 0.71 dl / g (measured with N-methyl-2-pyrrolidone), a glass transition temperature of 167 ° C., a 5% weight loss temperature of 518 ° C., and a flow initiation temperature of 215 ° C.
[0069]
(Synthesis Example 5)
40.7 g of polysulfone powder (yield 92%) was obtained in the same manner as in Synthesis Example 4 except that 21.92 g (0.096 mol) of bisphenol A was used instead of 10.57 g (0.096 mol) of resorcin.
The resulting polysulfone powder had a reduced viscosity of 0.85 dl / g (measured with N-methyl-2-pyrrolidone), a glass transition temperature of 190 ° C., a 5% weight loss temperature of 510 ° C., and a flow initiation temperature of 255 ° C. It was.
[0070]
(Synthesis Example 6)
Instead of 28.72 g (0.10 mol) of 4,4′-dichlorodiphenylsulfone, 17.20 g (0.10 mol) of 2,6-dichlorobenzonitrile was used, and 97.3 g of N-methyl-2-pyrrolidone and toluene were used. 19.0 g of polyethernitrile powder (yield 91%) was obtained in the same manner as in Synthesis Example 4 except that 62.8 g of N-methyl-2-pyrrolidone and 7.0 g of toluene were used instead of 10.8 g. .
The resulting polyether nitrile powder has a reduced viscosity of 0.50 dl / g (measured with N-methyl-2-pyrrolidone), a glass transition temperature of 142 ° C., a melting point of 337 ° C., and a 5% weight loss temperature of 490 ° C. The starting temperature was 350 ° C.
[0071]
(Synthesis Example 7)
Instead of 10.57 g (0.096 mol) of resorcin, 5.29 g (0.048 mol) of resorcin and 10.96 g (0.048 mol) of bisphenol A were used. 97.3 g of N-methyl-2-pyrrolidone and 10.8 g of toluene In the same manner as in Synthesis Example 4 except that 80.8 g of N-methyl-2-pyrrolidone and 9.0 g of toluene were used in place of, 25.2 g of polyaryl ether nitrile powder (yield 94%) was obtained.
The resulting polyaryl ether nitrile powder has a reduced viscosity of 0.63 dl / g (measured with N-methyl-2-pyrrolidone), a glass transition temperature of 160 ° C., a 5% weight loss temperature of 482 ° C., and a flow start temperature of 210 ° C.
[0072]
(Synthesis Example 8)
Instead of 10.57 g (0.096 mol) of resorcin, 21.92 g (0.048 mol) of bisphenol A was used and 97.3 g of N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone instead of 10.8 g of toluene 30.8 g of polyaryl ether nitrile powder (yield 91%) was obtained in the same manner as in Synthesis Example 4 except that 98.2 g and 10.9 g of toluene were used.
The resulting polyarylethernitrile powder has a reduced viscosity of 0.69 dl / g (measured with N-methyl-2-pyrrolidone), a glass transition temperature of 170 ° C., a 5% weight loss temperature of 473 ° C., and a flow initiation temperature of 225. ° C.
[0073]
(Synthesis Example 9)
Into a flask equipped with a nitrogen inlet tube, a thermometer, a cooler equipped with a separator filled with toluene, and a stirrer, 84.46 g of 0,3,3′-carbonylbis (sodium 6-fluorobenzenesulfonate) (0 .20 mol), 51.27 g (0.20 mol) of bis (3-methyl-4hydroxyphenyl) methane and 33.17 g (0.24 mol) of anhydrous potassium carbonate were precisely weighed. Dimethyl sulfoxide (510.9 g) and toluene (56.8 g) were added thereto, and the mixture was heated to 176 ° C. over 2 hours while stirring through nitrogen gas, and then reacted for 10 hours. The reaction was performed under toluene reflux, and the distilled water was separated and collected by a separator. The resulting viscous reaction product was diluted with 300 g of dimethyl sulfoxide, and then the by-product salt was removed by Celite filtration. This polymer solution is discharged into 10 L of acetone, and the precipitated polymer is collected by filtration, washed with acetone, dried at 150 ° C. for 4 hours, and 112.1 g of polyaryl ether ketone powder having protonic acid groups (sodium sulfonate groups). (Yield 88%) was obtained.
The polyaryletherketone powder obtained had a reduced viscosity of 0.91 dl / g (measured with dimethyl sulfoxide) and a glass transition temperature of 250 ° C. or higher (not detected by measurement up to 250 ° C.).
[0074]
(Synthesis Example 10)
Instead of 84.46 g (0.20 mol) of 3,3′-carbonylbis (sodium 6-fluorobenzenesulfonate), 42.23 g (0.003 g) of 3,3′-carbonylbis (sodium 6-fluorobenzenesulfonate). 10mol) and 4,4'-difluorobenzophenone (21.82 g, 0.10 mol), except that 510.9 g of dimethyl sulfoxide and 56.8 g of toluene were replaced with 429.3 g of dimethyl sulfoxide and 47.7 g of toluene. In the same manner as in Example 9, 96.4 g (yield 90%) of polyaryl ether ketone powder having a protonic acid group (sodium sulfonate group) was obtained.
The polyaryletherketone powder obtained had a reduced viscosity of 1.25 dl / g (measured with dimethyl sulfoxide) and a glass transition temperature of 250 ° C. or higher (not detected by measurement up to 250 ° C.).
[0075]
(Synthesis Example 11)
Instead of 84.46 g (0.20 mol) of 3,3′-carbonylbis (sodium 6-fluorobenzenesulfonate), 49.13 g (0.10 mol) of 3,3′-sulfonylbis (sodium 6-chlorobenzenesulfonate) ) And 4,4′-dichlorodiphenyl sulfone (28.72 (0.10 mol)), except that dimethyl sulfoxide (510.9 g) and toluene (56.8 g) were replaced with dimethyl sulfoxide (402.0 g) and toluene (44.7 g). In the same manner as in Example 9, 87.7 g (yield 87%) of polyaryl ether sulfone powder having a protonic acid group (sodium sulfonate group) was obtained.
The resulting polyaryl ether sulfone powder had a reduced viscosity of 1.07 dl / g (measured with dimethyl sulfoxide) and a glass transition temperature of 250 ° C. or higher (not detected by measurement up to 250 ° C.).
[0076]
Example 1
2 g of the polyaryl ether ketone powder obtained in Synthesis Example 1 and 2 g of the polyaryl ether ketone having a protonic acid group (sodium sulfonate group) obtained in Synthesis Example 9 were dissolved by heating in N-methyl-2-pyrrolidone. A slightly turbid varnish with a polymer concentration of 10% was obtained. The obtained varnish was cast on a glass substrate using blades having respective spacer thicknesses, dried by heating from room temperature to 200 ° C. over 2 hours under nitrogen ventilation, and two types of slightly different turbidity were obtained. A film was obtained. Here, for convenience, a film having a thickness of 30 μm is referred to as a film A, and a film having a thickness of 50 μm is referred to as a film B.
[0077]
The obtained film A and film B were immersed in a 2N sulfuric acid aqueous solution and pure water for 1 day to conduct proton exchange of sodium sulfonate groups, and film C (thickness before proton exchange 30 μm) and film D (thickness before proton exchange) Two proton conductive membranes having a thickness of 50 μm) were obtained.
[0078]
A test piece of 40 × 40 mm was cut out from film C, two sheets were stacked in an undried and swollen state, a spacer having a thickness of 50 μm was placed around it, and hot pressing was performed at 200 ° C. and 10 MPa for 5 minutes. A film E having a thickness of 50 μm adhered firmly was obtained. The film E was not peeled even when the pure water immersion (room temperature 2 hours) and drying (120 ° C. 2 hours) were repeated four times.
[0079]
Table 1 shows the ion exchange group equivalent and ion conductivity (90 ° C., film thickness direction) of the film E (thickness 50 μm) obtained by thermal fusion and the film D (thickness 50 μm) which is not thermally fused. Compared. It can be seen that the ion-exchange group equivalent of film E is the same as that of film D, and no sulfonic acid group is eliminated. The ionic conductivity of film E is slightly inferior to that of film D, but this is due to the resistance of the adhesive interface.
[0080]
(Example 2)
Example 1 except that 0.8 g of the polyaryl ether ketone powder obtained in Synthesis Example 1 and 3.2 g of the polyaryl ether ketone having a protonic acid group (sodium sulfonate group) obtained in Synthesis Example 10 were used. Similarly, films A to E were produced. The obtained film E was firmly adhered and was not peeled off in the same water immersion and drying treatment as in Example 1.
[0081]
Table 1 shows the ion exchange group equivalent and ion conductivity (90 ° C., film thickness direction) of the film E (thickness 50 μm) obtained by thermal fusion and the film D (thickness 50 μm) which is not thermally fused. Indicates. It can be seen that the ion-exchange group equivalent of film E is the same as that of film D, and no sulfonic acid group is eliminated. Although the ionic conductivity of the film E is slightly inferior to that of the film D, it can be seen that the degree of decrease is small and the resistance of the adhesive interface is small.
[0082]
(Comparative Example 1)
Films A to E were produced in the same manner as in Example 1 except that only 4 g of the polyaryletherketone having a protonic acid group (sodium sulfonate group) obtained in Synthesis Example 10 was used. The obtained film E was not adhered and peeled off immediately after being immersed in water.
[0083]
Table 1 shows the ion exchange group equivalent and ion conductivity (90 ° C.) of film E (thickness 50 μm, two films that are not peeled and in close contact with each other) and film D (thickness 50 μm) that is not thermally fused. , Film thickness direction). It can be seen that the ion-exchange group equivalent of film E is the same as that of film D, and no sulfonic acid group is eliminated. It can be seen that the ionic conductivity of the film E is significantly lower than that of the film D and the resistance at the interface is remarkably large because the film E is not adhered.
[0084]
(Comparative Example 2)
The same as Example 1 except that 2.8 g of the polyaryl ether ketone powder obtained in Synthesis Example 1 and 1.2 g of the polyaryl ether ketone having a protonic acid group (sodium sulfonate group) obtained in Synthesis Example 9 were used. Thus, films A to E were produced. The obtained film E was firmly adhered and was not peeled off in the same water immersion and drying treatment as in Example 1.
[0085]
Table 1 shows the ion exchange group equivalent and ion conductivity (90 ° C., film thickness direction) of the film E (thickness 50 μm) obtained by thermal fusion and the film D (thickness 50 μm) which is not thermally fused. Indicates. It can be seen that the ion-exchange group equivalent of film E is the same as that of film D, and no sulfonic acid group is eliminated. It can be seen that the ionic conductivity of the film E is significantly lower than that of the film D and the resistance of the adhesive interface is remarkably large.
[0086]
(Examples 3-5, Comparative Examples 3-6)
Example 1 except that 0.8 g of the polyaryl ether ketone powder obtained in Synthesis Examples 2 to 8 and 3.2 g of polyaryl ether sulfone having a protonic acid group (sodium sulfonate group) obtained in Synthesis Example 11 were used. Films A to E were produced in the same manner as described above. Table 1 shows the ion exchange of the composition of the resin composition, the hot press temperature during the production of the film E, the film E (thickness 50 μm) obtained by thermal fusion and the film D (thickness 50 μm) which is not thermally fused. The group equivalent and ion conductivity (90 ° C., film thickness direction) are shown.
[0087]
[Table 1]
Figure 0004360113
[0088]
The film E obtained in Example 3 was firmly adhered, and was not peeled off in the same water immersion and drying treatment as in Example 1. It can be seen that the ion-exchange group equivalent of film E is the same as that of film D, and no sulfonic acid group is eliminated. Although the ionic conductivity of the film E is slightly inferior to that of the film D, it can be seen that the degree of decrease is small and the resistance of the adhesive interface is small.
[0089]
In Comparative Example 3, since the polyether ether ketone obtained in Synthesis Example 3 was not dissolved in N-methyl-2-pyrrolidone, a film was formed from a varnish using p-chlorophenol as a solvent. Further, two films C were hot-pressed at 200 ° C. and 300 ° C., but the two sheets were not fused. Film E (unfused) hot-pressed at 300 ° C. has turned dark brown, the ion exchange group equivalent has increased to over 2000 g / mol, and sulfonic acid group elimination has occurred. confirmed.
[0090]
In Example 4, since two films C were not fused at a hot press temperature of 200 ° C., a film E was produced at a hot press temperature of 220 ° C. The obtained film E was firmly adhered and was not peeled off in the same water immersion and drying treatment as in Example 1. The ion exchange group equivalent of film E was slightly increased from that of film D, and the sulfonic acid groups were slightly eliminated. Although the ionic conductivity of the film E was inferior to that of the film D, it maintained a sufficient ionic conductivity.
[0091]
In Comparative Example 4, since the two films C were not fused at a hot press temperature of 200 ° C., a film E was produced at a hot press temperature of 260 ° C. The obtained film E adhered firmly and did not peel off in the same water immersion and drying treatment as in Example 1, but was discolored to black. The ion exchange group equivalent of film E was greatly increased from that of film D, and the ionic conductivity was extremely small due to elimination of sulfonic acid groups.
[0092]
In Comparative Example 5, two films C were hot-pressed at 200 ° C. and 300 ° C., but the two sheets were not fused. Film E (unfused) hot-pressed at 300 ° C. has turned dark brown, the ion exchange group equivalent has increased to over 2000 g / mol, and sulfonic acid group elimination has occurred. confirmed.
[0093]
In Example 5, since two films C were not fused at a hot press temperature of 200 ° C., a film E was produced at a hot press temperature of 220 ° C. The obtained film E was firmly adhered and was not peeled off in the same water immersion and drying treatment as in Example 1. The ion exchange group equivalent of film E was slightly increased from that of film D, and the sulfonic acid groups were slightly eliminated. Although the ionic conductivity of the film E was inferior to that of the film D, it maintained a sufficient ionic conductivity.
[0094]
In Comparative Example 6, since two films C were not fused at a hot press temperature of 200 ° C., a film E was produced at a hot press temperature of 240 ° C. The obtained film E was firmly adhered and was not peeled off in the same water immersion and drying treatment as in Example 1. Since the ion exchange group equivalent of the film E increased from that of the film D, it was confirmed that the sulfonic acid group was eliminated, and the ionic conductivity was also slight.
[0095]
(Example 6)
The film D (proton conductive membrane having a sulfonic acid group) obtained in Example 2 is immersed in pure water to swell, and is sandwiched between commercially available fuel cell electrodes (air electrode and fuel electrode) shown below, and 200 ° C. Hot pressing was performed at 10 MPa for 5 minutes.
Air electrode: manufactured by ElectroChem
EC-20-10-7 Platinum supported electrode
Catalyst loading: Pt 1mg / cm2
Fuel electrode: manufactured by ElectroChem
EC-20-C-7RU platinum / ruthenium supported electrode
Catalyst loading: Pt 1mg / cm2, Ru 0.5g 1mg / cm2
The obtained electrolyte membrane-electrode composite was almost dry, and there was no peeling of the electrode.
[0096]
This electrolyte membrane-electrode composite was assembled into a fuel cell test cell (product number: EFC-05-REF) manufactured by ElectroChem, and the fuel cell of FIG. 1 was assembled. In this fuel cell, the electrolyte membrane 1 is sandwiched between the electrodes 2 and 2 ′ with the catalyst using the gasket 3, and the separator 4 is placed on the outside, and the whole is firmly fixed with the fastening bolt 7 using the pressure plate 5. The inner structure 6 is provided with a gas flow path.
[0097]
A 1M methanol aqueous solution was used as the fuel, and the cell characteristics of the fuel cell were measured using the fuel cell evaluation apparatus shown in FIG. In this evaluation apparatus, the fuel cell of FIG. 1 is incorporated in the fuel cell 8. In the upper line of the figure, the methanol aqueous solution is fed from the left side to the right side through 8 by the liquid feed pump 12. In the lower line, air is ventilated from the left side to the right side through 8 while being humidified by the humidifying bubbling tank 9. A methanol aqueous solution flows through the six flow paths on the fuel electrode side, and air flows through the six flow paths on the air electrode side. Each flow rate is controlled by the mass flow controller 11. The fuel cell is evaluated by measuring the voltage and current density generated by flowing an aqueous methanol solution and air with the electronic load 10.
[0098]
When measured under the following conditions using this evaluation apparatus, it was about 18.8 mW / cm.2Got the output.
Measurement conditions Fuel cell temperature: 80 ° C
Methanol aqueous solution concentration: 1M (3.2wt%)
Methanol aqueous solution flow rate: 2cc / min
Air pressure: 0.05 MPa
Air flow rate: 100 SCCM
Air bubbling tank temperature: 50 ° C
[0099]
(Comparative Example 7)
Using the film D (proton conductive membrane having a sulfonic acid group) obtained in Comparative Example 1, an attempt was made to produce an electrolyte membrane-electrode composite in the same manner as in Example 6, but the film and the electrode did not adhere. .
When this film and electrode were incorporated into a fuel cell test cell and the battery characteristics were measured in the same manner as in Example 6, it was about 3.6 mW / cm.2Got the output. Compared to Example 6, the obtained output is low despite the high ion conductivity of the film used, indicating that the resistance of the film-electrode interface is large in this Comparative Example.
[0100]
(Example 7)
The slightly turbid varnish with a polymer concentration of 10% obtained in Example 2 was cast on the same fuel cell electrode (air electrode and fuel electrode) used in Example 6, and from room temperature to 200 ° C. under nitrogen ventilation. It was heated and dried over 2 hours to prepare electrodes (air electrode and fuel electrode) having a coating film having a thickness of 30 μm made of a proton conductive resin composition. The obtained electrode was immersed in a 2N aqueous sulfuric acid solution and pure water for 1 day to perform proton exchange of sodium sulfonate groups. The air electrode and the fuel electrode having the obtained coating film (proton conductive membrane having a sulfonic acid group) were stacked in an undried state and hot-pressed at 200 ° C. and 10 MPa for 5 minutes to prepare an electrolyte membrane-electrode composite. The obtained composite was almost dry and there was no peeling of the electrode.
Using this electrolyte membrane-electrode composite, the cell characteristics of the fuel cell were measured in the same manner as in Example 6, and the result was about 22.0 mW / cm.2Got the output.
[0101]
【The invention's effect】
The present invention provides a proton-conductive aromatic hydrocarbon-based resin composition that can be heat-sealed and has excellent proton conductivity even after heat-sealing. The composition has high adhesive strength, and when used as a proton conductive material such as a proton conductive membrane of a fuel cell, the interface between the membrane and the electrode or the catalyst and the binder due to fluctuations in humidity and temperature is unlikely to occur. An efficient and reliable fuel cell can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross-sectional structure of a fuel cell.
FIG. 2 is a diagram showing a fuel cell evaluation apparatus used in the present invention.
[Explanation of symbols]
1 Electrolyte membrane
2, 2 'Catalyzed electrode
3 Gasket
4 Separator
5 Pressure plate
6 Gas flow path
7 Tightening bolt
8 Fuel cells
9 Humidifying bubbling tank
10 Electronic load
11 Mass flow controller
12 Liquid feed pump

Claims (3)

下記一般式(1)で表わされる繰り返し構造単位を有し、流動開始温度が100〜220℃である下記式(6)〜(8)
−C n 2n −SO 3 Y (nは0〜10の整数、YはH,NaまたはK)・・(6)
−C n 2n −COOY(nは0〜10の整数、YはH,NaまたはK)・・(7)
−C n 2n −PO 3 2 (nは0〜10の整数、YはH,NaまたはK)・・(8)
のいずれかで示されるプロトン酸基を有さない芳香族ポリエーテルであって、下記一般式(2)または(3)で表わされる繰り返し構造単位を有する芳香族ポリエーテル(A)60〜10重量%と、
下記一般式(5)で表わされる繰り返し構造単位を有する、−SO 3 H基を有する芳香族ポリエーテル(B)40〜90重量%からなることを特徴とするプロトン伝導性樹脂組成物。
Figure 0004360113
[式(1)中、A1はそれぞれ独立して−SO2−または−CO−であり、A2は−C(CH32−であり、g,h,iはそれぞれ独立して0または1を示す。]
Figure 0004360113
[式(2)および(3)中、A1は−SO2−または−CO−を示す。]
Figure 0004360113
[式(5)中、X1及びX2の少なくとも1つが−SO 3 であり、他はそれぞれ独立してHまたは−SO 3 であり、A3は−SO2−または−CO−、A4は−CH2−であり、k,lはそれぞれ独立して0または1を示し、芳香環の水素原子は、−Cm2m+1(mは1〜10の整数)に置換されていても良い。]
The following formulas (6) to (8) having a repeating structural unit represented by the following general formula (1) and having a flow start temperature of 100 to 220 ° C.
-C n H 2n -SO 3 Y ( n is an integer of 0, Y is H, Na or K) ·· (6)
-C n H 2n -COOY (n is an integer of 0, Y is H, Na or K) ·· (7)
-C n H 2n -PO 3 Y 2 (n is an integer of 0, Y is H, Na or K) ·· (8)
The aromatic polyether having no proton acid group represented by any one of the following, wherein the aromatic polyether (A) has a repeating structural unit represented by the following general formula (2) or (3): 60 to 10 wt. %When,
A proton conductive resin composition comprising 40 to 90% by weight of an aromatic polyether (B) having a —SO 3 H group , having a repeating structural unit represented by the following general formula (5).
Figure 0004360113
[In Formula (1), A 1 is independently —SO 2 — or —CO—, A 2 is —C (CH 3 ) 2 —, and g, h, and i are each independently 0. Or 1 is shown. ]
Figure 0004360113
[In the formulas (2) and (3), A 1 represents —SO 2 — or —CO—. ]
Figure 0004360113
[In the formula (5), at least one of X 1 and X 2 is —SO 3 H , the other is independently H or —SO 3 H , and A 3 is —SO 2 — or —CO—, A 4 is —CH 2 —, k and l each independently represent 0 or 1, and the hydrogen atom of the aromatic ring is substituted with —C m H 2m + 1 (m is an integer of 1 to 10). May be. ]
請求項1に記載のプロトン伝導性樹脂組成物を含んでなる熱融着可能なプロトン伝導膜。 A heat-sealable proton conductive membrane comprising the proton conductive resin composition according to claim 1 . 請求項2に記載のプロトン伝導膜を用いてなる燃料電池。 A fuel cell using the proton conducting membrane according to claim 2 .
JP2003102676A 2003-04-07 2003-04-07 Proton conductive resin composition and heat-sealable proton conductive membrane Expired - Fee Related JP4360113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102676A JP4360113B2 (en) 2003-04-07 2003-04-07 Proton conductive resin composition and heat-sealable proton conductive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102676A JP4360113B2 (en) 2003-04-07 2003-04-07 Proton conductive resin composition and heat-sealable proton conductive membrane

Publications (2)

Publication Number Publication Date
JP2004307629A JP2004307629A (en) 2004-11-04
JP4360113B2 true JP4360113B2 (en) 2009-11-11

Family

ID=33466037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102676A Expired - Fee Related JP4360113B2 (en) 2003-04-07 2003-04-07 Proton conductive resin composition and heat-sealable proton conductive membrane

Country Status (1)

Country Link
JP (1) JP4360113B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1810997T3 (en) * 2004-11-10 2011-05-02 Toyo Boseki Pronton conductive polymer composition and process for its preparation, catalyst ink containing the proton conducting polymer composition and fuel cell containing said catalyst
WO2006093257A1 (en) 2005-03-04 2006-09-08 Ube Industries, Ltd. Novel polymer electrolyte, polymer electrolyte composition, electrolyte membrane, and production method and use thereof
JP5144024B2 (en) * 2006-04-25 2013-02-13 Jsr株式会社 Electrode electrolyte for polymer fuel cell and use thereof
JP2021507077A (en) * 2017-12-20 2021-02-22 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー A method for producing a shaped article, which comprises printing a layer of a polymer composition containing at least one PEEK-PEmEK copolymer.
TW202440785A (en) * 2022-12-01 2024-10-16 日商本州化學工業股份有限公司 Polyaryletherketone resin composition and molded article thereof, method for producing polyaryletherketone resin composition
CN115838527A (en) * 2022-12-16 2023-03-24 广东生益科技股份有限公司 Resin composition, adhesive film containing same and printed circuit board

Also Published As

Publication number Publication date
JP2004307629A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4076951B2 (en) Protonic acid group-containing crosslinkable aromatic resin, and ion conductive polymer membrane, binder and fuel cell using the same
JP3561250B2 (en) Fuel cell
AU2003274219A1 (en) Polyphenylene-type polymers, preparation method thereof, membranes and fuel cell device comprising said membranes
JP2004359925A (en) Proton conductive block copolymer and proton conductive film
JP4150408B2 (en) Binder for fuel cell, composition for electrode formation, electrode and fuel cell using the same
WO2004090015A1 (en) Crosslinkable ionically conducting resin, and ionically conducting polymer membranes, binders and fuel cells, made by using the resin
JP4360113B2 (en) Proton conductive resin composition and heat-sealable proton conductive membrane
JP2009021233A (en) Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP4774718B2 (en) Polymer electrolyte membrane
JP5063642B2 (en) Polymer compound, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
JP2008542478A (en) End-capped ion conducting polymer
JP5216392B2 (en) Solid polymer electrolyte for fuel cell
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
JP2008542505A (en) Ion conductive cross-linked copolymer
JP4202806B2 (en) Electrolyte membrane / electrode assembly, method for producing the same, and fuel cell
JP2007207537A (en) Fuel cell, polymer electrolyte and ion-exchange resin used therefor
JP4146753B2 (en) Proton conductive resin composition, electrolyte membrane, electrolyte membrane / electrode assembly, and fuel cell
JP2002105129A (en) Solid polymer electrolyte, solid polymer electrolyte membrane using the same, solution for coating electrode catalyst, membrane / electrode assembly, and fuel cell
JP6819047B2 (en) Diphenylsulfone compounds for polymer electrolytes, polymer electrolytes, methods for producing polymer electrolytes, membrane electrode assemblies, and polymer electrolyte fuel cells.
JP2008545854A (en) Polymer blends containing ionically conductive copolymers and nonionic polymers
JP4459744B2 (en) Membrane / electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4633569B2 (en) Cross-linked proton conductive block copolymer, cross-linked product thereof, and proton conductive membrane and fuel cell using the same
Sankir Proton exchange membrane fuel cell systems based on aromatic hydrocarbon and partially fluorinated disulfonated poly (arylene ether) copolymers
WO2001071835A2 (en) Membrane/electrode composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees