[go: up one dir, main page]

JP4356949B2 - Thick steel plate with excellent toughness in weld heat affected zone - Google Patents

Thick steel plate with excellent toughness in weld heat affected zone Download PDF

Info

Publication number
JP4356949B2
JP4356949B2 JP2006307081A JP2006307081A JP4356949B2 JP 4356949 B2 JP4356949 B2 JP 4356949B2 JP 2006307081 A JP2006307081 A JP 2006307081A JP 2006307081 A JP2006307081 A JP 2006307081A JP 4356949 B2 JP4356949 B2 JP 4356949B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel plate
haz
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006307081A
Other languages
Japanese (ja)
Other versions
JP2008121074A (en
Inventor
喜臣 岡崎
宏行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006307081A priority Critical patent/JP4356949B2/en
Priority to CN2007101626968A priority patent/CN101182618B/en
Priority to KR1020070114612A priority patent/KR100944850B1/en
Publication of JP2008121074A publication Critical patent/JP2008121074A/en
Application granted granted Critical
Publication of JP4356949B2 publication Critical patent/JP4356949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、橋梁や高層建造物、船舶などの溶接構造物に適用される厚鋼板に関し、殊に50kJ/mm以上の大入熱溶接後の熱影響部(以下、単に「HAZ」と呼ぶことがある)の靭性に優れた厚鋼板に関するものである。   The present invention relates to a thick steel plate applied to a welded structure such as a bridge, a high-rise building, and a ship, and in particular, a heat-affected zone after high heat input welding of 50 kJ / mm or more (hereinafter simply referred to as “HAZ”). A thick steel plate having excellent toughness.

近年、上記各種溶接構造物の大型化に伴い、板厚が50mm以上である厚鋼板の溶接が不可避となっている。このため、あらゆる分野において、溶接施工効率の改善という観点から、50kJ/mm以上の大入熱溶接が指向される状況である。   In recent years, with the increase in size of the above various welded structures, it is inevitable to weld thick steel plates having a plate thickness of 50 mm or more. For this reason, in all fields, high heat input welding of 50 kJ / mm or more is directed from the viewpoint of improving welding construction efficiency.

しかしながら、大入熱溶接を行うと、HAZが高温のオーステナイト領域まで加熱されてから徐冷されるので、HAZ部(特にHAZ部のボンド部付近)の組織が粗大化、その部分の靭性が劣化しやすいという問題がある。こうしたHAZ部における靭性(以下、「HAZ靭性」と呼ぶことがある)を良好に確保することが、永年の課題となっている。   However, if high heat input welding is performed, the HAZ is heated to a high temperature austenite region and then gradually cooled, so the structure of the HAZ part (particularly near the bond part of the HAZ part) becomes coarse and the toughness of that part deteriorates. There is a problem that it is easy to do. It has been a long-standing problem to ensure such good toughness in the HAZ portion (hereinafter sometimes referred to as “HAZ toughness”).

大入熱溶接時におけるHAZ靭性の劣化防止のための技術は、これまでにも様々提案されている。こうした技術の代表例としては、例えば特許文献1に示されるように、鋼材中に微細なTiNを分散析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかしながらこうした後術では、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(ボンド部)において、溶接時に受ける熱により上記TiNが固溶消失してしまい、HAZ靭性の劣化を十分に抑えることができないという問題がある。   Various techniques for preventing the deterioration of the HAZ toughness during high heat input welding have been proposed so far. As a representative example of such technology, as shown in Patent Document 1, for example, fine TiN is dispersed and precipitated in a steel material, thereby suppressing austenite grain coarsening that occurs in HAZ when high heat input welding is performed. However, a steel material that suppresses the deterioration of the HAZ toughness has been proposed. However, in such post-surgery, when the weld metal is heated to a high temperature of 1400 ° C. or higher, the TiN disappears from the solid solution due to the heat received during welding, particularly in the portion of the HAZ that is close to the weld metal (bond portion). There is a problem that deterioration of the film cannot be sufficiently suppressed.

こうしたことから、例えば特許文献2には、MgOを活用してTiNを微細分散させると共に、大入熱溶接時に固溶するTiNの代替として活用することによってHAZ靭性を改善することも提案されている。しかしながら、酸化物を利用するものでは、TiNに匹敵するほどの均一微細分散が困難であり、特性にバラツキが生じやすいという問題がある。   For this reason, for example, Patent Document 2 proposes to improve HAZ toughness by using MgO to finely disperse TiN and using it as an alternative to TiN that dissolves during high heat input welding. . However, in the case of using an oxide, there is a problem that uniform fine dispersion that is comparable to TiN is difficult and variations in characteristics are likely to occur.

また、特許文献3には、粒径が0.1μmを超えるような粗大TiNを抑制するために、粒径が0.01〜0.1μmである微細TiNの分布の適正化を図ることによって、HAZ靭性の改善を図る技術も提案されている。しかしながら、微細TiNの分布の適正化を図るだけでは、十分なHAZ靭性を確保することはできない。   Further, in Patent Document 3, in order to suppress coarse TiN having a particle size exceeding 0.1 μm, by optimizing the distribution of fine TiN having a particle size of 0.01 to 0.1 μm, A technique for improving the HAZ toughness has also been proposed. However, sufficient HAZ toughness cannot be ensured only by optimizing the distribution of fine TiN.

ところで本発明者らは、溶接時に高温の熱影響を受けた場合でもHAZの靭性が劣化しない鋼材を特許文献4に先に提案している。この技術では、鋼材にNを多量に添加し、且つTiとBの添加バランスを適切に制御することによって、溶接後も未固溶で存在するTiNの量を増加させ、HAZ靭性を改善するものである。   By the way, the present inventors have previously proposed a steel material in which the HAZ toughness does not deteriorate even when subjected to high-temperature heat effects during welding. In this technology, a large amount of N is added to the steel, and the balance of addition of Ti and B is appropriately controlled to increase the amount of TiN that remains in an insoluble state after welding, thereby improving the HAZ toughness. It is.

また本発明者らは、溶接用鋼中に存在するTiN系介在物の中にNbを積極的に含有させると共にTi/Nb比を制御し、粒径が0.01〜0.25μmである介在物の個数を1mm2当りで1.0×104個以上とすることにより、幅広い入熱範囲でのHAZ靭性を確保する技術も提案している(例えば、特許文献5)。
特公昭55−26164号公報 特開平10−298708号公報 特開2001−98340号公報 特開2005−200716号公報 特開2004−218010号公報
In addition, the present inventors actively include Nb in TiN-based inclusions present in the steel for welding, control the Ti / Nb ratio, and have an inclusion having a particle size of 0.01 to 0.25 μm. A technique for securing HAZ toughness in a wide heat input range by setting the number of objects to 1.0 × 10 4 or more per 1 mm 2 is also proposed (for example, Patent Document 5).
Japanese Patent Publication No.55-26164 JP-A-10-298708 JP 2001-98340 A JP-A-2005-200716 JP 2004-2181010 A

しかしながら、溶接の分野では、HAZ靭性の更なる改良が求められているのが実情である。また、HAZ靭性(シャルピー吸収エネルギー)の平均値だけでなく、最低値を更に向上してボンド付近での靭性バランスを良好にしたいというユーザニーズに対応することも必要である。   However, in the field of welding, the actual situation is that further improvement of the HAZ toughness is required. In addition to the average value of HAZ toughness (Charpy absorbed energy), it is also necessary to meet the user needs to further improve the minimum value to improve the toughness balance in the vicinity of the bond.

本発明はこのような状況に鑑みてなされたものであって、その目的は、入熱量が50kJ/mm以上の大入熱溶接を行った場合であってもHAZ靭性に優れる厚鋼板、具体的にはHAZのボンド付近での最低靭性を引き上げると共に、靭性の平均値をも改善し、ボンド付近での靭性バランスを良好にすることのできる厚鋼板を提供することにある。   The present invention has been made in view of such a situation, and the purpose thereof is a thick steel plate that is excellent in HAZ toughness even when large heat input welding with a heat input of 50 kJ / mm or more is performed. An object of the present invention is to provide a thick steel plate capable of raising the minimum toughness near the bond of HAZ, improving the average value of toughness, and improving the toughness balance near the bond.

上記課題を解決することのできた本発明に係る厚鋼板とは、C:0.03〜0.10%(「質量%」の意味。以下同じ)、Si:0.2%以下(0%を含む)、Mn:1.0〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Nb:0.005〜0.020%、Ti:0.015〜0.040%、N:0.0060〜0.0120%、B:0.0010〜0.0050%を夫々含有し、残部鉄および不可避的不純物からなると共に、下記(1)式の関係を満足し、且つ円相当直径で0.05μm以下のTi含有窒化物が1mm2当り5.0×106個以上存在し、このうち円相当直径で0.01〜0.03μmのTi含有窒化物個数が全Ti含有窒化物に対して75%以上を占めるものである点に要旨を有する。
[Ti]×16[Si]×(12−40[C])<0.38(%)…(1)
但し、[Ti],[Si]および[C]は、夫々Ti,SiおよびCの含有量(質量%)を示す。
The thick steel plate according to the present invention that has solved the above problems is C: 0.03 to 0.10% (meaning “mass%”; the same applies hereinafter), Si: 0.2% or less (0% Mn: 1.0 to 2.0%, P: 0.03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Nb: 0.005 to 0.020%, Ti: 0.015 to 0.040%, N: 0.0060 to 0.0120%, B: 0.0010 to 0.0050%, respectively. containing, Rutotomoni such a balance of iron and inevitable impurities, the following (1) equation relationship satisfied, and the following Ti-containing nitride 0.05μm circle equivalent diameter 1 mm 2 per 5.0 × 10 6 cells Of these, the number of Ti-containing nitrides having an equivalent circle diameter of 0.01 to 0.03 μm is 75% of the total Ti-containing nitrides. It has a gist in that it occupies the above.
[Ti] × 16 [Si] × (12-40 [C]) <0.38 (%) (1)
However, [Ti], [Si] and [C] indicate the contents (mass%) of Ti, Si and C, respectively.

尚、上記「円相当直径」とは、Ti含有窒化物の大きさに着目して、その面積が等しくなる様に想定した円の直径を求めたもので、透過型電子顕微鏡(TEM)観察面上で認められる窒化物のものである。また、本発明で対象とするTi含有窒化物とは、TiNは勿論のこと、Tiの一部(原子比で50%以下程度)を他の窒化物形成元素(例えば、Nb,Zr,V等)で置換した窒化物をも含む趣旨である。   The “equivalent circle diameter” refers to the diameter of a circle that is assumed to have the same area by paying attention to the size of the Ti-containing nitride, and is a transmission electron microscope (TEM) observation surface. Of the nitrides identified above. Further, the Ti-containing nitride targeted in the present invention includes not only TiN but also a part of Ti (at an atomic ratio of about 50% or less) to other nitride-forming elements (for example, Nb, Zr, V, etc.). This also includes the nitride substituted with ().

本発明の厚鋼板には、必要によって更に(a)Cu,NiおよびCrよりなる群から選ばれる1種以上の元素:合計で0.1〜1.5%、(b)Moおよび/またはV:合計で0.5%以下(0%を含まない)、(c)Zr:0.005〜0.050%、(d)Ca,MgおよびREMよりなる群から選ばれる1種以上の元素:合計で0.0005〜0.0050%等を含有させることも有用であり、こうした元素を含有することでその種類に応じて厚鋼板の特性が更に改善されることになる。   In the thick steel plate of the present invention, if necessary, (a) one or more elements selected from the group consisting of Cu, Ni and Cr: 0.1 to 1.5% in total, (b) Mo and / or V : 0.5% or less in total (excluding 0%), (c) Zr: 0.005 to 0.050%, (d) one or more elements selected from the group consisting of Ca, Mg and REM: It is also useful to contain 0.0005 to 0.0050% in total, and the inclusion of such elements further improves the properties of the thick steel plate depending on the type.

本発明によれば、上記(1)式の関係を満足させつつ、鋼板の化学成分組成を適切な範囲内に納めると共に、微細なTi含有窒化物の分散状態(個数/密度)を適切に制御することによって、大入熱溶接時に鋼材中に固溶消失しない微細なTi含有窒化物を鋼中に分散できるため、靭性バランスを良好に確保しつつ溶接熱影響部(HAZ)の靭性改善を図った厚鋼板が実現できた。   According to the present invention, while satisfying the relationship of the above formula (1), the chemical composition of the steel sheet is kept within an appropriate range, and the dispersion state (number / density) of fine Ti-containing nitride is appropriately controlled. As a result, fine Ti-containing nitrides that do not dissolve and disappear in the steel during high heat input welding can be dispersed in the steel, so that the toughness of the weld heat affected zone (HAZ) is improved while ensuring a good toughness balance. A thick steel plate could be realized.

本発明者らは、溶接時の高温においても溶け残るTi含有窒化物(以下、TiNで代表することがある)を増加させることに成功しているのであるが(前記特許文献4)、こうした技術を基本として、HAZ靭性を更に改善するために検討を重ねた。   The present inventors have succeeded in increasing the Ti-containing nitride (hereinafter, sometimes represented by TiN) that remains undissolved even at a high temperature during welding (Patent Document 4). Based on the above, studies were made to further improve the HAZ toughness.

溶接時には、微細TiNは溶解すると共に、粗大なTiNは粒成長するような挙動(オストワルト成長)を示すことになる。本発明者らは、こうした挙動に着目し、できるだけ微細なTiNを多量に分散させてやることによって、粒成長した後においてもTiN分布が微細均一になるようにするには、円相当直径で0.05μm以下のTiNが1mm2当り5.0×106個以上となるように制御すれば良いことを見出した。 At the time of welding, fine TiN dissolves and coarse TiN exhibits a behavior that causes grain growth (Ostwald growth). The present inventors pay attention to such a behavior, and in order to make the TiN distribution fine and uniform even after grain growth by dispersing as much TiN as possible as much as possible, the equivalent circle diameter is 0. It has been found that the TiN of 0.05 μm or less may be controlled to be 5.0 × 10 6 or more per 1 mm 2 .

また上記のようなオストワルド成長は、TiNのサイズ分布(バラツキ)が大きいと促進されて、溶接後の組織が不均一になり易いことにも着目し、こうした現象をできるだけ抑制するには、TiN全体に占める微細TiNの割合が一定量以上となるように均一に分散してやればよいとの着想が得られた。具体的には、円相当直径で0.01〜0.03μmの微細TiN個数が全TiNに対して75%以上を占める様にすれば、溶接後の組織が不均一になることが防止できることが判明したのである。   In addition, the Ostwald growth as described above is promoted when the size distribution (variation) of TiN is large, and attention is also paid to the fact that the structure after welding tends to be non-uniform. The idea was obtained that the fine TiN content should be uniformly dispersed so that the proportion of the fine TiN becomes a certain amount or more. Specifically, if the number of fine TiN having an equivalent circle diameter of 0.01 to 0.03 μm occupies 75% or more of the total TiN, it is possible to prevent the structure after welding from becoming uneven. It turns out.

本発明の鋼板においては、後述する制御によって、微細なTiNを主体として分散させるものである。従って、一部粗大なTiN(例えば、円相当直径で0.05μmよりも大きいTiN)が含まれていても、こうした粗大TiNは鋼板の特性にそれほど影響を与えないので、「全TiN」はこうした粗大TiNも含む趣旨である。尚、0.01〜0.03μmの微細TiN個数が全TiNに対して占める割合(以下、「占有率」と呼ぶことがある)は、好ましくは77%以上であり、より好ましくは80%以上である。   In the steel plate of the present invention, fine TiN is mainly dispersed by the control described later. Therefore, even if partially coarse TiN (for example, TiN larger than 0.05 μm in equivalent circle diameter) is included, such coarse TiN does not significantly affect the properties of the steel sheet, so “total TiN” is such The purpose is to include coarse TiN. The proportion of fine TiN of 0.01 to 0.03 μm with respect to the total TiN (hereinafter sometimes referred to as “occupancy”) is preferably 77% or more, more preferably 80% or more. It is.

ところで、TiNを多量に分散させるためには、TiおよびNの含有量を増大させる必要がある(Tiで0.015%以上、Nで0.0060%以上)。しかしながら、TiNは鋼材鋳造時の1500℃前後で生成しやすく、この温度域で生成するTiNは、Ti,Nの増量によって更に粗大化しやすい状況にある。その結果、上記のような適切はTiNの分布状態を達成しにくくなる。   By the way, in order to disperse a large amount of TiN, it is necessary to increase the contents of Ti and N (0.015% or more for Ti and 0.0060% or more for N). However, TiN is likely to be generated around 1500 ° C. at the time of steel casting, and TiN generated in this temperature range is more likely to become coarser due to an increase in Ti and N. As a result, it becomes difficult to achieve the proper distribution of TiN as described above.

そこで、本発明者らは鋳造時の高温域で生成するTiN量を低減するべく、更に検討した。高温域でTiNが生成しやすいのは、Tiの活量が高いためであると推定できた。そして、Tiの活量を低下させるとの着想の下で、検討したところ、Tiの活量を上昇させるSiと、Tiとの関係を適切に制御してやれば、高温域で生成するTiN量を低減できるとの着想が得られた。   Therefore, the present inventors have further studied to reduce the amount of TiN generated in the high temperature range during casting. It can be estimated that TiN is likely to be generated in a high temperature range because the Ti activity is high. And, under the idea of lowering the activity of Ti, when examined, the amount of TiN generated in the high temperature range can be reduced if the relationship between Si and Ti that increase the activity of Ti is appropriately controlled. The idea of being able to do it was obtained.

また、TiNの高温粗大化を抑制する手段として、鋼の状態図で表される「δ域」の温度範囲を縮小させることも有効であることも知見している。本発明者らは、かねてより鋼板のHAZ靭性改善を目指して検討しており、その研究の一環として、鋼の状態図において表わされるδ域の温度範囲を縮小させることにより、同じTi,N添加量であっても、TiNを微細分散させ得ることを見出しており、その技術的意義が認められたので先に出願している(特願2006−31457号)。本発明では、こうした知見をも応用するものである。   It has also been found that it is effective to reduce the temperature range of the “δ region” represented by the phase diagram of steel as a means for suppressing high temperature coarsening of TiN. The present inventors have been studying to improve the HAZ toughness of steel sheets for some time, and as part of that research, the same Ti and N additions were made by reducing the temperature range of the δ region represented in the steel phase diagram. It has been found that TiN can be finely dispersed even in an amount, and since its technical significance has been recognized, it has been filed earlier (Japanese Patent Application No. 2006-31457). In the present invention, such knowledge is also applied.

上記「δ域」とは、鉄の状態図においてδ鉄が含まれる領域を意味する。この「δ鉄が含まれる領域」は、δ鉄のみの領域の他にも、δ+γの2相領域など、δ相と他の相状態が含まれる領域も包含する。そして、「δ域の温度範囲」とは、δ鉄が含まれる温度範囲(δ域の上限温度と下限温度の差)をいう。ここで特定組成の鋼において、例えばδ鉄のみの温度範囲とδ+γ鉄の温度範囲がある場合は、これらの温度範囲の合計がδ域の温度範囲となる。このδ域の温度範囲は、総合熱力学計算ソフトウエア(Themo−calc、CRC総合研究所から購入可能)に、鋼材の化学成分組成を入力することによって計算することができる。   The “δ region” means a region including δ iron in the iron phase diagram. The “region including δ iron” includes not only a region including δ iron but also a region including a δ phase and another phase state, such as a two-phase region of δ + γ. The “temperature range in the δ range” refers to a temperature range including δ iron (difference between the upper limit temperature and the lower limit temperature in the δ range). Here, in the steel having a specific composition, for example, when there is a temperature range of only δ iron and a temperature range of δ + γ iron, the sum of these temperature ranges becomes the temperature range of the δ region. The temperature range of the δ region can be calculated by inputting the chemical composition of the steel material into comprehensive thermodynamic calculation software (Themo-calc, available from CRC Research Institute).

上記のようなδ鉄中ではTiの拡散速度が速いので、δ域の温度範囲が広いと、δ鉄が存在する時間が長くなり、粗大なTi含有窒化物が形成され易くなると考えられる。上記技術では、Themo−calcの計算にて、特定成分を基準に化学成分量を1つだけ変更することにより、各化学成分のδ域の温度範囲への影響を調べてところ、C,Si,Mn,Nb等が関与し得ることを知見し、これらの成分を要素とする所定の関係式を求めた。また上記成分のうち、特にCはδ域の温度範囲を縮小する上で有用な成分である。   Since the diffusion rate of Ti is fast in the above-mentioned δ iron, it is considered that when the temperature range in the δ region is wide, the time during which δ iron is present becomes longer and coarse Ti-containing nitrides are easily formed. In the above technique, in the calculation of Thermo-calc, the amount of each chemical component on the temperature range in the δ region is examined by changing only one chemical component amount based on the specific component, and C, Si, It was found that Mn, Nb, etc. could be involved, and a predetermined relational expression having these components as elements was obtained. Of the above components, C is particularly useful for reducing the temperature range in the δ region.

このようなCによる「δ域温度範囲縮小効果」に加え、上記したSiとTiとの関係を適切に制御することによる高温域での「TiN量低減効果」を考慮し、これらの成分(C,SiおよびTi)がHAZ靭性に与える影響について、実験によって更に検討した。その結果、上記成分が下記(1)式の関係を満たしたとき、Cによる「δ域温度範囲縮小効果」と高温域でのTiN量低減効果が有効に発揮され、HAZ靭性が極めて良好になり得ることを見出したのである。   In addition to the “delta region temperature range reduction effect” by such C, the “TiN amount reduction effect” in the high temperature region by appropriately controlling the relationship between Si and Ti described above, these components (C , Si and Ti) further investigated the effects on HAZ toughness by experiments. As a result, when the above components satisfy the relationship of the following formula (1), the “δ region temperature range reduction effect” by C and the TiN amount reduction effect in the high temperature region are effectively exhibited, and the HAZ toughness becomes extremely good. I found out to get.

[Ti]×16[Si]×(12−40[C])<0.38(%)…(1)
但し、[Ti],[Si]および[C]は、夫々Ti,SiおよびCの含有量(質量%)を示す。
[Ti] × 16 [Si] × (12-40 [C]) <0.38 (%) (1)
However, [Ti], [Si] and [C] indicate the contents (mass%) of Ti, Si and C, respectively.

各化学成分量が適正範囲内であれば、上記(1)式の左辺の値[[Ti]×16[Si]×(12−40[C]):以下「Z値」と呼ぶ]が小さくなるほど、上記「δ域温度範囲縮小効果」および/または「TiN量低減効果」が有効に発揮され、HAZ靭性が良好になる。このZ値の上限は0.38(%)であるが、好ましい上限は0.35(%)、より好ましくは0.30(%)以下である。尚、Z値の下限は各化学成分の適正量から定められ、0.0(%)程度である。   If the amount of each chemical component is within an appropriate range, the value [[Ti] × 16 [Si] × (12−40 [C]) in the left side of the above equation (1): hereinafter referred to as “Z value”] is small. The above-mentioned “δ region temperature range reduction effect” and / or “TiN amount reduction effect” are effectively exhibited, and the HAZ toughness is improved. The upper limit of this Z value is 0.38 (%), but the preferable upper limit is 0.35 (%), more preferably 0.30 (%) or less. The lower limit of the Z value is determined from the appropriate amount of each chemical component and is about 0.0 (%).

次に、本発明の鋼材(母材)における成分組成について説明する。上記のように、本発明の鋼板は、その化学成分組成が上記(1)式の関係式を満足していても、夫々の化学成分(元素)の含有量が適正範囲内部になければ、優れたHAZ靭性を達成することができない。従って、本発明の厚鋼板では、Ti含有窒化物の分布状況が良好であることおよび化学成分が上記(1)式を満たすことに加えて、夫々の化学成分の量が、以下に記載するような適正範囲内にあることも必要である。これらの成分の範囲限定理由は、下記の通りである。   Next, the component composition in the steel material (base material) of the present invention will be described. As described above, the steel sheet of the present invention is excellent if the content of each chemical component (element) is not within an appropriate range even if the chemical component composition satisfies the relational expression (1). HAZ toughness cannot be achieved. Therefore, in the thick steel sheet of the present invention, the distribution state of the Ti-containing nitride is good and the chemical components satisfy the above formula (1), and the amounts of the respective chemical components are described below. It is also necessary to be within the proper range. The reasons for limiting the ranges of these components are as follows.

[C:0.03〜0.10%]
Cは、鋼板の強度を確保するために欠くことのできない元素であり、また前述のごとく鋼の状態図におけるδ域の温度範囲を縮小させるのに有効な元素である。C含有量が0.03%未満では、鋼板の強度が確保できないばかりか、δ域の縮小効果が発揮されず、Ti含有窒化物が粗大化することになる。好ましくは0.04%以上であり、より好ましくは0.05%以上である。しかしながら、0.10%を超えると、溶接時にHAZに島状マルテンサイト相(MA相)が多く生成してHAZの靭性劣化を招くことになる。従ってCは0.10%以下、好ましくは0.09%以下に抑える必要がある。
[C: 0.03-0.10%]
C is an element indispensable for securing the strength of the steel sheet, and is an element effective for reducing the temperature range in the δ region in the steel phase diagram as described above. If the C content is less than 0.03%, not only the strength of the steel sheet cannot be secured, but also the effect of reducing the δ region is not exhibited, and the Ti-containing nitride becomes coarse. Preferably it is 0.04% or more, More preferably, it is 0.05% or more. However, if it exceeds 0.10%, a large number of island martensite phases (MA phases) are generated in the HAZ during welding, leading to deterioration of the toughness of the HAZ. Therefore, C must be suppressed to 0.10% or less, preferably 0.09% or less.

[Si:0.2%以下(0%を含む)]
Siは、固溶強化によって鋼板の強度を確保するのに有用な元素であるが、過剰に含有すると、上記(1)式を満足していてもTiの活量を高めることによってTi含有窒化物の粗大化を招くことになる。こうした観点から、Si含有量は0.2%以下にする必要があり、好ましくは0.15%以下に抑える。尚、HAZに更なる高靭性が求められる場合には、Siは0.3%以下に抑えるのがよい。またHAZ靭性を確保するという観点からすれば、Si含有量は0%であっても良い。
[Si: 0.2% or less (including 0%)]
Si is an element useful for securing the strength of the steel sheet by solid solution strengthening. However, when it is excessively contained, the Ti-containing nitride is increased by increasing the activity of Ti even if the above formula (1) is satisfied. Will lead to coarsening. From such a viewpoint, the Si content needs to be 0.2% or less, and preferably 0.15% or less. In addition, when the further high toughness is calculated | required by HAZ, it is good to suppress Si to 0.3% or less. Further, from the viewpoint of securing HAZ toughness, the Si content may be 0%.

[Mn:1.0〜2.0%]
Mnは、鋼板の強度を確保する上で有用な元素であり、こうした効果を有効に発揮させるには、1.0%以上含有させる必要がある。好ましくは1.2%以上である。しかし、2.0%を超えて過剰に含有させるとHAZの強度が上昇し過ぎて靭性が劣化するので、Mn含有量は2.0%以下とする。好ましくは1.8%以下である。
[Mn: 1.0 to 2.0%]
Mn is an element useful for ensuring the strength of the steel sheet, and in order to effectively exhibit such effects, it is necessary to contain 1.0% or more. Preferably it is 1.2% or more. However, if the content exceeds 2.0% excessively, the strength of the HAZ increases excessively and the toughness deteriorates, so the Mn content is set to 2.0% or less. Preferably it is 1.8% or less.

[P:0.03%以下(0%を含まない)]
不純物元素であるPは、粒界破壊を起こし易くHAZ靭性に悪影響を及ぼすので、その量ができるだけ少ないことが好ましい。HAZ靭性を確保するという観点からして、P含有量は0.03%以下に抑制する必要があり、好ましくは0.02%以下とする。しかし、工業的に、鋼中のPを0%にすることは困難である。
[P: 0.03% or less (excluding 0%)]
P, which is an impurity element, easily causes grain boundary fracture and adversely affects the HAZ toughness. Therefore, the amount is preferably as small as possible. From the viewpoint of ensuring HAZ toughness, the P content needs to be suppressed to 0.03% or less, and preferably 0.02% or less. However, industrially, it is difficult to make P in steel 0%.

[S:0.01%以下(0%を含まない)]
Sは、HAZの高温割れを助長する不純物であり、その量ができるだけ少ないことが好ましい。HAZ靭性を確保するという観点からして、S含有量は0.01%以下に抑制する必要があり、好ましくは0.008%以下とする。しかし、工業的に、鋼中のSを0%にすることは困難である。
[S: 0.01% or less (excluding 0%)]
S is an impurity that promotes hot cracking of HAZ, and its amount is preferably as small as possible. From the viewpoint of securing HAZ toughness, the S content needs to be suppressed to 0.01% or less, and preferably 0.008% or less. However, industrially, it is difficult to reduce S in steel to 0%.

[Al:0.01〜0.10%]
Alは、脱酸元素として有用である。こうした効果を発揮させるためには、0.01%以上含有させる必要があり、好ましくは0.01%以上である。しかしながら、Al含有量が過剰になると、HAZ靭性が劣化するので、0.10%以下に抑える必要があり、好ましくは0.05以下とする。
[Al: 0.01 to 0.10%]
Al is useful as a deoxidizing element. In order to exhibit such an effect, it is necessary to contain 0.01% or more, preferably 0.01% or more. However, if the Al content becomes excessive, the HAZ toughness deteriorates, so it is necessary to keep it at 0.10% or less, preferably 0.05 or less.

[Nb:0.005〜0.020%]
Nbは、HAZおよび母材の両方の靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Nbは0.005%以上含有させることが必要であり、好ましくは
0.007%以上とする。しかし過剰に含有させると、HAZのベイナイト組織を粗大化させて靭性を劣化させるため、0.020%以下に抑えるべきである。好ましくは0.015%以下とする。
[Nb: 0.005 to 0.020%]
Nb is an element that contributes to improving the toughness of both the HAZ and the base material. In order to exhibit such an effect effectively, Nb needs to be contained in an amount of 0.005% or more, preferably 0.007% or more. However, if excessively contained, the HAZ bainite structure is coarsened and toughness is deteriorated, so it should be suppressed to 0.020% or less. Preferably, the content is 0.015% or less.

[Ti:0.015〜0.040%]
Tiは、Nと微細な窒化物を形成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Tiは0.015%以上含有させることが必要であり、好ましくは0.018%以上とする。しかし過剰に添加すると、Ti含有窒化物が粗大になってHAZの靭性を劣化させるため、0.040%以下に抑えるべきである。好ましくは0.035%以下とする。
[Ti: 0.015-0.040%]
Ti is an element that contributes to improving the toughness of HAZ by forming fine nitrides with N. In order to exhibit such an effect effectively, it is necessary to contain Ti 0.015% or more, preferably 0.018% or more. However, if added excessively, the Ti-containing nitride becomes coarse and deteriorates the toughness of the HAZ, so it should be suppressed to 0.040% or less. Preferably it is 0.035% or less.

[N:0.0060〜0.0120%]
Nは、高温で溶け残る窒化物(Ti含有窒化物)を形成することによって、HAZ靭性を確保する上で有用な元素である。N含有量を0.0060%以上とすることによって、高温で溶け残るTi含有窒化物が増加することになる。しかしN含有量が過剰になると、固溶N量が増大してHAZ靭性が劣化する。従ってNは0.012%以下に抑える必要があり、好ましくは0.0110%以下とする。
[N: 0.0060 to 0.0120%]
N is an element useful for securing HAZ toughness by forming a nitride (Ti-containing nitride) that remains undissolved at a high temperature. By setting the N content to 0.0060% or more, the Ti-containing nitride that remains undissolved at a high temperature increases. However, when the N content is excessive, the solid solution N amount increases and the HAZ toughness deteriorates. Therefore, N must be suppressed to 0.012% or less, preferably 0.0110% or less.

[B:0.0010〜0.0050%]
Bは、溶接時に加熱されたHAZが冷却される過程において鋼中のNと結合してBNを析出しHAZ靭性を改善させる。こうした効果を有効に発揮させるには、0.0010%以上含有させる必要がある。好ましくは0.0015%以上である。しかし、B含有量が過剰になると、HAZのベイナイト組織を粗大化させて靭性が劣化するので、0.005%以下とする必要がある。好ましくは0.0040%以下とするのがよい。
[B: 0.0010 to 0.0050%]
B combines with N in the steel in the process of cooling the HAZ heated during welding, and precipitates BN to improve the HAZ toughness. In order to exhibit such an effect effectively, it is necessary to make it contain 0.0010% or more. Preferably it is 0.0015% or more. However, if the B content is excessive, the HAZ bainite structure is coarsened and the toughness deteriorates, so it is necessary to make it 0.005% or less. Preferably it is 0.0040% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、Sn,As,Pb等)の混入が許容され得る。また、更に下記元素を積極的に含有させることも有効であり、含有される成分の種類に応じて鋼板の特性が更に改善される。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. (for example, Sn, As) , Pb, etc.) can be permitted. Further, it is also effective to positively contain the following elements, and the characteristics of the steel sheet are further improved according to the types of components contained.

[Cu,NiおよびCrよりなる群から選ばれる1種以上の元素:合計で0.1〜1.5%]
Cu,NiおよびCrは、いずれも焼入れ性を高めて鋼板の強度を高めるのに有効に作用する元素である。こうした効果を発揮させるには、これらを1種または2種以上(合計)で0.1%以上含有させることが好ましい。より好ましくは0.15%以上とする。しかしこれらの元素の含有量が過剰になると、HAZにおけるMA相増加によってHAZ靭性が劣化するため、1.5%以下に抑えることが好ましい。より好ましくは1.0%以下である。
[One or more elements selected from the group consisting of Cu, Ni and Cr: 0.1 to 1.5% in total]
Cu, Ni and Cr are all elements that effectively act to enhance the hardenability and increase the strength of the steel sheet. In order to exert such an effect, it is preferable to contain 0.1% or more of these by one kind or two or more kinds (total). More preferably, it is 0.15% or more. However, if the content of these elements becomes excessive, the HAZ toughness deteriorates due to an increase in the MA phase in the HAZ, so it is preferable to keep it to 1.5% or less. More preferably, it is 1.0% or less.

[Moおよび/またはV:合計で0.5%以下(0%を含まない)]
MoおよびVは、上記Cu,Ni,Crと同様に、焼入れ性を高めて鋼板の強度を高めるのに有効に作用する元素である。こうした効果は、その含有量が増加するにつれて増大するが、これらの元素の含有量が過剰になると、HAZにおけるMA相増加によってHAZ靭性が劣化するため、0.5%以下に抑えることが好ましい。より好ましくは0.4%以下である。
[Mo and / or V: 0.5% or less in total (excluding 0%)]
Mo and V are elements that effectively act to enhance the hardenability and increase the strength of the steel sheet, like Cu, Ni and Cr. Such an effect increases as the content thereof increases. However, if the content of these elements becomes excessive, the HAZ toughness deteriorates due to an increase in the MA phase in the HAZ, and therefore it is preferable to suppress the content to 0.5% or less. More preferably, it is 0.4% or less.

[Zr:0.005〜0.050%]
Zrは、Tiと同様に、Nと微細な窒化物を形成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Zrは0.005%以上含有させることが好ましく、より好ましくは0.008%以上とする。しかし過剰に添加すると、窒化物が粗大になってHAZの靭性を劣化させるため、0.050%以下に抑えるべきである。好ましくは0.030%以下とする。
[Zr: 0.005 to 0.050%]
Zr is an element that contributes to improving the toughness of HAZ by forming fine nitrides with N, like Ti. In order to exhibit such an effect effectively, it is preferable to contain Zr 0.005% or more, more preferably 0.008% or more. However, if added excessively, the nitride becomes coarse and deteriorates the toughness of the HAZ, so it should be suppressed to 0.050% or less. Preferably it is 0.030% or less.

[Ca,MgおよびREMよりなる群から選ばれる1種以上の元素:合計で0.0005〜0.0050%]
Ca,MgおよびREMは、鋼材中に不可避的に混入してくる介在物(酸化物や硫化物等)の形状を微細化・球状化することによって、HAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、これらを1種または2種以上(合計)で0.0005%以上含有させることが好ましい。より好ましくは0.0008%以上とする。しかしこれらの元素の含有量が過剰になると、介在物が粗大化してHAZ靭性が劣化するため、0.0050%以下に抑えることが好ましい。より好ましくは0.0030%以下である。
[One or more elements selected from the group consisting of Ca, Mg and REM: 0.0005 to 0.0050% in total]
Ca, Mg, and REM are elements that contribute to improving the toughness of HAZ by refining and spheroidizing the shapes of inclusions (oxides, sulfides, etc.) that are inevitably mixed in the steel material. In order to exhibit such an effect effectively, it is preferable to contain 0.0005% or more of these by 1 type or 2 types or more (total). More preferably, it is 0.0008% or more. However, if the content of these elements becomes excessive, inclusions become coarse and the HAZ toughness deteriorates, so it is preferable to keep the content to 0.0050% or less. More preferably, it is 0.0030% or less.

尚、本発明において、REM(希土類元素)とは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。   In the present invention, REM (rare earth element) means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).

本発明において、Ti含有窒化を上記のように制御するには、上記成分組成を満たす溶鋼を用い、鋳造時の冷却速度を制御することが有効である。即ち、1500〜1300℃の温度範囲を10℃/min以上で冷却してスラブを形成することが推奨される。また、この様に冷却速度を制御するには、スラブ厚を低下させたり、冷却水量を増加させたりする手段が挙げられる。   In the present invention, in order to control the Ti-containing nitriding as described above, it is effective to use molten steel satisfying the above component composition and control the cooling rate during casting. That is, it is recommended to form a slab by cooling the temperature range of 1500 to 1300 ° C. at 10 ° C./min or more. In order to control the cooling rate in this way, means for reducing the slab thickness or increasing the amount of cooling water can be used.

本発明は厚鋼板に関するものであり、該分野において厚鋼板とは、JISで定義されるように、一般に板厚が3.0mm以上であるものを指す。しかし、本発明の厚鋼板の板厚は、好ましくは50mm以上、より好ましくは60mm以上である。即ち、本発明の厚鋼板は、入熱量が50kJ/mm以上の大入熱溶接であっても良好なHAZ靭性を示すので、板厚が厚くても、入熱量を増大させることで効率良く溶接できるものである。   The present invention relates to a thick steel plate. In this field, a thick steel plate generally refers to one having a plate thickness of 3.0 mm or more as defined by JIS. However, the thickness of the thick steel plate of the present invention is preferably 50 mm or more, more preferably 60 mm or more. That is, the thick steel plate of the present invention exhibits good HAZ toughness even with high heat input welding with a heat input of 50 kJ / mm or more. Therefore, even if the plate thickness is large, it is efficiently welded by increasing the heat input. It can be done.

こうして得られる本発明の厚鋼板は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接においても、溶接熱影響部の靭性劣化を防ぐことができる。   The steel plate of the present invention thus obtained can be used as a material for structures such as bridges, high-rise buildings, ships, etc., and deteriorates the toughness of the weld heat affected zone not only in small to medium heat input welding but also in large heat input welding. Can be prevented.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記表1に示す組成の鋼を、通常の溶製法によって溶製し、この溶鋼を鋳造時(1500〜1300℃の温度範囲)における冷却速度を制御しつつ冷却してスラブ(断面形状:
200mm×250mm)とした後、1100℃に加熱して熱間圧延を行い、板厚:50mmの熱間圧延板とし、圧延後に空冷をして試験板とした。尚、表1において、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で添加した。また表1中「−」は元素を添加していないことを示している。
The steel having the composition shown in Table 1 below is melted by a normal melting method, and this molten steel is cooled while controlling the cooling rate at the time of casting (a temperature range of 1500 to 1300 ° C.) (slab shape: cross-sectional shape:
200 mm × 250 mm), heated to 1100 ° C. and hot-rolled to obtain a hot-rolled plate having a thickness of 50 mm, and air-cooled after rolling to obtain a test plate. In Table 1, REM was added in the form of a misch metal containing about 50% La and about 25% Ce. In Table 1, "-" indicates that no element is added.

Figure 0004356949
Figure 0004356949

上記のようにして製造した各試験板について、下記の要領でTi含有窒化物の個数密度(円相当直径で0.05μm以下のものの個数、および円相当直径で0.01〜0.03μmのものの占有率)、厚鋼板の引張強度、HAZ靭性を測定した。これらの結果を、Z値[=[Ti]×16[Si]×(12−40[C])]、鋳造時の冷却速度と共に、下記表2に示す。   For each test plate produced as described above, the number density of Ti-containing nitrides (the number of equivalent-circle diameters of 0.05 μm or less and the equivalent-circle diameter of 0.01 to 0.03 μm) was as follows. Occupancy ratio), tensile strength of the thick steel plate, and HAZ toughness. These results are shown in Table 2 below together with the Z value [= [Ti] × 16 [Si] × (12-40 [C])] and the cooling rate during casting.

[Ti含有窒化物の個数密度の測定]
各鋼板のt(板厚)/4部位を、透過型電子顕微鏡(TEM)で、観察倍率6万倍、観察視野2×2(μm)、観察箇所5箇所の条件で観察した。そして画像解析によって、その視野中の各Ti含有窒化物の面積を測定し、この面積から各窒化物の円相当直径を算出した。尚、Ti含有窒化物であることは、EDX(エネルギー分散型X線検出器)によって判別した。
[Measurement of number density of Ti-containing nitride]
The t (plate thickness) / 4 portion of each steel plate was observed with a transmission electron microscope (TEM) under the conditions of an observation magnification of 60,000, an observation field of view 2 × 2 (μm), and five observation locations. Then, the area of each Ti-containing nitride in the field of view was measured by image analysis, and the equivalent circle diameter of each nitride was calculated from this area. In addition, it was discriminate | determined by EDX (energy dispersive X-ray detector) that it was Ti containing nitride.

円相当直径が0.05μm以下となるTi含有窒化物の個数を、1mm2当りに換算して求めると共に、円相当直径が0.01〜0.03μmの微細なTi含有窒化物の全Ti含有窒化物(円相当直径で0.05μmを超えるものも含む)に対する個数割合(占有率:%)を計算した。 The number of Ti-containing nitrides having an equivalent circle diameter of 0.05 μm or less is calculated per 1 mm 2 , and the total Ti content of the fine Ti-containing nitride having an equivalent circle diameter of 0.01 to 0.03 μm The number ratio (occupancy:%) with respect to nitrides (including those with an equivalent circle diameter exceeding 0.05 μm) was calculated.

[引張試験]
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJIS Z 2201の4号試験片を採取し、JIS Z 2241の要領で引張試験を行ない、0.2%降伏応力(YS)を測定した。そして、YSが400MPa以上のものを合格と評価した。
[Tensile test]
Sample No. 4 of JIS Z 2201 was taken from the t (plate thickness) / 4 part of each steel plate in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241, yielding 0.2% yield. Stress (YS) was measured. And the thing whose YS was 400 Mpa or more was evaluated as a pass.

[HAZ靭性の評価]
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJIS Z 2201の4号試験片を採取し、大入熱溶接を模擬した熱サイクル試験を行い、HAZ靭性を評価した。このとき熱サイクル試験は、上記試験片を1400℃に加熱して60秒間保持した後、800〜500℃の温度範囲を約500秒かけて冷却することにより、溶接入熱量が65kJに相当する熱サイクルを与えた。JIS Z 2242に準拠して、−40℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-40)を測定した。このとき5本の試験片について吸収エネルギー(vE-40)を測定し、その平均値と最低値を求めた。そして、vE-40の平均値が200J以上のものをHAZ靭性に優れると評価し、vE-40の最小値が120以上のものを安定化が改善されていると評価した。
[Evaluation of HAZ toughness]
Sample No. 4 of JIS Z 2201 was sampled in the direction perpendicular to the rolling direction from the t (plate thickness) / 4 part of each steel plate, and a heat cycle test simulating large heat input welding was performed to obtain HAZ toughness. evaluated. At this time, in the heat cycle test, the test piece was heated to 1400 ° C. and held for 60 seconds, and then the temperature range of 800 to 500 ° C. was cooled over about 500 seconds, whereby the heat input of welding was equivalent to 65 kJ. A cycle was given. In accordance with JIS Z 2242, a Charpy impact test was performed at −40 ° C., and the absorbed energy (vE −40 ) was measured. At this time, absorption energy (vE- 40 ) was measured about five test pieces, and the average value and the minimum value were calculated | required. Then, those having an average value of vE- 40 of 200 J or more were evaluated as being excellent in HAZ toughness, and those having a minimum value of vE- 40 of 120 or more were evaluated as being improved in stabilization.

Figure 0004356949
Figure 0004356949

表1、2から次のように考察できる(尚、下記No.は、表1、2の鋼No.を示す)。No.1〜15は、本発明で規定する要件を満足する例であり、化学成分組成、Z値およびTi含有窒化物の微細分散が適切になされえており、溶接熱影響部の靭性が良好な鋼板が得られていることが分かる。   Tables 1 and 2 can be considered as follows (note that the following numbers indicate the steel numbers in Tables 1 and 2). No. Nos. 1 to 15 are examples that satisfy the requirements defined in the present invention, in which a chemical component composition, Z value, and fine dispersion of Ti-containing nitride are appropriately performed, and a steel sheet having good toughness in the weld heat affected zone is obtained. You can see that it is obtained.

これに対して、No.16〜28は、本発明で規定するいずれかの要件を外れる例であり、溶接熱影響部の靭性が劣っている。詳細には、下記の通りである。   In contrast, no. 16 to 28 are examples that deviate from any of the requirements defined in the present invention, and the toughness of the weld heat affected zone is inferior. Details are as follows.

No.16は、鋼板中のC含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。   No. No. 16 is such that the C content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is deteriorated even when the form of the Ti-containing nitride is good.

No.17は、鋼板中のSi含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態が不良になっており(微細なTi含有窒化物が得られていない)、良好なHAZ靭性が得られていない。No.18は、鋼板中のMn含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。   No. No. 17 is that the Si content in the steel sheet exceeds the range specified in the present invention, the form of the Ti-containing nitride is inferior (fine Ti-containing nitride is not obtained), good HAZ toughness is not obtained. No. No. 18 is one in which the Mn content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is deteriorated even when the form of the Ti-containing nitride is good.

No.19,20は、鋼板中のPやSの含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。No.21は、鋼板中のNb含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。   No. Nos. 19 and 20 are those in which the content of P or S in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is deteriorated even if the form of the Ti-containing nitride is good. No. No. 21 exceeds the range specified by the present invention in the Nb content in the steel sheet, and even if the form of the Ti-containing nitride is good, the HAZ toughness is deteriorated.

No.22は、鋼板中のTi含有量が本発明で規定する範囲に満たないものであり、Ti含有窒化物の十分な個数密度および占有率が達成されておらず、HAZ靭性が劣化している。No.23は、鋼板中のTi含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物が粗大化しており、十分な個数密度および占有率が達成されておらず、HAZ靭性が劣化している。   No. No. 22 is that the Ti content in the steel sheet is less than the range specified in the present invention, and sufficient number density and occupation ratio of the Ti-containing nitride are not achieved, and the HAZ toughness is deteriorated. No. No. 23, the Ti content in the steel sheet exceeds the range specified in the present invention, the Ti-containing nitride is coarsened, sufficient number density and occupancy are not achieved, and the HAZ toughness deteriorates is doing.

No.24は、鋼板中のN含有量が本発明で規定する範囲に満たないものであり、Ti含有窒化物の十分な個数密度が達成されておらず、HAZ靭性が劣化している。No.25は、鋼板中のN含有量が本発明で規定する範囲を超えるものであり、固溶Nが増加してHAZ靭性が劣化している。   No. No. 24 is that the N content in the steel sheet is less than the range defined in the present invention, and a sufficient number density of the Ti-containing nitride is not achieved, and the HAZ toughness is deteriorated. No. No. 25 is that the N content in the steel sheet exceeds the range specified in the present invention, and the solute N increases and the HAZ toughness is deteriorated.

No.26は、鋼板中のB含有量が本発明で規定する範囲に満たないものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。No.27は、化学成分におけるZ値が本発明で規定する範囲を外れるものであり、Ti含有窒化物の十分な個数密度および占有率が達成されておらず、HAZ靭性が劣化している。No.28は、鋼板中のB含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。   No. No. 26 is that the B content in the steel sheet is less than the range defined in the present invention, and the HAZ toughness is deteriorated even though the form of the Ti-containing nitride is good. No. In No. 27, the Z value in the chemical component is out of the range defined in the present invention, and sufficient number density and occupation ratio of the Ti-containing nitride are not achieved, and the HAZ toughness is deteriorated. No. No. 28 is that the B content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is deteriorated even if the Ti-containing nitride has a good form.

No.29は、鋳造時の冷却速度が低く、Ti含有窒化物が粗大化しており、Ti含有窒化物の十分な個数密度および占有率が達成されておらず、HAZ靭性が劣化している。No.30は、化学成分におけるZ値、および鋳造時の冷却速度がいずれも適正範囲外になっており、著しくTi含有窒化物が粗大化しており、十分な個数密度および占有率が達成されておらず、HAZ靭性が劣化している。   No. No. 29 has a low cooling rate during casting, Ti-containing nitrides are coarsened, sufficient number density and occupancy of Ti-containing nitrides are not achieved, and HAZ toughness is deteriorated. No. No. 30, the Z value in the chemical component and the cooling rate at the time of casting are both out of the proper range, the Ti-containing nitride is remarkably coarsened, and sufficient number density and occupancy are not achieved. , HAZ toughness is deteriorated.

Claims (5)

C:0.03〜0.10%(「質量%」の意味。以下同じ)、Si:0.2%以下(0%を含む)、Mn:1.0〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Nb:0.005〜0.020%、Ti:0.015〜0.040%、N:0.0060〜0.0120%、B:0.0010〜0.0050%を夫々含有し、残部鉄および不可避的不純物からなると共に、下記(1)式の関係を満足し、且つ円相当直径で0.05μm以下のTi含有窒化物が1mm2当り5.0×106個以上存在し、このうち円相当直径で0.01〜0.03μmのTi含有窒化物個数が全Ti含有窒化物に対して75%以上を占めるものであることを特徴とする溶接熱影響部の靭性に優れた厚鋼板。
[Ti]×16[Si]×(12−40[C])<0.38(%)…(1)
但し、[Ti],[Si]および[C]は、夫々Ti,SiおよびCの含有量(質量%)を示す。
C: 0.03 to 0.10% (meaning “mass%”; the same applies hereinafter), Si: 0.2% or less (including 0%), Mn: 1.0 to 2.0%, P: 0 0.03% or less (excluding 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Nb: 0.005 to 0.020%, Ti : 0.015~0.040%, N: 0.0060~0.0120% , B: a .0010 to .0050% respectively contain, Rutotomoni such a balance of iron and inevitable impurities, the following (1 ) There are 5.0 × 10 6 or more Ti-containing nitrides satisfying the relationship of the formula and having an equivalent circle diameter of 0.05 μm or less per 1 mm 2 , of which 0.01 to 0.03 μm in equivalent circle diameter. The toughness of the weld heat affected zone characterized in that the number of Ti-containing nitrides accounts for 75% or more of the total Ti-containing nitride. Steel plate with excellent properties.
[Ti] × 16 [Si] × (12-40 [C]) <0.38 (%) (1)
However, [Ti], [Si] and [C] indicate the contents (mass%) of Ti, Si and C, respectively.
更に、Cu,NiおよびCrよりなる群から選ばれる1種以上の元素:合計で0.1〜1.5%を含むものである請求項1に記載の厚鋼板。   The thick steel plate according to claim 1, further comprising at least one element selected from the group consisting of Cu, Ni and Cr: 0.1 to 1.5% in total. 更に、Moおよび/またはV:合計で0.5%以下(0%を含まない)を含むものである請求項1または2に記載の厚鋼板。   Furthermore, Mo and / or V: The thick steel plate of Claim 1 or 2 containing 0.5% or less (0% is not included) in total. 更に、Zr:0.005〜0.050%を含むものである請求項1〜3のいずれかに記載の厚鋼板。   The thick steel plate according to any one of claims 1 to 3, further comprising Zr: 0.005 to 0.050%. 更に、Ca,MgおよびREMよりなる群から選ばれる1種以上の元素:合計で0.0005〜0.0050%を含むものである請求項1〜4のいずれかに記載の厚鋼板。   Furthermore, the thick steel plate in any one of Claims 1-4 which contains 0.0005 to 0.0050% of 1 or more types of elements chosen from the group which consists of Ca, Mg, and REM in total.
JP2006307081A 2006-11-13 2006-11-13 Thick steel plate with excellent toughness in weld heat affected zone Expired - Fee Related JP4356949B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006307081A JP4356949B2 (en) 2006-11-13 2006-11-13 Thick steel plate with excellent toughness in weld heat affected zone
CN2007101626968A CN101182618B (en) 2006-11-13 2007-10-16 Tenacity excellent high intensity steel for welding heat influenced part
KR1020070114612A KR100944850B1 (en) 2006-11-13 2007-11-12 Thick sheet with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307081A JP4356949B2 (en) 2006-11-13 2006-11-13 Thick steel plate with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2008121074A JP2008121074A (en) 2008-05-29
JP4356949B2 true JP4356949B2 (en) 2009-11-04

Family

ID=39448043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307081A Expired - Fee Related JP4356949B2 (en) 2006-11-13 2006-11-13 Thick steel plate with excellent toughness in weld heat affected zone

Country Status (2)

Country Link
JP (1) JP4356949B2 (en)
CN (1) CN101182618B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251175A (en) * 2010-05-20 2011-11-23 株式会社神户制钢所 Thick steel plate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297692B2 (en) * 2008-05-20 2013-09-25 株式会社神戸製鋼所 High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JP2010031309A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Thick steel plate and method for producing the same
CN101724780B (en) * 2008-10-20 2012-01-04 株式会社神户制钢所 Thick steel plate
JP5207914B2 (en) * 2008-10-20 2013-06-12 株式会社神戸製鋼所 Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5883369B2 (en) * 2012-09-19 2016-03-15 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone
CN106906414A (en) * 2015-12-22 2017-06-30 宝山钢铁股份有限公司 The steel plate and its manufacture method of a kind of Large Heat Input Welding heat affected area tenacity excellent
JP6753204B2 (en) * 2016-08-09 2020-09-09 日本製鉄株式会社 Steel plate and steel plate manufacturing method
CN115161548B (en) * 2022-05-25 2023-03-24 昆明理工大学 A Ti-Zr composite microalloyed 700MPa grade high-strength and high-toughness steel plate and its preparation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895687B2 (en) * 2000-12-14 2007-03-22 ポスコ Steel plate for depositing TiN + ZrN for welded structure, method for producing the same, and welded structure using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251175A (en) * 2010-05-20 2011-11-23 株式会社神户制钢所 Thick steel plate
CN102251175B (en) * 2010-05-20 2013-07-10 株式会社神户制钢所 Thick steel plate

Also Published As

Publication number Publication date
CN101182618B (en) 2011-03-16
CN101182618A (en) 2008-05-21
JP2008121074A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4356949B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5207914B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
JP4660250B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP4969275B2 (en) High tensile steel plate with excellent toughness of weld heat affected zone
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP2008255458A (en) Thick steel plate having haz toughness and base metal toughness
JP5394785B2 (en) Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP5824434B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP5394849B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP6301805B2 (en) Thick steel plate for tanks with excellent toughness of weld heat affected zone
JP5297692B2 (en) High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4768526B2 (en) Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness
JP2009179868A (en) High tensile strength steel plate having excellent weldability
KR100944850B1 (en) Thick sheet with excellent toughness of weld heat affected zone
JP5880348B2 (en) Steel material with excellent toughness at heat affected zone
JP2005200716A (en) Steel material superior in toughness of weld heat-affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees