[go: up one dir, main page]

JP4354432B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4354432B2
JP4354432B2 JP2005159961A JP2005159961A JP4354432B2 JP 4354432 B2 JP4354432 B2 JP 4354432B2 JP 2005159961 A JP2005159961 A JP 2005159961A JP 2005159961 A JP2005159961 A JP 2005159961A JP 4354432 B2 JP4354432 B2 JP 4354432B2
Authority
JP
Japan
Prior art keywords
electrode
gate
electron emission
cold cathode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005159961A
Other languages
Japanese (ja)
Other versions
JP2006338935A (en
Inventor
久也 高橋
篤史 難波
富士夫 松井
美由紀 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2005159961A priority Critical patent/JP4354432B2/en
Publication of JP2006338935A publication Critical patent/JP2006338935A/en
Application granted granted Critical
Publication of JP4354432B2 publication Critical patent/JP4354432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、冷陰極電子放出源から電界放出された電子によって蛍光体を励起発光させる発光装置に関する。   The present invention relates to a light emitting device that excites a phosphor with light emitted from a cold cathode electron emission source.

近年、白熱電球や蛍光灯といった従来の発光装置に対し、真空中で冷陰極電子放出源から電界放出させた電子を高速で蛍光体に衝突させることにより、蛍光体を励起発光させる冷陰極電界放出型の発光装置が開発されており、電界放出型照明ランプ(Field Emission Lamp:FEL)や電界放出型表示装置(Field Emission Display:FED)としての用途が見込まれている。   In recent years, in contrast to conventional light emitting devices such as incandescent bulbs and fluorescent lamps, cold cathode field emission that causes phosphors to emit light by colliding the electrons emitted from the cold cathode electron emission source in vacuum with the phosphors at high speed. Type light-emitting devices have been developed and are expected to be used as field emission lamps (FEL) and field emission display devices (FED).

この種の発光装置は、カソード電極に対して正の電位を与えたゲート電極によって電子を引き出し、更に正の高電圧を与えた蛍光板電極に電子を衝突させて蛍光発光させるものであるが、平面に冷陰極電子源を成膜したカソード電極に対向してゲート電極を配置する場合、カソード電極とゲート電極との間の電界によって引き出された電子は、一部は蛍光体に到達して発光に寄与するが、他はゲート電極に飛び込んで無効電子となり、無駄に電力を損失するという問題がある。   This type of light-emitting device is one in which electrons are extracted by a gate electrode applied with a positive potential with respect to a cathode electrode, and are further made to emit fluorescent light by colliding electrons with a fluorescent plate electrode applied with a positive high voltage. When the gate electrode is placed opposite to the cathode electrode on which the cold cathode electron source is formed, some of the electrons extracted by the electric field between the cathode electrode and the gate electrode reach the phosphor and emit light. Although it contributes, the other problem is that it jumps into the gate electrode and becomes invalid electrons, and power is lost.

このような問題に対処するため、特許文献1には、FELに関連して、カソード電極表面と略平行な略平板に孔を設け、この孔端をカソード電極側に突き出した構造のグリッド電極(ゲート電極)とする技術が開示されている。特許文献1の技術によれば、略平板領域における電界よりも孔端における電界を高くすることにより、カソード電極からグリッド電極に飛び込む無効電子を抑制することができる。   In order to cope with such a problem, in Patent Document 1, a grid electrode (structure) in which a hole is formed in a substantially flat plate substantially parallel to the surface of the cathode electrode and the end of the hole protrudes toward the cathode electrode is related to FEL. A technique for forming a gate electrode) is disclosed. According to the technique of Patent Document 1, invalid electrons jumping from the cathode electrode to the grid electrode can be suppressed by making the electric field at the hole end higher than the electric field in the substantially flat plate region.

また、特許文献2には、同様にFELに関連して、部分的に開口を備えた半円筒状のグリッド電極が直方体形状カソード電極に対して間隙を持って囲む技術が開示されている。特許文献2の技術は、電子が蛍光板電極に突入したことによって叩き出された正イオンがカソード電極に突入することを抑制し、放電破壊を防止するものであるが、電子放出の軌跡を予め算出設計して開口を設けることにより、放出電子がグリッド電極に飛び込まずに開口を通り抜けて蛍光体に突入する確率を向上することができる。   Similarly, Patent Document 2 discloses a technique related to FEL in which a semicylindrical grid electrode partially having an opening surrounds a rectangular parallelepiped cathode electrode with a gap. The technique of Patent Document 2 is to prevent positive ions struck by the entry of electrons into the fluorescent plate electrode and prevent the discharge breakdown, and to calculate the electron emission trajectory in advance. By designing and providing an opening, it is possible to improve the probability that emitted electrons pass through the opening without entering the grid electrode and enter the phosphor.

更に、FED等においては、フォトリソグラフィー技術等により、カソード電極とゲート電極とを極めて近い距離で配置し、ゲート電極に電子が吸収されないように工夫している。図7は、FEDにおけるカソード側の代表的な構造を示すものであり、カソード電極100上に、電子放出源101及び絶縁層102を成膜し、絶縁層102の上層に金属材からなるゲート電極103を成膜している。絶縁層102の厚さAは、例えば20μm以下であり、ゲート電極103の開口寸法Bは、例えば、数μ〜数十μm程度である。
特開2004−207066号公報 特開2004−220896号公報
Further, in the FED or the like, the cathode electrode and the gate electrode are arranged at a very close distance by photolithography technology or the like so that electrons are not absorbed by the gate electrode. FIG. 7 shows a typical structure of the cathode side in the FED. An electron emission source 101 and an insulating layer 102 are formed on the cathode electrode 100, and a gate electrode made of a metal material is formed on the insulating layer 102. 103 is formed. The thickness A of the insulating layer 102 is, for example, 20 μm or less, and the opening dimension B of the gate electrode 103 is, for example, about several μ to several tens of μm.
JP 2004-207066 A JP 2004-220896 A

特許文献1や特許文献2に開示の技術によれば、無駄に電力を損失することなく効率的な発光装置とすることができるが、従来のFELは、照明用として一定の色調と明るさと前提としたものが多く、色調と明るさを所望に制御することは困難である。従って、冷陰極電界放出型の単一の発光装置で任意の色調と照明用としての明るさを得るには、一般的には、表示装置としてのFEDに関する技術を応用することが考えられる。   According to the technologies disclosed in Patent Document 1 and Patent Document 2, an efficient light-emitting device can be obtained without wastefully losing power. However, the conventional FEL is based on a certain color tone and brightness for illumination. It is difficult to control the tone and brightness as desired. Therefore, in order to obtain an arbitrary color tone and brightness for illumination with a single cold cathode field emission type light emitting device, it is generally considered to apply a technology related to FED as a display device.

しかしながら、表示装置よりも遥かに高い輝度が要求され、平面状の発光面全体を発光させる照明用としての用途を考慮したとき、表示装置としてのFED等におけるフォトリソグラフィー技術は、設備と生産プロセスの費用が高額となり、製品価格が安価なFELの製造工程には適合が困難であるばかりでなく、カソード電極とゲート電極とを極めて近い距離に配置することから、真空容器内で高速移動しているガスイオンがゲート電極に衝突する際に金属スパッタが発生し易いという欠点につながり、カソード極の損傷を招く虞がある。   However, when a brightness much higher than that of a display device is required and an application for illumination that emits light from the entire planar light emitting surface is considered, the photolithography technology in the FED or the like as a display device is a facility and a production process. Not only is the cost high and the product price is low, it is difficult to adapt to the FEL manufacturing process, but the cathode electrode and the gate electrode are located at a very close distance, so they move at high speed in the vacuum vessel. When gas ions collide with the gate electrode, metal spatter is likely to occur, which may cause damage to the cathode electrode.

更に、一般的な方法で成膜された冷陰極電子放出源は、成膜された部分毎に一定の電界放出特性を有しておらず、この電界放出特性のバラツキに起因して、蛍光体の発光輝度にムラが発生することが避けられない。このため、例えば、ゲート電圧を直流的な電圧で制御しようとしても、領域によって電子放出の電流密度が異なることから、蛍光体で得られる明るさがばらつき、安定した色調及び明るさに制御することが困難となる。   Furthermore, a cold cathode electron emission source formed by a general method does not have a constant field emission characteristic for each portion where the film is formed, and the phosphor is caused by variations in the field emission characteristics. It is inevitable that unevenness occurs in the light emission luminance. For this reason, for example, even if the gate voltage is controlled with a DC voltage, the current density of electron emission differs depending on the region, so that the brightness obtained with the phosphor varies, and the color tone and brightness are controlled stably. It becomes difficult.

本発明は上記事情に鑑みてなされたもので、単一の装置で任意の色調と照明用としての明るさとを安定的且つ効率的に得ることのできる発光装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a light emitting device capable of stably and efficiently obtaining an arbitrary color tone and brightness for illumination with a single device.

上記目的を達成するため、本発明による発光装置は、冷陰極電子放出源を有するカソード電極と、上記カソード電極との間の真空中で上記冷陰極電子放出源から電界放出された電子により励起され、互いに発光色の異なる複数の蛍光体を有するアノード電極と、上記カソード電極と上記アノード電極との間で上記カソード電極に対向する面が真空中に露呈され、上記冷陰極電子放出源から放出された電子を通過させる開口部を有して上記複数の蛍光体の各々に対応する発光色毎のゲート電極と、上記発光色毎のゲート電極を互いに電気的に絶縁し、上記発光色毎のゲート電極の上記アノード電極側の非開口領域を覆うゲート板と、上記発光色毎のゲート電極を同時或いは個別に制御して上記発光色毎のゲート電極から上記カソード電極にパルス電圧を印加し、該パルス電圧のピーク値を一定としてパルス幅と周波数との少なくも一方を可変制御することにより、上記複数の蛍光体の全体の色調と明るさとを調整する調色調光回路とを備え、上記ピーク値は、上記蛍光体の発光が飽和状態に達する電流密度以上となる電界強度を発生させる電圧であることを特徴とする。 In order to achieve the above object, a light emitting device according to the present invention is excited by electrons emitted from the cold cathode electron emission source in a vacuum between the cathode electrode having the cold cathode electron emission source and the cathode electrode. The anode electrode having a plurality of phosphors having different emission colors and the surface facing the cathode electrode between the cathode electrode and the anode electrode are exposed in a vacuum and emitted from the cold cathode electron emission source. A gate electrode for each luminescent color corresponding to each of the plurality of phosphors having an opening through which electrons pass, and a gate electrode for each luminescent color are electrically insulated from each other, and the gate for each luminescent color a gate plate covering the non-opening area of the anode electrode side of the electrode, pulse to the cathode electrode from the gate electrode of each light emitting color by simultaneously or separately control the gate electrode of each light emitting color A toning light control circuit that adjusts the overall color tone and brightness of the plurality of phosphors by applying a voltage and variably controlling at least one of the pulse width and the frequency while keeping the peak value of the pulse voltage constant The peak value is a voltage that generates an electric field strength that is equal to or higher than a current density at which light emission of the phosphor reaches a saturated state .

発光色毎のゲート電極の開口部の面積は、冷陰極電子放出源を発光色毎のゲート電極の開口部と相似形状の領域でパターン化した場合、冷陰極電子放出源の各パターン領域の面積以上とすることが望ましく、更に、冷陰極電子放出源の各パターン領域の周囲に、カソード電極を覆う導電性のカソードマスクを配置することが望ましい。   The area of the opening of the gate electrode for each emission color is the area of each pattern area of the cold cathode electron emission source when the cold cathode electron emission source is patterned with an area similar to the opening of the gate electrode for each emission color. It is desirable to make the above, and it is also desirable to dispose a conductive cathode mask covering the cathode electrode around each pattern region of the cold cathode electron emission source.

本発明による発光装置は、単一の発光装置で任意の色調と照明用としての明るさとを安定的且つ効率的に得ることができる。   The light emitting device according to the present invention can stably and efficiently obtain an arbitrary color tone and brightness for illumination with a single light emitting device.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図6は本発明の実施の一形態に係り、図1は発光装置の基本構成図、図2はゲート電極及びゲート板を示す平面図、図3はゲート電極とカソード電極と冷陰極電子放出源との関係を示す説明図、図4はカソード電極と冷陰極電子放出源とカソードマスクとを示す説明図、図5は調色調光回路の構成図、図6はパルス変調駆動の説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 relate to an embodiment of the present invention, FIG. 1 is a basic configuration diagram of a light emitting device, FIG. 2 is a plan view showing a gate electrode and a gate plate, and FIG. 3 is a gate electrode, a cathode electrode, and a cold cathode. FIG. 4 is an explanatory diagram showing the relationship between the electron emission source, FIG. 4 is an explanatory diagram showing a cathode electrode, a cold cathode electron emission source, and a cathode mask, FIG. 5 is a block diagram of a toning light control circuit, and FIG. It is explanatory drawing.

図1に示すように、本実施の形態における発光装置1は、例えば平面状の電界放出型照明ランプとして用いられる発光装置であり、所定間隔で対向配置されたガラス基板2,3の内部を真空状態に維持し、この真空状態下で、カソード電極5、ゲート電極10、アノード電極15を基底面側から投光面側に向かって順に配置した基本構成を有している。   As shown in FIG. 1, a light-emitting device 1 according to the present embodiment is a light-emitting device used as, for example, a planar field emission illumination lamp. In this vacuum state, the cathode electrode 5, the gate electrode 10, and the anode electrode 15 are arranged in this order from the base surface side to the light projecting surface side.

カソード電極5は、基底面となるガラス基板2上に形成された導電材からなり、例えば、アルミニウムやニッケル等の金属を蒸着やスパッタ法等によって堆積したり、銀ペースト材を塗布して乾燥・焼成する等して形成される。このカソード電極5の表面には、カーボンナノチューブ、カーボンナノウォール、スピント型マイクロコーン、金属酸化物ウィスカー等のエミッタ材料が膜状に塗布され、以下に説明する蛍光体16に対応してパターン化された冷陰極電子放出源6が形成されている。   The cathode electrode 5 is made of a conductive material formed on the glass substrate 2 serving as the base surface. For example, a metal such as aluminum or nickel is deposited by vapor deposition or sputtering, or a silver paste material is applied and dried. It is formed by firing. On the surface of the cathode electrode 5, an emitter material such as a carbon nanotube, a carbon nanowall, a spint type micro cone, or a metal oxide whisker is applied in a film shape and patterned in accordance with a phosphor 16 described below. A cold cathode electron emission source 6 is formed.

アノード電極15は、投光面となるガラス基板3の裏面側に配置された透明導電膜(例えば、ITO膜)からなり、ゲート電極10(カソード電極5)に対向する面に、冷陰極電子放出源6から放出された電子によって励起発光される蛍光体16が成膜されている。蛍光体16は、互いに発光色の異なる複数の蛍光体、本形態においては、赤色に発光する蛍光体16Aと、緑色に発光する蛍光体16Bと、青色に発光する蛍光体16CとのR,G,B(赤,緑,青)3原色の蛍光体をパターン化して配置したものであり、各蛍光体16A,16B,16Cが、例えば、スクリーン印刷法、インクジェット法、フォトグラフィ法、沈殿法、電着法等により、アノード電極15上に成膜されている。   The anode electrode 15 is made of a transparent conductive film (for example, ITO film) disposed on the back surface side of the glass substrate 3 serving as a light projecting surface, and cold cathode electron emission is performed on the surface facing the gate electrode 10 (cathode electrode 5). A phosphor 16 that is excited and emitted by electrons emitted from the source 6 is formed. The phosphor 16 has a plurality of phosphors having different emission colors. In this embodiment, the phosphors 16A and 16B are composed of a phosphor 16A that emits red light, a phosphor 16B that emits green light, and a phosphor 16C that emits blue light. , B (red, green, blue) phosphors of the three primary colors are arranged in a pattern, and each phosphor 16A, 16B, 16C is, for example, a screen printing method, an inkjet method, a photography method, a precipitation method, A film is formed on the anode electrode 15 by an electrodeposition method or the like.

一方、カソード電極5とアノード電極15との間の真空の空間内に配置されるゲート電極10は、パターン化された冷陰極電子放出源6及び各蛍光体16A,16B,16Cにそれぞれ対応する発光色毎のゲート電極10A,10B,10Cとして構成されている。各ゲート電極10A,10B,10Cは、ゲート板11によって互いに電気的に絶縁され、冷陰極電子放出源6から放出された電子を通過させる開口部12を備えている。   On the other hand, the gate electrode 10 disposed in the vacuum space between the cathode electrode 5 and the anode electrode 15 emits light corresponding to the patterned cold cathode electron emission source 6 and each of the phosphors 16A, 16B, and 16C. The gate electrodes 10A, 10B, and 10C are provided for each color. Each of the gate electrodes 10A, 10B, and 10C is electrically insulated from each other by the gate plate 11 and includes an opening 12 through which electrons emitted from the cold cathode electron emission source 6 pass.

各ゲート電極10A,10B,10Cの開口部12以外の非開口領域は、一方の面がカソード電極5に対向して真空中に露呈される一方、アノード電極15側の他方の面がゲート板11によって覆われている。本形態においては、ゲート電極10A,10B,10Cは、ゲート板11上に一体的に形成されており、ニッケル材、ステンレス材、アンバー材等の導電性金属材料を用い、単純な機械加工、エッチング、スクリーン印刷等により、例えば厚さ1mm以下の電極としてゲート板11上に形成されている。ゲート板11は、セラミックやマイカ等の絶縁材料により、或いは金属板に絶縁被膜をコーティングして形成され、所定位置に配置された図示しないサポータを介してカソード電極5上に支持されている。   In the non-opening regions other than the opening 12 of each gate electrode 10A, 10B, 10C, one surface is exposed to the vacuum facing the cathode electrode 5, while the other surface on the anode electrode 15 side is the gate plate 11. Covered by. In this embodiment, the gate electrodes 10A, 10B, and 10C are integrally formed on the gate plate 11, using a conductive metal material such as a nickel material, a stainless material, or an amber material, and performing simple machining and etching. By means of screen printing or the like, for example, an electrode having a thickness of 1 mm or less is formed on the gate plate 11. The gate plate 11 is formed of an insulating material such as ceramic or mica or by coating an insulating film on a metal plate, and is supported on the cathode electrode 5 via a supporter (not shown) disposed at a predetermined position.

尚、後述するように、各ゲート電極10A,10B,10Cは、カソード電極5との電位差(ゲート電圧)を個別に制御可能であり、パターン毎の冷陰極電子放出源6に個別に電界を印加して電子線20A,20B,20Cを放出させ、R,G,B各色毎の蛍光体16A,16B,16Cを独立して発光させることができる。   As will be described later, the gate electrodes 10A, 10B, and 10C can individually control the potential difference (gate voltage) from the cathode electrode 5, and individually apply an electric field to the cold cathode electron emission source 6 for each pattern. Thus, the electron beams 20A, 20B, and 20C are emitted, and the phosphors 16A, 16B, and 16C for the respective colors R, G, and B can be caused to emit light independently.

各ゲート電極10A,10B,10Cの開口部12は、本形態においては、図2に示すように、ランド状に形成された冷陰極電子放出源6のパターン領域と同じか若干大きく形成された円孔として形成されている。これにより、冷陰極電子放出源6から放出される略全ての電子を通過させて発光に寄与する有効電子とすることができ、ゲート電極10での電力損失を低減し、無損失ゲートの実現を可能としている。   In this embodiment, the opening 12 of each gate electrode 10A, 10B, 10C is a circle formed to be the same as or slightly larger than the pattern area of the cold cathode electron emission source 6 formed in a land shape, as shown in FIG. It is formed as a hole. As a result, almost all electrons emitted from the cold cathode electron emission source 6 can be passed to be effective electrons contributing to light emission, reducing power loss at the gate electrode 10 and realizing a lossless gate. It is possible.

この無損失ゲートを有効に実現するには、図3に示すゲート電極10とカソード電極5との対向距離H、及び冷陰極電子放出源6のパターン領域の寸法D1とゲート電極10の開口部12の開口寸法D2との関係を適切に設定する必要がある。   In order to effectively realize this lossless gate, the facing distance H between the gate electrode 10 and the cathode electrode 5 shown in FIG. 3, the dimension D1 of the pattern region of the cold cathode electron emission source 6, and the opening 12 of the gate electrode 10 are shown. It is necessary to appropriately set the relationship with the opening dimension D2.

先ず、ゲート電極10とカソード電極5との対向距離Hは、規定の下限値以上に設定される。この下限値は、ゲート電極10からカソード電極5への有害な金属スパッタの発生を防止可能な距離であると同時に、ゲート電極10とカソード電極5との距離が近すぎて電界が有効に発生せず冷陰極電子放出源6から放出される電子が極端に少なくなることを避けるための距離であり、例えば、H=0.1mm〜5mmに設定される。   First, the facing distance H between the gate electrode 10 and the cathode electrode 5 is set to a specified lower limit value or more. This lower limit is a distance that can prevent the occurrence of harmful metal sputtering from the gate electrode 10 to the cathode electrode 5, and at the same time, the distance between the gate electrode 10 and the cathode electrode 5 is too short to effectively generate an electric field. This is a distance for avoiding that the number of electrons emitted from the cold cathode electron emission source 6 becomes extremely small, and is set to H = 0.1 mm to 5 mm, for example.

また、冷陰極電子放出源6のパターン領域の寸法D1とゲート電極10の開口部12の開口寸法D2との関係は、蛍光体16の発光に要する電界強度やゲート電極10とカソード電極5とのアライメント誤差等を考慮して設定される。例えば、冷陰極電子放出源6のパターン領域の寸法D1をD1=0.1mm〜5mmとした場合、ゲート電極10の開口部12の開口寸法D2は、D2=D1〜D1+1mmの範囲に設定される。   Further, the relationship between the dimension D1 of the pattern region of the cold cathode electron emission source 6 and the opening dimension D2 of the opening 12 of the gate electrode 10 depends on the electric field intensity required for the light emission of the phosphor 16 and the relationship between the gate electrode 10 and the cathode electrode 5. It is set in consideration of alignment error and the like. For example, when the dimension D1 of the pattern area of the cold cathode electron emission source 6 is set to D1 = 0.1 mm to 5 mm, the opening dimension D2 of the opening 12 of the gate electrode 10 is set in a range of D2 = D1 to D1 + 1 mm. .

この場合、ゲート電極10の開口部12と冷陰極電子放出源6のパターン領域(電子放出領域)とは、円形の形状に限らず矩形状等の他の形状でも良く、互いに相似形状であれば良い。上述した寸法D1,D2の関係は、ゲート電極10側と冷陰極電子放出源6側とで互いに相似となる開口部の面積が同じかゲート電極10側が若干大きい関係にあれば良いことを意味している。   In this case, the opening 12 of the gate electrode 10 and the pattern region (electron emission region) of the cold cathode electron emission source 6 are not limited to a circular shape, and may be other shapes such as a rectangular shape, as long as they are similar to each other. good. The relationship between the dimensions D1 and D2 described above means that the gate electrode 10 side and the cold cathode electron emission source 6 side need only have a relationship in which the areas of the openings that are similar to each other are the same or slightly larger on the gate electrode 10 side. ing.

好適には、図4に示すように、冷陰極電子放出源6の周囲に、カソード電極5を覆うカソードマスク7を配置することが望ましい。このカソードマスク7は、各ゲート電極10A,10B,10Cと同様の導電性の部材で形成され、冷陰極電子放出源6のパターン領域周縁への電界の集中を防止するものである。   Preferably, as shown in FIG. 4, a cathode mask 7 that covers the cathode electrode 5 is disposed around the cold cathode electron emission source 6. The cathode mask 7 is formed of a conductive member similar to each of the gate electrodes 10A, 10B, and 10C, and prevents concentration of the electric field on the periphery of the pattern region of the cold cathode electron emission source 6.

このカソードマスク7を用いることにより、ゲート電極10からの金属スパッタの発生を確実に防止し、冷陰極電子放出源6から放出される略全ての電子をゲート電極10の開口部を通過させてアノード電極15に到達させ、発光に寄与する有効電子としてゲート電極10での電力損失を効果的に低減することができる。   By using this cathode mask 7, it is possible to reliably prevent the occurrence of metal sputtering from the gate electrode 10, and pass almost all the electrons emitted from the cold cathode electron emission source 6 through the opening of the gate electrode 10, so that the anode Power loss at the gate electrode 10 can be effectively reduced as effective electrons that reach the electrode 15 and contribute to light emission.

尚、冷陰極電子放出源6をパターン化することなく、カソード電極5上に冷陰極電子放出源6を一様に成膜し、この一様に成膜した冷陰極電子放出源6上に、ゲート電極10A,10B,10Cの開口部12と相似形状で開口部12の面積以下の開口部を備えたカソードマスクを配置するようにしても良い。   Note that the cold cathode electron emission source 6 is uniformly formed on the cathode electrode 5 without patterning the cold cathode electron emission source 6, and the uniformly formed cold cathode electron emission source 6 is You may make it arrange | position the cathode mask provided with the opening part 12 or less of the area of the opening part 12 in the shape similar to the opening part 12 of gate electrode 10A, 10B, 10C.

以上の発光装置1においては、カソード電極5に対して、アノード電極15を所定の正の高電位に維持し、各ゲート電極10A,10B,10Cからカソード電極5へ所定のゲート電圧を印加して冷陰極電子放出源6から真空中に電子を電界放出させる。この電界放出された電子はアノード電極15に向って加速され、ゲート電極10A,10B,10Cの各開口部12を通過した電子が蛍光体16A,16B,16Cに衝突し、それぞれが、赤、緑、青の光を放つ。   In the light emitting device 1 described above, the anode electrode 15 is maintained at a predetermined positive high potential with respect to the cathode electrode 5, and a predetermined gate voltage is applied to the cathode electrode 5 from each of the gate electrodes 10 </ b> A, 10 </ b> B, 10 </ b> C. Electrons are emitted from the cold cathode electron emission source 6 into a vacuum. The electrons emitted by the field emission are accelerated toward the anode electrode 15, and the electrons that have passed through the openings 12 of the gate electrodes 10A, 10B, and 10C collide with the phosphors 16A, 16B, and 16C. , Emitting blue light.

従って、各ゲート電極10A,10B,10Cのゲート電圧を同時に或いは個別に制御して各蛍光体16A,16B,16Cの発光を制御することにより、単一の装置でありながら、単色から所望の色調までの任意の色調に制御することが可能となり、且つ照明用に適した明るさを得ることができる。発光の色調及び明るさを制御するには、一般的には、各ゲート電極10A,10B,10Cのゲート電圧を直流的に可変すれば良いが、実際には、冷陰極電子放出源6の電界放出特性は必ずしも一定ではなく、領域によって電子放出の電流密度が異なることから、ゲート電圧を単なる直流的な電圧で制御しようとしても、蛍光体16A,16B,16Cで得られる明るさがばらつき、安定した色調及び明るさに制御することが困難となる。   Therefore, by controlling the gate voltage of each gate electrode 10A, 10B, 10C simultaneously or individually to control the light emission of each phosphor 16A, 16B, 16C, the desired color tone can be changed from a single color to a single device. Can be controlled to any color tone up to the above, and brightness suitable for illumination can be obtained. In general, to control the color tone and brightness of light emission, the gate voltage of each of the gate electrodes 10A, 10B, and 10C may be varied in a DC manner. In practice, however, the electric field of the cold cathode electron emission source 6 is changed. Since the emission characteristics are not necessarily constant, and the current density of electron emission differs depending on the region, even if the gate voltage is controlled by a simple DC voltage, the brightness obtained by the phosphors 16A, 16B, and 16C varies and is stable. It becomes difficult to control the color tone and brightness.

この電子放出特性のばらつきは、単に蛍光体16A,16B,16C毎に存在するばかりでなく、同じ蛍光体においても領域によってばらつきが存在することを意味し、特に、R,G,B3原色を混合して白色光を得ようとする場合、蛍光体16A,16B,16Cの個々における輝度ムラによって完全な白色光を得ることが困難となり、また、R,G,Bの何れかで単色発光させようとしても、輝度ムラが目立つ結果となる。   This variation in electron emission characteristics not only exists for each of the phosphors 16A, 16B, and 16C, but also means that there is variation depending on the region in the same phosphor, and in particular, R, G, and B3 primary colors are mixed. When white light is to be obtained, it is difficult to obtain complete white light due to uneven brightness in each of the phosphors 16A, 16B, and 16C, and monochromatic light emission may be performed with any of R, G, and B. However, the luminance unevenness is conspicuous.

このため、本発光装置1の調色調光制御においては、通常のゲート電圧よりも高い電圧をカソード電極5にパルス状に印加し、各蛍光体16A,16B,16Cを高輝度で発光させる電流密度となるような電界強度をカソード電極5に与えることにより、冷陰極電子放出源6の電界放出特性のバラツキによる領域毎の発光輝度の差を、実用上問題のないレベルとする。   For this reason, in the toning / dimming control of the light emitting device 1, a voltage higher than the normal gate voltage is applied to the cathode electrode 5 in a pulsed manner, and each phosphor 16A, 16B, 16C emits light with high luminance. By providing the cathode electrode 5 with the electric field strength that provides the density, the difference in emission luminance between regions due to variations in the field emission characteristics of the cold cathode electron emission source 6 is set to a level that does not cause a problem in practice.

すなわち、一般に、電界放出の電流密度は、印加する電界強度が比較的小さい場合には、電界強度の増加に応じて電流密度も緩やかに増加するが、或る電界強度を越えると、電流密度が急激に増加する。一方、蛍光体は、電流密度の増加に応じて発光輝度が高くなるが、所定の電流密度以上では発光が飽和状態となり、それ以上電流密度を増加させても、発光輝度は高くならない。従って、カソード電極5に与える電界強度を通常よりも大きくして各蛍光体16A,16B,16Cを飽和状態或は飽和状態に近い高輝度で発光させることにより、冷陰極電子放出源6の電界放出特性のバラツキによる領域毎の発光輝度の差を小さくすることができる。   That is, in general, the current density of field emission increases gradually as the electric field strength increases when the applied electric field strength is relatively small, but when the electric field strength exceeds a certain electric field strength, the current density increases. Increases rapidly. On the other hand, the phosphor has higher emission luminance as the current density increases. However, the emission luminance is saturated at a predetermined current density or higher, and the emission luminance does not increase even if the current density is increased further. Accordingly, the field intensity of the cold cathode electron emission source 6 is increased by increasing the electric field strength applied to the cathode electrode 5 so that each phosphor 16A, 16B, 16C emits light in a saturated state or high brightness close to the saturated state. A difference in light emission luminance for each region due to variation in characteristics can be reduced.

本実施の形態においては、各蛍光体16A,16B,16Cの発光が飽和状態に達する電流密度以上となる電界強度を発生させる電圧をピーク値として、このピーク値のパルス電圧を各ゲート電極10A,10B,10Cからカソード電極5に印加することで、各蛍光体16A,16B,A6Cを飽和状態で高輝度発光させる。そして、このパルス電圧の繰り返し周波数、或いはパルス電圧を印加する期間(パルス幅)を可変することにより、蛍光体16全体としての発光面の色調及び明るさを調整する。   In the present embodiment, a voltage that generates an electric field intensity that is equal to or higher than the current density at which the light emission of each phosphor 16A, 16B, and 16C reaches a saturation state is a peak value, and the pulse voltage of this peak value is set to each gate electrode 10A, By applying the fluorescent material 16A, 10C to the cathode electrode 5, each phosphor 16A, 16B, A6C emits light with high brightness in a saturated state. Then, by changing the repetition frequency of the pulse voltage or the period (pulse width) during which the pulse voltage is applied, the color tone and brightness of the light emitting surface of the phosphor 16 as a whole are adjusted.

この際、ゲート電極10A,10B,10Cの開口部12を冷陰極電子放出源6のパターン領域と同じか若干大きく形成しているため、冷陰極電子放出源6から放出される略全ての電子をアノード電極15に到達させ、色調と光量とを効率的に調整することができる。しかも、ゲート電極10A,10B,10Cを真空中でカソード電極5から適切に離間した位置に配置しているため、有害な金属スパッタの発生を防止し、更には、ゲート電極10A,10B,10Cのアノード電極15に対向する側をゲート板11で覆っているため、蛍光体に電子が突入して叩き出される正イオンのカソード電極5への突入を阻止することも可能であり、安定して色調と光量とを調整することができる。   At this time, since the openings 12 of the gate electrodes 10A, 10B, and 10C are formed to be the same as or slightly larger than the pattern region of the cold cathode electron emission source 6, almost all electrons emitted from the cold cathode electron emission source 6 are removed. The color tone and the amount of light can be efficiently adjusted by reaching the anode electrode 15. In addition, since the gate electrodes 10A, 10B, and 10C are disposed at positions appropriately separated from the cathode electrode 5 in a vacuum, generation of harmful metal sputtering is prevented, and further, the gate electrodes 10A, 10B, and 10C Since the side facing the anode electrode 15 is covered with the gate plate 11, it is possible to prevent the positive ions, which are struck by the electrons from entering the phosphor, from entering the cathode electrode 5. And the amount of light can be adjusted.

図5は、ゲート電極10A,10B,10Cからカソード電極5に印加するパルス電圧の周波数或いはパルス幅を可変するパルス変調方式により調色調光制御を行う調色調光回路の例を示している。この調色調光回路50は、各蛍光体16A,16B,16Cを飽和発光させる電界強度を与える一定の高電圧を発生する高電圧源HV、ゲート電極10A,10B,10Cを個別に駆動するドライバ(図においてはハーフブリッジ型ドライバ)Q1,Q2,Q3、これらのドライバQ1,Q2,Q3を制御するコントローラCTを備えて構成されている。   FIG. 5 shows an example of a toning light control circuit that performs toning light control by a pulse modulation method that varies the frequency or pulse width of the pulse voltage applied from the gate electrodes 10A, 10B, and 10C to the cathode electrode 5. . This toning light control circuit 50 is a driver that individually drives a high voltage source HV that generates a constant high voltage that gives an electric field intensity that causes each phosphor 16A, 16B, and 16C to emit light in saturation, and gate electrodes 10A, 10B, and 10C. (Half-bridge type driver in the figure) Q1, Q2, Q3 and a controller CT for controlling these drivers Q1, Q2, Q3.

コントローラCTは、図示しない操作パネル等からの信号に基づいて、内蔵或いは外部接続のパルス発生源からのパルス信号を変調し、変調したパルス信号によってドライバQ1,Q2,Q3を駆動する。その結果、高電圧源HVからの電圧をピーク値とするパルス電圧が各ゲート電極10A,10B,10Cからカソード電極5に周期的に印加され、発光面全体が所望の色調と明るさで発光する。   The controller CT modulates a pulse signal from a built-in or externally connected pulse generation source based on a signal from an operation panel (not shown) or the like, and drives the drivers Q1, Q2, and Q3 by the modulated pulse signal. As a result, a pulse voltage having a peak value of the voltage from the high voltage source HV is periodically applied from the gate electrodes 10A, 10B, and 10C to the cathode electrode 5, and the entire light emitting surface emits light with a desired color tone and brightness. .

すなわち、各蛍光体16A,16B,16Cを飽和状態で発光させる一定のゲート電圧を各ゲート電極10A,10B,10Cに印加することにより、冷陰極電子放出源6の電界放出特性のバラツキに拘わらず、R,G,B各色毎の蛍光体16A,16B、16Cを均一な明るさで発光させ、この均一に発光するR,G,B各色の発光時間或いは発光間隔を調整することにより、所望の色調と明るさを得ることができる。   That is, by applying a constant gate voltage that causes each phosphor 16A, 16B, 16C to emit light in a saturated state to each gate electrode 10A, 10B, 10C, regardless of variations in the field emission characteristics of the cold cathode electron emission source 6. The phosphors 16A, 16B, and 16C for each color of R, G, and B emit light with uniform brightness, and by adjusting the light emission time or light emission interval of each color of R, G, and B that emits uniformly, a desired color is obtained. Color tone and brightness can be obtained.

各ゲート電極10A,10B,10Cからカソード電極5に印加するパルス電圧のパルス幅や周波数は、同時に或いは個別に制御される。すなわち、同じパルス幅及び周波数のパルス電圧をゲート電極10A,10B,10Cに同時に印加することにより、R,G,B各色を混合した白色光を得ることができ、また、パルス電圧のパルス幅或いは周波数を可変することにより、R,G,B各色のそれぞれの発光強度を調整して所望の色調とすることができる。更には、ゲート電極10A,10B,10Cの何れか1つのみにパルス電圧を印加してR,G,Bの何れかの単色発光とすることもできる。この場合、パルス電圧の周波数を50Hz以上とすることにより、人間の視覚の残像現象を利用した連続発光として認識させることができる。   The pulse width and frequency of the pulse voltage applied from each gate electrode 10A, 10B, 10C to the cathode electrode 5 are controlled simultaneously or individually. That is, by simultaneously applying pulse voltages having the same pulse width and frequency to the gate electrodes 10A, 10B, and 10C, white light in which R, G, and B colors are mixed can be obtained, and the pulse width of the pulse voltage or By changing the frequency, it is possible to adjust the emission intensity of each of the R, G, and B colors to obtain a desired color tone. Furthermore, it is also possible to apply a pulse voltage to only one of the gate electrodes 10A, 10B, and 10C to produce monochromatic light emission of any one of R, G, and B. In this case, by setting the frequency of the pulse voltage to 50 Hz or more, it can be recognized as continuous light emission utilizing the afterimage phenomenon of human vision.

図6(a)は、各ゲート電極10A,10B,10Cからのパルス電圧のピーク値Vpとパルス幅T2とを一定として周波数を可変制御する例を示している。図6(a)においては、赤色発光に対応するゲート電極10Aのパルス電圧の周期T1R、緑色発光に対応するゲート電極10Bのパルス電圧の周期T1G、青色発光に対応するゲート電極10Cのパルス電圧の周期T1Bの順に、周期を長く(周波数を低く)しており、発光面全体としては赤みがかかった色調となる。発光面全体の明るさは、各ゲート電極10A,10B,10Cでパルス幅T2を一律に変更することで調整することができる。   FIG. 6A shows an example in which the frequency is variably controlled while the peak value Vp and the pulse width T2 of the pulse voltage from each of the gate electrodes 10A, 10B, and 10C are constant. In FIG. 6A, the pulse voltage period T1R of the gate electrode 10A corresponding to red light emission, the pulse voltage period T1G of the gate electrode 10B corresponding to green light emission, and the pulse voltage of the gate electrode 10C corresponding to blue light emission. In the order of the cycle T1B, the cycle is lengthened (frequency is lowered), and the entire light emitting surface has a reddish color tone. The brightness of the entire light emitting surface can be adjusted by uniformly changing the pulse width T2 between the gate electrodes 10A, 10B, and 10C.

また、図6(b)に示すように、各ゲート電極10A,10B,10Cからカソード電極5に印加するパルス電圧のピーク値Vpと周期T1とを一定として、パルス幅を可変することにより、色調を調整することもできる。この場合においても、周波数を50Hz以上の一定値とすることにより、人間の視覚の残像現象を利用した連続発光として認識させることができる。   Further, as shown in FIG. 6B, the color tone is obtained by varying the pulse width while keeping the peak value Vp and the period T1 of the pulse voltage applied from the gate electrodes 10A, 10B, and 10C to the cathode electrode 5 constant. Can also be adjusted. Even in this case, by setting the frequency to a constant value of 50 Hz or more, it can be recognized as continuous light emission using the afterimage phenomenon of human vision.

図6(b)の例では、赤色発光に対応するゲート電極10Aのパルス電圧のパルス幅T2R、緑色発光に対応するゲート電極10Bのパルス電圧のパルス幅T2G、青色発光に対応するゲート電極10Cのパルス電圧のパルス幅T2Bの順にパルス幅を長くしており、発光面全体としては青みがかかった色調となる。発光面全体の明るさは、各ゲート電極10A,10B,10Cで周波数(周期T1)を一律に変更することで調整することができる。   In the example of FIG. 6B, the pulse width T2R of the pulse voltage of the gate electrode 10A corresponding to red light emission, the pulse width T2G of the pulse voltage of the gate electrode 10B corresponding to green light emission, and the gate electrode 10C corresponding to blue light emission. The pulse width is increased in the order of the pulse width T2B of the pulse voltage, and the whole light emitting surface has a bluish color tone. The brightness of the entire light emitting surface can be adjusted by uniformly changing the frequency (period T1) in each of the gate electrodes 10A, 10B, and 10C.

実際の装置設計では、目的とする発光輝度と発光の均一性を得るように、蛍光体16A,16B,16Cの種類や厚み、アノード電極15及びゲート電極10A,10B,10Cの電圧、パルス電圧の周期やパルス幅等を最適に調節する。また、カソード電極5に流れる平均電流または実効電流を検出し、常時一定のカソード電流が流れ続けるように、駆動周期或いはパルス幅を自動調節すれば、カソードの経年的な変化に伴う発光輝度の低下を自動的に補正することも可能である。   In the actual device design, the types and thicknesses of the phosphors 16A, 16B, and 16C, the voltages of the anode electrode 15 and the gate electrodes 10A, 10B, and 10C, and the pulse voltage are obtained so as to obtain the target light emission luminance and light emission uniformity. Adjust the period and pulse width optimally. Further, if the average current or effective current flowing through the cathode electrode 5 is detected and the drive cycle or pulse width is automatically adjusted so that a constant cathode current always flows, the emission luminance decreases with the aging of the cathode. It is also possible to correct automatically.

発光装置の基本構成図、Basic configuration diagram of the light emitting device, ゲート電極及び絶縁板を示す平面図Plan view showing gate electrode and insulating plate ゲート電極とカソード電極と冷陰極電子放出源との関係を示す説明図Explanatory drawing which shows the relationship between a gate electrode, a cathode electrode, and a cold cathode electron emission source. カソード電極と冷陰極電子放出源とカソードマスクとを示す説明図Explanatory drawing which shows a cathode electrode, a cold cathode electron emission source, and a cathode mask. 調色調光回路の構成図Configuration diagram of toning light control circuit パルス変調駆動の説明図Illustration of pulse modulation drive 従来の電界放出型表示装置におけるカソード側の代表的な構造を示す説明図Explanatory drawing which shows the typical structure of the cathode side in the conventional field emission display

符号の説明Explanation of symbols

1 発光装置
5 カソード電極
6 冷陰極電子放出源
10A,10B,10C ゲート電極
15 アノード電極
16A,16B,16C 蛍光体
50 調色調光回路
DESCRIPTION OF SYMBOLS 1 Light-emitting device 5 Cathode electrode 6 Cold cathode electron emission source 10A, 10B, 10C Gate electrode 15 Anode electrode 16A, 16B, 16C Phosphor 50 Toning light control circuit

Claims (3)

冷陰極電子放出源を有するカソード電極と、
上記カソード電極との間の真空中で上記冷陰極電子放出源から電界放出された電子により励起され、互いに発光色の異なる複数の蛍光体を有するアノード電極と、
上記カソード電極と上記アノード電極との間で上記カソード電極に対向する面が真空中に露呈され、上記冷陰極電子放出源から放出された電子を通過させる開口部を有して上記複数の蛍光体の各々に対応する発光色毎のゲート電極と、
上記発光色毎のゲート電極を互いに電気的に絶縁し、上記発光色毎のゲート電極の上記アノード電極側の非開口領域を覆うゲート板と
上記発光色毎のゲート電極を同時或いは個別に制御して上記発光色毎のゲート電極から上記カソード電極にパルス電圧を印加し、該パルス電圧のピーク値を一定としてパルス幅と周波数との少なくも一方を可変制御することにより、上記複数の蛍光体の全体の色調と明るさとを調整する調色調光回路とを備え、
上記ピーク値は、上記蛍光体の発光が飽和状態に達する電流密度以上となる電界強度を発生させる電圧であることを特徴とする発光装置。
A cathode electrode having a cold cathode electron emission source;
An anode electrode having a plurality of phosphors having different emission colors excited by electrons emitted from the cold cathode electron emission source in a vacuum with the cathode electrode;
The plurality of phosphors having an opening for allowing electrons emitted from the cold cathode electron emission source to pass through the surface facing the cathode electrode between the cathode electrode and the anode electrode exposed in a vacuum. A gate electrode for each emission color corresponding to each of
A gate plate that electrically insulates the gate electrodes for each emission color and covers a non-opening region of the gate electrode for each emission color on the anode electrode side ;
A pulse voltage is applied from the gate electrode for each emission color to the cathode electrode by controlling the gate electrodes for each emission color simultaneously or individually, and the pulse voltage and the peak value are kept constant, so that the pulse width and frequency are at least A toning light control circuit that adjusts the overall color tone and brightness of the plurality of phosphors by variably controlling one of them,
The light emitting device according to claim 1, wherein the peak value is a voltage that generates an electric field strength that is equal to or higher than a current density at which light emission of the phosphor reaches a saturated state .
上記冷陰極電子放出源を上記発光色毎のゲート電極の開口部と相似形状の領域でパターン化し、上記発光色毎のゲート電極の開口部の面積を上記冷陰極電子放出源の各パターン領域の面積以上としたことを特徴とする請求項記載の発光装置。 The cold cathode electron emission source is patterned with a region having a shape similar to the opening of the gate electrode for each emission color, and the area of the opening of the gate electrode for each emission color is set to be equal to that of each pattern region of the cold cathode electron emission source. The light emitting device according to claim 1 , wherein the light emitting device has an area or more. 上記冷陰極電子放出源の各パターン領域の周囲に、上記カソード電極を覆う導電性のカソードマスクを配置したことを特徴とする請求項記載の発光装置。 3. The light emitting device according to claim 2, wherein a conductive cathode mask covering the cathode electrode is disposed around each pattern region of the cold cathode electron emission source.
JP2005159961A 2005-05-31 2005-05-31 Light emitting device Expired - Fee Related JP4354432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159961A JP4354432B2 (en) 2005-05-31 2005-05-31 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159961A JP4354432B2 (en) 2005-05-31 2005-05-31 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006338935A JP2006338935A (en) 2006-12-14
JP4354432B2 true JP4354432B2 (en) 2009-10-28

Family

ID=37559325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159961A Expired - Fee Related JP4354432B2 (en) 2005-05-31 2005-05-31 Light emitting device

Country Status (1)

Country Link
JP (1) JP4354432B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259430A (en) * 2008-04-11 2009-11-05 Ichikoh Ind Ltd Vehicle light source unit
KR100873155B1 (en) * 2008-06-13 2008-12-10 나노퍼시픽(주) Field emission device
KR101104073B1 (en) 2008-12-18 2012-01-12 한국전자통신연구원 Field emission device
KR101104074B1 (en) 2008-12-18 2012-01-12 한국전자통신연구원 Variable Color Field Emission Device

Also Published As

Publication number Publication date
JP2006338935A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
KR100697656B1 (en) Planar Light Emitting Device with Multiple Electron Sources
JP2000243218A (en) Electron emitting device and its drive method therefor
JP2629521B2 (en) Electron gun and cathode ray tube
JP4354432B2 (en) Light emitting device
US7064479B2 (en) Cold cathode display device and method of manufacturing cold cathode display device
JP2008091279A (en) Light emitting device
JP4347252B2 (en) Light emitting device
US7687982B2 (en) Electron emission device, electron emission display device including the electron emission device, and method of driving the electron emission device
KR101009977B1 (en) Field emission display
JP4347253B2 (en) Light emitting device
JP2011108563A (en) Lighting system
KR100756805B1 (en) Image display apparatus
JPH0313961Y2 (en)
KR100254674B1 (en) Resistive layer for field emission display
JP2004178841A (en) Cold cathode light emitting element and image display device
JP2001035359A (en) Manufacture of electron emitting source, the electron emitting source and display device
KR100235303B1 (en) Fed using mim(metal insulator metal) and manufacturing method thereof
JP2007003938A (en) Luminance control system for light emitting device
JPH10214581A (en) Anode substrate for field emission type display and manufacture thereof
JP2007227348A (en) Electron emission device and electron emission display device using electron emission device
US20080100196A1 (en) Light emission device, method of manufacturing the light emission device, and display device having the light emission device
JP2003178690A (en) Field emission element
KR20050096531A (en) Cathod plate of electron emission display device
JP2002025478A (en) Flat plate display device
KR19980084254A (en) Fluorescent tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees