[go: up one dir, main page]

JP4353602B2 - Component mounting equipment - Google Patents

Component mounting equipment Download PDF

Info

Publication number
JP4353602B2
JP4353602B2 JP2000001815A JP2000001815A JP4353602B2 JP 4353602 B2 JP4353602 B2 JP 4353602B2 JP 2000001815 A JP2000001815 A JP 2000001815A JP 2000001815 A JP2000001815 A JP 2000001815A JP 4353602 B2 JP4353602 B2 JP 4353602B2
Authority
JP
Japan
Prior art keywords
component
nozzles
nozzle
moving
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000001815A
Other languages
Japanese (ja)
Other versions
JP2001196797A (en
Inventor
茂樹 今福
圭三 泉田
裕樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000001815A priority Critical patent/JP4353602B2/en
Publication of JP2001196797A publication Critical patent/JP2001196797A/en
Application granted granted Critical
Publication of JP4353602B2 publication Critical patent/JP4353602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気・電子部品もしくはその他の部品(以下、部品という)を部品供給部から取出してこれを被取付部材の取付面に実装する部品実装装置に関するものであり、特に、ノズルにより部品を取出して被取付部に実装する部品実装装置に関するものである。
【0002】
【従来の技術】
図7及び図8は従来のこの種の部品実装装置を示す平面図である。図において、1は下方から部品を搬送するためのヘッドを示し、2a,2b,2cは下方に配置されている部品供給部3から部品4を吸着して保持するためのノズルを示す。ノズル2a,2b,2cは、ヘッド1の一側部に対して一列に並設されていて、ヘッド1と一体に移動する。該ヘッド1は、移動ブロック5に螺入されこの移動ブロック5に対して回転自在なX軸ボールねじ6と螺合され、このX軸ボールねじ6の基端部に連結されたX軸モータ7の回転駆動力によってX軸方向に沿って移動する。
【0003】
また、移動ブロック5は、Y軸回りに回転するY軸ボールねじ8に螺合され、このY軸ボールねじ8の基端部に連結されたY軸モータ9の回転によってY軸方向に沿って移動する。Y軸ボールねじ8の基端部側の側方には、前記各ノズル2a,2b,2cに対して前記部品4,4…を供給するための部品供給部3がX軸方向に沿って並設され、また、Y軸ボールねじ8の先端部側の側方に、部品4が実装される基板(被取付部)10が配設される。そして、前記部品供給部3と基板10との間に各ノズル2a,2b,2cに対して部品4の保持位置を検出すべく一次元ラインセンサ11を設置している。
【0004】
図8に示すように、該ラインセンサ11は、複数の受光素子からなる受光部11aと、投光部11bとからなり、投光部11bは上方へ向けて光を照射し、受光部11aは各ノズル2a,2b,2cに保持された部品4,4,4の下面によって下方へと反射した反射光の鉛直成分のみを取り込むように構成されており、投光部11a及び受光部11bの列が前記Y軸ボールねじ8に対して平行となるように、また、投光部11bの投光面及び受光部11aの受光面が、前記各ノズル2a,2b,2cの移動経路よりも下位に存在するように配置されている。
【0005】
よって、制御手段(図示せず)の駆動制御によって、図7及び図8に示すように、各ノズル2a,2b,2cを一次元ラインセンサ11上に移動した後、X軸モータ7の駆動によって、前記ヘッド1をX軸方向に移動させて前記ラインセンサ11を横断させながら、前記一次元ラインセンサ11によって各ノズル2a,2b,2cに保持されている部品4,4,4を一定の時間間隔でスキャンすると(本例では10回)、図9(a)の模試図に示す一次元の走査画像が得られ、これら一次元画像の合成によって図9(b)に示す部品4の下面全体の二次元画像を得ることができる。
【0006】
したがって、前記制御手段は、この結果に基づいて、部品の保持位置が不良の部品4はライン外へと排出することなる。なお、図9(a),(b)において、黒地が部品4の下面全体の画像を示す。
【0007】
図7は前記制御手段による部品実装装置の実装工程を示している。
この例では、ヘッド1が始点A1の部品供給部3の上方に移動されたときをサイクルのホームポジションとしており、ヘッド1を始点A1の部品供給部3から終端C1の部品供給部3のまでの間でX軸方向に移動し、選択されたA1,B1,C1位置の部品取出し部よりそれぞれ部品を取出している。
【0008】
部品取出しを終了すると、続いて、ヘッド1を前記ラインセンサ11の検出範囲外の一側方(図中、D1位置)に、移動させて停止し、この後、ヘッド1のX軸方向への移動による一次元ラインセンサ11の横断により各部品4の保持位置を検出する(図中、D1→E1)。
【0009】
制御手段は、一次元ラインセンサ11の出力情報(図9(a))の信号を処理して得た二次元画像情報(図9(b))と、予め記憶部に記憶しておいた二次元画像情報(画像情報)とを比較し、部品4の保持位置の良否をノズル毎に判定する。そして、判定結果が「良」の部品4は、基板10上へ所定位置に実装し(図中、E1→F1)、「不良」の部品4は、このサイクル実行後に、所定の排出部に移動して排出する。
【0010】
【発明が解決しようとする課題】
このように、従来の部品実装装置においては、各ノズル2a,2b,2c毎に部品4の保持位置を測定し、その結果のフィードバックによって、実装精度及び歩留まりの向上を図っている。
【0011】
しかし、この実装装置において、ノズル2a,2b,2cはヘッド1に対して固定であり、また、ノズルの並設方向は一定であるため(本例ではX方向)、ヘッド1の直線移動により一括して全てのノズル2a,2b,2cの部品位置を一括して検出するには、上述の如く、図7中、D1位置およびE1位置、すなわち、各ノズル2a,2b,2cの一次元ラインセンサ11の横断前後において、ヘッド1を、一旦、停止し、この後、ヘッド1の方向を転換して部品を実装しなければならない不都合がある。
【0012】
よって、実装サイクルの高速化を達成するには、部品保持位置検出時のヘッド1の停止、及び、ヘッド1の方向転換のステップを廃止する必要がある。
【0013】
なお、特開平5−283898号公報には、上述の一次元ラインセンサをX軸方向に沿わせて移動可能とし、図7において、G1位置に移動することによって、部品実装における1サイクルのヘッドの移動距離を短縮する技術が開示されている。
【0014】
しかし、このような技術は、単一のノズルによる部品の実装に対してのみ有効であり、複数のノズルを並設したヘッドを有する部品実装装置の実装サイクルの高速化には対応し得ない。
【0015】
そこで、本発明の目的は、複数のノズルを並設したヘッドの動作経路の単純化により、部品検出時のヘッドの停止を無くし、部品実装サイクルの短縮を達成する部品実装装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明の上記目的は、下記構成により達成される。
▲1▼ 下方から部品を吸着して保持するノズルが直線的に複数並設され前記各ノズルに部品を保持させるための部品供給部と前記部品が実装される被取付部との間の移動経路を往復移動されて前記各ノズルに保持した部品を前記被取付部に搬送する部品搬送手段と、前記部品供給部と前記被取付部との間に配置され下方から前記各ノズルに保持されて移動される部品の保持位置を二次元的に検出する部品認識手段とを具えた部品実装装置において、前記部品搬送手段に鉛直軸回りに回動する回動手段を介して前記複数のノズルを直線的に並設し、該回動手段の鉛直軸回りの回動角の設定により前記各ノズルがノズル並設順に前記部品認識手段の上方を通過されるように構成したことを特徴とする部品実装装置。
【0017】
▲2▼ 下方から部品を吸着して保持するノズルが直線的に複数並設され前記各ノズルに部品を保持させるための部品供給部と前記部品が実装される被取付部との間の移動経路を往復移動されて前記各ノズルに保持した部品を前記被取付部に搬送する部品搬送手段と、前記部品供給部と前記被取付部との間に配置され下方から前記各ノズルに保持されて移動される部品の保持位置を検出する部品認識手段とを具えた部品実装装置において、前記部品認識手段を鉛直軸回りに回動自在に構成し、前記部品認識手段の鉛直軸回りの回動角の設定により前記各ノズルがノズル並設順に前記部品認識手段の上方を通過されるように構成したことを特徴とする部品実装装置。
【0018】
▲3▼ 前記部品供給部と前記被取付部との間の水平面内に、前記部品認識手段を任意位置に移動する移動手段を設け、前記部品認識手段が前記移動経路に対応して移動されるように構成された前記▲1▼又は▲2▼記載の部品実装装置。
【0019】
▲4▼ 前記部品認識手段が、受光素子をほぼ直線上に並べ、これに対向する光源の前方を移動する部品を複数回走査して二次元画像を得るように構成された前記▲2▼又は▲3▼記載の部品実装装置。
【0020】
▲5▼ 前記部品認識手段として受光素子を二次元に並べ、二次元画像を受光素子に結像させるように構成された前記▲1▼〜▲3▼のいずれか記載の部品実装装置。
【0021】
▲6▼ 前記部品搬送手段に鉛直軸回りに回動する回動手段を介して前記複数のノズルを直線的に並設し、該回動手段の鉛直軸回りの回動角の設定及び前記部品認識手段の鉛直軸回りの回動角の設定により、前記各ノズルがノズル並設順に前記部品認識手段の上方を通過されるように構成したことを特徴とする前記▲2▼記載の部品実装装置。
【0022】
【作用】
すなわち、前記▲1▼の発明において、部品搬送手段は、部品供給部と被取付部との間に設定された所定の移動経路を移動するが、複数のノズルは、回動手段により、直線的な並設を保持した状態のまま部品搬送手段に対して垂直軸回りに回動自在であり、部品認識手段は、前記移動経路を含む近傍より、各ノズルに保持されている部品を下方から検出する。
【0023】
このため、部品供給部から被供給部への部品搬送手段の移動の際に、各ノズルがノズル並設順に部品認識手段の上方を通過するよう、前記回動手段によりノズル列の回動角を設定すると、部品保持位置検出の開始時と終了時に部品搬送手段の移動を停止せずに部品の保持位置が検出されることになる。このように、前記部品搬送手段の移動経路は、部品搬送手段の移動を停止せずに部品の保持位置を検出する点を満足すればよい。
【0024】
このため、ノズル列の移動経路は、最後の部品取出し点と部品認識手段の通過点を通る湾曲した経路となり、部品搬送手段の移動経路はノズル列の移動経路と平行な経路となる。
【0025】
前記▲2▼の発明は、前記▲1▼の発明のように、複数のノズルを全体的に回動せずに、その代わりに、部品供給部から被供給部への部品搬送手段の移動の際、各ノズルがノズル並設順に部品認識手段の上方を通過するよう、前記回動手段の回動角を設定し、部品保持位置検出の開始時と終了時の部品搬送手段の一時停止をなくし、サイクルの効率化を図るものである。
【0026】
この場合、部品認識手段の回動角は、前記▲1▼の発明と同様にノズル列の移動方向に対応して設定される。
【0027】
このように、前記▲1▼及び▲2▼の発明は、ノズル又は部品認識手段の鉛直軸回りの回動角の設定によって、ヘッドの停止を排除するが、部品保持位置の検出の際のノズル列及びヘッドの移動経路は直線と比較して湾曲しており、その分、サイクルの所要時間が増大する。
【0028】
そこで、前記▲3▼の発明では、部品認識手段を部品供給部と基板との間に設置し、この間で水平面に沿って移動自在としている。このため、部品検出手段を1サイクルにおける最終の部品供給部近傍に移動すると、ノズル列の移動経路及び部品搬送手段の移動経路は、直線に近似し、これらの移動経路長さは相対的に短縮されることになる。よって、前記▲1▼又は▲2▼の発明と比較して、サイクルの効率化及び高速化を達成することができる。
【0029】
前記▲4▼の発明は、前記▲2▼又は▲3▼の発明において、部品を複数回走査して二次元画像を得るものであり、また、前記▲5▼の発明は、前記▲1▼〜▲3▼のいずれかの発明において、二次元像を受光素子に結像させ、部品の保持位置を検出するものである。
前記▲6▼の発明は、ノズル及び部品認識手段の両方の鉛直軸回りの回動角の設定によって、ノズル移動距離の一層の短縮化を実現するものである。
【0030】
【発明の実施の形態】
以下、本発明の第1実施形態を図1〜図4を参照して説明する。なお、従来技術と同一構成部については同一符号を付し、その説明は省略するものとする。
【0031】
図1は部品実装装置の第1実施形態の平面図を示し、図2は部品搬送手段の移動経路及び実装サイクルの平面図を示す。
【0032】
図において、3は部品供給部、10は基板を示し、21は部品搬送手段としてのヘッド、22a,22b,22cは部品4を部品供給部3より取出すノズルを示している。該ノズル22a,22b,22cは、前記ヘッド21の基板10側の一側部に対して鉛直軸回り回動自在に枢支されている枢支軸24に一体にかつ、直線的に並設されており、該枢支軸24の一端部に固設された従動プーリ25と、ヘッド21の上面部に配設されたノズル駆動用モータ(ステッピングモータ)26のモータ軸26aに固設されている駆動プーリ27とに、無端状の駆動ベルト28が巻回されている。
【0033】
このため、ヘッド駆動用モータ26の駆動により、ノズル22a,22b,22cよりなるノズル列の角度を自由に設定することが可能となり、部品供給部3,3,…と基板10との間に設置された二次元部品認識手段23が部品4を下方から撮像できる角度に設定することができる。
【0034】
本第1実施形態にあって、前記二次元部品認識手段23はCCDカメラからなり、部品4の下面を撮像し、この画像情報を、制御手段(図示せず)に出力するように構成されている。
【0035】
図2に前記ヘッド21及びノズル22a,22b,22cの移動経路と、ヘッド21を中心とした部品4の実装サイクルを示す。
【0036】
同図に示すように、ノズル列の部品取出し終了直後より部品4の保持位置検出完了までのノズル列の移動経路Kは、X軸方向において終点に設定された部品供給部3の部品取出し点C2と、二次元部品認識手段23に対する通過点との二点を通る湾曲線に沿って設定され、部品4の保持位置検出完了後から基板実装までの経路は、二次元部品認識手段23の通過点と、基板10の最初の実装点D2を結ぶ直線に沿って設定される。そして、前記ヘッド21の移動経路は、このノズル列の移動経路Kに対応して内側に設定されている。
【0037】
部品実装サイクルは、大別して、各ノズル22a,22b,22cの吸着により各ノズル22a,22b,22cを保持する部品取出し工程と、この部品取出し工程後に、ヘッド21を部品供給部3上より二次元部品認識手段23の上方を通過させながら、各ノズル22a,22b,22cに保持されている部品を、この二次元部品認識手段23によりノズル並設順に順次検出する部品保持位置検出工程と、部品保持位置検出後、ヘッド21の移動によって、各ノズル22a,22b,22cを基板10上に移動して部品4を実装する部品実装工程の三工程からなっており、制御手段(図示せず)は、これらの工程に対応して前記X軸モータ7、Y軸モータ9及びノズル駆動用モータ26を制御する。
【0038】
該制御手段は、部品実装工程では、複数の部品供給部3に対して始点の部品取出部3の部品取出し位置A2を実装サイクル全体のホームポジションとしている。そして、ノズル駆動用モータ26の駆動により、ノズル列がX軸方向に沿うようノズル駆動用モータ26の回動角を設定した後、X軸モータ7のみを駆動して、ヘッド21を、ノズルホームポジションA2から部品供給部3の終端C2へ移動させながら、予め、選択された部品取出し位置、例えば、図中、A2,B2,C2の三点で各ノズル22a,22b,22cに部品を保持する。
【0039】
次に、制御手段は、最後の部品取出し点C2と二次元部品認識手段23との間で、前記ノズル駆動用モータ26を駆動して各ノズル22a,22b,22cが、順次、二次元部品認識手段23の上方を順次通過するように、すなわち、前記ノズル列が軌道Kに沿って移動するように、前記枢支軸24を回動する。
【0040】
次に、部品保持位置検出工程に移り、X軸モータ7及びY軸モータ9の駆動により、ヘッド21を該ヘッド21の往路に沿わせて部品認識手段23側へと移動する。
【0041】
二次元部品認識手段23は、通過順に各ノズル22a,22b,22cに保持されている部品4の下面を下方より撮像し、対応する信号を制御手段に出力する。このため、前記二次元部品保持位置検出装置23は、ノズル並設順に部品4の下面を画像として認識し、制御手段は、この二次元部品保持位置検出装置23による各部品4,4,4の二次元画像に基づいて各ノズル22a,22b,22c毎に部品の形状及び部品保持位置を認識し、部品の良否判定及び位置の補正を行う。
【0042】
そして、部品実装工程に移り、X軸モータ7及びY軸モータ9の駆動制御により、ヘッド21を基板10上の所定位置D2位置に移動させて、移動方向先端のノズル2aに保持された部品4を基板10の最初の実装点D2に実装し、その後、X軸モータ7及びY軸モータ9及びノズル駆動用モータ25の駆動によって、残りの部品4,4を基板10の他の実装点に実装する。
【0043】
このように、本第1実施形態の部品実装装置は、部品取出し工程から部品保持位置検出に切り換えるときのヘッド21の移動停止、並びに、部品保持位置検出工程から実装工程に切り換える際のヘッド21の移動停止を無くし、スムーズなサイクルを実現している。
【0044】
したがって、部品の実装サイクルの高速化を達成することができるが、更に、高速化を図るためには、図3に示すように、前記部品供給部3と前記基板10との間に、水平面に沿って任意位置に移動する移動テーブル29を設置し、この移動テーブル29に前記部品認識手段23を設置固定して、該移動テーブル29の前後左右への移動により、部品認識手段23を選択された最終の部品取出点C2近傍に移動するように構成してもよい。
【0045】
このような構成により、前記部品保持位置検出工程のノズル列の移動軌道Kは直線に近似し、距離の短縮による高速化が達成される。なお、この場合に、前記移動テーブルの移動には、レール、車輪もしくはX軸ボールねじ及びY軸ボールねじ又は、ラック&ピニオン機構等周知の装置が用いられる。
【0046】
次に、本発明の第2実施形態を、図4を参照して説明する。なお、従来技術及び第1実施形態と同一構成部については同一符号を付しその説明は省略するものとする。
【0047】
図4に示すように、本第2実施形態の部品実装装置は、ノズル22a,22b,22cよりなるノズル列の回動手段としての枢支軸23、及びノズル駆動用モータ26、駆動プーリ27、従動プーリ25を廃止して、ヘッド21の一側部に前記ノズル2a,2b,2cを直接、かつ、直線的に並設し、前記回動手段の代わりに前記部品供給部3と基板10との間に、部品認識手段を鉛直軸回りに回動する部品認識回動手段30を設置して、この部品認識回動手段30に、例えば、一次元ラインセンサ11又は二次元部品認識手段23を搭載したものである。
【0048】
該部品認識回動手段30は、例えば、前記一次元ラインセンサ11又は二次元部品認識手段23が載置固定される回動テーブルに、これを回動自在に支持して駆動する駆動装置、例えばモータ駆動装置を取付けて構成される。
【0049】
このため、前記部品供給部3上から前記基板10の実装面上へのノズル2a,2b,2cの移動経路に回動テーブルの回動角を対応させると、前記各ノズル2a,2b,2cがノズル並設順に一次元ラインセンサ11又は二次元部品認識手段23の上方を、順次、横断することになる。
【0050】
よって、この実施形態にあっても第1実施形態と同様、実装サイクルの高速化を図ることができる。もちろん、前記移動テーブル29に部品認識回動手段30を設置し、移動テーブル29の移動と部品認識回動手段30の回動により、部品の取出しから部品4の保持位置検出までのヘッド21の移動経路を直線化し、距離の短縮による高速化を促進してもよい。
【0051】
次に、本発明の第3実施形態を、図5及び図6を参照して説明する。なお、従来技術及び第1実施形態と同一構成部については同一符号を付しその説明は省略するものとする。
【0052】
図5に示すように、本第3実施形態の部品実装装置は、ノズル22a,22b,22cよりなるノズル列の回動手段としての枢支軸23、及びノズル駆動用モータ26、駆動プーリ27、従動プーリ25に加えて、前記部品供給部3と基板10との間に、部品認識手段を鉛直軸回りに回動する部品認識回動手段30を設置して、この部品認識回動手段30に、例えば、一次元ラインセンサ11又は二次元部品認識手段23を搭載したものである。
【0053】
該部品認識回動手段30は、例えば、前記一次元ラインセンサ11又は二次元部品認識手段23が載置固定される回動テーブルに、これを回動自在に支持して駆動する駆動装置、例えばモータ駆動装置を取付けて構成される。また部品認識回動手段30は、好ましくはX−Y方向、少なくともX方向に移動可能に構成されている。
【0054】
本第4実施形態の特徴は、一次元ラインセンサ11又は二次元部品認識手段23が、ノズル22a,22b,22cの並設幅相当の長さを有しており、各ノズル22a,22b,22cに保持された部品を一括で認識できる点にある。このために、一次元ラインセンサ11又は二次元部品認識手段23は、ノズル22a,22b,22cの並設方向と平行となるように回動角を設定されるとともに、ノズル22a,22b,22cが部品供給部3から実装部へ直線的に移動する経路上に移動される。
【0055】
図6(a)に示すように、部品供給部で部品を保持したノズル22a,22b,22cは、部品の保持を完了した状態から向きを変えずに実装位置に直線的に向かうことができる。また、図6(b)に示すように、部品供給部で部品を保持したノズル22a,22b,22cの向きを変えるとともに、一次元ラインセンサ11又は二次元部品認識手段23の向き及び位置を変えることにより、ノズル22a,22b,22cは実装位置に直線的に向かうことができる。
【0056】
これらの場合、ノズル22a,22b,22cに保持された部品は、一括で一次元ラインセンサ11又は二次元部品認識手段23により認識され、実装時間の所用時間がより短縮される。
【0057】
なお、前記各実施形態において、X軸モータ7、Y軸モータ9及びノズル駆動用モータ25の駆動/停止、回転量、回転速度、移動テーブルの方向と移動速度、及び、ノズル2a,2b,2c,22a,22b,22cの吸着/吸着解除の制御、保持位置不良に対する制御は、ノズル2a,2b,2c,22a,22b,22c並びに部品認識手段11,23の応答性と、部品供給部3、基板10の位置及び部品4の取出し位置及び実装位置に基づいて一義的に決定されるものとし、前記基板10は、実装サイクル毎に、他の搬送装置により、供給されるものとする。
【0058】
【発明の効果】
請求項1及び請求項2記載の発明によれば、部品取出し工程から部品保持位置検出に切り換える際の停止、並びに、部品保持位置検出工程から実装工程に切り換える際のヘッドの停止を無くし、スムーズなサイクルを実現するように構成したので、部品の実装サイクルの高速化を達成することができる。
【0059】
また、請求項3記載の発明によれば、搬送手段の経路の直線化が可能となり、部品の実装サイクルの所要時間をより短縮することができる。
【0060】
また、請求項4記載の発明によれば、安価な構成で信頼性の高い部品検出を実施することができる。
【0061】
また、請求項5記載の発明によれば、精度が高く信頼性の高い部品の保持位置検出を実施することができる。
【0062】
また、請求項6記載の発明によれば、ノズル移動距離の一層の短縮化を実現できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の部品搬送装置の平面図である。
【図2】本発明の第1実施形態の部品搬送装置の平面図であり、部品搬送手段及びノズルの移動経路と実装サイクルの工程を示す図である。
【図3】本発明の第2実施形態の部品搬送装置の平面図であり、部品認識手段を移動自在に構成した態様を示す平面図である。
【図4】本発明の第2実施形態の部品搬送装置の平面図であり、部品認識回動手段を設置した形態を示す平面図である。
【図5】本発明の第3実施形態の部品搬送装置の平面図であり、部品保持手段及び部品認識手段を回動自在に構成した態様を示す平面図である。
【図6】本発明の第3実施形態による移動経路を示す平面図であり、(a)はノズルを回動させないで移動させる状態、(b)はノズル及び部品認識手段の両方を回動させてノズルを移動させる状態の平面図である。
【図7】従来の部品実装装置の平面図である。
【図8】従来の部品実装装置を示す斜視図である。
【図9】一次元ラインセンサによる部品の撮像状態を示す解説図である。
【符号の説明】
1 ヘッド(部品搬送手段)
3 部品供給部
4 部品
5 移動ブロック(ノズル搬送手段)
6 X軸ボールねじ(ノズル搬送手段)
7 X軸モータ(ノズル搬送手段)
8 Y軸ボールねじ(ノズル搬送手段)
9 Y軸モータ(ノズル搬送手段)
10 基板(被取付部)
11 一次元ラインセンサ
11a 受光部
11b 投光部
22a,22b,22c ノズル
23 二次元部品認識手段
24 枢支軸(回動手段)
25 従動プーリ(回動手段)
26 ノズル駆動用モータ(回動手段)
27 駆動プーリ(回動手段)
28 無端ベルト(回動手段)
30 部品認識回動手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component mounting apparatus for taking out electrical / electronic components or other components (hereinafter referred to as components) from a component supply section and mounting them on a mounting surface of a member to be mounted. The present invention relates to a component mounting apparatus that mounts to a mounted portion.
[0002]
[Prior art]
7 and 8 are plan views showing a conventional component mounting apparatus of this type. In the figure, reference numeral 1 denotes a head for conveying parts from below, and 2a, 2b, and 2c denote nozzles for attracting and holding the part 4 from the part supply unit 3 arranged below. The nozzles 2 a, 2 b, 2 c are arranged in a line with respect to one side of the head 1 and move integrally with the head 1. The head 1 is screwed into a moving block 5 and screwed into an X-axis ball screw 6 that is rotatable with respect to the moving block 5, and an X-axis motor 7 connected to a base end portion of the X-axis ball screw 6. It moves along the X-axis direction by the rotational driving force.
[0003]
The moving block 5 is screwed into a Y-axis ball screw 8 that rotates about the Y-axis, and the Y-axis motor 9 connected to the base end of the Y-axis ball screw 8 rotates along the Y-axis direction. Moving. On the side of the base end side of the Y-axis ball screw 8, there is a component supply section 3 for supplying the components 4, 4,... To the nozzles 2a, 2b, 2c along the X-axis direction. In addition, a substrate (attached portion) 10 on which the component 4 is mounted is disposed on the side of the tip end side of the Y-axis ball screw 8. A one-dimensional line sensor 11 is installed between the component supply unit 3 and the substrate 10 in order to detect the holding position of the component 4 with respect to each nozzle 2a, 2b, 2c.
[0004]
As shown in FIG. 8, the line sensor 11 includes a light receiving unit 11a composed of a plurality of light receiving elements and a light projecting unit 11b. The light projecting unit 11b emits light upward, and the light receiving unit 11a Only the vertical component of the reflected light reflected downward by the lower surfaces of the parts 4, 4, 4 held by the nozzles 2 a, 2 b, 2 c is taken in, and a row of the light projecting unit 11 a and the light receiving unit 11 b Is parallel to the Y-axis ball screw 8, and the light projecting surface of the light projecting unit 11b and the light receiving surface of the light receiving unit 11a are positioned lower than the movement path of the nozzles 2a, 2b, 2c. Arranged to exist.
[0005]
Accordingly, by driving the control means (not shown), the nozzles 2a, 2b, 2c are moved onto the one-dimensional line sensor 11 as shown in FIGS. While moving the head 1 in the X-axis direction and traversing the line sensor 11, the parts 4, 4, and 4 held by the nozzles 2a, 2b, and 2c by the one-dimensional line sensor 11 are moved for a predetermined time. When scanned at intervals (10 times in this example), the one-dimensional scanned image shown in the schematic diagram of FIG. 9A is obtained, and the entire lower surface of the component 4 shown in FIG. 2D images can be obtained.
[0006]
Therefore, based on this result, the control means discharges the component 4 whose component holding position is defective to the outside of the line. 9A and 9B, the black background shows an image of the entire lower surface of the component 4.
[0007]
FIG. 7 shows a mounting process of the component mounting apparatus by the control means.
In this example, when the head 1 is moved above the component supply unit 3 at the start point A1, the home position of the cycle is set, and the head 1 is moved from the component supply unit 3 at the start point A1 to the component supply unit 3 at the end C1. The parts are moved in the X-axis direction, and the parts are picked up from the picked-up parts at the selected A1, B1, and C1 positions.
[0008]
When the component removal is completed, the head 1 is moved to one side outside the detection range of the line sensor 11 (D1 position in the figure) and stopped. Thereafter, the head 1 is moved in the X-axis direction. The holding position of each component 4 is detected by crossing the one-dimensional line sensor 11 by movement (D1 → E1 in the figure).
[0009]
The control means includes two-dimensional image information (FIG. 9B) obtained by processing the signal of the output information of the one-dimensional line sensor 11 (FIG. 9A), and two previously stored in the storage unit. The dimensional image information (image information) is compared, and the quality of the holding position of the component 4 is determined for each nozzle. Then, the component 4 with the determination result “good” is mounted at a predetermined position on the substrate 10 (E1 → F1 in the figure), and the “bad” component 4 is moved to a predetermined discharge unit after this cycle is executed. Then discharge.
[0010]
[Problems to be solved by the invention]
Thus, in the conventional component mounting apparatus, the holding position of the component 4 is measured for each of the nozzles 2a, 2b, and 2c, and the mounting accuracy and yield are improved by feedback of the result.
[0011]
However, in this mounting apparatus, the nozzles 2a, 2b, and 2c are fixed with respect to the head 1, and the parallel arrangement direction of the nozzles is constant (X direction in this example). In order to collectively detect the component positions of all the nozzles 2a, 2b, and 2c, as described above, the D1 position and the E1 position in FIG. 7, that is, the one-dimensional line sensor of each nozzle 2a, 2b, and 2c. Before and after crossing 11, there is an inconvenience that the head 1 is temporarily stopped, and then the direction of the head 1 is changed to mount components.
[0012]
Therefore, in order to achieve high-speed mounting cycles, it is necessary to eliminate the steps of stopping the head 1 and detecting the direction of the head 1 when detecting the component holding position.
[0013]
In JP-A-5-283898, the above-described one-dimensional line sensor can be moved along the X-axis direction and moved to the G1 position in FIG. A technique for shortening the moving distance is disclosed.
[0014]
However, such a technique is effective only for mounting a component using a single nozzle, and cannot cope with an increase in the mounting cycle of a component mounting apparatus having a head in which a plurality of nozzles are arranged in parallel.
[0015]
SUMMARY OF THE INVENTION An object of the present invention is to provide a component mounting apparatus that achieves shortening of the component mounting cycle by eliminating the stop of the head at the time of component detection by simplifying the operation path of a head in which a plurality of nozzles are arranged in parallel. is there.
[0016]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following configurations.
(1) A movement path between a component supply unit for holding a component in a plurality of linearly arranged nozzles that adsorb and hold the component from below and a mounted portion on which the component is mounted. Are moved between the component supply unit and the mounted part, and are held by the nozzles from below and moved. In a component mounting apparatus comprising component recognition means for two-dimensionally detecting a holding position of a component to be moved, the plurality of nozzles are linearly connected to the component conveying means via a rotating means that rotates about a vertical axis. The component mounting apparatus is configured such that the nozzles pass above the component recognition means in the order of nozzle arrangement by setting the rotation angle of the rotation means about the vertical axis. .
[0017]
(2) A movement path between a component supply section for holding a part by adsorbing and holding a part from below and holding the part by each nozzle and a mounted part on which the part is mounted Are moved between the component supply unit and the mounted part, and are held by the nozzles from below and moved. In a component mounting apparatus comprising a component recognition means for detecting a holding position of the component to be operated, the component recognition means is configured to be rotatable about a vertical axis, and a rotation angle of the component recognition means about the vertical axis is set. A component mounting apparatus, wherein the nozzles are configured to pass above the component recognition means in order of nozzle arrangement.
[0018]
(3) A moving means for moving the part recognition means to an arbitrary position is provided in a horizontal plane between the part supply part and the attached part, and the part recognition means is moved corresponding to the movement path. The component mounting apparatus according to (1) or (2) configured as described above.
[0019]
(4) The component recognizing means configured to obtain a two-dimensional image by arranging the light receiving elements on a substantially straight line and scanning a component moving in front of the light source facing the component multiple times. (3) The component mounting apparatus according to (3).
[0020]
(5) The component mounting apparatus according to any one of (1) to (3), wherein the component recognition unit is configured to two-dimensionally arrange light receiving elements and form a two-dimensional image on the light receiving element.
[0021]
(6) The plurality of nozzles are linearly arranged in parallel with the component conveying unit via a rotating unit that rotates about a vertical axis, and the rotation angle of the rotating unit about the vertical axis is set and the component 2. The component mounting apparatus according to (2), wherein the nozzles are configured to pass above the component recognition means in the order in which the nozzles are arranged in parallel by setting the rotation angle around the vertical axis of the recognition means. .
[0022]
[Action]
That is, in the invention of (1), the component transport means moves along a predetermined movement path set between the component supply unit and the mounted portion, but the plurality of nozzles are linearly moved by the rotation unit. The component recognition unit can detect the component held by each nozzle from below from the vicinity including the moving path. To do.
[0023]
For this reason, the rotation angle of the nozzle row is adjusted by the rotation means so that each nozzle passes above the component recognition means in the order in which the nozzles are arranged when moving the component conveying means from the component supply unit to the supply target portion. When set, the component holding position is detected without stopping the movement of the component conveying means at the start and end of the component holding position detection. As described above, the movement path of the component conveying means only needs to satisfy the point of detecting the holding position of the component without stopping the movement of the component conveying means.
[0024]
For this reason, the moving path of the nozzle row is a curved path passing through the last component pick-up point and the passing point of the component recognizing means, and the moving path of the component conveying means is a path parallel to the moving path of the nozzle row.
[0025]
In the invention of (2), as in the invention of (1), the plurality of nozzles are not rotated as a whole, but instead, the movement of the component conveying means from the component supply unit to the supply unit is changed. At this time, the rotation angle of the rotation means is set so that each nozzle passes above the component recognition means in the order in which the nozzles are arranged side by side, thereby eliminating the temporary stop of the component conveying means at the start and end of the component holding position detection. In order to improve the efficiency of the cycle.
[0026]
In this case, the rotation angle of the component recognizing means is set corresponding to the moving direction of the nozzle row in the same manner as in the first aspect of the invention.
[0027]
As described above, in the inventions (1) and (2), the stop of the head is eliminated by setting the rotation angle around the vertical axis of the nozzle or the component recognition means, but the nozzle when detecting the component holding position is eliminated. The movement path of the row and the head is curved as compared with the straight line, and accordingly, the cycle time is increased.
[0028]
Therefore, in the invention of (3), the component recognition means is installed between the component supply unit and the substrate, and is movable along the horizontal plane during this period. For this reason, when the component detection means is moved to the vicinity of the final component supply unit in one cycle, the movement path of the nozzle row and the movement path of the component conveying means approximate a straight line, and the lengths of these movement paths are relatively shortened. Will be. Therefore, the efficiency and speed of the cycle can be increased as compared with the invention of (1) or (2).
[0029]
In the invention of (4), in the invention of (2) or (3), a part is scanned a plurality of times to obtain a two-dimensional image, and in the invention of (5), the above (1) In any one of the inventions (3) to (2), a two-dimensional image is formed on the light receiving element, and the holding position of the component is detected.
In the invention of (6), the nozzle moving distance can be further shortened by setting the rotation angles around the vertical axis of both the nozzle and the component recognition means.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the same structure part as a prior art, and the description shall be abbreviate | omitted.
[0031]
FIG. 1 shows a plan view of a first embodiment of a component mounting apparatus, and FIG. 2 shows a plan view of a moving path and a mounting cycle of a component conveying means.
[0032]
In the figure, 3 is a component supply unit, 10 is a substrate, 21 is a head as a component conveying means, and 22a, 22b, and 22c are nozzles that take out the component 4 from the component supply unit 3. The nozzles 22a, 22b, and 22c are integrally and linearly arranged in parallel with a pivot shaft 24 that is pivotally supported about one side of the head 21 on the substrate 10 side so as to be rotatable about a vertical axis. And a driven pulley 25 fixed to one end of the pivot shaft 24 and a motor shaft 26 a of a nozzle driving motor (stepping motor) 26 disposed on the upper surface of the head 21. An endless drive belt 28 is wound around the drive pulley 27.
[0033]
Therefore, by driving the head driving motor 26, the angle of the nozzle row composed of the nozzles 22a, 22b, and 22c can be freely set, and is installed between the component supply units 3, 3,. The two-dimensional component recognition means 23 thus set can set an angle at which the component 4 can be imaged from below.
[0034]
In the first embodiment, the two-dimensional component recognition means 23 is composed of a CCD camera, and is configured to image the lower surface of the component 4 and output this image information to a control means (not shown). Yes.
[0035]
FIG. 2 shows a moving path of the head 21 and the nozzles 22a, 22b, and 22c, and a mounting cycle of the component 4 with the head 21 as the center.
[0036]
As shown in the figure, the movement path K of the nozzle row from immediately after the completion of picking up the nozzle row to the completion of detection of the holding position of the component 4 is the component pick-up point C2 of the component supply unit 3 set as the end point in the X axis direction The path from the completion of the holding position detection of the component 4 to the board mounting is set as a passing point of the two-dimensional component recognition unit 23. And along a straight line connecting the first mounting points D2 of the substrate 10. The moving path of the head 21 is set inside corresponding to the moving path K of the nozzle row.
[0037]
The component mounting cycle is roughly divided into a component take-out process for holding the nozzles 22a, 22b, and 22c by suction of the nozzles 22a, 22b, and 22c, and after this component take-out process, the head 21 is two-dimensionally moved from the component supply unit 3 on the two-dimensional basis. A component holding position detecting step for sequentially detecting the components held by the nozzles 22a, 22b, and 22c in the order in which the nozzles are arranged while passing above the component recognizing unit 23, and component holding After position detection, the nozzle 21a, 22b, 22c is moved onto the substrate 10 by the movement of the head 21, and the component mounting process for mounting the component 4 is performed. The control means (not shown) includes: Corresponding to these steps, the X-axis motor 7, the Y-axis motor 9, and the nozzle driving motor 26 are controlled.
[0038]
In the component mounting process, the control means sets the component extraction position A2 of the component extraction unit 3 at the start point for the plurality of component supply units 3 as the home position of the entire mounting cycle. Then, after the nozzle drive motor 26 is driven, the rotation angle of the nozzle drive motor 26 is set so that the nozzle row is along the X-axis direction, and then only the X-axis motor 7 is driven to move the head 21 to the nozzle home. While moving from the position A2 to the terminal end C2 of the component supply unit 3, the components are held in the nozzles 22a, 22b, and 22c in advance at selected component take-out positions, for example, three points A2, B2, and C2 in the drawing. .
[0039]
Next, the control unit drives the nozzle driving motor 26 between the last component pick-up point C2 and the two-dimensional component recognition unit 23 so that each of the nozzles 22a, 22b, and 22c sequentially recognizes the two-dimensional component. The pivot shaft 24 is rotated so as to sequentially pass above the means 23, that is, so that the nozzle row moves along the track K.
[0040]
Next, the process moves to the component holding position detection step, and the head 21 is moved to the component recognition means 23 side along the forward path of the head 21 by driving the X-axis motor 7 and the Y-axis motor 9.
[0041]
The two-dimensional component recognition unit 23 images the lower surface of the component 4 held by the nozzles 22a, 22b, and 22c from the lower side in order of passage and outputs a corresponding signal to the control unit. For this reason, the two-dimensional component holding position detection device 23 recognizes the lower surface of the component 4 as an image in the order in which the nozzles are arranged side by side, and the control means detects the components 4, 4, and 4 Based on the two-dimensional image, the shape of the component and the component holding position are recognized for each nozzle 22a, 22b, and 22c, and the quality of the component is determined and the position is corrected.
[0042]
Then, the component mounting process is started, and the head 21 is moved to a predetermined position D2 on the substrate 10 by drive control of the X-axis motor 7 and the Y-axis motor 9, and the component 4 held by the nozzle 2a at the tip in the moving direction. Is mounted on the first mounting point D2 of the board 10, and then the remaining components 4, 4 are mounted on other mounting points of the board 10 by driving the X-axis motor 7, the Y-axis motor 9, and the nozzle driving motor 25. To do.
[0043]
As described above, the component mounting apparatus according to the first embodiment stops the movement of the head 21 when switching from the component extraction process to the component holding position detection, and the head 21 when switching from the component holding position detection process to the mounting process. Stops moving and realizes a smooth cycle.
[0044]
Therefore, it is possible to increase the speed of the component mounting cycle. However, in order to increase the speed further, as shown in FIG. 3, a horizontal plane is provided between the component supply unit 3 and the substrate 10. A moving table 29 that moves to an arbitrary position along the moving table 29 is installed, the component recognizing means 23 is installed and fixed on the moving table 29, and the component recognizing means 23 is selected by moving the moving table 29 back and forth and left and right. You may comprise so that it may move to the final part picking point C2 vicinity.
[0045]
With such a configuration, the movement trajectory K of the nozzle row in the component holding position detection step approximates a straight line, and high speed is achieved by shortening the distance. In this case, a known device such as a rail, a wheel, an X-axis ball screw and a Y-axis ball screw, or a rack and pinion mechanism is used for moving the moving table.
[0046]
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the prior art and the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
[0047]
As shown in FIG. 4, the component mounting apparatus according to the second embodiment includes a pivot shaft 23 as a rotating means of a nozzle row including nozzles 22 a, 22 b, and 22 c, a nozzle driving motor 26, a driving pulley 27, The driven pulley 25 is abolished, and the nozzles 2a, 2b, 2c are arranged directly and linearly on one side of the head 21, and the component supply unit 3 and the substrate 10 are replaced by the rotating means. In the meantime, the component recognition rotating means 30 for rotating the component recognition means about the vertical axis is installed, and for example, the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is attached to the component recognition rotating means 30. It is what is installed.
[0048]
The component recognition rotation means 30 is, for example, a driving device that supports and drives the rotation table on the rotation table on which the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is mounted and fixed. A motor drive device is attached.
[0049]
Therefore, when the rotation angle of the rotation table is made to correspond to the movement path of the nozzles 2a, 2b, 2c from the component supply unit 3 to the mounting surface of the substrate 10, the nozzles 2a, 2b, 2c The upper direction of the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is sequentially traversed in the order of nozzle arrangement.
[0050]
Therefore, even in this embodiment, as in the first embodiment, the mounting cycle can be speeded up. Of course, the component recognition rotating means 30 is installed on the moving table 29, and the movement of the head 21 from the removal of the component to the detection of the holding position of the component 4 by the movement of the moving table 29 and the rotation of the component recognition rotating means 30. The route may be straightened and speeding up by shortening the distance may be promoted.
[0051]
Next, a third embodiment of the present invention will be described with reference to FIGS. The same components as those in the prior art and the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
[0052]
As shown in FIG. 5, the component mounting apparatus according to the third embodiment includes a pivot shaft 23 as a rotating means of a nozzle row including nozzles 22 a, 22 b, and 22 c, a nozzle driving motor 26, a driving pulley 27, In addition to the driven pulley 25, a component recognition rotating unit 30 that rotates the component recognition unit about the vertical axis is installed between the component supply unit 3 and the substrate 10. For example, the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is mounted.
[0053]
The component recognition rotation means 30 is, for example, a driving device that supports and drives the rotation table on the rotation table on which the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is mounted and fixed. A motor drive device is attached. The component recognition rotating means 30 is preferably configured to be movable in the XY direction, at least in the X direction.
[0054]
The feature of the fourth embodiment is that the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 has a length corresponding to the parallel width of the nozzles 22a, 22b, 22c, and each nozzle 22a, 22b, 22c. This is because the parts held in can be recognized collectively. For this purpose, the one-dimensional line sensor 11 or the two-dimensional component recognition means 23 is set with a rotation angle so as to be parallel to the parallel arrangement direction of the nozzles 22a, 22b, 22c, and the nozzles 22a, 22b, 22c It is moved on a path that linearly moves from the component supply unit 3 to the mounting unit.
[0055]
As shown in FIG. 6A, the nozzles 22a, 22b, and 22c that hold the components in the component supply unit can linearly go to the mounting position without changing the orientation from the state where the holding of the components is completed. Further, as shown in FIG. 6B, the direction of the nozzles 22a, 22b, and 22c holding the components in the component supply unit is changed, and the direction and position of the one-dimensional line sensor 11 or the two-dimensional component recognition unit 23 are changed. Accordingly, the nozzles 22a, 22b, and 22c can be linearly directed to the mounting position.
[0056]
In these cases, the components held by the nozzles 22a, 22b, and 22c are collectively recognized by the one-dimensional line sensor 11 or the two-dimensional component recognition means 23, and the required time for mounting is further shortened.
[0057]
In each of the embodiments described above, the driving / stopping of the X-axis motor 7, the Y-axis motor 9, and the nozzle driving motor 25, the rotation amount, the rotation speed, the direction and movement speed of the moving table, and the nozzles 2a, 2b, 2c. , 22a, 22b, and 22c, and control for defective holding positions are performed by the nozzles 2a, 2b, 2c, 22a, 22b, and 22c, the responsiveness of the component recognition units 11 and 23, the component supply unit 3, It is assumed that the position is uniquely determined based on the position of the substrate 10, the position where the component 4 is taken out, and the mounting position, and the substrate 10 is supplied by another transfer device every mounting cycle.
[0058]
【The invention's effect】
According to the first and second aspects of the present invention, the stop when switching from the component take-out process to the component holding position detection and the stop of the head when switching from the component holding position detection process to the mounting process are eliminated and smooth. Since it is configured to realize the cycle, it is possible to increase the speed of the component mounting cycle.
[0059]
According to the third aspect of the present invention, it is possible to straighten the path of the conveying means, and the time required for the component mounting cycle can be further shortened.
[0060]
Further, according to the invention described in claim 4, it is possible to carry out highly reliable component detection with an inexpensive configuration.
[0061]
In addition, according to the fifth aspect of the invention, it is possible to detect the holding position of the component with high accuracy and high reliability.
[0062]
According to the sixth aspect of the present invention, the nozzle moving distance can be further shortened.
[Brief description of the drawings]
FIG. 1 is a plan view of a component conveying apparatus according to a first embodiment of the present invention.
FIG. 2 is a plan view of the component conveying apparatus according to the first embodiment of the present invention, and is a diagram illustrating a component conveying means and a moving path of nozzles and steps of a mounting cycle.
FIG. 3 is a plan view of a component conveying apparatus according to a second embodiment of the present invention, and is a plan view showing an aspect in which component recognition means is configured to be movable.
FIG. 4 is a plan view of a component conveying apparatus according to a second embodiment of the present invention, and is a plan view showing a form in which component recognition rotating means is installed.
FIG. 5 is a plan view of a component conveying apparatus according to a third embodiment of the present invention, showing a state in which component holding means and component recognition means are configured to be rotatable.
6A and 6B are plan views showing a movement path according to a third embodiment of the present invention, in which FIG. 6A is a state in which the nozzle is moved without rotating, and FIG. 6B is a state in which both the nozzle and the component recognition means are rotated. It is a top view of the state which moves a nozzle.
FIG. 7 is a plan view of a conventional component mounting apparatus.
FIG. 8 is a perspective view showing a conventional component mounting apparatus.
FIG. 9 is an explanatory diagram illustrating an imaging state of a component by a one-dimensional line sensor.
[Explanation of symbols]
1 Head (Parts conveying means)
3 Component supply unit 4 Component 5 Moving block (nozzle conveying means)
6 X-axis ball screw (nozzle transfer means)
7 X-axis motor (nozzle transfer means)
8 Y-axis ball screw (nozzle transfer means)
9 Y-axis motor (nozzle transfer means)
10 Substrate (attached part)
11 One-dimensional line sensor 11a Light-receiving part 11b Light-projecting part 22a, 22b, 22c Nozzle 23 Two-dimensional component recognition means 24 Pivoting shaft (turning means)
25 Driven pulley (turning means)
26 Nozzle drive motor (turning means)
27 Drive pulley (turning means)
28 Endless belt (turning means)
30 Component recognition rotation means

Claims (2)

部品を吸着して保持するノズルが直線的に複数並設されたノズル列を有し、前記各ノズルに部品を保持させるための部品供給部と前記部品が実装される被取付部との間の移動経路を往復移動されて前記各ノズルに保持した部品を前記被取付部に搬送する部品搬送手段と、
前記部品供給部と前記被取付部との間に配置され下方から前記各ノズルに保持されて移動される部品の保持位置を二次元的に検出する部品認識手段とを具えた部品実装装置において、
前記部品搬送手段鉛直軸回りに前記ノズル列を回動する回動手段を有し、該回動手段の鉛直軸回りの回動角の設定により前記部品認識手段と前記被取付部の最初の取付位置とを結ぶ直線と平行になるように前記ノズル列の角度を変更し、前記各ノズルがノズル並設順に前記部品認識手段の上方を通過されるように構成したことを特徴とする部品実装装置。
There are nozzle rows in which a plurality of nozzles for adsorbing and holding the components are linearly arranged in parallel, between the component supply unit for holding the components to each nozzle and the mounted portion on which the components are mounted. Parts transporting means for transporting the parts reciprocated along the moving path and held by the nozzles to the mounted portion;
In a component mounting apparatus comprising component recognition means that two-dimensionally detects a holding position of a component that is disposed between the component supply unit and the mounted portion and is held and moved by the nozzles from below.
The component carrying means comprises a rotating means for rotating the nozzle array around the vertical axis, the vertical axis of the rotation angle of the pivoting means setting the first of the attached part and the component recognition unit by Component mounting characterized in that the angle of the nozzle row is changed so as to be parallel to a straight line connecting the mounting position, and the nozzles are passed over the component recognition means in the order in which the nozzles are arranged side by side. apparatus.
前記部品供給部と前記被取付部との間の水平面内に、前記部品認識手段を任意位置に移動する移動手段を設け、前記部品認識手段が前記移動経路に対応して移動されるように構成された請求項記載の部品実装装置。A moving means for moving the component recognizing means to an arbitrary position is provided in a horizontal plane between the component supplying section and the mounted portion, and the component recognizing means is moved corresponding to the moving path. The component mounting apparatus according to claim 1 .
JP2000001815A 2000-01-07 2000-01-07 Component mounting equipment Expired - Fee Related JP4353602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001815A JP4353602B2 (en) 2000-01-07 2000-01-07 Component mounting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001815A JP4353602B2 (en) 2000-01-07 2000-01-07 Component mounting equipment

Publications (2)

Publication Number Publication Date
JP2001196797A JP2001196797A (en) 2001-07-19
JP4353602B2 true JP4353602B2 (en) 2009-10-28

Family

ID=18531001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001815A Expired - Fee Related JP4353602B2 (en) 2000-01-07 2000-01-07 Component mounting equipment

Country Status (1)

Country Link
JP (1) JP4353602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907493B2 (en) * 2007-10-30 2012-03-28 パナソニック株式会社 Mounting condition determining method and mounting condition determining apparatus
JP5955688B2 (en) * 2012-08-01 2016-07-20 富士機械製造株式会社 Electronic component mounting machine

Also Published As

Publication number Publication date
JP2001196797A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
KR100275086B1 (en) Electronic component mounting device and electronic component mounting method
KR101495231B1 (en) Component recognizing apparatus, surface mounting apparatus and component testing apparatus
KR101557714B1 (en) Component imaging device, and component mounting device equipped with component imaging device
JP2004158819A (en) Head and method for mounting component
JP3981478B2 (en) Electronic component mounting device
JP3744179B2 (en) Electronic component mounting method
JP4227833B2 (en) Component mounting equipment
JP4353602B2 (en) Component mounting equipment
JP4050396B2 (en) Electronic component mounting apparatus and mounting head mounting method for electronic component mounting apparatus
JP5041878B2 (en) Component recognition device, surface mounter, and component testing device
JP4437686B2 (en) Surface mount machine
JP4213292B2 (en) Component recognition system for surface mounters
JPH0923097A (en) Surface mount machine
JP4368709B2 (en) Surface mount machine
JP2000068696A (en) Part recognition/mounting device and part recognition method
KR100604317B1 (en) Electronic component mounting device and mounting method of electronic component using same
JP4358015B2 (en) Surface mount machine
JP4298462B2 (en) Component recognition device, component recognition method, surface mounter, and component test apparatus
JP3365400B2 (en) Chip mounting equipment
JP2013251346A (en) Electronic component mounting device
JP4386425B2 (en) Surface mount machine
JP3365398B2 (en) Chip mounting equipment
JP4850693B2 (en) Component recognition device, surface mounter and component testing device
JP3371891B2 (en) Chip mounting equipment
JP3365401B2 (en) Chip mounting equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees